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Abstract

The paper estimates indices of coincident economic indicators using time se-

ries with different frequencies of observation (monthly and quarterly, possibly with

missing values). The model considered is the dynamic factor model proposed by

Stock and Watson, specified in the logarithms of the original variables, which poses

a problem of temporal aggregation with a nonlinear observational constraint. Our

main methodological contribution is to provide an exact solution to this problem,

that hinges on the idea of obtaining the linear Gaussian model that has the same

conditional mode as the nonlinear one. On the empirical side the contribution of the

paper is to provide monthly estimates of quarterly indicators, among which Gross

Domestic Product, that are consistent with the quarterly totals. Two applications are

considered, the first dealing with the construction of a coincident index for the U.S.

economy, whereas the second does the same with reference to the Euro area.
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1 Introduction

A prominent feature of the business cycle is the presence of similarities in the dynamics

of several representative series or, following Lucas (1977),co-movements. This notion

is already attested in the classical business cycle definition due to Burns and Mitchell

(1946), according to whom business cycle fluctuations “take place almost at the same

time in many economic activities (. . . )”. Hence, this feature implies that the reference

cycle cannot be extracted from a single series, e.g. Gross Domestic Product (GDP), but it

calls for the analysis of a range of relevant indicators of economic activity.

Stock and Watson (1991, SW henceforth) developed an explicit probability model for

the composite index of coincident economic indicators. They proposed a dynamic factor

model featuring a common difference-stationary factor that defines the composite index.

The reference cycle is assumed to be the value of a single unobservable variable, “the state

of the economy”, that by assumption represents the only source of the co-movements of

four time series: industrial production, sales, employment, and real incomes.

On the other hand, GDP is perhaps the most important coincident indicator, although

it is available only quarterly and it is subject to greater revisions than the four coincident

series in the original SW model. This consideration motivated Mariano and Murasawa

(2003, MM hereafter) to extend the SW model with the inclusion of quarterly real GDP

growth, proposing a linear state space model at the monthly observation frequency that

entertains the presence of an aggregated flow. Although their model is formulated ex-

plicitly in terms of the logarithmic changes in the variables, the nonlinear nature of the

temporal aggregation constraint is not taken into account.

This paper proposes several refinements to this literature: first and foremost, the prob-

lem of modelling time series with different frequencies of observations and subject to

a nonlinear temporal aggregation constraint, induced by the logarithmic transformation,

is explicitly afforded. The solution we propose is grounded in the theory developed by

Fahrmeir (1992) and Durbin and Koopman (2001), and requires matching the conditional

mode of the states of the nonlinear and the linear approximation; this operation is per-
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formed by iterating on the Kalman filter and smoother estimating equations.

Secondly, the model is set up in the log-levels of the variables rather than in the changes

of their logarithms. The advantages of this formulation are twofold: in the first place the

mean square error of the estimated coincident index are immediately available both in real

time (filtering) and after processing the full available sample (smoothing). Moreover, the

treatment of the aggregation constraint in the log-levels is more transparent and efficient

from the computational standpoint, in that it leads to a reduced state vector dimension.

The paper is organized as follows: Section2 introduces the level formulation of the

original SW coincident index model, and Section3 casts the model in the linear state

space form. Section 4 discusses how the latter is modified in order to account for the the

presence of temporally aggregated flow variables. The nonlinear temporal aggregation

constraint that arises when the series are modelled in their logs is dealt with in Section

5, where we discuss inference on the unobserved components using the technique of

posterior mode estimation and maximum likelihood estimation. Two applications are

presented in Section 6, that refer to the estimation of an index of coincident indicators

respectively for t he U.S. and the Euro area. Section 7 draws some conclusions.

2 The level specification of the index model

The coincident index model proposed by SW, aims at rationalizing by a probabilistic

model the judgmental procedure used by the Department of Commerce to build up a co-

incident indicator for the U.S. economy. The fundamental idea is to separate the dynamics

which are common to a set ofN coincident series,yt, that areI(1) but not cointegrated,

from the idiosyncratic component, which is specific to each series.

