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Abstract

We propose a framework for understanding recurrent historical episodes of vigorous

economic expansion accompanied by extreme asset valuations, as exhibited by the U.S.

in the 1990s. We interpret this phenomenon as a high-valuation equilibrium with a

low effective cost of capital based on optimism about the future availability of funds

for investment. The key to the sustainability of such an equilibrium is feedback from

increased growth to an increase in the supply of effective funding. We show that such

feedback arises naturally when an expansion comes with technological progress in the

capital producing sector, when fiscal rules generate sustained fiscal surpluses, when

the rest of the world has lower expansion potential, and when financial constraints are

relaxed by the expansion itself. Arguably, these ingredients were all simultaneously

present in the U.S. during the 1990s. We also show that such expansions can be welfare

improving but they can crash. The latter is more likely if bubbles develop along the

expansionary path. These (rational) bubbles can emerge even when the interest rate

exceeds the rate of growth of the economy.
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1 Introduction

Economic history has witnessed many stark “speculative growth” episodes of extreme stock

market valuations accompanied by brisk economic growth. The most notable recent expe-

rience was that of the United States in the 1990s. Figure 1a illustrates the sharp rise in

the NASDAQ in the 1990s, followed by the collapse of 2000-2001. The extremes reached

by valuations shown in figure 1b, and their collapse in the absence of obvious changes in

fundamentals, are suggestive of widespread speculation. Figures 1c and 1d illustrate the

growth and investment boom-and-bust that accompanied the market’s gyrations1.

a: Stock Market Indices

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-5 -4 -3 -2 -1 0 1

Years from Peak

0

500

1000

1500

2000

2500

NASDAQ
SP 500

b: Price/Earnings Ratio

15

20

25

30

35

-5 -4 -3 -2 -1 0 1

Years from Peak

Pr
ic

e/
E

ar
ni

ng
s 

Ra
tio

c: Real GDP Growth (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-5 -4 -3 -2 -1 0 1

Years from Peak

Re
al

 G
D

P 
G

ro
w

th
 (%

)

d: Investment/GDP (%)

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

-5 -4 -3 -2 -1 0 1

Years from Peak

In
ve

st
m

en
t/G

D
P 

(%
)

a: Stock Market Indices

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-5 -4 -3 -2 -1 0 1

Years from Peak

0

500

1000

1500

2000

2500

NASDAQ
SP 500

b: Price/Earnings Ratio

15

20

25

30

35

-5 -4 -3 -2 -1 0 1

Years from Peak

Pr
ic

e/
E

ar
ni

ng
s 

Ra
tio

c: Real GDP Growth (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-5 -4 -3 -2 -1 0 1

Years from Peak

Re
al

 G
D

P 
G

ro
w

th
 (%

)

d: Investment/GDP (%)

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

-5 -4 -3 -2 -1 0 1

Years from Peak

In
ve

st
m

en
t/G

D
P 

(%
)

Figure 1: Speculative Growth in the US.

The nature and policy dilemmas of speculative expansions have attracted much attention

(e.g., International Monetary Fund 2000, Shiller 2000, Cecchetti et al. 2000), but our formal

understanding of the macroeconomic mechanisms that underlie the relation between stock

market speculation and real economic activity remains quite limited. It is always possible

to attribute such episodes to irrational exuberance, and indeed it is highly likely that some

1Note: Panel b: the numerator is the real (inflation-adjusted) Datastream Total Market Index; denom-

inator is moving average over preceding ten years of real earnings corresponding to the index. Sources:

Panel a: Nasdaq Composite Index from The Nasdaq Stock Market, Inc, SP 500 from Datastream. Panel

b: Datastream Total Market Index for US. Panel c: Bureau of Economic Analysis (BEA). Panel d: BEA.

Annual report on national accounts (CD-ROM) 1998
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Figure 2: Long Real and Nominal Rates.

of that is invariably present. But what are the environments that facilitate these bouts of

irrationality or, put differently, that facilitate the confusion of intelligent economic agents

by having a rational path that is not too distant from observation?

In this paper we take an extreme approach to answering the previous question and look

for rational expectations equilibria that can mimic speculative growth episodes. We take a

hint from the recent U.S. episode to formulate our theory. We start from the observation

that long run interest rates, and in particular the cost of capital faced by growing companies,

declined throughout the 1990s. The dotted line in figure 2 illustrates the path of the 10-

year US Treasury-bond rate, to which we subtract the University of Michigan Inflation

Expectations Index to obtain the corresponding real rate (solid line). The latter’s decline

during the 1990s is apparent: the difference between the average real rates for the 1980s

and 1990s (dashed lines) is about 200 basis points.

Such a decline can account for a significant share of the observed rise in asset prices: The

decline in the real rates implicit in US Treasury bonds alone can explain over 50 percent of

the rise in broad market’s valuations during the second half of the 1990s, and if one is to

consider the further decline in risk premia due to increased participation in stock markets

(admittedly a somewhat circular argument), then that share rises to 80 percent or more.23

Once such rise has taken place, the investment and output growth boom that followed can

2See, e.g., Vissing-Jorgensen (1999) for a model and evidence on the relation between participation and

the equity premium.
3A fact that was not missed by economic commentators, and indeed was extrapolated to extreme limits

by a sequel of bestsellers starting with “Dow 36,000: The new strategy for profiting from the coming rise in

the stock market,” by Glassman and Hassett (1999).
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be rationalized along standard q − theory arguments.

However, the key general equilibrium question in the above story is: How are expecta-

tions of a low long-term cost of capital consistent with the high demand for savings needed

to fund a high-investment equilibrium? Limited to rational explanations, this necessarily

means that along the expansionary path agents expect an increase in the availability of

funding to more than offset the demand for such funding. The source of this shift could

be exogenous or endogenous. In our model and account of the U.S. episode we include

both but highlight the latter since the crash of 2000-2001 cannot be matched by a com-

mensurate exogenous shock. Thus the central ingredient of our model is a growth-funding

feedback by which the future supply of effective funding increases as a result of the condi-

tions created by a speculative expansion, and ends up lowering the cost of capital (the word

effective is added to encompass the important decline in the price of new capital relative to

consumption goods during the 1990s).

We show that speculative growth episodes can be welfare improving but they are also

susceptible to crashes. The latter are more likely if bubbles develop along the expansionary

path.

Of independent interest is the fact that in our environment rational bubbles exhibit

more realistic features than in the standard setup. In the latter, bubbles can only appear in

a “dynamically inefficient” economy, that is one whose structure is conducive to the over-

accumulation of capital. Their emergence is welfare improving as they help to absorb saving

away from investment and to alleviate the over-accumulation problem. However, the notion

that bubbles and investment move in opposite directions is contrary to the patterns depicted

in figure 1. Moreover, empirical testing of “dynamic inefficiency” has been negative. Abel

et al. (1989) tested an implication of dynamic inefficiency, whether the aggregate market for

assets acts as a long-term “cash sink” for investors, but found no evidence of it in OECD

economies. Finally, the idea that bubbles are inherently good runs counter much of the

perception of policymakers and practitioners.

In contrast, since in our model a speculative growth episode anticipates increased fund-

ing, bubbles may emerge even when the current interest exceeds the rate of growth of the

economy and the corporate sector generates a surplus. And while it is still the case that

the emergence of a bubble crowds out resources for investment, the speculative growth dy-

namics guarantees that investment still booms along the path. By the same token, if the

speculative growth path crashes then no longer the conditions exist for a rational bubble to

survive (for the same reason that a bubble cannot exist in the dynamically efficient region
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of the standard model) and it must crash as well. Finally, a bubble that emerges early on

in a speculative path is costly because it crowds out potentially welfare improving capital

accumulation and because it overexposes the economy to a crash.

We show that a growth-funding feedback arises naturally when an expansion comes with

technological progress, especially, in the capital producing sector; when fiscal rules generate

sustained fiscal surpluses; when the rest of the world has lower expansion potential; and

when financial constraints are relaxed by the expansion itself. Arguably, these ingredients

were all simultaneously present in the U.S. during the 1990s.

How does technological progress, especially in the capital producing sector, generate

feedback from growth to funding? On one end, technological progress raises future in-

comes and with it saving available for investment. On the other, relatively fast techno-

logical progress in capital producing sectors reduces the saving needed to finance a higher

steady-state capital-output ratio. In this context, a fundamental expansion in productivity

and stock market speculation are not necessarily competing explanations of an specula-

tive growth episode, as most observers had it during the 1990s. A technological revolution

might form an integral part – both as cause and consequence – of a speculative growth

equilibrium.

What about fiscal policy? We note that a significant share of increased available funding

in the U.S. speculative expansion of the 1990s was attributable to public sector’s saving. To

the extent that pro-cyclical government revenues increase public saving, they reinforce the

feedback from growth to saving. In the short run, fiscal surpluses can arise as a consequence

of the boom and can facilitate the initial rise in investment. More importantly, fiscal

surpluses can play a central role in making the speculative equilibrium feasible by providing

the funding necessary to sustain high investment in the long run. This consideration has

a particularly stark implication for fiscal policy during a speculative growth episode. The

possibility of using the fiscal surpluses that result from such expansions to cut taxes and raise

spending could be illusory, as these surpluses might be necessary to sustain the speculative

growth equilibrium that generated them.

A similar role is played by external saving, the other significant source of increase in

aggregate saving during the 1990s. In the short run, capital flows alleviate the pressure

on short run interest rates brought about by the investment boom. In the long run, if the

potential productivity in the high investment equilibrium is higher at home than abroad,

then the speculative growth path itself yields a reallocation of global investment toward

domestic assets. Moreover, the speculative growth path itself may be made feasible by a
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decline in opportunities abroad.

