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1 Introduction

A common problem in empirical work is that of assessing the predictability of one time series
variable, given information about another variable. This problem involves a comparison of
the predictive content of two nested forecast models subject to estimation uncertainty. The
restricted model serves as the benchmark.1 Our objective is to determine whether a predictive
relationship exists in population. This question is conceptually different from the objective of
selecting the better forecast model among the models in question, because in the latter case it
may be advantageous to select a misspeciÞed model (see Inoue and Kilian 2002).
A leading example of the type of problem we have in mind are tests of the predictability

of asset returns in empirical Þnance. For example, there is great interest in whether variables
such as the dividend-price ratio or the earnings-price ratio help to predict future stock returns
or excess returns (see Fama and French 1988, Campbell and Shiller 1988a,b, Goetzmann and
Jorion 1993, 1995). Another example are tests of the predictive ability of technical trading
rules or tests for calendar effects in stock returns (see Sullivan, Timmermann, and White 2001;
Hansen 2001; White 2000).
A closely related problem arises in international Þnance. There is a large literature on testing

the predictability of future changes in the nominal exchange rate based on current deviations
of nominal exchange rates from macroeconomic fundamentals (see, e.g., Chinn and Meese 1995,
Mark 1995, Berben and van Dijk 1998, Kilian 1999, Berkowitz and Giorgianni 2001, Faust,
Rogers and Wright 2003, Kilian and Taylor 2003). Similar problems arise in testing whether
forward rates predict future spot rates (see Clarida and Taylor 1997, Clarida, Sarno, Taylor and
Valente 2003). In closely related work, Meese and Rogoff (1983) andMeese and Rose (1991) have
tested the predictability of the level of spot exchange rates based on the level of macroeconomic
fundamentals. Meese and Rogoff (1988) test whether real interest rate differentials help to
forecast real exchange rates.
Other applications include tests of the predictive content of advertising for consumer spend-

ing (see Ashley, Granger and Schmalensee 1980), the predictive content of money for output
(see Amato and Swanson 2001), the predictive content of output-gap measures for inßation (see
Clark 2000), and the predictive content of asset prices for output and inßation (see Stock and
Watson 2001).
Predictability tests can be conducted based on in-sample Þt or they can be based on the

out-of-sample Þt obtained from a sequence of recursive or rolling regressions. In the former
case, we use the full sample in Þtting the models of interest. Examples of in-sample tests are
standard t−tests or F -tests. In the latter case we attempt to mimic the data constraints faced
by a real-time forecaster. Examples of out-of-sample tests are tests of equal predictive accuracy
and tests of forecast encompassing.
There is a folk wisdom among applied researchers that in-sample tests are biased in favor

of detecting spurious predictability. This perception has led to a tendency to discount signiÞ-
cant evidence in favor of predictability based on in-sample tests, if this evidence cannot also be

1This paper does not deal with forecast accuracy tests for nonnested models (see, e.g., West 1996). An example of
nonnested comparisons are forecast accuracy tests involving alternative formulations of the Phillips curve (see Stock
and Watson 1999).
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supported by out-of-sample tests. For example, Ashley, Granger and Schmalensee (1980) insist
that �a sound and natural approach� to testing predictive ability �must rely primarily on the
out-of-sample forecasting performance� (p. 1149). They note that �the riskiness of basing con-
clusions about [Granger] causality... entirely on within-sample performance is reasonably clear�
(p. 1156) and stress the likelihood of �spurious inferences ... when out of-sample veriÞcation is
not employed� (p. 1165).
The purpose of this paper is to question this conventional wisdom. We note that strong

in-sample evidence and weak out-of-sample evidence are not necessarily an indication that in-
sample tests are not reliable. Any out-of-sample analysis based on sample-splitting involves a
loss of information and hence lower power in small samples. As a result, an out-of-sample test
may fail to detect predictability that exists in population, whereas the in-sample test correctly
will detect it. This fact has been recently illustrated by Kilian and Taylor (2003) who provide
empirical evidence that in small samples out-of-sample tests may have considerably lower power
than in-sample tests, given the same test size. Examples such as this one are illustrative, but
not dispositive. They underscore the need for a systematic investigation of the size and power
properties of in-sample and out-of-sample tests of predictability.
In this paper, we use asymptotic theory to analyze more formally the trade-offs between

in-sample tests and out-of-sample tests of predictability in terms of their size and power. We
provide a formal deÞnition of reliability in terms of the size distortion of a test. We link concerns
about the reliability of predictive inference to data mining. We discuss the effect of data mining
on the size of tests of predictability. We show that there are no systematic differences in the
accuracy of in-sample and out-of-sample tests under the null hypothesis of no predictability,
provided appropriate critical values are used. Our results overturn the conventional wisdom
that out-of-sample test results are more reliable than in-sample test results. We then proceed
with a comparison of the local asymptotic power of out-of-sample tests relative to in-sample
tests. We show that in many cases of practical interest in-sample tests have higher power than
out-of-sample tests. Our results provide an alternative explanation of the comparatively weak
out-of-sample evidence of predictability in applied work.
We conclude that the empirical evidence on in-sample and out-of-sample tests of predictabil-

ity needs to be reconsidered. In choosing between in-sample and out-of-sample evidence, ap-
plied researchers will need to give careful attention to the size and power properties of their
predictability tests on a case-by-case basis. In practice, the Þnite-sample size and power prop-
erties of predictability tests may be approximated by bootstrap methods (see, e.g., Kilian 1999,
Kilian and Taylor 2003). The properties of such bootstrap methods are an interesting Þeld of
study.
The remainder of the paper is organized as follows. In section 2, we discuss how data mining

may affect the size of in-sample and out-of-sample tests of predictability. In section 3, we derive
the asymptotic distributions of these tests under local alternatives. In section 4, we compare
the power of in-sample and of out-of-sample tests against local alternatives. We distinguish
between environments that are free of data mining and environments, in which data mining has
occurred and the critical values have been adjusted accordingly. We conclude in section 5. The
proofs are in the appendix.
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2 Implications of Data Mining for the Reliability of Pre-
dictive Inference