The level specification of the SWsingle indexmodel expressesyt, possibly after a

logarithmic transformation, as the linear combination of a common cyclical trend, that

will be denoted byµt, and an idiosyncratic component,µ∗
t . Letting θ denote anN ×

1 vector of loadings, and assuming that both components are difference stationary and
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subject to autoregressive dynamics, we can write:

yt = θµt + µ∗
t , t = 1, ..., n,

φ(L)∆µt = ηt, ηt ∼ NID(0, σ2
η),

D(L)∆µ∗
t = β + η∗t , η∗t ∼ NID(0,Ση∗),

(1)

whereφ(L) is an autoregressive polynomial of orderp with stationary roots:

φ(L) = 1− φ1L− · · · − φpL
p

and the matrix polynomialD(L) is diagonal:

D(L) = diag[d1(L), d2(L), . . . , dN(L)] ,

with di(L) = 1− di1L− · · · − dipi
Lpi andΣη∗ = diag(σ2

1, . . . , σ
2
N). The disturbancesηt

andη∗t are mutually uncorrelated at all leads and lags.

The state vector hasN +1 more elements more than the original SW formulation based

on ∆yt. However, the representation (1) eliminates the ambiguities in the interpretation

of the real time (filtered) and smoothed estimates that arise when the model is formulated

in terms of differences; for an account see also MM. Notice that (1) assumes a zero drift

for the single index. Moreover, the level representation is also more amenable for the

treatment of temporal aggregation.

Note that bothµt andµ∗
t are difference stationary processes and the common dynamics

are the results of the accumulation of the same underlying shockηt; moreover, the process

generating the index of coincident indicators is usually more persistent than a random

walk and in the accumulation of the shocks produces cyclical swings.

3 State space representation

In this section we cast model (1) in the state space form (SSF). We start from the single

index,φ(L)∆µt = ηt, considering the SSF of the stationary AR(p) model for the∆µt, for
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which:

∆µt = e′1pat,

at = T∆µat−1 + e1pηt,

wheree1p = [1, 0, . . . , 0]′ and

T∆µ =




φ1

...

φp−1

Ip−1

φp 0′




.

Hence,µt = µt−1 + e′1pat = µt−1 + e′1pT∆µat−1 + ηt, and defining

αµ,t =


 µt

at


 , Tµ =


 1 e′1pT∆µ

0 T∆µ


 ,

the Markovian representation of the model forµt becomes

µt = e′1,p+1αµ,t, αµ,t = Tµαµ,t−1 + Rµηt,

whereRµ = [1, e′1,p]
′.

A similar representation holds for each individualµ∗it, with φj replaced bydij, so that,

if we let pi denote the order of thei-th lag polynomialdi(L), we can write:

µ∗it = e′1,pi+1αµi,t, αµi,t = Tiαµi,t−1 + ci + Riη
∗
it,

whereRi = [1, e′1,pi
]′, ci = βiRi andβi is the drift of thei− th idiosyncratic component,

and thus of the series, since we have assumed a zero drift for the common factor.

Combining all the blocks, we obtain the SSF of the complete model by defining the

state vectorαt, with dimension
∑

i (pi + 1) + p + 1, as follows:

αt = [α′
µ,t, α

′
µ1,t, . . . , α

′
µN ,t]

′. (2)

Consequently, the measurement and the transition equation of SW model in levels is:

yt = Zαt, αt = Tαt−1 + c + Rεt, (3)
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with the system matrices given below:

Z =

[
θ

... diag(e′p1
, . . . , e′pN

)

]
, T = diag(Tµ,T1, . . . ,TN),

c = [0′, c′1, . . . , c
′
N ]
′
, R = diag(Rµ,R1, . . . ,RN).

(4)

4 Temporal aggregation

In practical applications the coincident indicators may be observed at different frequen-

cies, at it occurs for the Euro area, for which employment and GDP are quarterly, whereas

retail sales and industrial production are monthly.

In dealing with time series observed at different frequencies we need to operate a dis-

tinction between flows and stocks variables. For the former the aggregated series arises

from the cumulative sum of the disaggregated measures over a larger time interval, and

the problem is that of distributing the aggregate on shorter intervals. For the latter, the se-

ries observed at a lower frequency may arise as a systematic sample of the disaggregated

one, in which case estimation at points between observations is termed ”interpolation”;

on the other hand, if that series is obtained by taking the time average of the disaggregated

stock, the situation is the same as for flows. Since in the sequel we shall deal only with

flow variables and time-averaged stocks, our discussion will be restricted to this particular

type of temporal aggregation.

The approach to the treatment of mixed frequency series that we adopt is that proposed

by Harvey and Pierse (1984), who considered it as a problem of missing observations

on the aggregated time series, within a suitably modified representation of the model.