Finally, if the expansion relaxes financial constraints faced by productive entrepreneurs,

then aggregate saving is reallocated toward them. The expansion of the 1990s clearly

achieved this goal by facilitating the reallocation of capital toward the mostly small and

emerging companies of the new economy sectors. Some of these companies were undoubtedly

bubbles and crowded out capital from good firms, but many others were the pillars of the

information technology revolution that was so central to the episode.

The speculative growth episodes to which our theory relates are a recurrent phenomenon.

Earlier episodes of vigorous economic expansion under speculative asset valuations have

been documented by economic historians. In the case of the U.S., this phenomenon also

can be observed in the expansions of the turn of the 20th century, the 1920s, and the 1960s

(see, e.g., Shiller 2000). Equally important, our theory can be brought to bear on sustained

low cost-of-capital equilibria, such as the prolonged expansions exhibited in a number of

East Asian economies in the post-war period. In fact, the key feedback from growth to

funding in these economies has been documented. Examining the aggregate relationship

between income growth and saving in a cross-country panel of 64 countries over the period

1958-1987, Caroll and Weil (1994) find that growth Granger causes saving with a positive

sign, but that saving does not Granger cause growth. The pattern of an acceleration in

growth followed by strong increases in saving rates is particularly clear in the high-growth,

high-saving East Asian economies of Japan, South Korea, Singapore, and Hong Kong. Gavin

et al. (1997) elaborate on this evidence and show that the estimated impact of growth on

saving is not only statistically significant but also very large in economic terms.

In its economic theme, this paper is part of a long tradition of studies of speculative

growth episodes (e.g., Kindleberger 1989). In terms of the recent U.S. experience, this

literature is divided between those who see a case of speculative behavior (e.g., Shiller

2000), and those who, based on the significant acceleration in underlying U.S. productivity

growth, conclude that the expansion was driven by a technological revolution that affected

real fundamentals (e.g., Greenwood and Jovanovic, 1999; Hobijn and Jovanovic, 2000).

From this perspective, our contribution is to provide a unified perspective under which these

two views need not be mutually exclusive. On the contrary, an expansion of technological

opportunities and stock market speculation may come hand on hand.

This perspective finds support in the evidence of Beaudry and Portier (2003), who device

a novel semi-structural VAR procedure to conclude that the US business cycle is largely

driven by a shock that does not affect productivity in the short run but that is strongly
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related to future productivity growth. They argue that such shock could well represent a

coordination device. Similarly, Christiano and Fisher (2003) conclude that the explanatory

power of RBC style models is greatly enhanced by the introduction of procyclical investment

shocks. In our model, the comovements emphasized by Christiano and Fisher arise from a

single shock, and the latter may be mostly of the coordination sort hinted by Beaudry and

Portier’s findings.

On the methodological side, our paper belongs to the literature on multiple equilibria.

This literature is too extensive to review here (see, e.g., Benhabib and Farmer (1999)), but

it is interesting to point out some of the similarities and differences with Krugman (1991),

who develops a trade model with external economies and adjustment costs. In that model,

if adjustment costs are too small, then multiple equilibria arise and expectations dominate.

On the other hand, when adjustment costs are large enough, the multiple equilibria region

disappears and only history matters. In contrast, in our model multiple equilibria arise only

for intermediate adjustment costs. As in Krugman, we need adjustment costs to be small in

order to be able to afford a transition to a high capital equilibrium. Unlike Krugman’s, we

also need adjustment costs to be large enough to generate sufficient capital gains to justify

the investment boom along the transition.

We also relate on the methodological and substantive side to the literature on bubbles in

general equilibrium. The seminal work by Tirole (1985) set up the foundation for the analy-

sis of bubbles in general equilibrium, but when embedded in the basic unique-equilibrium

OLG model it generates implications that are at odds with speculative growth episodes.

In particular, it implies that investment and bubbles experience negative comovement and

that the latter only can arise in a dynamically inefficient economy. Neither of these elements

is observed during these episodes. Partly for this reason, a large literature has developed to

modify the basic structure. For example, several papers have demonstrated that, in the pres-

ence of externalities that create a wedge between private and social returns on investment,

bubbles can arise even if the bubbleless economy is dynamically efficient (e.g., Saint-Paul,

1992; Grossman and Yanagawa, 1993; King and Ferguson, 1993). Ventura (2003) takes this

logic a step further and shows that with segmented financial markets bubbles may emerge

when only the marginal savers face interest rates below the rate of growth of the economy.

Olivier (2000) addresses the negative-comovement problem and shows how bubbles on firm

creation can lead to more rather than less investment. Aside from the difference in the spe-

cific mechanism we emphasize, in our model conventional rational bubbles exhibit positive

comovement with investment and arise even when all investors and savers face high (and

private) interest rates.
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The rest of this paper is organized as follows. In section 2, we present a prototypical

model of speculative growth. Our analysis is based on the Diamond (1965) overlapping-

generations model, to which we add adjustment costs and a special assumption about the

saving function. Adjustment costs allow us to characterize stock market booms and their key

role in facilitating the transition from low- to high-investment equilibria. Our special saving

function generically captures the growth-funding feedback that is central to the existence of

a high-valuation equilibrium. Section 3 discusses the possibility of bubbles and the fragility

they introduce to a speculative growth episode. Section 4 presents specific mechanisms that

may have facilitated an speculative growth episode in the US during the 1990s. Namely,

fiscal surpluses, capital flows, and technological progress in the equipment sector. Section

5 shows how financial constraints a la Kiyotaki and Moore (1997) also have the potential

to generate the type of growth-funding mechanisms that we emphasize. Section 6 discusses

welfare issues, and Section 7 concludes. Several appendices follow.

2 Speculative Growth

In this section we present a prototypical model of speculative growth. Our analysis is based

on a linearized version of the Diamond (1965) overlapping-generations model. We capture

the growth-funding feedback mechanism through a generic funding function that relaxes

Diamond’s stability condition.4 Our focus in this paper is not so much on what is behind

the violation of the stability condition (although we do provide specific mechanisms later

on), as is on the other features of the economy that make such modelling change a potentially

important source of speculative growth episodes. In Section 4 we discuss specific features

that may have played a role in the US episode during the 1990s. In this section, on the

other hand, we focus on building the basic structure of the economy. One key ingredient in

this structure is the presence of the “right” amount of adjustment costs to capital. With too

much adjustment costs, transitions are too costly and equilibrium becomes unique. With

too little adjustment costs, there are neither stock market booms nor multiple equilibria,

which are central features of the speculative growth episodes we wish to model.

2.1 The Growth-funding feedback

Consider a standard Diamond (1965) overlapping-generations structure with no population

growth and a unit mass of young and old agents who coexist at any date t. Each generation

4See Diamond (1965), page 1134.
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is born with a unit of labor, L = 1, to be used when young, for which it receives a total

wage Wt determined in a competitive, full-employment labor market. The economy’s single

consumption good is used as a numéraire.

Consumption goods are produced with capital, Kt, and labor, Lt. The production

function at any time t is determined by the level of technology, At, which grows at an

exogenous rate γ:

At+1 = (1 + γ)At.

Production is given by a constant returns technology, F (Kt, AtL). Letting kt ≡ Kt/AtLt

denote capital per effective worker, we write the marginal product of capital as:

fk(kt), f 0k < 0.

The labor market is competitive, and the wage wt ≡Wt/AtL per unit of effective labor can

be written as:

wt ≡ w(kt) w0 > 0. (1)

Lifetime utility is a function of consumption during youth and old age. Each member

of generation t chooses the level of saving when young, St, that maximizes lifetime utility.

The relevant features of preferences are summarized in the level of saving per effective unit

of labor, st ≡ St/AtL, which we assume is given by

st = s(wt, rt), (2)

where rt denotes the interest rate between periods t and t+ 1, sw > 0, and 0 < sr <∞.

2.1.1 The long run feedback

In the Diamond (1965) model, there are no adjustment costs to capital so that rt = fk(kt+1)

and the stock of capital next period is equal to today’s saving. Equilibrium then is charac-

terized by a nonlinear difference equation for capital accumulation:

kt+1 =
s(w(kt), r(kt+1))

1 + γ
. (3)

If the stability condition in Diamond (1965) is relaxed, then multiple steady-states as in

panel (a) of Figure 3 can arise. The essential feature of this saving function is that there is a

region where saving increases rapidly as capital rises. For now, we do not explain the source

of this feature but simply assume it.5 A particularly simple formulation of such situation is
5Note that even if one stays within purely neoclassical features, these need not be exotic. With the

technology we use here a log utility would violate the stability conditions.
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a: Multiple steady states in the Diamond model b: Multiple steady states in the linear modela: Multiple steady states in the Diamond model b: Multiple steady states in the linear model

Figure 3: Multiple Steady States

to start with a saving function that is linear in k and r, with a step at some level of capital

ko:

s(w(kt), rt) =

 s0 + skkt + srrt, k < ko;

s0 + δ + skkt + srrt, k ≥ ko,
(4)

with s0, δ and sr0 strictly positive. Now let the marginal product of capital be linear in

capital, π0−π1k, with π0 and π1 strictly positive and k ≤ π0/π1 (henceforth, we will focus

on equilibria that satisfy this constraint), so that:

rt = r(kt+1) = π0 − π1kt+1

Replacing this interest rate expression into the saving function (4), and the result into the

capital accumulation expression (3), solves the model. The following assumptions ensure

that we capture the scenario that concerns us.