2.1 Data Mining May Affect the Reliability of Predictability Tests

The literature is replete with warnings about unreliable in-sample inference. For example,
Granger (1990, p. 3) writes: �One of the main worries about the present methods of model
formulation is that the speciÞcation search procedure produces models that Þt the data spuri-
ously well, and also makes standard techniques of inference unreliable�. It is important to be
clear about what we mean by unreliable inference. In the context of predictive inference, the
prevailing concern is that in-sample tests of predictability may spuriously indicate predictability
when there is none. In this context, a predictability test would be considered unreliable if it
has a tendency to reject the no predictability null hypothesis more often than it should at the
chosen signiÞcance level. Formally, we deÞne a test to be unreliable if its effective size exceeds
its nominal size.
It is important to note that the mere inclusion of irrelevant variables, although it inßates

in-sample Þt, does not affect the reliability of in-sample tests of predictability. By construction,
a t-test of predictability is designed to mimic the distribution of the test statistic under the null
that the regressor is irrelevant. Similarly, as more and more irrelevant variables are included,
the critical values of the F -test will increase to account for this fact. Thus, the possible inclusion
of irrelevant variables has no effect on the asymptotic size of predictability tests. This point is
important because it means that for a given nested forecast model comparison there is no reason
to expect that in-sample tests offer any less protection against overÞtting than do out-of-sample
tests.
Rather Granger�s concern is that in-sample inference may be rendered unreliable by spec-

iÞcation searches that are not properly reßected in the choice of critical values. This �data
mining� is said to occur when a researcher searches over alternative forecast models, but only
reports results for the speciÞcation with the highest predictive content. For example, Granger
(1990, p. 8) notes that: �with a limited amount of data available and a huge number of pos-
sible models there is always a possibility that, if enough models are Þtted to the data, one
will appear to Þt very well, but in fact will not be useful�. For example, data mining occurs
when a researchers considers several alternative predictors, say the earnings-price ratio and the
dividend-price ratio, but only reports results for the predictor that appears signiÞcant in the
return regression using the standard critical values. This practice will cause the size of the test
of predictability to be inßated, resulting in spurious rejections of the no-predictability null and
thus overÞtting relative to the true model even asymptotically. Note that it is not necessary
for any one researcher to mine the data deliberately. It suffices that several researchers inde-
pendently consider alternative predictors and only signiÞcant results are ultimately published.
How severe the problem of data mining is depends on the context.
This discussion suggests that the properties of in-sample and out-of-sample tests of pre-

dictability will depend on whether data mining has taken place or not. We therefore will study
the relative merits of in-sample and out-of-sample tests of predictability in two alternative en-
vironments: One environment that is free from data mining and corresponds to the standard
assumptions used in empirical work, and another environment that is subject to systematic data
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mining along the lines described by Granger (1990).

2.2 Do Out-of-Sample Tests Protect Against Data Mining?

In the environment without data mining, standard critical values are adequate, and the choice
between in-sample and out-of-sample tests of predictability reduces to the question of which test
has higher power. We will therefore derive the asymptotic distributions of these tests under
local alternatives in section 3.1 and compare their power in section 4.1.
If data mining is presumed to have occurred, in contrast, the properties of predictability

tests are far less clear. There is a common perception that in the presence of data mining
out-of-sample tests of predictability are more reliable than in-sample tests. It is not clear what
the basis for this perception is, however. Standard critical values for both in-sample and out-of-
sample tests are constructed under the presumption that no data mining has taken place. If we
use these conventional critical values, neither in-sample nor out-of-sample tests will be robust
against data mining and it is unclear how to rank the tests.
The lack of reliability of in-sample tests in the presence of data mining is immediately obvious.

Similar problems also arise in out-of-sample inference. To see this consider the commonly used
procedure of recursive predictive inference about predictability (see, e.g., Mark 1995, Kilian
1999, Faust, Rogers and Wright 2003). Recursive predictive inference means that the researcher
estimates both the restricted and the unrestricted model on the Þrst S observations of the sample
and evaluates the Þt of each model on observation S+1 for S = R,R+1,R+2, ..., T−1. Contrary
to the conventional wisdom, this procedure offers no more protection from data mining than
in-sample tests of predictability. The problem is that, when this exercise is completed, the
researcher knows exactly the �out-of-sample�-performance of any given model and is free to
experiment with alternative predictors prior to publication. Thus, out-of-sample inference is
subject to exactly the same potential data mining problems as in-sample inference.2

2.3 How to Compare In-Sample and Out-of-Sample Tests in the Pres-
ence of Data Mining

Since both in-sample tests and out-of-sample tests of predictability, as currently used, are ren-
dered unreliable by data mining, neither test can be recommended for applied work when data
mining is a concern. An obvious solution to this problem is to adjust the critical values of
both in-sample and out-of-sample tests to account for data mining. This proposal is in the
spirit of recent work by White (2000) and by Hansen (2001), who proposed bootstrap methods
for out-of-sample inference in the presence of data mining. Since White�s theoretical results
presume that the out-of-sample test statistic of interest has a Gaussian limit distribution, they
cannot be applied to the test statistics of interest in our paper. In section 3.2. we propose
a natural generalization of White�s approach and derive the appropriate limit distributions for

2McCracken (2001) studies out-of-sample inference involving forecast models that in turn were selected based
on some inconsistent model selection procedure. His methodology, however, presumes that no respeciÞcation of the
forecast model occurs after the out-of-sample test is conducted. Thus, he rules out data mining of the form described
here.
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our out-of-sample tests. This allows us to construct critical values that are robust against data
mining. We also derive the limit distribution of the in-sample tests of predictability under
the assumption that data mining has taken place. This allows us to construct appropriate
data-mining robust critical values for the in-sample t- and F -tests. Our analysis is a natural
extension of work in classical statistics on the testing of multiple hypotheses (see, e.g., Anderson
1994, Dasgupta and Spurrier 1997; Royen 1984).3

Although such robust critical values for predictability tests have not been used to date in
empirical work, clearly both in-sample and out-of-sample tests of predictability based on these
robust critical values will be reliable and free of size distortions at least asymptotically. Thus,
the choice between in-sample and out-of-sample inference again reduces to a question about
relative power. We will therefore derive the asymptotic distributions of these tests under local
alternatives in section 3.2 and compare their power in section 4.2.