Suppose that the set of coincident indicators,yt, can be partitioned into two groups,

yt = [y′1t,y
′
2t]
′, where the second block gathers the flows or time averaged stocks that

are subject to temporal aggregation, so that

y†2τ =
δ−1∑
i=0

y2,τδ−i, τ = 1, 2, . . . , [T/δ],

whereδ denote the aggregation interval: for instance, if the model is specified at the

monthly frequency andy†2t is quarterly, thenδ = 3.
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The strategy proposed by Harvey and Pierse (1984) consists of operating a suitable

augmentation of the state vector (2) using an appropriately defined cumulator variable. In

particular, the SSF (3)-(6) need to be augmented by theN2 × 1 vectory†2t, generated as

follows
y†2t = ψty

†
2,t−1 + y2t

= ψty
†
2,t−1 + Z2Tαt−1 + Z2c + Z2Rεt

whereψt is the cumulator variable, defined as follows:

ψt =





0 t = δ(τ − 1) + 1, τ = 1, . . . , T

1 otherwise.

andZ2 is theN2×m block of the measurement matrixZ corresponding to the second set

of variables,Z = [Z′1, Z′2]
′ andy2t = Z2αt.

The augmented SSF is defined in terms of the new state and observation vectors:

α∗
t =


 αt

y†2t


 , y†t =


 y1t

y†2t




where the former has dimensionm∗ = m + N2, and the unavailable second block of

observations,y2t, is replaced byy†2t, which is observed at timest = δτ, τ = 1, 2, . . ., and

is missing at intermediate times. The measurement and transition equation are therefore:

y†t = Z∗α∗
t , α∗

t = T∗αt−1 + c∗ + R∗εt, (5)

with system matrices:

Z∗ =


 Z1 0

0 IN2


 , T∗ =


 T 0

Z2T ψtI


 , c∗ =


 I

Z2


 c, R∗ =


 I

Z2


R.

(6)

The state space model (5)-(6) is linear and, assuming that the disturbances have a

Gaussian distribution, the unknown parameters can be estimated by maximum likelihood,

using the prediction error decomposition, performed by the Kalman filter; given the pa-

rameter values, the Kalman filter and smoother will provide the minimum mean square

estimates of the statesα∗
t (see Harvey, 1989, and Shumway and Stoffer, 2000) and thus of

the missing observations ony†2t can be estimated, which need to be ”decumulated”, using

y2t = y†2t − ψty
†
2,t−1, so as to be converted into estimates ofy2t.
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5 Nonlinear temporal aggregation

Let us consider now the situation whenyt represents the logarithms of the original time

series and the second block of series is temporally aggregated. This setting is more re-

alistic, as∆µt captures the common component in the rate of change, rather than in the

change itself, of the selected economic indicators.

The aggregation constraints is linear inY2t = exp(y2t), since the aggregated series

results as follows:

Y†
2τ =

δ−1∑
i=0

Y2,τδ−i. (7)

The linear SSF of the previous section is no longer adequate, and yields distributed values

that fail to satisfy the true aggregation constraint, i.e. the monthly value would not sum

up (or average, in the case of time-averaged stocks) to quarterly totals. A possibility is

to distribute the discrepancyY2t −
∑δ−1

i=0 exp(ŷ2t) according to some statistical distri-

bution technique, but the corresponding estimates are prone to criticism as they do not

incorporate any optimality criterion.

Since the temporal aggregation constraint is nonlinear inyt, the resulting state space

model is nonlinear. In the sequel we provide a theory of estimation and signal extraction

for this model. The key to the results is approximate conditional mode estimation by

extended Kalman filtering and smoothing, based on Durbin and Koopman (1992, 2001)

and Fahrmeir (1992).

In order to derive the nonlinear SSF arising from model (3)-(4) under the nonlinear

temporal aggregation constraint (7), we introduce a new cumulator variable, defined re-

cursively as follows:

Y†
2t = ψtY

†
2,t−1 + exp(y2t)

= ψtY
†
2,t−1 + exp (Z2αt) .

As in the previous case we augment the state vector byY†
2t, which however depends

nonlinearly onαt.

Given an arbitrary trial valuẽαt, the linear and Gaussian approximating model (LGAM)
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is obtained from the first order Taylor expansion of the cumulator around this value:

Y†
2t = ψtY

†
2,t−1 + exp(Z2α̃t) + D̃tZ2(αt − α̃t)

= ψtY
†
2,t−1 + exp(Z2α̃t)− D̃tZ2α̃t + D̃tZ2Tαt−1 + D̃tZ2c + D̃tZ2Rεt

whereD̃t = diag(z′2iα̃t), z′2i denotes thei-th row ofZ2, and we have replacedαt by the

right hand side of the transition equation (3). In particular,D̃tZ2 is the matrix whosej-th

row contain the derivatives of thej-th cumulatorY †
jt with respect toα′

t, evaluated at the

trial valueα̃t.