Assumption 0: ∆ ≡ srπ1 + (1 + γ − sk) > 0 and
s0+srπ0

∆ < k0.

Assumption 1 (Minimum growth-saving feedback): δ > δ ≡ ¡k0 − s0+srπ0
∆

¢
∆.

Assumption 1 states that the jump in the saving function at k0 must be high enough

for a steady state to exist to the right of k0.

Proposition 1 (Multiple Steady States)

If Assumption 0 and 1 are satisfied, the economy has two steady states, kn and ks, with:

kn =
s0 + srπ0
∆

< ko <
s0 + δ + srπ0

∆
= ks, (5)

where the superscripts “n” and “s” stand for normal and speculative, respectively.
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Proof: See appendix A.

The proposition simply states that if the growth-saving feedback, captured here by the

parameter δ, is sufficiently strong, the economy exhibits multiple steady states. This is

illustrated in panel (b) of Figure 3.

Importantly, since the marginal product of capital is decreasing in the stock of capital,

the speculative steady state exhibits a lower cost of capital than the normal steady state:

rs = rn − π1
δ

∆
< rn.

This is the reason at times we refer to the “speculative” equilibrium as the “low cost of

capital” equilibrium. Similarly, since the valuation of an asset is simply its price divided by

earnings, and in steady state the former is just earnings divided by cost of capital, we have

that valuation is just one over the cost of capital. Thus we also refer to the “speculative”

equilibrium as the “high valuation equilibrium.”

How can the economy have a low cost of capital in the speculative equilibrium when it

requires more saving to be sustained? Precisely because higher capital raises saving enough

to more than offset the reduction in saving due to the decline in interest rate resulting from

lower marginal product of capital (supply of funding shifts more than demand for funding).

This is at the core of the growth-funding mechanisms we discuss in this paper.

2.1.2 Multiple Equilibria

It is easy to see that while the model above has multiple steady states, it has a unique

equilibrium. That is, for any given level of kt the economy converges to a specific steady

state. To see this, suppose the economy is at kn. Then moving toward ks would require

increasing saving, which can only happen if the interest rate rises (since kt is given). But

this cannot be an equilibrium since a decreasing marginal product of capital implies that an

increase in the interest rate reduces investment. Conversely, suppose that the economy is at

ks. Then moving toward kn would require lowering saving, which requires the interest rate

to fall. But this cannot be an equilibrium either since a fall in the interest rate leads to more

rather than less investment. More generally, the same logic applies to any other level of

equilibrium capital: If a level of investment constitutes an equilibrium in the capital market

for a given level of capital, then no other level of investment (and hence of tomorrow’s

capital) can be an equilibrium. The reason is simply that for any given kt, investment and

saving are, respectively, decreasing and increasing with respect to rt.
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Let us modify slightly the previous setup and introduce adjustment costs. This not

only creates the possibility of a stock market boom, which is one of the features we aim

to explain, but also breaks the short run connection between the return on investment and

the marginal product of capital (since there are capital gains), which was at the heart of

the uniqueness result above.

Let investment to maintain the effective capital stock be frictionless, but all deviations

from this level of investment be subject to a convex adjustment cost:6

c(It,Kt) =
1

2
θ−1Kt

µ
It
Kt
− γ

¶2
, (6)

where I is investment. As usual, the investment equation in this context takes the simple

q-theory form:

x(qt) = γ + θ(qt − 1) (7)

where xt ≡ It/Kt and qt is the price of a unit of installed capital. When adjustment costs

are large (θ low), investment is relatively unresponsive to deviations of the value of installed

capital from that of uninstalled capital. When they are low (θ large), investment is very

responsive to such deviations. The simple model in the previous section obtains when θ

goes to infinity. The capital accumulation equation can now be written as:

kt+1 =
1 + x(qt)

1 + γ
kt =

µ
1 +

θ

1 + γ
(qt − 1)

¶
kt. (8)

Importantly, it is no longer the case that the interest rate is equal to the marginal

product of capital. A unit of installed capital costs qt and saves adjustment costs for

cK(It,Kt) today. This unit of capital yields qt+1 and fk(kt+1) tomorrow. Thus, the return

from investing in capital is:

(1 + rt) =
qt+1 + fk(kt+1)

qt + cK(It,Kt)
.

After replacing fk in it, this expression can be rearranged as:

qt+1 = (1 + rt)(qt + cK(It,Kt))− (π0 − π1kt+1), (9)

with
cK(It,Kt) = 1

2θ
−1
³

It
Kt
− γ

´2 − θ−1
³

It
Kt
− γ

´
It
Kt

= 1
2θ
−1 (xt − γ)2 − θ−1 (xt − γ)xt

= − ¡γ + θ
2(qt − 1)

¢
(qt − 1).

6Subtracting effective-maintenance investment from the adjustment cost function facilitates our analysis

later on without any substantive cost.
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The last step to fully specify the dynamic system, is to solve out the interest rate as

a function of qt and kt. For this, let us find the capital market equilibrium condition.

Following production in period t, the old sell their capital to the young at price qt. The

young allocate their saving to the purchase of the existing stock of capital, to invest in new

capital, and to pay for the adjustment costs of installing this new capital:

s(kt, rt) = (qt + xt(qt))kt + c(x(qt), kt). (10)

Replacing (4), (6) and (7) into (10), and solving out for the interest rate, yields:

r(qt, kt) =
1

sr

½·
qt + γ + θ(qt − 1) + θ

2
(qt − 1)2 − sk

¸
kt − s0 − 1{kt ≥ ko}δ

¾
, (11)

with 1{kt ≥ ko} an indicator function that takes value one when kt ≥ ko and zero otherwise.

Putting things together, the system governing equilibrium dynamics can be written as

a two-dimensional system in (kt, qt)-space:

kt+1 =

µ
1 +

θ

1 + γ
(qt − 1)

¶
kt,

qt+1 = (1+ r(qt, kt))

µ
qt −

µ
γ +

θ

2
(qt − 1)

¶
(qt − 1)

¶
−
µ
π0 − π1

µ
1 +

θ

1 + γ
(qt − 1)

¶
kt

¶
.

It is straightforward to verify that this dynamic system has the same steady states

described in Proposition 1. For this, simply note that in steady state q = 1, in which case

the steady state equations of this system collapse to those of the model without adjustment

costs.

But the question that concerns us here is under which circumstances the presence of

adjustment costs can break the uniqueness result of the simpler model. In particular,

whether it is possible for an economy near its “natural” steady state to initiate a path

toward the “speculative” one. That is, whether the economy can embark in a “speculative

growth” path.

Let us assume that δ is small so that we can make a first order approximation around

q = 1 and k = kn for the transition from kn to ks, if such transition is possible (see the

appendix for a precise statement about this approximation, which also requires that the

distance between ko and kn be small). Let bqt ≡ (qt − 1) and bkt ≡ (kt − kn), then the

linearized dynamic system can be written as:

dqt+1 = ·(1 + rn)(1− γ) +

µ
π1θ

1 + γ
+

θ + 1

sr

¶
kn
¸ bqt + ∆

sr
bkt − 1{bkt ≥ bko} δ

sr
, (12)
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dkt+1 = θkn

1 + γ
bqt + bkt. (13)

In the appendix we provide the exact statements that make this linear system the limit

of the nonlinear one as δ and (kn − ko) go to zero. In the main text, our analysis refers to

the dynamic system described by (12) and (13). We shall add a technical condition that

ensures that the interest rate and marginal product, fk, rather than the adjustment cost

saving feature of investment, cK , dominates local dynamics for all values of θ:

Assumption 0’ (Technical condition): kn

sr
+ (1 + rn)(1− γ)− 1 > 0

It is useful to define the following function:

Λ(θ) = −1 + 2 1

1− 1vuut1+ 4 ∆sr
θkn
1+γ·

(1+rn)(1−γ)+π1θk
n

1+γ + θ+1
sr

kn−1
¸2
,

which corresponds to the ratio of the slope of the unstable path stemming from the normal

steady state to (minus) the slope of the saddle path stemming from the speculative steady

state (see the Appendix). Observe that Λ is strictly positive, non-monotonic on [0,+∞[,
decreasing on [0,eθ] and increasing on [eθ,+∞[, with limθ→0Λ(θ) = limθ→+∞Λ(θ) = +∞,

where

eθ = kn

sr
+ (1 + rn)(1− γ)− 1
( π1
1+γ +

1
sr
)kn

.

Assumption 1’ (Minimum growth saving feedback for a transition): δ > δ ≡³
Λ(eθ) + 1´∆(k0 − kn).

Note that since Λ(eθ) > 0, Assumption 1’ implies Assumption 1.
Assumption 2 (Speculative adjustment costs region): θ(δ) < θ < θ(δ), with

θ(δ) = inf{θ > 0, Λ(θ) = −1 + δ
∆(k0−kn)} and θ(δ) = sup{θ > 0, Λ(θ) = −1 + δ

∆(k0−kn)}.

Proposition 2 (Multiple Equilibria and Speculative Growth)

If Assumptions 0, 0’, 1’ and 2 hold, there is a speculative growth path that takes the economy

from kn to ks. Along that path, bqt > 0.
Proof: See appendix A.