3 The Asymptotic Distributions of Tests of Predictability
under Local Alternatives

3.1 Environments without Data Mining

We begin with the results for environments that are free from data mining. Consider

yt = γ0xt + ut = α0vt + β0wt + ut, (1)

where xt = (v0t, w0t)0, vt and wt are m, l and k dimensional vectors of regressors, respectively,
{ut} is a sequence of martingale differences. Throughout the rest of the paper we assume the
following standard conditions hold:

Assumption 1.

(a) E(ut|xt, ut−1, xt−1, ut−2, ...) = 0 a.s. for all t.
(b) E(u2t |xt, ut−1, xt−1, ut−2, ...) = σ2 a.s. for all t.
(c) E(u4t |xt, ut−1, xt−1, ut−2, ...) < K4 <∞ a.s. for all t, where K4 is some constant.

(d) {xt} is strictly stationary and ergodic with E(xtx0t) positive deÞnite and has four Þnite
moments.

Assumptions 1(a)(b)(c) are used for the functional central limit theorem (e.g., Stock, 1994,
Theorem 1). Assumption 1(d) rules out some important and interesting cases, such as the near-
cointegrated case analyzed by Rossi (2001a) (also see Corradi, Swanson and Olivetti 2001). To
make our point, however, these simple assumptions suffice.
We are interested in testing

H0 : β = 0k×1
3A similar framework has also been used by Hansen (2000) who proposed bootstrap inference for the distribution

of R2 in the presence of data mining.
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against the two-sided alternative
H1 : β 6= 0k×1.

For some applications one is interested in testing for H0: β1 = 01×1against a more speciÞc
one-sided alternative

H2 : β1 > 01×1.

with k = 1. Both H1 and H2 are potentially relevant for empirical work, but, in practice, more
often than not H2 is the economically interesting alternative hypothesis.
For each alternative hypothesis we consider a sequence of local alternatives. That is,

H0
1 : β = T−1/2c

and
H 0
2 : β1 = T−1/2c1,

respectively, where c is a k-dimensional nonzero vector and c1 is a positive number.
We will deÞne in-sample and out-of-sample test statistics. First we consider in-sample tests.

For testing against H1, we consider an in-sample F test statistic

S1 =

PT
t=1(�u

2
0t − �u21t)
�σ2

(2)

where {�u1t} are the unrestricted OLS residuals, {�u0t} are the restricted OLS residuals under
H1 and �σ

2 = (1/T )
PT
t=1 �u

2
1t. For testing against H2, we consider the in-sample t test statistic

S2 =
√
T �β1/�σβ1 (3)

where �σβ1 is the (l + 1)× (l + 1) element of �σ2((1/T )
PT
t=1 xtx

0
t)
−1. The following proposition

provides the asymptotic distributions of S1 and S2 under a sequence of local alternatives.

Proposition 1. Suppose that Assumption 1 holds. Under a sequence of local alternatives of the
form H0

1 and H
0
2, respectively,

S1
d→ χ2δ1(k) (4)

S2
d→ N(δ2, 1), (5)

where χ2c1(k) is a noncentral χ
2 random variable with degree of freedom k and noncentral

parameters

δ1 =
1

σ2
c0{E(wtw0t)−E(wtv0t)[E(vtv0t)]−1E(vtw0t)}c

and
δ2 = e

0
l+1(1/σβ1)[E(xtx

0
t)]
−1E(xtw0t)c1,
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where el+1 is an (l+1)-dimensional column vector, whose last element is one and other elements
are all zero, and σ2

β1
is the (l+ 1)× (l + 1) element of σ2[E(xtx0t)]−1.

The proof of Proposition 1 is straightforward and thus is omitted. The null limit distribution
emerges as a special case of this result with c = 0 and c1 = 0, respectively.
Next, we consider the recursive test. We Þt the model by OLS on the Þrst S observations

and evaluate the Þt (loss) on observation S + 1, for S = R,R + 1, R + 2, ..., T − 1. The

recursive OLS estimators are deÞned by �γt = [�α0t, �β0t]0 = (
Pt
s=1 xsx

0
s)
−1Pt

s=1 xsys, and �αt =

(
Pt
s=t vsv

0
s)
−1Pt

s=1 vsys. For the split-sample test, we Þt the model on the Þrst S observations
and evaluate the Þt on the remaining T −S observations. Thus for the sample-split test S = R.
The split-sample OLS estimator is deÞned by �γR = [�α

0
R,
�β0R]

0 = (
PR
t=1 xtx

0
t)
−1PR

t=1 xtyt, and

�αR = (
PR
t=1 vtv

0
t)
−1PR

t=1 vtyt. SpeciÞcally, we consider the split-sample and recursive version
of the F statistic:

S3 =

PT
t=R+1(�u

2
0t − �u21t)

�σ2
(6)

S4 =

PT
t=R+1(ū

2
0t − ū21t)

�σ2
(7)

where �u0t = yt− �α0Rvt, �u1t = yt− �γ0Rxt, ū0t = yt− �α0t−1vt, ū1t = yt− �γ0t−1xt. McCracken (1999)
calls (6) the modiÞed OOS-F statistics. Gilbert (2001) also consider this statistic. Thus we will
refer to (6) as the Gilbert-McCracken (GM) test statistic. The GM test statistic is similar to
the DM test statistic of Diebold and Mariano (1995) in that it is based on the loss differential.
The key difference is that the GM test uses a different normalization designed to account for
parameter estimation uncertainty in the forecast model, whereas the DM test is designed for
forecast models with known parameters.