The SSF of the LGAM is based upon the augmented vectorα†
t = [α′

t,Y
†′
2t]
′, with the

measurement equation given by

 y1t

Y†
2t


 =


 Z1 0

0 I


 α†

t , (8)

where the left hand side lower block is observed only att = τδ, and transition equation:

α†
t =


 T 0

D̃tZ2T ψtI


 α†

t−1 +


 c

exp(Z2α̃t)− D̃tZ2α̃t + D̃tZ2c


 +


 I

D̃tZ2


Rεt

(9)

Givenα̃t, the LGAM approximating model is given by (8)-(9).

Consider the following iterative scheme:

(i) useα̃t, t = 1, . . . , T , to construct the linearised state space model (8)-(9);

(ii) run the Kalman filter and smoother to obtain the smoothed estimates of the state,

α̂†
t =


 α̂t

Y†
2t


 ;

(iii) setα̃t = α̂t;

(iv) iterate (i)-(iii) until convergence, i.e. until the euclidean distance‖α̂t − α̃t‖ is less

than a specified tolerance value.
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Hence, the Kalman filtering and smoothing equations run on the linearised model yield

a new valueα̂t, which replaces the previous trial valuẽαt into the system matrices in

(9), to give new approximating model. This process is iterated until convergence, in the

sense specified above, and ensures that the final LG approximating model has the same

conditional modêαt as the original nonlinear one.

To illustrate this point, it should be recalled that for the linear Gaussian model the

Kalman smoother provides the conditional mode (coincident with the mean) of the states

α†
t , given the observations and the valueα̃t. Now, for a fixedα̃t, taking the expectation of

both sides of the transition equation for the elements inα†
t conditional on the observations

gives:

α̂t = Tα̂t−1 + c + Rε̂ (10)

Y†
2t = ψtY

†
2,t−1 + exp(Z2α̃t) + D̃tZ2(α̂t − α̃t) (11)

When the iteration converges,α̂t ≈ α̃t and the equation (11) reduces to

Y†
2t = ψtY

†
2,t−1 + exp(Z2α̂t). (12)

Now, (10) and (12) are exactly the equations that are satisfied by the conditional mode

of the states in the true nonlinear model. The proof is straightforward: denotingα, Y†
2,

α† = (α,Y†
2) andy the complete set ofαt, α

†
t and the observations for all timest, the

conditional mode is the maximum of the conditional densityf(α†|y). However, sincey

is a linear transformation of the statesα†, f(α†|y) = f(α†) = f(α)f(Y†
2|α). The first

density is linear and Gaussian whereas the second is unity, asY†
2t is fully determined by

its past value andαt. Thereforeα̂ is such thatf(α̂)f(Y†
2|α̂) is a maximum.

The iterative scheme is thus a particular case of the recursive conditional mode by

extended Kalman filtering and smoothing proposed on Durbin and Koopman (1992, 2001)

and Fahrmeir (1992). The solution is approximate, but the approximation can be made as

accurate as needed.

The same argument can be exploited to show that the likelihood of the nonlinear model

is equivalent to that of the approximating linear Gaussian model, once the iteration con-

verge atα̂t. Hence, maximum likelihood estimation (MLE) and signal extraction are
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performed via linearizing the model, solving the model equation and evaluating the like-

lihood of the optimized linear Gaussian model. As a matter of fact:

ln f(y) =
∫

ln f(y,α†)dα†

=
∫

ln f(y|α†)dα† +
∫

ln f(α†)dα†

=
∫

ln f(α)dα†

(13)

and the latter is approximated within the specified tolerance by the likelihood of the opti-

mised linear Gaussian model.

An alternative representation that also uses the Gaussian likelihood of the linear ap-

proximating model considers the nonlinearity in the measurement equation, whereas the

transition retains its linearity. Define the state vectorα∗
t = [α′

t,q
′
t,q

′
t−1, . . . ,q

′
t−δ+1]

′

whereqt = Z2αt. The measurement equation for the aggregated time series is:

Y2t =
δ−1∑
i=0

ρt exp(qt−j),

for a suitable set of time-varying coefficientsρt.

This simplifies the inferences, at the expenses of a larger state vector, that features

N2 · (δ − 1) elements in excess of the previous representation.