Let us discuss here the structure of the proof with the help of the phase diagrams in

Figure 4. The central ingredients in each of these panels are the unstable arm of the normal
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a: Intermediate Adjustment Costs

c: High Adjustment Costsc: High Adjustment Costs

b: Low Adjustment Costsb: Low Adjustment Costs

Figure 4: Multiple Equilibria

steady state, the vertical line at ko, and the stable arm (saddle path) of the speculative

steady state. Naturally, for a speculative growth path to exist, it must be the case that the

unstable path of the low capital equilibrium intersects the ko line below the intersection of

the latter and the saddle path of the high capital equilibrium. This is precisely the scenario

depicted in panel (a). By continuity, in this case there is a path starting at (kn, q+) with

q+ > 1, such that it hits ko at the saddle path of the speculative equilibrium.

Before further characterizing the speculative growth path, it is instructive to discuss

scenarios where the conditions for such path do not exist. Panels (b) and (c) in Figure 4

provide these examples. The former is one in which adjustment costs are too low (hence

θ > θ) while the latter represents the other extreme (hence θ < θ).7

On one end, when adjustment costs are too low, the slope of the saddle path for the

speculative steady state is very flat (small deviations of q from 1 lead to large investment

responses). On the other, when adjustment costs are too large, the slope of the unstable path

for the normal steady state is very steep (it takes enormous capital gains to justify costly

7The only reason Proposition 2 is not stated as an if and only if, is that since our linear system is an

approximation to the non-linear one, we cannot state whether a speculative growth path is feasible or not

when θ is exactly at the boundaries of the range in Assumption 2. If the inequalities in Assumption 2 are

reversed, there is no speculative growth path (see the Appendix). The same consideration applies to most

of the Propositions in the main text.
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investment beyond maintenance investment). That is, for a speculative growth path to

exist, adjustment costs must be large enough to generate sufficient capital gains to decouple

the return on investment from the marginal product of capital in the short run, but not so

large that it is simply too costly to finance an investment boom.

Returning to panel (a), we can see that along the speculative growth path the value of

installed capital is booming and with it are investment and growth. And since marginal prod-

uct is declining, the price-earnings ratios (valuations) are also rising. These are precisely

the features we highlighted in the introduction for the U.S. episode during the 1990s.

2.2 Fragility and crashes

Our use of the word “speculative” is primarily meant to capture the feedback between the

investment boom and capital gains along the path toward the high capital equilibrium. But

our framework also captures the meaning of “fragility” in that word.

Assumption 3 (Non-crash adjustment costs region): θ /∈
h
θC(δ), θ

C
(δ)
i
, where

θC(δ) = inf{θ > 0, Λ(θ) = −1+ δ
∆(ks−k0)} and θ

C
(δ) = sup{θ > 0, Λ(θ) = −1+ δ

∆(ks−k0)}.
Note that Assumption 3 is automatically satisfied if δ < δC ≡

³
Λ(eθ) + 1´∆(ks − k0),

where the superscript C stands for crash.

Proposition 3 (Consolidation region)

If Assumptions 0, 0’, 1’, 2 and 3 hold, there is a speculative growth path that takes the

economy from kn to ks, but the converse is not true. Moreover, there is a value kc of the

capital stock, ko < kc < ks, such that there is a unique equilibrium for kt > kc and multiple

equilibria for kn ≤ kt ≤ kc.

Proof: See appendix A.

The first part of the proposition is literally Proposition 2. The second part is that at

ks, there is no path that can take the economy back to kn. The structure of the proof

is similar to that used in Proposition 2, now to show that when Assumption 3 does not

hold, the unstable path from the high capital equilibrium overshoots the saddle path to the

low capital equilibrium. The last part of the proposition raises an interesting feature: The

economy has a consolidation region. That is, a region around the high capital steady state

such that once the economy reaches it, there is no chance of a crash that takes the economy

back to the low capital equilibrium. The other side of the coin is that, early on, an economy

along a speculative path is fragile and susceptible to crashes.
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2.3 A Detour: Sunspots

Of course the concepts of crashes and fragility in a model with multiple but deterministic

paths are imprecise at best. But it is conceptually straightforward to introduce a sunspot

as an equilibrium-selection device, and formalize these statements.

Suppose, for example, that in the multiple equilibria region the sunspot variable is a

Markov chain with two states, {u, d}, and initial value e0 = u. When the state is u, all

agents coordinate their expectations on the speculative growth path. When the state is d,

expectations coordinate on the path toward the low capital steady state. Define the crash

time, τd:

τd = inf{t > 0, et = d},

and let the transition probabilities be such that once a crash takes place, the economy

converges to the low capital equilibrium with probability one: puu pud

pdu pdd

 =
 µ 1− µ

0 1

 .
Finally, suppose that preferences are such that only the expected return of a project

matters to agents (we can use Epstein-Zin preferences for this purpose). With this structure,

sunspots do not alter the expression defining the equilibrium interest rate. All that is

modified is the expression for expected future price of capital while in the speculative

growth path (and not yet in the consolidation region), which is now (µqut+1 + (1− µ)qdt+1)

instead of simply qt+1.

For expositional simplicity, we henceforth suppress sunspots from our formal analysis

but still use the language of crashes associated to them.8 Alternatively, our analysis can be

thought of as being conducted in the neighborhood of µ = 1.

3 Bubbles, Assets in Fixed Supply, and Speculative Growth

Assume momentarily that the speculative steady state is dynamically inefficient, with rs <

γ. It is well known from Tirole (1985) that rational bubbles can emerge in such scenario.

Essentially, since a bubble must grow at the interest rate, and the latter is below the rate

of growth of the economy, a bubble in this environment never outgrows the economy. Thus,

if it is feasible at the outset, it remains so at later dates. Moreover, rational bubbles in this

8Similarly, we do not model the jump onto a speculative path. We could do so with entirely symmetric

sunspot arguments.
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context are welfare enhancing since they solve an “excessive” investment problem driven by

a high demand for a store of value rather than by productivity considerations. It follows

that the emergence of a rational bubble in this context lowers aggregate investment, and

that a crash of the bubble boosts aggregate investment.

Now assume that the low capital long run equilibrium, kn, is dynamically efficient. In

steady state, this means rn > γ. It is also well known from Tirole (1985) that rational bub-

bles cannot exist in such environment. If the interest rate exceeds the rate of growth of the

economy, a bubble grows faster than the economy until it eventually becomes inconsistent

with the aggregate endowment constraint. Backward induction then shows that a rational

bubble can simply not emerge in this region.

The fact that most evidence point in the direction of dynamic efficiency in the U.S.

(Abel et al (1989)) and that episodes of speculative growth as illustrated in Figure 1 exhibit

strong positive comovement between valuations and investment, would seem to be conclusive

evidence against the presence of rational bubbles during these episodes. It turns out that

neither property needs to hold in our speculative growth environment. Along a speculative

growth path bubbles may emerge even in the region where the interest rate exceeds the

rate of growth of the economy. Moreover, aggregate investment and the bubble experience

positive comovement. The speculative growth path is needed for a bubble to emerge, and if

the economy crashes into the recessionary path toward the low capital equilibrium, so will

the bubble. Importantly, the likelihood of such crash is enhanced by the emergence of a

bubble.

3.1 Bubbles with r > γ

Assumption 4 (Bubble region): π0 − π1k
n > γ > π0 − π1k

0

Proposition 4 (Bubbles in high interest region)

Let Assumptions 0, 0’, 1’, 2 and 4 hold, and initial capital be equal to kn. Then, if the

economy initiates a speculative growth path, there will a range of feasible rational bubbles

(normalized by A(t)), bt, such that b0 > 0 and

bt+1 =
1 + rt
1 + γ

bt.

Proof: See appendix B.

This result is intuitive. While at the outset of the speculative growth path the economy

is in a region where the interest rate exceeds the rate of growth of the economy, it is headed

toward a dynamically inefficient region where bubbles can be sustained. But then, by
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backward induction, bubbles can start before the economy reaches that region. All that is

required is that the initial bubble be sufficiently small so that despite its fast early growth,

it reaches the dynamically inefficient region with a size consistent with the bounds imposed

by the size of the economy, and that it allows capital to grow and reach that region.

b: Path of the bubblea: Paths of q and k with and without bubbles b: Path of the bubblea: Paths of q and k with and without bubbles

Figure 5: Bubbles

Figure 5 shows one such example. Panel (a) illustrates the paths of q and k for two

economies along a speculative path, one with and the other without a rational bubble. Panel

(b) illustrates the path of the bubble.

3.2 Bubbles and crashes

Proposition 5 (Bubbles and fragility)

Let Assumptions 0, 0’, 1’, 2, 3 and 4 hold, and initial capital be equal to kn. Then, the length

of time an economy along a speculative growth path remains outside the consolidation region

(and hence is susceptible to a crash), is increasing with respect to the size of the bubble, bt.

Proof: See appendix B.

The reason for this result is intuitive as well. As in the standard model, a bubble

competes for savings with physical investment. This means that in the presence of a bubble,

the economy transits more slowly from kn to ks all along the path, which also means that

it takes longer for the economy to reach the consolidation region, k ≥ kc. Note that while a

bubble still crowds out investment, it now exhibits positive rather than negative comovement

with aggregate investment. In particular, the bubble can only emerge when the investment

is booming along a speculative path. And if the latter crashes, so will the bubble.
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Figure 6: Mechanisms in the US Epidode

4 Mechanisms in the US Episode

Sections 2 and 3 have described an environment that is conducive to speculative growth

episodes that resemble those portrayed in Figure 1. At the core of this result is optimism

about future effective funding of large capital accumulation. In this section we discuss a

few prominent features of the US economy during the 1990s that supported this optimism:

Fiscal surpluses, capital flows, and technological progress in the equipment sector.