Assumption 2. R/T → π ∈ (0, 1) as T →∞.
Proposition 2. Suppose that Assumptions 1 and 2 holds. Under a sequence of local alternatives
of the form H 0

1

S3
d→ 1

π
(W (1)−W (π) + (1− π)δ)0(W (π) + πδ)− 1− π

2π2
(W (π) + πδ)0(W (π) + πδ) (8)

S4
d→

Z 1

π

1

r
W 0(r)dW (r) + δ0

Z 1

π

1

r
W (r)dr + δ0(W(1)−W (π)) + (1− π)δ0δ

−1
2

Z 1

π

1

r2
(W (r) + rδ)0(W (r) + rδ)dr (9)

where W (·) is a k-dimensional standard Brownian motion, δ = (1/σ)L0E(xtx0t)−1/2E(xtw0t)c, L
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is a l × k matrix that satisÞes LL0 = Q and L0L = Ik, and

Q = [E(xtx
0
t)]

1
2

½
(E(xtx

0
t))

−1 −
·
(E(vtv

0
t))

−1 0l×k
0k×l 0k×k

¸¾
[E(xtx

0
t)]

1
2 .

(8) and (9) are due to McCracken (1999, Theorem 4.1). The null limit distribution is a
special case of (8) and (9) with c = 0.
An alternative approach to comparing the forecast accuracy of two models is the encompass-

ing test, which involves running the regressions:

yt = α0vt + u0t
yt = α0vt + β0wt + u1t

and testing the null hypothesis

E(u20t)−E(u0tu1t) = 0

against the alternative
E(u20t)−E(u0tu1t) > 0.

Clark and McCracken (2001a) consider the encompassing tests (10) and (11). Their test for
nested forecast models differ from the test in Harvey et al. (1994) in that it allows for parameter
estimation uncertainty. West (2001) considers the encompassing test for nonnested models with
estimation uncertainty. The split-sample and recursive versions of the encompassing test are

S5 =
(T −R)−1/2PT

t=R+1(�u
2
0t − �u0t�u1t)

�V 1/2(�u20t − �u0t�u1t)
, (10)

S6 =
(T −R)−1/2PT

t=R+1(ū
2
0t − ū0tū1t)

�V 1/2(ū20t − ū0tū1t)
, (11)

where �V (�u20t − �u0t�u1t) is the sample variance of {�u20t − �u0t�u1t}Tt=R+1.

Proposition 3. Suppose that Assumptions 1 and 2 hold. Under a sequence of local alternatives
of the form H 0

1

S5
d→ (W (π) + πδ)0[W (1)−W (π) + (1− π)δ]
{(1− π)(W (π) + πδ)0(W (π) + πδ)}1/2 , (12)

S6
d→

·Z 1

π

1

r
W 0(r)dW (r) + δ0

Z 1

π

1

r
W (r)dr + δ0(W (1)−W (π)) + (1− π)δ0δ

¸
/

·Z 1

π

1

r2
(W (r) + rδ)0(W (r) + rδ)dr

¸1/2
(13)
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Clark and McCracken (2001a, Theorem 3.1) derive the null limit distribution of the encom-
passing test.4 The null limit distribution is obtained from (12) and (13) by setting c = 0.

3.2 Environments with Data Mining

As discussed in section 2, there are many situations in empirical work, in which data mining
must be presumed to have occurred. The presence of data mining affects the distribution of in-
sample and out-of-sample tests of predictability both under the null and under the alternative.
In this section we derive suitable critical values for predictability tests that account for data
mining and we derive their local asymptotic power. We formalize data mining as follows.
For j = 1, 2, ...,M , let wj,t denote a kj-dimensional subvector of wt where 1 ≤ kj ≤ k. Let
xj,t = [v0t w0j,t]

0. DeÞne Qj and Lj as in Proposition 2 with xt replaced by xj,t and k replaced
by kj . Suppose that one is interested in whether any one of M models

yt = α
0vt + β0jwj,t + uj,t j = 1, 2, ...,M

has predictive power that is superior to the benchmark model

yt = α
0vt + u0,t.

Formally the null hypothesis can be written as

H0 : βj = 0 ∀j
and the alternative hypothesis as

H1 : βj 6= 0 for some j.

Under the null hypothesis we have

max
j∈{1,...,M}

E(u20,t)−E(u2j,t) = 0,

whereas under the alternative hypothesis we have

max
j∈{1,...,M}

E(u20,t)−E(u2j,t) > 0.

This suggests the following in-sample test statistic:

S7 = max
j∈{1,...,M}

PT
t=1 �u

2
0,t − �u2j,t
�σ2j

. (14)

4Theorem 3.1 of Clark and McCracken (2001) reports the null limit distribution of the recursive case only. The
null limit distribution of the split-sample case follows from the intermediate results in Clark and McCracken (2000).
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The statistic S7 is the data-mining proof version of S1.
Let

Ω =

 Ω11 · · · ΩM1

... Ωij
...

Ω1M · · · ΩMM

 ,
d =

£
d1 d2 · · · dM

¤0
,

where

Ωij = L0iE(xi,tx
0
i,t)

−1/2E(xi,txj,t)E(xj,tx0j,t)
−1/2Lj ,

dj = (1/σ)L0j [E(xj,tx
0
j,t)]

−1/2E(xj,tw0j,t)c(ζj),

ζj denotes a k-dimensional selection vector whose jth element is 1 if wj,t includes the jth element
of wt and is zero otherwise. The notation c(ζ) stands for a subset of c where the selection vector
ζ ∈ ×ki=1{0, 1} and 1 ≤ kj = ζ0ζ ≤ k. For example, if ζ = [0, 1, 0, 1, 0] then c(ζ) = [c2, c4]0.