6 Illustrations

This sections presents two applications implementing the methods described in the pre-

vious sections, both concerning the estimation of an index of coincident indicator respec-

tively for the U.S. economy and the Euro area. The U.S. illustration has a long tradition:

the original SW model, that considered four monthly coincident indicators, has recently

been extended by MM to include quarterly GDP figures and it has been extended in vari-

ous directions, see for instance Kim and Nelson (1999), who modelled the single index as

a process with Markov switching in the mean. On the other hand, the application to the

Euro area is novel, to our knowledge, and also more challenging, due to data availability,

involving shorter time series and a less extensive set of coincident indicators available
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at the monthly frequency. Last but not least, it should not be taken for granted that the

economic indicators selected for the U.S., among which employment is prominent, share

the same coincident nature also for the Euro area.

In the sequel we discuss the estimation results separately for the two economies. All

the computations were carried out using Ox 3.20 by Doornik (2001) and the package

SsfPack 3.0 beta (see Koopman, Shephard and Doornik, 1999, 2002).

6.1 The U.S. index of coincident indicators

For the U.S. we construct an index ofN = 5 coincident indicators that are the original

four monthly indicators adopted by the Conference Board and considered by SW, plus

quarterly real GDP, as in Mariano and Murasawa (2003). The series, listed below and

displayed in figure 1, are seasonally adjusted and transformed into logarithms.

• IIP: Index of Industrial Production, monthly, available for the sample period Jan.

1946 - Feb. 2003. Source: Board of Governors of the Federal Reserve System.

• EMP: Employment, number of employees on non-agricultural payrolls in thou-

sands, monthly, available for the sample period Jan. 1946 - Feb. 2003. Source:

Department of Labor, Bureau of Labor Statistics.

• SLS: Manufactured and trade sales in millions of chained 1996 dollars, monthly,

available for the sample period Jan. 1959 - Jan. 2003. Source: Department of

Commerce, Bureau of Census.

• INC: Personal income less transfer payments in billions of chained 1996 dollars,

monthly, available for the sample period Jan. 1959 - Feb. 2003. Source: Depart-

ment of Commerce, Bureau of Economic Analysis.

• GDP: Real Gross Domestic Product in billions of chained 1996 dollars, quarterly,

available from the first quarter of 1947 to the first quarter of 2003. Source: Depart-

ment of Commerce, Bureau of Economic Analysis.

11



The nonlinearity arises from the temporal aggregation of the GDP series, whose unob-

served monthly growth rates depend on the single index,µt; thusY2t = is scalar (N2 = 1)

andδ = 3. Our application differs from previous ones not only because our model em-

bodies the nonlinear temporal aggregation constraint, but also because it is formulated

in the log-levels, rather than log-changes and we extend back the sample period to Jan.

1946, therefore entertaining 13 years of missing observations forSLSand INC and one

year forGDP. As a by product of our modelling effort, not only disaggregated monthly

GDP figures that satisfy the temporal aggregation constraint are made available, but also

estimates of the missing values for the remaining series.

The estimation of model (8)-(9) was carried out maximising the likelihood obtained

by the Kalman filter, with the modifications introduced by Koopman (1997) for dealing

with initial diffuse effects, that result from the nonstationarity of some of the state el-

ements. For the common factor, we adopt the SW identification assumption, that sets

the variance of the disturbancesσ2
η equal to1 in (1); moreover, the common factor

and the idiosyncratic components have an ARIMA(2,1,0) representation, that is we set

p = pi = 2, i = 1, . . . , 5.

The parameter estimates, along with their asymptotic standard errors, are presented in

Table 1. The log-likelihood for the approximating model isL = 10015.53. The estimated

factor loadings are all positive and significantly different from zero, as expected. The

estimates of the autoregressive coefficientsdi1 anddi2 for the monthly indicators, that

regulate the dynamics of the idiosyncratic component are fairly similar to those obtained

by SW and MM. The differences are explained not only by the fact that we entertain a

nonlinear model, but are also due to the larger sample period considered, starting in 1946

in our application and the revisions occurred in the indicators over time. The autoregres-

sive coefficients ofµt show an higher value at lag two (0.1856) with respect to SW and

MM estimates (0.032 and0.08 respectively). With respect toGDP the first autoregressive

term is positive, whereas it is slightly negative for MM(−0.04).

Table 2 presents some model diagnostics based on the Kalman filter innovations. In

particular, the statistics that we consider are theBox-Ljiung statisticsQ(15) andQ(25)
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based, respectively, on15 and25 autocorrelations, the Bowman-Shenton normality test

(Norm) and the heteroscedasticity statisticH(h), whereh = 229 for the monthly indi-

catorsIIP, EMP, SLS, andINC andh = 76 for GDP. The results suggests a satisfactory

specifications for all the equations. The high values forIIP andEMP in the Normality test

arise in connection with a limited number of outliers occurring in the first two decades.