4.1 Fiscal surpluses

The fiscal surpluses generated during the U.S. speculative growth experience were the com-

bined result of fiscal consolidation measures and the automatic effect of procyclical tax

revenues in a booming environment. The reduction in public debt had a moderating effect

on interest rates in the short run and substituted for increased private saving to fund the

investment boom. It is in this sense that a tight policy of paying down the national debt

supported the boom in the short term. Turning to the more novel issue of longer-term

sustainability, we argue that a continuing policy rule of generating fiscal surpluses provides

critical support to the speculative equilibrium.

To develop our argument, we add a government to the model. We assume the govern-

ment taxes wage income at a rate τ t and spends gtAtL on goods that do not enter agents’

utility function. Thus the government’s budget constraint is

(1 + γ)dt+1 = (1 + rt)[dt − (τ twt − gt)], (14)

where dt ≡ Dt/AtL denotes public debt per unit of effective labor.

Adding the public sector alters two equations in the model. The saving of the young st,
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is now a function of after-tax wages:

st = s ((1− τ t)w(kt), rt) , (15)

while the capital-market equilibrium condition is now given by

(τ twt − gt) + st = dt + (qt + x(qt)) kt + c(x(qt), kt). (16)

The saving of the government and of the young must fund the purchase of the existing

public debt and capital stock from the old, and new investment. Combined, equations (15)-

(16) implicitly define a new interest rate function rt = r(kt, qt, dt, τ t, gt). The economy’s

dynamics are described by system (8)-(9) with the new interest rate function together with

the government budget constraint, (14), and a fiscal policy rule.

Let us consider a benchmark fixed-parameters policy rule under which detrended government

spending and the tax rate are fixed at g > 0 and τ > 0. To facilitate comparisons, we assume

that this and other policy rules result in a balanced budget in the low-valuation steady state

– which requires g = τwn – and, therefore, result in the same low valuation steady state.

The important point to notice is that this fixed-parameters policy creates primary surpluses

during expansions beyond kn and primary deficits during contractions. To see this, note

that the fiscal rule implies that the primary government surplus, (τwt − g), increases with

wt in an expansion. Thus the response of the combined “gross” saving of government and

the young to an increase in wages is given by (τ + sw(1− τ)) dwt.

The increase in saving generated by the fixed-parameters rule not only facilitates the

funding of investment in the short run but, more importantly, plays a central role in fa-

cilitating the emergence of a speculative growth scenario. This feasibility point is made

most clearly by focusing on the speculative steady state, (ks, 1), rather than on the entire

path. One can show that if, instead of being fixed, government spending is raised with the

endogenous increase in the wage, then aggregate saving falls and so does the level of ks. In

fact this fiscal expansion experiment is similar to reducing δ in Section 2. For a high enough

indexation of fiscal spending to wages, the speculative equilibrium is no longer feasible. In

other words, fiscal surpluses are not only a symptom of the speculative growth episode, but

also can be a central element of the factors that support it.

The notion that the fiscal surpluses generated by the speculative equilibrium can be

partly spent or rebated to the taxpayer may be an illusion. The surpluses could be a pillar

of the speculative equilibrium, and might swiftly disappear if this equilibrium unravels –

giving rise to what one might describe as a surplus illusion.
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The following proposition summarizes our results:9

Proposition 6 (Surplus Illusion)

Let Assumptions 0, 0’, 1’, 2 and 4 hold. Let gt = g+ατ(wt−wn). If the economy has two

saddle-path steady state equilibria for α = 0, there exists an αm > 0 such that for any α ≥
αm, the speculative equilibrium disappears. An upper bound for αm is max{ ∆

π1kn

δ
∆

k0−kn (1−
k0−kn

δ
∆

), τ̄}.

Proof: See appendix C.

Importantly, the parameter αm is less than one for a wide configuration of parameters.

4.2 Capital flows

The other major source of funding for the investment boom in the U.S. was the current

account. As a short-term funding mechanism, international capital flows can moderate the

rise in interest rates needed to fund the investment boom. Over time, the whole world may

be dragged into a speculative path.10

We capture the key role played role by capital flows in facilitating a speculative growth

episode with a stark contrast. One in which no such episode will be feasible without the

presence of external saving. For this purpose, let us assume that the closed economy saving

function does not depend on the interest rate, sr = 0. In this case, if the home country

were in autarky, the transition from the normal steady state to the speculative one would

be impossible. This is because saving, and therefore investment, are fully determined by

kn, with no role for interest rates in facilitating an investment boom.

Let us now introduce a simple foreign country. In it, the young receive an aggregate

endowment eet = ee(1 + γ)t in each period, which they save in full. The economy also has a

technology that uses only capital to produce consumption goods:

eF (Zt) = At
ef µZt

At

¶
= At

ef(zt); ef 0 > 0, ef” < 0,
where (foreign) capital Zt is accumulated without adjustment costs. Because this produc-

tion function exhibits decreasing returns to scale, there are quasi-rents which accrue to an
9In the proposition, we also add the condition that the speculative equilibrium be dynamically inefficient

in order to avoid explosive assets or debt. This is necessary only because we are analyzing simple linear

fiscal rules.
10Ventura (2001) emphasizes an alternative portfolio channel connecting the current account and a do-

mestic bubble. In his model, the main effect of the bubble is to raise domestic wealth. As domestic agents

attempt to rebalance their portfolios by investing in non-bubbly domestic equity, external borrowing rises

to finance the investment that is required to build domestic equity.
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unmodeled factor of production, which does not save (this is not important). Let the mar-

ginal product of capital from this technology be linear in capital, fπ0 −fπ1z, with fπ0 andfπ1 strictly positive and z ≤ fπ0/fπ1 (henceforth, we will focus on equilibria that satisfy this
constraint). Since capital markets are integrated, it must be that:

rt = r(zt+1) =fπ0 −fπ1zt+1 (17)

Equilibrium in global capital market is now:

s(kt) + ee = (qt + xt(qt))kt + c(x(qt), kt) + (1 + γ) zt+1, (18)

while the arbitrage and capital accumulation equations for k are still given by (9) and (8).

We can now solve zt+1 out from (17):

zt+1 =
fπ0 − rtfπ1

and replace it in (18) to obtain an effective saving function (by which here we mean saving

available for investment in k):

se(kt, rt) ≡ s(kt) + ee− fπ0(1 + γ)fπ1 +
1 + γfπ1 rt.

It is now straightforward to see that with se0 = s0 + ee− fπ0(1+γ)fπ1 , sek = sk and ser =
1+γfπ1 , we

can fully reproduce the analysis of Section 2 with se(kt, rt) replacing s(kt, rt) in Section’s

2 formulae. In particular, the domestic economy now can initiate a speculative path which

would have been infeasible in autarky.

Early on in this path, the interest rate rises, and foreign saving flows into the home

economy while foreign output declines. Over time, as the growth-saving feedback gains in

strength, the domestic economy pulls the foreign economy by reversing the capital flows.

Interestingly, as it may have played an important role during the 1990s, the mechanism

above also implies that if there is an exogenous decline in foreign opportunities, this may

facilitate a transition into a speculative episode in the home economy. Furthermore, if the

transition comes together with the decline in opportunities abroad, interest rates need not

rise in the short run either.

Let us suppose that with se(kt, rt) replacing s(kt, rt), Assumptions 0, 0’ and 1 hold but

Assumption 2 does not hold, so that no transition from the normal steady state to the

speculative steady state is possible. Consider a situation where the economy is initially in
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the low steady state. Let us now imagine that ee and fπ0 unexpectedly shift to ee0 ≥ ee andfπ00 ≤fπ0, so that se0 shifts to se00 = se0 + (ee0 − ee)− (fπ00 −fπ0)1+γfπ1 ≥se0.
Assumption 5: ∆(k0 − kn) > se00 − se0 > ∆(k

0 − kn)− δ
(Λ(θ)+1) > 0.

This assumption implies that there are two steady states under the new parameters.

Denote them by k0n = kn +
se00 −se0
∆ and k0s = ks +

se00 −se0
∆ .

Proposition 7 (Change in conditions in the rest of the world)

If Assumption 5 holds, there is no transition from kn to ks under the parameters ẽ and

π̃0. By contrast, there are multiple equilibria under the parameters ẽ0 and π̃
0
0: starting

with capital stock kn, there is a saddle path that takes the economy from kn to kn
0
and a

speculative growth path that takes the economy from kn to ks
0
. Along these paths, bqt > 0.

The result is intuitive. If saving in the foreign country increase or if the rate of return

in the foreign country decreases, causing a reallocation of saving to the domestic economy,

a speculative growth scenario can emerge where it would have been impossible before the

shift.

4.3 Technological progress in the equipment sector

The productivity growth that came with technological progress was exceptional. After

two disappointing decades beginning with the oil price shocks of the 1970s, the economy

recovered more than half of its lost productivity growth. Most prominently, productivity

growth in industrial and electronic machinery accelerated from an annual rate of 2% for

1973−1990 to more than 6% for 1995-2000. This acceleration reduced the price of machinery
and electronic devices, which in turn contributed to the investment boom. This mechanism

fits within the speculative growth perspective we have highlighted up to now, once one

broadens the definition of funding to that of effective funding. That is, for any given level

of saving, a decline in the price of new capital raises the power of that saving to build the

economy’s stock of capital.

While some of the technological progress in equipment producing sectors may have been

exogenous to the capital deepening process itself, we continue here with our endogenous

perspective (which in any event would act as a multiplier to the exogenous shocks). We

capture this endogeneity through a positive spillover from the capital accumulation process

to the production of equipment goods.11 This simple channel allows us to preserve much of

11See Murphy et al. (1989) for a model of this sort based on increasing returns in the equipment sector,

and Jaimovich (2003) for a countecyclical markups version.
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our previous formulae. Moreover, here we set δ = 0 as the technological spillover ends up

playing a similar role in the current model.