Assumption 3. Ω is positive deÞnite.

Proposition 4. Suppose that Assumptions 1 and 3 hold. Under the sequence of local alternatives
of the form H 0

1,

S7
d→ max

j∈{1,...,M}
χ2dj (kj) (15)

where χ2d1(k1) =
Pk1
i=1 u

2
i , χ

2
dj
(kj) =

Pk1+···+kj
i=k1+···+kj−1+1 u

2
i for j = 2, ...,M , and u1

...
uk1+···+kM

 ∼ N(d,Ω).
The distribution of [χ2d1(k1),χ

2
d2
(k2), ...,χ

2
dM
(kM)]

0 is called a noncentral multivariate χ2 distri-
bution in the statistical literature (see Royen (1997) for a recent survey).
Next, consider the special case in which wj,t is the jth element of wt. The alternative

hypothesis of interest is
H2 : βj > 0 for some j,

and a sequence of local alternatives is

H 0
2 : βj = T

−1/2cj j = 1, 2, ...,M,

where cj ≥ 0 for all j and cj > 0 for at least one j. For H2 it is natural to consider the following
in-sample test

S8 = max
j∈{1,...,M}

√
T �βj/�σβj (16)
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where �σ2βj is a consistent estimator of the asymptotic variance of βj . S8 is the data-mining-proof

version of S2. Let Σ be an M ×M matrix whose (i, j)th element is given by

σij = σ
2e0l+1[E(xi,tx

0
i,t)]

−1E(xi,txj,t)[E(xj,tx0j,t)]
−1el+1/σβiσβj

and f is an M-dimensional column vector whose jth element is given by

fj = e0l+1[E(xj,tx
0
j,t)]

−1E(xj,twj,t)cj/σβj .

where el+1 is an (l+1)-dimensional column vector whose last element is one and other elements
are all zero.

Assumption 4. Σ is positive deÞnite.

Proposition 5. Suppose that Assumptions 1 and 4 hold. Under the sequence of local alternatives
of the form H 0

2

S8
d→ max

j∈{1,...,M}
(vj) (17)

where  v1
...
vM

 ∼ N(f,Σ).
For c = 0, (15) and (17) include the null distribution as a special case. Thus, we are

able to derive critical values that are robust against data mining. Note that a key assumption
underlying this strategy is that the regression models in question are linear. Under nonlinearity
the number of models that could be constructed from a given set of predictors would be inÞnite
and the proposed strategy for computing data-mining robust critical values would be infeasible.
Next, we consider the data-mining robust out-of-sample tests. DeÞne the maximum version

of the split-sample GM test, recursive GM test, split-sample encompassing test and recursive
encompassing test as follows:

S9 = max
j∈{1,...,M}

PT
t=R+1(�u

2
0t − �u2j,t)

�σ2j

(18)

S10 = max
j∈{1,...,M}

PT
t=R+1(ū

2
0t − ū2j,t)

�σ2j
, (19)

S11 = max
j∈{1,...,M}

(T −R)−1/2PT
t=R+1(�u

2
0t − �u0t�uj,t)

�V 1/2(�u20t − �u0t�uj,t)
, (20)

S12 = max
j∈{1,...,M}

(T −R)−1/2PT
t=R+1(ū

2
0t − ū0tūj,t)

�V 1/2(ū20t − ū0tūj,t)
. (21)
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Proposition 6. Suppose that Assumptions 1, 2 and 3 hold. Then under a sequence of local
alternatives of the form H 0

1

S9
d→ max

j∈{1,...,M}
1

π
(Bj(1)−Bj(π) + (1− π)dj)0(Bj(π) + πdj)− 1− π

2π2
(Bj(π) + πdj)

0(Bj(π) + πdj)

(22)

S10
d→ max

j∈{1,...,M}

Z 1

π

1

r
B0j(r)dBj(r) + dj

0
Z 1

π

1

r
Bj(r)dr + d

0
j(Bj(1)−Bj(π)) + (1− π)dj 0dj

−1
2

Z 1

π

1

r2
(B(r) + rdj)

0(Bj(r) + rdj)dr, (23)

S11
d→ max

j∈{1,...,M}
(Bj(π) + πdj)

0[Bj(1)−Bj(π) + (1− π)dj ]
{(1− π)(Bj(π) + πdj)0(Bj(π) + πdj)}1/2 ,

(24)

S12
d→ max

j∈{1,...,M}

·Z 1

π

1

r
B0j(r)dBj(r) + d

0
j

Z 1

π

1

r
Bj(r)dr + d

0
j(Bj(1)−Bj(π)) + (1− π)d0jdj

¸
/

·Z 1

π

1

r2
(Bj(r) + rdj)

0(Bj(r) + rdj)dr
¸1/2

,

(25)

where {Bj(·)}Mj=1 are Brownian motions that satisfy E(Bi(r)Bj(s)0) = min(r, s)Ωij . By setting

c = 0, (22), (23) , (24) and (25) include the null limit distribution as a special case.