However, we did not make any adjustments for those, nor we changed the model spec-

ification. Overall, the model shows a general good fit and our interest goes much more

in the reliability of the method in determining the business cycle and in distributing the

aggregated values.

The estimates̃µt of the coincident index, conditional on the full multivariate sample,

have been obtained using a fixed interval smoother and are presented in figure 2. At

the modelling stage, we constrained the drift ofµt to be equal to zero, since we could

not identify six independent drifts terms from five series, without introducing a linear

constraints among them. The identification of the drift for the common single index can be

done ex-post (as in SW), and it is a crucial issue for the interpretability of the component.

Also, we constrained the variance of the disturbancesηt to be equal to one, since we

could not identify the scale of the common factor without restricting one factor loading.

Now, location and scale are crucial for the interpretability of the index, especially in

terms of business cycle features: for instance, recession probabilities in the classical sense

crucially depend on this two parameters, a point that is clearly stated in Pagan (2002). For

this purpose we set the drift equal to that of monthlyGDP, that is obtained from the

model estimates as follows:b̃ =
(
1− d̃GDP,1 − d̃GDP,2

)−1

β̃GDP . Moreover the index is

rescaled by multiplying it for the GDP loading on the common factor. In conclusion, our

index of coincident indicators, that we denoteCIt, is calculated as follows:

CIt = θ̃GDP µ̃t + b̃t.

The plot of theE[exp(CIt)] = exp(CIt + 0.5St), whereSt is the standard deviation

of CIt computed by the smoothing algorithm, is presented in Figure 3, along with the

monthly estimates of GDP in their original levels, consistent with the quarterly observed
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totals, and the SW’s experimental indexXCI. We notice in passing that the latter is

the cumulation of the filtered estimates of∆µt (SW carefully discuss the drift of this

component). It clearly visible thatXCI emphasizes much more the amplitude of cycles;

this is so on the one hand since the latter does not includeGDP in its construction, and,

more importantly, its scale has not been reduced to match that of the common component

of GDP.

In Table 3 we compare business cycle turning points identified by our index with the

official NBER chronology of reference dates. Table 3 also considers the turning points

identified using our estimates of the monthly levels ofGDP , SW’s experimental index

(XCI) and the MM index (MM ). The numbers in the table refers to lags, denoted with+,

and leads, with−, with respect the official NBER business cycle chronology. For turning

point identification we use the Bry and Boschan (1971) concerning minimum phase and

full cycle duration restrictions.

In the period from January 1959 to December 2000 the differences betweenCIt and

CIMM are not great. In the same period both the indexes performs better thanXCI,

which signals too early the peaks of April 60, December 69 and July 90, and lags the

troughs of March 1975 and November 1982. Conversely, GDP is perfectly in line with

the official dates for the peaks of the sixties, whereas it leads the troughs of February 61

and November 82.

Note that since bothCIt andMM takesGDP as a further common component, the

resulting turning points might be considered a compromise between the single behavior

of XCI andGDP . This evidence is even confirmed in the period subsequent to 2000

where, for example,XCI signals6 months before the peak of March2001, GDP is late

of 2 months, whereasCIt leads 3 months only.

6.2 The Euro area index of coincident indicators

The application of the single index model to the Euro area faces a problem of data avail-

ability. On the one hand the time series cover a much shorter time interval; on the other,
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a series for Personal Incomes is not available and the employment series is quarterly. The

empirical illustration has thus focussed on the following time series:

1. IIP: Index of industrial production, monthly, available for the sample period Jan.

1980-June 2003. Source: OECD, Main Economic Indicators. This series has been

corrected for a well known additive outlier occurring in June1984, due to a major

strike in Germany.

2. SLS: Index of retail sales, monthly, available for the sample period Jan. 1995 - June

2003. Source: OECD, Main Economic Indicators.

3. EMP, Civilian Employment Total, quarterly, available from the first quarter of 1980

to the first quarter of 2003. Source: European Central Bank (ECB); the series was

corrected for a level shift in 2001.Q1 from when the figures include Greece.

4. GDP, Gross Domestic product at constant 1995 prices, quarterly, available from

1980.Q1 to 2003.Q1. Source: OECD.

All the series are seasonally adjusted and expressed in logs; they are displayed in

Figure 3. The mixed frequency problem is exacerbated since now two of the series are

quarterly (N2 = 2). Preliminary model selection suggested that a first order autoregressive

representation for the common factor and the idiosyncratic components, i.e.p = pi =

1, i = 1, 2, 3, 4, is satisfactory. The estimation period is Jan. 1980 - June 2003.