We assume that the technology in the equipment goods sectors can transform one unit of

consumption goods into λ(k) units of equipment goods (with λ0 > 0). Perfect competition

in this sector ensures that the price of equipment goods is:

p(kt) =
1

λ(kt)
.

Since qt corresponds to Tobin’s q – that is as the value of a unit of installed capital over

the price on a new (uninstalled) unit of capital – we preserve the formulae of Section 2,

with two exceptions: the capital market equilibrium condition and the arbitrage equation.

The former is now:

s(kt, rt) = p(kt)(qt + xt(qt))kt + p(kt)c(x(qt), kt). (19)

But is apparent that by dividing both side of this condition by p(kt) and defining the

effective funding function as:

sp(kt, rt) ≡ s(kt, rt)

p(kt)
,

we can rewrite (19) as:

sp(kt, rt) = (qt + xt(qt))kt + c(x(qt), kt), (20)

which is entirely analogous to the equilibrium capital market condition in Section 2.

Moreover, suppose that we model the aggregate increasing returns aspect of the equip-

ment sector as a simple step function:

p(kt) =

 1, kt < ko;

p < 1, k ≥ ko.
(21)

then (1− p) > 0 is isomorphic to δ in terms of the effective funding or saving function.

The only difference with the model in Section 2 is that (1− p) affects not only effective

funding, but also the arbitrage equation, since now:

qt+1 = (1 + rt)(qt + cK(It,Kt))
p(kt)

p(kt+1)
− (π0 − π1kt+1)

p(kt+1)
. (22)

However, nothing of our fundamental message is changed by this modification. In particular,

the pre-conditions and features of the speculative path remain valid. We prove these claims

in Appendix C.3.
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5 Financial Constraints and Growth-funding feedbacks

Another key ingredient in the US episode is the reallocation of funding toward small growth

firms in new technology sectors. We develop this model here with two purposes. First, to

show that a growth-funding mechanism need not operate through aggregate saving; the

reallocation of funds can play a similar role. Second, to show a more explicit model of δ;

here the growth-funding feedback stems from the relaxation of financial constraints brought

about by the expansion.

Let us simplify interest rate determination by assuming that there is a constant returns

to capital, h, sector with (low) productivity r, which is always active so that the “riskless”

interest rate is pinned down at r.

More substantively, assume that only a fraction µ < 1 of the new born can invest and

work in the conventional sector described in Section 2, while the rest of the young (lenders)

work in a sector that has no capital. Thus, aggregate output is:

Yt = At(µLf(kt) + (1− µ)L+ rht).

Young lenders have undiscounted log-utility preferences, so they save half of their wages,

which in aggregate amounts to (1− µ)/2. We assume that (1− µ) is large enough so their

saving is never binding in equilibrium. Entrepreneurs, on the other hand, satisfy a minimum

(detrended) consumption c, after which they save and invest as much as they can:

µ(w(kt)− c).

In equilibrium, entrepreneurs borrow from lenders, dt:

dt = (xt + qt +
1

2
θ−1(xt − γ)2)kt − µ(w(kt)− c). (23)

Against this loans, entrepreneurs post as collateral the capital they acquire:

qt+1kt/(1 + r).

Neither new investment nor output can be pledged (this is our financial constraint). Col-

lateralized loans are made at the “riskless” interest rate r. Uncollateralized loans consume

(per unit) δ/sr resources in monitoring and therefore are made at interest rate r + δ/sr.

For a given interest rate, neither the accumulation equation nor the arbitrage condition

described in Section 2 change in this model. The main change is in the criterion separating

the two regions of the phase diagram. Rather than ko, now there is a condition that splits
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the region according to whether the marginal loan is collateralized (and hence at rate r) or

not (and hence at rate r + δ). For this purpose, let us define

nt ≡ dt − qt+1kt
1 + r

.

By replacing (23), the arbitrage condition, and the accumulation equation into this expres-

sion, we obtain:

nt = (γ+θ(qt−1)+θ

2
(qt−1)2)kt−µ(w(kt)−c)+(1 + rt

1 + r

θ

2
(qt−1)2+1 + rt

1 + r
γ(qt−1)+

f 0(1+γ+θ(qt−1)1+γ kt)

1 + r
)kt.

When n(qt, kt) ≤ 0 the interest rate is r, while when nt > 0 the interest rate is r+ δ/sr.

We are now in the setting of Section 2 with only a slightly more complicated function

separating the two regions of the phase diagram. Note that if nt = 0, then rt = r. Using

this and simplifying, the separating region is defined by the following equation

0 =
£
γ + (θ + γ) (qt − 1) + θ(qt − 1)2

¤
kt − µ (w(kt)− c) +

f 0(1+γ+θ(qt−1)1+γ kt)

1 + r
kt.

Financial constraints with intermediate adjustment costs Financial constraints with intermediate adjustment costs 

Figure 7: Financial Constraints

Figure 7 illustrates the analogue of panel (a) in Figure 4. As before, there are two

steady states and the possibility of a speculative growth path. The key funding-growth

feedback now arises from the fact that the financial constraint is no longer binding when k

is sufficiently large, which significantly drops the interest rate on loans. Appendix D proves

the main claims in this section; in particular, it reproduces the main result of the paper in

the context of this model.
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6 Welfare

Do speculative growth episodes represent a Pareto improvement across generations involved

in it? The answer to this question is not generic, as it depends on the specific channel behind

the growth funding feedback. For example, in the financial constraints model of the previous

section the answer is yes. But it needs not be the case if δ is a property of the aggregate

saving function as some savers after to (the time at which kt first reaches ko) are hurt by

the sharp decline in interest rates.

6.1 Generic results

But what is generic in our models is the welfare improvement of all generations born before

to. It is also generic that if the economy is dynamically efficient then all generations with

capital close enough to the high capital equilibrium are also better off. We summarize these

results in two propositions, and explain them through their short proofs.

Proposition 8 (Welfare for early generations)

Let the conditions for the multiple equilibria outcome in the cannonical model in Section

2 hold. Then all generations t < to are better off along a speculative path than in the low

capital steady state.

Proof:

The basket consumed by individuals of generation t in the low capital steady state is

affordable along the speculative growth path if:

wt ≥ wn − sn + sn
1 + rn

1 + rt
(24)

where sn denotes detrended savings by an individual in the low capital equilibrium.

For generations t ≤ t0, which are the ones that concern us in this proposition, we have

rt > rn since qt > 1, kt > kn, rk > 0 and rq > 0, and wt > wn since kt > kn and wk > 0.

Therefore, (24) is always verified for these generations.

Q.E.D.

Proposition 9 (Welfare for late generations)

Let the conditions for the multiple equilibria outcome in the cannonical model in Section 2

hold. Then if the speculative steady state is dynamically efficient (rs ≥ γ), all generations

near the speculative steady state are better off than in the normal steady state. Conversely,

if rs ≤ (1 + γ)k
n

ks − 1, then all generations near the speculative steady state are worse off
than in the normal steady state.
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Observe that (1 + γ)k
n

ks − 1 < γ.

Proof:

For generations t ≥ to, whether the key inequality in the previous proposition is satisfied

is ambiguous. We still have wt > wn but now the sign of rt − rn is ambiguous.

The capital market equilibrium condition in the low equilibrium is

sn = (qn + xn +
1

2
θ−1(xn − γ)2)kn = (1 + γ)kn.

In the speculative steady state, we can rewrite (24) as

f(ks)− ksf 0(ks)− f(kn)− knf 0(kn) ≥ 1 + γ

1 + f 0(ks)
kn
¡
f 0(kn)− f 0(ks)

¢
. (25)

Since f is strictly concave, we have that

(ks − kn)f 0(ks) < f(ks)− f(kn) < (ks − kn)f 0(kn).

Therefore,

kn(f 0(kn)− f 0(ks)) < f(ks)− ksf 0(ks)− f(kn)− knf 0(kn) < ks(f 0(kn)− f 0(ks)).

Assume first that rs = f 0(ks) ≥ γ. Then

1 + γ

1 + f 0(ks)
kn
¡
f 0(kn)− f 0(ks)

¢ ≤ kn
¡
f 0(kn)− f 0(ks)

¢
,

so that (25) is verified with a strict inequality. Since limt→+∞wt = ws and limt→+∞ rt = rs,

this proves the first claim in the proposition.

Assume now that rs = f 0(ks) ≤ (1 + γ)k
n

ks − 1. Then

1 + γ

1 + f 0(ks)
kn
¡
f 0(kn)− f 0(ks)

¢ ≥ ks
¡
f 0(kn)− f 0(ks)

¢
,

so that (25) is violated. This proves the second claim in the proposition.

Q.E.D.

6.2 A comment on Bubbles and Welfare

In the classic model of rational equilibrium bubbles, the latter are good because they reduce

the overaccumulation problem of a dynamically efficient economy. This welfare enhancing

features of bubbles runs counter most observers intuition during speculative growth episodes.
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Our model shares that positive side of bubbles for generations very late in the speculative

growth episode but they have a negative side as well: they overexpose the economy to crashes

by delaying the arrival of the consolidation phase.12

In other words, if bubbles emerge late in the process once the economy has already

arrived to the consolidation region, they are more likely to be beneficial. But bubbles that

arise early in the speculative growth path risk derailing this potentially prosperous process.