4 Comparing the Power of In-Sample Tests and Out-of-
Sample Tests of Predictability

The limit distributions we derived in section 3 will in general be data dependent. In practice,
the process that generates the data will be unknown, but may be approximated by bootstrap
methods (see e.g., White 2000; Hansen 2000, 2001). Since our main focus in this paper are
the asymptotic properties of predictability tests, in this section we focus on a stylized example
that is similar to processes studied in the empirical literature. We set aside for future research
a detailed investigation of the small-sample properties of bootstrap versions of predictability
tests. We note, however, that existing simulation evidence on the small-sample properties of
bootstrap predictability tests (e.g., Kilian 1999) is fully consistent with our local asymptotic
analysis.
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4.1 Environments without Data Mining

We evaluate the local asymptotic power of the six predictability tests of section 3 by simulation.
Let l = 1 and k = 1, corresponding to the standard speciÞcation used for example in testing the
dividend-ratio model. Thus, S1 may be interpreted as a two-sided t-test and S2 as a one-sided
t-test of the null hypothesis that wt does not predict yt. We postulate that vt = 1 for all t,
and wt = ρwt−1 + ηt. For simplicity, let ηt ∼ NID(0,σ2η). and ut ∼ NID(0,σ2). We set
ρ = 0.9, σ2η = 0.005 and σ2 = 0.05. These values are close to values obtained in empirical
research (see e.g., Mark 1995). Our qualitative conclusions are not sensitive to these parameter
choices. SpeciÞcally, we evaluated a grid of parameter values including ρ ² {0.45, 0.9, 0.99}, σ2η
² {0.005, 0.05} and σ2 ² {0.05, 0.5}. The results remained very similar.
We set π ²{0.3, 0.4, 0.5, 0.6, 0.7} and c ²{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. The larger c, the

larger the power of the test, all else equal. For c = 5 the power of the in-sample tests is close to
100%. We evaluate the local asymptotic power of all tests at the nominal 10% signiÞcance level.
The asymptotic critical values are computed based on 20000 draws from the limit distributions
in section 3 with c = 0. The rejection rates under the alternative are based on 20000 draws
from the limit distribution with c > 0. All Brownian motions in turn are approximated based
on discrete time approximations with T =5000.
Figure 1 shows the power results as a function of c and π. As expected, the two-sided test

S1 has lower power than the one-sided test S2 for all c. Among the out-of-sample tests, there is
no clear power ranking of the encompassing test and the GM test. Nor is there a clear ranking
between the recursive test and the corresponding split-sample test. In Figure 2, the asymptotic
power of the out-of-sample tests S3, S4, S5, and S6 is expressed in ratio form relative to the
asymptotic power of the in-sample tests S1 (upper panel) and S2 (lower panel). Thus, power
ratios below 1 indicate that the in-sample test is more powerful.
We Þnd that for all values of π and c, the S1-test has higher power than the GM tests as well

as higher power than the forecast encompassing tests. This result holds for both split-sample
and recursive versions of these tests. Qualitatively similar results also hold for S2. For all
values of π and c, the out-of-sample tests have lower power than the S2-test. The relative power
advantages of the S2-test are even more pronounced than for the S1-test. This result is not
surprising because S2 is a test of the null of no predictability against the one-sided alternative
H2. In contrast, the out-of-sample tests S3, S4, S5, and S6 test the weaker hypothesis of whether
one model is a more accurate predictor than the other, which corresponds to H1. Thus, their
power is diluted. There are no out-of-sample tests, to our knowledge, that can incorporate
one-sided hypotheses on β implied by economic theory. For example, standard exchange rate
models imply that periods, in which the nominal exchange rate exceeds the equilibrium value
of the exchange rate, should be followed by a depreciation of the exchange rate, as opposed to
a change in the exchange rate. In other words, the economic model pins down the direction of
change. Out-of-sample tests do not make use of that restriction.
If a researcher is interested in testing H2 our results clearly suggest that the preferred testing

strategy, at least asymptotically, would be to rely on the one-sided in-sample t-test (S2). Even
if we are interested in the two-sided alternative H1, however, the in-sample F -test (S1) would
clearly be the preferred test. Thus, our analysis does not support the conventional wisdom that
out-of-sample tests are more credible tests of the null of no predictability than in-sample tests.
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Rather our local asymptotic results support the alternative explanation that the discrepancies
between in-sample and out-of-sample test results tend to reßect the lower power of out-of-sample
tests.

4.2 Environments with Data Mining

We now turn to environments in which more than one candidate model was considered prior to
testing. The economically most interesting alternative hypothesis is one, in which one candidate
model helps to predicts yt in population, whereas all other candidate models do not. For
expository purposes we let M = 2. Thus, c = [c1 0], where c1²{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.
We postulate that the two potential predictors wjt follow identical AR(1) processes that are
independent. The details of the design are otherwise identical to the environment without data
mining. In short, the experiment differs from the previous subsection in that we allow for the
possible selection of an irrelevant predictor.
Figure 3 shows the power results as a function of c and π. We Þnd that power tends

to be somewhat lower, but qualitatively the power results are very similar. In Figure 4, the
asymptotic power of the out-of-sample tests S3, S4, S5, and S6 is expressed in ratio form relative
to the asymptotic power of the in-sample tests S1 (upper panel) and S2 (lower panel). As in
the case without data mining, the one-sided t test always has higher power than the out-of-
sample tests. The magnitude of the power advantage of the in-sample test can be substantial.
In contrast, for the F -test the earlier results have to be qualiÞed. Although the split-sample
GM and encompassing tests always have lower power than the F -test, the asymptotic power
ranking of the recursive GM -test and recursive forecast encompassing test relative to the F -test
is ambiguous. It depends on the the values of c and π. For some values of c and π, the out-
of-sample tests have higher power, whereas in others the two-sided in-sample test has higher
power. No practical recommendations can be given in favor of one or the other test. With this
exception, our results suggest that even if applied users were to use appropriate critical values to
protect against data mining, in-sample tests would tend to have more power than out-of-sample
tests. Notably, if a one-sided hypothesis on β is of interest, the power analysis unambigously
favors the in-sample test even in the presence of data mining.