Table 4 reports the parameter estimates and their asymptotic standard errors. The log

likelihood for the optimised linear Gaussian model isL = 2083.46. The model shows

good overall fit and the parameters are all significant with the exception of the autoregres-

sive coefficient of the idiosyncratic component ofIIP. The autoregressive coefficients are

all negative except for employment (EMP) for which d̃1,EMP = 0.884.

Table 5 presents model diagnostics. For the monthly series we consider the measure

of the Box-Ljung statisticsQ(8) andQ(12), together withNorm andH(h), with h =

93 for IIP andSLSandh = 31 forEMP andGDP. The results suggests a satisfactory

specifications for all the equations. The Normality statistic is not significant with the
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exception of Employment. Also, some residual autocorrelation inIIP andSLSsuggests

that can be explained for the simplified model adopted for the idiosyncratic component.

Finally, the heteroscedasticity test is never significant.

The monthly estimates of GDP, consistent with the quarterly totals, are shown in Fig-

ure 4 together with the coincident index,E[exp(CIt)] = exp(CIt + 0.5St), whereSt

is the standard deviation ofCIt computed by the smoothing algorithm, and the latter is

computed using the same convention that we adopted for the U.S. case, that is the scale

of the disturbances and the drift are borrowed from GDP.

The availability of monthly estimates of GDP can help for the assessment of the busi-

ness cycle stance, as does the availability of a coincident indicator that embodies the

information contained in GDP. How well do the two series represent the turning points in

economic activity? Although this question cannot receive a definitive answer, we com-

pare the estimated turning points on those two series with those based upon the quarterly

estimates of GDP: the first is given by the estimates by Fagan, Henry and Mestre (2001)

extended to period 1970.Q1-2002.Q4; the second isGDPEurostat, i.e. the official Euro-

stat series available from 1991 only; the third is the quarterly GDP used in our exercise,

denoted asGDPOECD. Furthermore, we consider the chronology recently established

by the Centre for Economy and Policy Research, (CEPRhereafter, see CEPR, 2003) for

the Euro Area in the period 1970-98. The methodology for turning point identification

follows Artis, Marcellino and Proietti (2002).

The estimated peaks and troughs are reported in Table 6; there is a substantial con-

cordance among the chronologies based on the quarterly estimates of GDP. The CEPR

chronology has one cycle less as it does not identify a trough in 1981-1982 and a further

peak in the second quarter of 1982. As a matter of fact the fluctuations had little ampli-

tude around that period. Coming to the chronologies arising from monthly GDP and the

index of coincident indicator, they are highly concordant and refine the location of turning

points, attributing them to a particular month.

A further peak is identified in November 2002 for monthly GDP that is not found in

the coincident index. That this corresponds to a minor fluctuation in GDP it is confirmed
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by Figure 5, which reports, along with the turning points identified on the raw series,

those identified by the same conventions using the filtered series obtained applying the

Hodrick and Prescott (1997) trend filter HP(1.25) with smoothness parameter set to a

value dampens the fluctuations with a period less than 15 months (or 1.25 years); see

Artis, Marcellino and Proietti (2002) for further details. Only major turning points are

identified on the filtered series, and the only recession that is flagged occurs in 1992-

1993.

7 Conclusion

The paper has developed a novel solution to the problem of modelling time series subject

to a nonlinear temporal aggregation constraints. This situation arises within a dynamic

factor model for a multivariate time series whose components are observed at different

frequencies (quarterly and monthly), and are modelled in their logarithms. Two illustra-

tions were presented, the first referring to the U.S. economy, whereas the second dealt

with the Euro area. For both the traditional set of monthly coincident indicators is aug-

mented by Gross Domestic Product, which represents the main coincident indicator, but

it is available only at the quarterly frequency. From the empirical standpoint, the main

contribution of the paper is to provide monthly GDP estimates that are consistent with

the quarterly totals. The solution is simple to implement since it involves determining the

linear Gaussian approximation that has the same conditional mode, which is performed in

practice by iterating the Kalman filtering and smoothing equations. Although it is based

on an approximation, the latter can be made as accurate as it is necessary, so that we can

regard our methods as providing an exact treatment of disaggregation under a nonlinear

constraint.
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Table 1:Index of coincident indicators for the U.S.: parameter estimates and asymptotic

standard errors

Parameters IIP EMP SLS INC GDP

θ × 100 0.853 0.245 0.677 0.320 0.372
(0.035) (0.011) (0.041) (0.021) (0.021)