7 Final Remarks

This paper builds a theoretical framework for thinking about episodes of speculative growth.

We characterize this phenomenon as a low effective cost-of-capital equilibrium based on

optimism about the future availability of funds for investment. Our framework highlights

the key short-term and long-term funding mechanisms necessary to sustain a speculative

growth equilibrium.

Ours is not a framework of “irrational exuberance,” although it offers a natural inter-

pretation of such episodes. These occur when a speculative growth path is not backed by a

long-run funding mechanism strong enough to eventually validate the capital gains dynam-

ics that are needed in the short run to reallocate resources toward the sectors that drive the

boom. A prototypical example is when investment and speculation focus on the “wrong”

sector, as it may have been the case in Japan during the 1980s with its large real estate

boom.

The U.S. experience during the 1990s probably had elements of both: A rational spec-

ulative growth component built on the information technology sector, sound fiscal policy,

and foreigners’ confidence, as well as some elements of irrationality especially during the

late 1990s. From this perspective, it is not at all clear whether much of the U.S. asset

markets boom during the 1990s, even if bubbly, was condemned to be reversed. On this

regard, an interesting question that we leave for future research is whether a central bank

should attempt to raise interest rates upon the emergence of bubbles. It may well be the

case that doing so not only crashes the bubbles but also the underling, and mostly welfare

enhancing, speculative growth episode.

12Note that this postponement has a distributional effect as well as it extends the number of generations

before to, which are unambiguously better off with the speculative growth episode.
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A Proof of Propositions in Section 2

Proof of Proposition 1:

The conditions for a steady state are q = 1, r = π0−π1k, s0+skk+srr+1{k ≥ ko}δ =
(1 + γ)k. kn < k0 is a steady state if and only if kn = s0+srπ0

∆ < k0. This inequality holds

by Assumption 0. Similarly ks ≥ k0 is a steady state if and only if ks =
s0+srπ0+

δ
sr

∆ > k0.

This last inequality holds by Assumption 1.

Q.E.D.

Proof of Proposition 2:

Let bqt ≡ (qt − 1) and bkt ≡ (kt − kn), then the linearized dynamic system around the

normal steady state can be written as:

dqt+1 = ·(1 + rn)(1− γ) +

µ
π1θ

1 + γ
+

θ + 1

sr

¶
kn
¸ bqt + ·π1 + 1 + γ − sk

sr

¸ bkt
dkt+1 = θkn

1 + γ
bqt + bkt.

This system is characterized by the following 2× 2 matrix:

Ω =

 (1 + rn)(1− γ) + π1θkn

1+γ + θ+1
sr

kn π1 +
1+γ−sk

sr
θkn

1+γ 1

 .
The two eigenvalues λ+ and λ− of Ω are real since the discriminant D of det(Ω− xI) is

positive:

D =

·
(1 + rn)(1− γ) +

π1θk
n

1 + γ
+

θ + 1

sr
kn − 1

¸2
+ 4(π1 +

1 + γ − sk
sr

)
θkn

1 + γ
> 0.

λ+ and λ− are given by

λ+ = 1 +
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1+

rh
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1

i2
+4(π1+

1+γ−sk
sr

) θk
n

1+γ

2

and

λ− = 1 +
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1−

rh
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1

i2
+4(π1+

1+γ−sk
sr

) θk
n

1+γ

2 .

It is straightforward to check that

λ− < 1 < λ+.
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Let us denote by (x+, 1)0 and (x−, 1)0, the corresponding eigenvectors:

x+ =
λ+ − 1
θkn

1+γ

> 0,

x− =
λ− − 1
θkn

1+γ

< 0.

This shows that the normal steady state (kn, 1) is a saddle point.

Similarly, let bqst ≡ (qt − 1) and bkst ≡ (kt − ks). Then the linearized dynamic system

around the speculative steady state can be written as:

dqst+1 = ·(1 + rs)(1− γ) +

µ
π1θ

1 + γ
+

θ + 1

sr

¶
ks
¸ bqst + ·π1 + 1 + γ − sk

sr

¸ bkst
dkst+1 = θks

1 + γ
bqst + bkst .

This system is characterized by the following 2× 2 matrix:

Ω =

 (1 + rs)(1− γ) + π1θks

1+γ + θ+1
sr

ks π1 +
1+γ−sk

sr
θks

1+γ 1

 .
The two eigenvalues λs+ and λs− of Ωs are real since the discriminant Ds of det(Ωs−xI)

is positive:

D =

·
(1 + rs)(1− γ) +

π1θk
s

1 + γ
+

θ + 1

sr
ks − 1

¸2
+ 4(π1 +

1 + γ − sk
sr

)
θks

1 + γ
> 0.

λs+ and λs− are given by

λs+ = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1+

rh
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1

i2
+4(π1+

1+γ−sk
sr

) θk
s

1+γ

2

and

λs− = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1−

rh
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1

i2
+4(π1+

1+γ−sk
sr

) θk
s

1+γ

2 .

It is straightforward to check that

λs− < 1 < λs+.

Let us denote by (xs+, 1)0 and (xs−, 1)0, the corresponding eigenvectors:

xs+ =
λs+ − 1

θks

1+γ

> 0,

xs− =
λs− − 1

θks

1+γ

< 0.
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This shows that the speculative steady state (ks, 1) is a saddle point.

Let us now fix kn, s0, sr, π0, π1, γ and θ, and let us vary k0 and δ such that assumptions

0 and 1 are verified and |k0 − kn| > εδ for some ε > 0.

As we do this, ks, xs+, xs−, λs+ and λs− also vary. These variables are all continuous

functions of δ, and do not depend on k0 as long as assumptions 0 and 1 are verified. Let us

denote them by ks(δ), xs+(δ), xs−(δ), λs+(δ) and λs−(δ). It is clear that ks(δ) = kn+O(δ),

xs+(δ) = x+ +O(δ), xs−(δ) = x− +O(δ), λs+(δ) = λ+ +O(δ) and λs−(δ) = λ− +O(δ).

We will prove the following result. If λ+−1
1−λ− < ks−k0

k0−kn , then a transition is possible for δ

small enough, and that if λ+−1
1−λ− > ks−k0

k0−kn then for δ small enough, no transition is possible.

Because the dynamic system we consider is twice continuously differentiable in the

regions k < k0 and k > k0, the following results hold:

-there exists δ > 0 such that for all δ < δ, there exist continuously differentiable

functions qs−δ : [k0, ks]→ [1,+∞[ and qn+ : [kn, k0]→ [1,+∞[ such that the stable manifold
of (ks(δ), 1) is parameterized by (k, qs−δ (k)) in the region k ∈ [k0, ks(δ)], and the unstable
manifold of (kn, 1) is parameterized by (k, qn+(k)) in the region k ∈ [kn, k0].

-there exists δ > δ > 0 and m > 0 such that for all δ < δ and k ∈ [k0, ks(δ)], and
k0 ∈ [kn, k0],

|qs−δ (k)− 1− xs−(δ)(k − ks(δ))| < mδ2

and

|qn+(k0)− 1− x+(k − kn)| < mδ2.

Using the fact that ks(δ) = kn + O(δ), xs+(δ) = x+ + O(δ), xs−(δ) = x− + O(δ),

λs+(δ) = λ++O(δ) and λs−(δ) = λ−+O(δ), we see that there exists δ > δ > 0 and M > 0

such that for all δ < δ and k ∈ [k0, ks(δ)], and k0 ∈ [kn, k0],

|qs−δ (k)− 1− x−(k − ks(δ))| < Mδ2

and

|qn+(k0)− 1− x+(k − kn)| < Mδ2.

The condition for a transition from the normal steady state to the speculative steady

state to be possible is that the intersection of the unstable arm of the normal steady state
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with the vertical k = k0 line lies below the intersection of stable arm (the saddle path) of

the speculative steady state with the vertical k = k0 line.

The q = 1+x+(k−kn) line intersects the k = k0 line at the point (k0, 1+x+(k0−kn)).

Similarly the q = 1+x−(k−ks(δ)) line intersects the k = k0 line at the point (k0, 1+x−(k0−
ks(δ))). Therefore, if δ < δ , a necessary condition for the intersection of the unstable arm

of the normal steady state with the vertical k = k0 line to lie below the intersection of stable

arm (the saddle path) of the speculative steady state with the vertical k = k0 line is

1 + x−(k0 − ks(δ)) +Mδ2 > 1 + x+(k − kn)−Mδ2. (26)

Similarly, a sufficient condition is

1 + x−(k0 − ks(δ))−Mδ2 > 1 + x+(k − kn) +Mδ2. (27)

We can rewrite (26) and (27) as

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
+
2Mδ2

k0 − kn

and

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
− 2Mδ2

k0 − kn
.

Using the fact that we have kept k0 − kn > εδ, we see that a necessary condition for a

transition when δ < δ is

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
+
2Mδ

ε

and that a sufficient condition for a transition is

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
− 2Mδ

ε
.

Notice that 2Mδ
ε → 0 when δ → 0.

This shows that if λ+−1
1−λ− < ks−k0

k0−kn , then a transition is possible for δ small enough,

and that if λ+−1
1−λ− > ks−k0

k0−kn then for δ small enough, no transition is possible. Let us now

reexamine this condition.

We have that
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λ+ − 1
1− λ−

= −1 + 2 1

1− 1vuuut1+ 4(π1+
1+γ−sk

sr
) θk

n
1+γ·

(1+rn)(1−γ)+π1θk
n

1+γ + θ+1
sr

kn−1
¸2

= Λ(θ).