5 Discussion and Conclusion

It is common for empirical researchers to Þnd signiÞcant evidence of in-sample predictability,
but no signiÞcant out-of-sample predictive relationship. The conventional wisdom is that this
tendency reßects the lack of reliability of in-sample tests under the null of no predictability.
As a result, there is a tendency to discount evidence in favor of predictability based on in-
sample tests. We showed that this interpretation is not correct. We distinguished between
environments that are subject to data mining and environments that are free from data mining.
First, we demonstrated that in-sample and out-of-sample tests of predictability are asymp-

totically equally reliable under the null of no predictability, provided that no data mining has
taken place. Second, we analyzed environments with data mining. We showed that, contrary
to conventional wisdom, out-of-sample tests of predictability are not robust against data mining.
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If critical values are not adjusted to account for data mining, both in-sample and out-of-sample
tests are susceptible to size distortions. We also showed that, once proper critical values are
used that are robust against data mining, both tests are equally reliable under the null. Thus,
with or without data mining, the conventional wisdom that in-sample t-tests and F -tests are
biased in favor of detecting spurious predictability cannot be supported by theory. This reduces
the choice between in-sample and out-of-sample tests of predictability to the question of which
test has higher power.
We derived the local asymptotic power of these tests in environments with and without

data mining. Although in-sample tests will tend to have higher power than out-of-sample tests
in small samples, it is not clear whether these results extend to large samples. Our analysis
suggests that if inference is based on standard critical values, both one-sided t-tests and F -
tests are even asymptotically more powerful than tests of equal predictive accuracy or tests of
forecast encompassing. If inference is based on data-mining robust critical values, F -tests are
asymptotically more powerful than split-sample tests, but for some design parameters they may
be strictly less powerful than recursive out-of-sample tests. Thus, no general recommendations
about the relative merits of F -tests and out-of-sample tests are possible. In contrast, one-
sided t-tests are asymptotically more powerful than tests of equal predictive accuracy or tests
of forecast encompassing, even after accounting for data mining.
Our results not only dispel the conventional wisdom that out-of-sample test results are

more convincing than in-sample test results, but they also provide an alternative explanation
for the tendency of signiÞcant in-sample test results to break down out of sample. Rather
than attributing this result to higher size distortions for in-sample tests of predictability, we
attribute this result to the higher power of in-sample tests of predictability relative to out-of-
sample tests of the same size. Our results are particularly clear-cut when we compare the
power of various out-of-sample tests of predictability to the commonly used one-sided in-sample
t-test of predictability (see e.g. Mark 1995, Kilian 1999, Faust, Rogers and Wright 2003). The
reason is that out-of-sample tests are not designed to test one-sided hypotheses on regression
parameters, but amount to two-sided tests on regression parameters. This fact helps to explain
the stronger in-sample evidence obtained in many empirical studies using such t-tests.
An alternative rationale for the apparently contradictory results of in-sample and out-of-

sample tests of predictability is the presence of structural instability (see e.g. Stock and Watson
2001). Throughout this paper we maintained the implicit assumption that the process in
question is not subject to structural change. Interestingly, recent work suggests that our basic
results would not necessarily be altered by the presence of structural change. For example,
Clark and McCracken (2001b) study the effects of deterministic structural breaks on the power
of predictability tests. Their analysis abstracts from data mining. Like our paper they
consider two parametric linear models that are nested under the null. The joint null hypothesis
is no predictability and no structural change. Note that by deÞnition a structural break in
the predictive relationship of interest is not possible under the null. Thus, our results on
the asymptotic size of in-sample and out-of-sample tests continue to apply. Both in-sample
and out-of-sample tests will by construction be reliable under the null at least asymptotically.
This point is important because it implies that deterministic structural breaks in the predictive
relationship could not possibly be responsible for the alleged tendency of in-sample tests to
result in spurious predictability.
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In practice, the possible presence of structural breaks is important not because it affects the
size of the test, but because it will tend to affect the power of predictability tests. For example,
Clark and McCracken allow for a one-time structural shift in the predictive relationship under
the alternative hypothesis. They postulate that for some part of the sample β = 0, whereas
for the remainder of the sample β 6= 0. They show that the usual in-sample F-test will detect
this form of predictability with probability 1 asymptotically. In this sense, in-sample tests of
predictability are robust at least to simple forms of structural change. In contrast, out-of-
sample tests such as tests of equal forecast accuracy or forecast encompassing may lack power
against some structural break alternatives. Put differently, if there is predictability at least for
some part of the sample, but is subject to structural change, out-of-sample tests may fail to
detect it, even as in-sample tests correctly reject the no predictability null. Thus, out-of-sample
tests of predictability may actually be less robust to structural change than in-sample tests.5

Moreover, the power of out-of-sample tests will be highly dependent on the nature and timing of
the structural change and on the choice of forecast window. This evidence is important because
it is sometimes suggested that recursive or rolling estimates may offer some protection against
model instability (see, e.g., Stock and Watson 1999, p. 298, 326). The example of Clark and
McCracken (2001b) shows that this need not be the case.6

We conclude that the empirical evidence on in-sample and out-of-sample predictability tests
needs to be reconsidered. Especially in the exchange rate literature there recently has been
a shift in empirical work in favor of out-of-sample predictive inference (see, e.g., Frankel and
Rose 1995, pp. 1702-1705). Our analysis suggests that there is no theoretical basis for this
shift and that many economic forecast models may have been rejected incorrectly based on weak
out-of-sample evidence.
There are two obvious caveats to our conclusions. First, the limit distributions of in-sample

and of out-of-sample tests of predictability are in general data-dependent. This means that
applied researchers will need to give careful attention to the size and power properties of these
tests on a case-by-case basis. Second, our analysis has been asymptotic in nature. This is an
advantage in that were able to derive rigorous results. The asymptotic nature of our results
also is a disadvantage in that many applications involve fairly small samples and asymptotic
approximations may not be accurate enough. Given the favorable experience with bootstrap
methods in Kilian (1999) and Kilian and Taylor (2003), however, we conjecture that in practice
bootstrap methods may be used to address both of these concerns.