β × 100 0.425 0.093 0.489 0.267 0.424
(0.106) (0.017) (0.100) (0.035) (0.154)

di1 -0.174 0.166 -0.446 -0.014 0.175
(0.062) (0.047) (0.049) (0.051) (0.366)

di2 -0.283 0.295 -0.221 0.056 -0.660
(0.061) (0.059) (0.047) (0.052) (0.172)

ση∗ × 100 0.570 0.181 0.776 0.296 0.396
(0.029) (0.001) (0.003) (0.011) (0.130)

(1− 0.3382L− 0.1856L2) ∆µt = ηt, ηt ∼ N (0, 1)

(0.049) (0.051)

Note: standard errors in parenthesis.

Table 2:Diagnostics for the US model

Tests IIP EMP SLS INC GDP

Q(15) 22.131 31.953 22.767 27.916 10.520
Q(25) 42.736 60.365 42.010 33.964 29.153
Norm 163.491 2485.725 15.444 31.956 28.235
H(h) 0.321 0.204 3.794 2.931 0.319

Note: Q(15)andQ(25)are the Box-Ljiung statistics based, res-
pectively on15and25 residual autocorrelations,Norm is the
Bowman-Shenton Normality test andH(h) is the test for hetero-
skedasticity (h=76 for GDPandh=229 for the other series) .
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Table 3:The US turning points for alternative indexes of business cycle and GDP

NBER XCI GDP MM CIt

Peaks
November 1948 × −1 × −1
July 1953 × −2 × 0
August 1957 × 0 × 0
April 1960 −3 0 0 0
December 1969 −2 0 −2 0
November 1973 0 0 0 0
January 1980 0 0 0 0
July 1981 0 0 0 +1
July 1990 −1 −1 0 0
March 2001 −6 +2 × −3

Troughs
October 1949 × 0 × 0
May 1954 × −1 × −2
April 1958 × −2 × 0
February 1961 0 −2 −2 −2
November 1970 0 0 0 0
March 1975 +1 0 0 0
July 1980 0 0 0 0
November 1982 +1 −1 −1 −1
March 1991 0 0 0 −1
November 2001 0 −3 × −1
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Table 4:Index of coincident indicators for the Euro area: parameter estimates and asymp-

totic standard errors

Parameters IIP SLS EMP GDP

θ × 100 0.795 0.244 0.058 0.407
(0.091) (0.129) (0.018) (0.059)

β × 100 0.154 0.175 0.006 0.306
(0.059) (0.079) (0.003) (0.039)

di1 -0.319 -0.471 0.884 -0.837
(0.222) (0.088) (0.032) (0.123)

ση∗ × 100 0.538 0.764 0.043 0.221
(0.126) (0.057) (0.003) (0.094)

(1 + 0.491L) ∆µt = ηt, ηt ∼ N (0, 1)

(0.081)

Note: standard errors in parenthesis.

Table 5:Diagnostics for the Euro Area model

Tests IIP SLS EMP GDP

Q(8) 18.411 48.407 8.079 7.062
Q(12) 29.960 50.700 10.336 9.659
Norm 2.444 0.995 28.073 1.271
H(h) 0.799 1.704 0.377 0.556

Note: Q(8)andQ(12)are the Box-Ljiung statis-
tics based, respectively on8 and12 residual
autocorrelations,Norm is the Bowman-Shenton
Normality test andH(h) is the test for heteroske-
dasticity (h=93 for IIP andSLSandh=31 for the
other series).
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Table 6:Turning points for alternative Euro Area indicators

CEPR GDPAWM GDPOECD GDPEurostat GDPMonthly CIt

Peaks

1974.Q3 1974.Q3 - - - -

1980.Q1 1980.Q1 - - -

- 1982.Q2 1982.Q2 - 1982.M04 1982.M04

1992.Q1 1992.Q1 1992.Q1 1992.Q1 1992.M03 1992.M02

2002.M11

Troughs

1975.Q1 1975.Q1 - - - -

1981.Q1 1980.Q3 - 1980.M09 1980.M09

1982.Q3 1982.Q4 1982.Q4 - 1982.M12 1982.M12

1993.Q3 1993.Q1 1993.Q2 1993.Q1 1993.M02 1993.M02
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Figure 1:Coincident indicators for the U.S.
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Figure 2:Index of coincident indicators and monthly GDP for the U.S.
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Figure 3:Coincident indicators for the Euro area.
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Figure 4:Index of coincident indicators and monthly GDP for the Euro area
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Figure 5:Turning points of the Index of coincident indicators and monthly GDP for the

Euro area
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