5There is one counterexample to this tendency, in which out-of-sample tests will tend to have higher power than
in-sample tests: Suppose that the break in β occurs at exactly [λT ] where λ = 0.5. Further suppose that in the Þrst
half of the sample β = −c and in the second half β = c where c is some constant. In that case, the in-sample test
will have zero power asymptotically, whereas the out-of-sample test may have some power. This counterexample,
however, seems more of an intellectual curiosity because it requires three unrealistic conditions. First, a switch in
sign seems unlikely in situations that would suggest the use of a one-sided t-test, as is typically the case in applied
work. Second, it is unlikely that the deviations from β = 0 exactly offset one another. Third, it is unlikely that the
break occurs exactly at [0.5T ] . Even for small deviations from these assumptions the counterexample breaks down.

6In related work, Rossi (2001b) develops an optimal test of the joint null hypothesis of no predictability and
no parameter instability. This test differs from both the in-sample and the out-of-sample tests analyzed in this
paper. Rossi shows that her test is locally asymptotically more powerful than either rolling out-of-sample tests of
predictability or sequential in-sample tests Þrst for parameter stability and then for predictability.
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Our results should not be interpreted as evidence against the use of out-of-sample tests of
predictability in general, but against their uncritical use in applied work. We conclude that
it is important to be clear about the objective of predictability testing. It will be difficult to
Þnd convincing applications of out-of-sample tests in standard environments, such as the setting
considered in this paper. There are, however, real-time forecasting problems for which out-of-
sample tests seem well suited. For example, Amato and Swanson (2001) and Chao, Corradi
and Swanson (2001) draw a distinction between predictability that can be exploited in real time
and predictability that exists in population. An interesting topic for future research would be
the potential advantages of out-of-sample tests of predictability in models that are misspeciÞed
under the null hypothesis or in models that evolve smoothly over time.
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Proofs

The proofs are similar to those in McCracken (1999) and Clark and McCracken (2000), so we
will only sketch them.

Proofs for the split-sample tests: (8) and (12)

By Lemma A.4 of Clark and McCracken (2001a), Q is idempotent. By Schur�s decomposition
theorem (Theorem 13 of Magnus and Neudecker, 1999, p.16), it follows that there is a l × k
matrix L such that LL0 = Q and L0L = Ik. Let �ht = L0E(xtx0t)−1/2xt(ut + T−1/2c0wt). Then
it follows from the functional central limit theorem that

T−1/2
[rT ]X
t=1

ht ⇒ σδr + σW(r), (26)

where [x] denotes the integer part of x and ⇒ denotes the weak convergence in the space of
cadlag functions on [0, 1]. Following the arguments used in the proofs of McCracken (1999,
Lemma 3.2) and Clark and McCracken (2000, Lemmas A10 and A12), one can show that

S3 =
TX

s=R+1

�h0s
1

R

RX
t=1

ht +
T −R
2R2

RX
s=1

h0s
RX
t=1

ht + op(1),

S5 = (T −R)−1/2(
RX
s=1

h0s
TX

t=R+1

ht)/(
RX
s=1

h0s
RX
u=1

hu)
1/2 + op(1). (27)

Combining (26), (27) and (27) with the continuous mapping theorem completes the proof of (8)
and (12).

Proofs for the recursive tests: (9) and (13))

It follows from applications of Theorem 2.1 of Hansen (1992), (26) and the continuous map-
ping theorem that

TX
t=[πT ]+1

h0t
1

t

tX
s=1

ht
d→
Z 1

π

1

r
W 0(r)dW (r) + δ0

Z 1

π

1

r
W (r)dr + δ0(W (1)−W (π)) + (1− π)δ0δ.

(28)

Following the arguments used in the proofs of McCracken (1999, Lemma 3.2) and Clark and
McCracken (2000, Lemmas A10 and A12), one can show that

S4 =
TX

t=R+1

h0t
1

t

tX
s=1

hs +
1

2

TX
t=R+1

1

t2

tX
s=1

h0s
tX

u=1

hu + op(1),

S6 = (
TX

t=R+1

h0t
1

t

tX
s=1

hs)/(
TX

t=R+1

1

t2

tX
s=1

h0s
tX

u=1

hu)
1/2 + op(1). (29)
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The desired results (9) and (13)) follow from (26), (28), (29) and (29).

Proof of Propositions 4 and 5. Under Assumptions 1 and 3 and the sequence of local alternatives,
we have "PT

t=1 �u
2
1,t − �u20,t
�σ21

, ...,

PT
t=1 �u

2
M,t − �u20,t
�σ2M

#0
d→ [χ2d1(k1), ...,χdM (kM)]

0 (30)

Under Assumptions 1 and 4 and the sequence of local alternatives,h√
T �β1,T/�σβ1 , ...,

√
T �βM,T/�σβM

i0 d→ [v1, ..., vM ]
0 (31)

Applications of the continuous mapping theorem to (30) and (31) complete the proof of Propo-
sitions 4 and 5, respectively.

Proof of Proposition 6:
Let

ht = L
0
j [E(xj,tx

0
j,t)]

−1/2xj,t(ut + T−1/2c(ζj)0wj,t)

The proof of Proposition 6 is analogous to those of Propositions 2 and 3 except that (26) is
replaced with

T−1/2
rTX
t=1

[ h1,t h1,t · · · hM,t ]
0 ⇒ σdr +Ω1/2B(r) (32)

and that the continuous mapping theorem is applied to the max functional.
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Figure 1: Power of Predictability Tests in Environments without Data Mining
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Figure 2: Relative Power of Predictability Tests in Environments without Data Mining
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Figure 3: Power of Predictability Tests in Environments with Data Mining
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Figure 4: Relative Power of Predictability Tests in Environments with Data Mining
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