Λ is a decreasing function of

Υ ≡
4(π1 +

1+γ−sk
sr

) θk
n

1+γh
(1 + rn)(1− γ) + π1θkn

1+γ + θ+1
sr

kn − 1
i2 .

Υ is non-monotonic in θ. It is increasing in the interval (0,eθ) and decreasing in the
interval (eθ,+∞), where

eθ = kn

sr
+ (1 + rn)(1− γ)− 1
( π1
1+γ +

1
sr
)kn

.

In addition limθ→0Υ = 0, and limθ→+∞Υ = 0.As a result, Λ is non-monotonic in θ.

It is decreasing on (0,eθ) and increasing on (eθ,+∞), and reaches a minimum for θ = eθ. In
addition, we have limθ→0Λ = +∞ and limθ→+∞Λ = +∞.

Q.E.D.

This shows that if λ+−1
1−λ− < ks−k0

k0−kn , then a transition is possible for δ small enough, and

that if λ+−1
1−λ− > ks−k0

k0−kn then for δ small enough, no transition is possible. In the rest of the

appendix, we will often have to go through a similar argument. We will not go through the

same details and instead state directly the equivalent of the condition λ+−1
1−λ− > ks−k0

k0−kn . The

only exception concerns the discussion of bubbles where more complex issues arise.

Proof of Proposition 3:

The condition for a transition from the speculative steady state to the normal steady

state to be possible is that the intersection of the unstable arm of the speculative steady

state with the vertical k = k0 line lies above the intersection of stable arm (the saddle path)

of the normal steady state with the vertical k = k0 line.

Going through the same arguments as in the proof of proposition 2, the condition for a

transition for δ small enough and ks − k0 > ε0δ can be expressed as:

Λ(θ) =
λ+ − 1
1− λ−

<
k0 − kn

ks − k0
.

Q.E.D.
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B Proof of Propositions in Section 3

Proof of Proposition 4:

In principle, there could be a third steady state once bubbles are feasible: (kb, 1, b), where

π0−π1kb = γ and b > 0. Assumption 4 guarantees that this steady state does not exist. To

see why, assume the contrary. It is clear from assumption 4 that kb < k0. But the associated

bubble in this steady state would be negative, since b = s0+srπ0−∆kb < s0+srπ0−∆kn = 0,
which is a contradiction.

In the proof of this proposition, we have to perform two linearizations, one around

the normal steady state and one around the speculative steady state. This is because

the characteristics of the dynamic system are different around the two steady states. The

normal steady state has a two-dimensional unstable manifold and a one-dimensional stable

manifold, whereas the speculative steady state has a one-dimensional unstable manifold and

a two-dimensional stable manifold.

We consider the possibility of a small initial bubbles, 0 < b0 < Mbδ for some Mb > 0,

and show that if λ+−1
1−λ− < ks−k0

k0−kn , then there exists mb > 0 such that a transition is possible

for δ small enough and 0 < b0 < mbδ, and that if λ+−1
1−λ− > ks−k0

k0−kn then for δ small enough,

for every fmb > 0, there exists 0 < b0 < fmbδ such that no transition is possible with initial

bubble b0.

Let us first linearize the system around the normal steady state. Up to second order

terms in bqt = (qt − 1) , bkt = (kt − kn), brt = (rt − rn), bbt = bt and δ we have that

brt =
θ + 1

sr
knbqt + 1 + γ − sk

sr
bkt + 1

sr
bbt,

dqt+1 =

·
(1 + rn)(1− γ) +

π1θk
n

1 + γ
+

θ + 1

sr
kn
¸ bqt + ·π1 + 1 + γ − sk

sr

¸ bkt + 1

sr
bbt,

dkt+1 =
θkn

1 + γ
bqt + bkt,

dbt+1 =
1 + rn

1 + γ
bbt.

Similarly, we linearize the system around the speculative steady state. Up to second

order terms in bqt = (qt − 1) , bkt = (kt − ks), brt = (rt − rs), bbt = bt and δ, we have that
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brt =
θ + 1

sr
ksbqt + 1 + γ − sk

sr
bkt + 1

sr
bbt,

dqt+1 =

·
(1 + rn)(1− γ) +

π1θk
s

1 + γ
+

θ + 1

sr
ks
¸ bqt + ·π1 + 1 + γ − sk

sr

¸ bkt + 1

sr
bbt,

dkt+1 =
θks

1 + γ
bqt + bkt,

dbt+1 =
1 + rs

1 + γ
bbt.

The dynamic system around the normal steady state is characterized by the matrix

Ωn =


(1 + rn)(1− γ) + π1θkn

1+γ + θ+1
sr

kn π1 +
1+γ−sk

sr
1
e

θkn

1+γ 1 0

0 0 1+rn

1+γ

 .
Similarly, the dynamic system around the speculative steady state is characterized by

the matrix

Ωs =


(1 + rs)(1− γ) + π1θks

1+γ + θ+1
sr

ks π1 +
1+γ−sk

sr
1
e

θks

1+γ 1 0

0 0 1+rs

1+γ

 .
Keeping the same notations as above, it is clear that the eigenvalues of Ωn are λn+ > 1,

λn− < 1 and 1+rn

1+γ > 1, with corresponding eigenvectors (xn+, 1, 0)0, (xn−, 1, 0)0 and (0, 0, 1)

where

λn+ = 1 +
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1+

rh
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1

i2
+4(π1+

1+γ−sk
sr

) θk
n

1+γ

2

and

λn− = 1 +
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1−

rh
(1+rn)(1−γ)+π1θk

n

1+γ
+ θ+1

sr
kn−1

i2
+4(π1+

1+γ−sk
sr

) θk
n

1+γ

2 .

Therefore, the tangent plane to the unstable manifold of the normal steady state is the

plane through the normal steady state with directing vectors (xn+, 1, 0)0 and (0, 0, 1), and

the tangent line to its stable manifold is the line through the normal steady state with

directing vector (xn−, 1, 0)0.

Similarly, the eigenvalues of Ωs are λs+ > 1, λs− < 1 and 1+rs

1+γ < 1, with corresponding

eigenvectors (xs+, 1, 0)0, (xs−, 1, 0)0 and (0, 0, 1) where

λs+ = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1+

rh
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1

i2
+4(π1+

1+γ−sk
sr

) θk
s

1+γ

2

and

λs− = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1−

rh
(1+rs)(1−γ)+π1θk

s

1+γ
+ θ+1

sr
ks−1

i2
+4(π1+

1+γ−sk
sr

) θk
s

1+γ

2 .
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Therefore, the tangent line to the unstable manifold of the speculative steady state is

the line through the speculative steady state with directing vectors (xs+, 1, 0)
0 , and the

tangent plane to its stable manifold is the plane through the speculative steady state with

directing vectors (xs−, 1, 0)0 and (0, 0, 1).

Let us now vary δ, k0 = k0(δ) γ = γ(δ) and s0 = s0(δ) in such a way that kn =
s0+srπ0

srπ1+(1+γ−sk) is fixed, assumptions 0,1 and 4 are verified and |k0− kn| > εδ for some ε > 0.

Note that γ(δ) < rn = π0 − π1k
n for δ > 0 and limδ→0 γ(δ) = rn = π0 − π1k

n. Also

k0(δ) > kn for δ > 0 and limδ→0 k0(δ) = kn.

As we do this, ks, xn+, xn−, λn+,λn−, xs+, xs−, λs+ and λs− also vary. These vari-

ables are all continuous functions of δ. Let us denote them by ks(δ), xn+(δ), xn−(δ),

λn+(δ),λn−(δ), xs+(δ), xs−(δ), λs+(δ) and λs−(δ). It is clear that ks(δ) = kn + O(δ),

xn+(δ) = x++O(δ), xn−(δ) = x−+O(δ), λn+(δ) = λ++O(δ), λn−(δ) = λ−+O(δ), xs+(δ) =

x+ +O(δ), xs−(δ) = x− +O(δ), λs+(δ) = λ+ +O(δ) and λs−(δ) = λ− +O(δ), with

λ+ = 1+
(1+rn)(1−rn)+π1θk

n

1+rn
+ θ+1

sr
kn−1+

rh
(1+rn)(1−rn)+π1θk

n

1+rn
+ θ+1

sr
kn−1

i2
+4(π1+

1+rn−sk
sr

) θkn

1+rn

2 ,

λ− = 1+
(1+rn)(1−rn)+π1θk

n

1+rn
+ θ+1

sr
kn−1−

rh
(1+rn)(1−rn)+π1θk

n

1+rn
+ θ+1

sr
kn−1

i2
+4(π1+

1+rn−sk
sr

) θkn

1+rn

2 ,

x+ = λ+−1
θkn

1+rn
> 0, x− = λ−−1

θkn

1+rn
< 0.

Because the dynamic system we consider is twice continuously differentiable in the

regions k < k0 and k > k0, the following results are true:

-there exists δ > 0 such that for all δ < δ, there exist continuously differentiable

functions qs−δ : [k0, ks] × [0,Mbδ] → [1,+∞[ and qn+ : [kn, k0] × [0,Mbδ] → [1,+∞[ such
that the stable manifold of (ks(δ), 1, 0) is parameterized by (k, b, qs−δ (k, b)) in the region

(k, b) ∈ [k0, ks(δ)] × [0,Mbδ], and the unstable manifold of (kn, 1, 0) is parameterized by

(k, b, qn+δ (k)) in the region (k, b) ∈ [kn, k0]× [0,Mbδ].

-there exists δ > δ > 0 and m > 0 such that for all δ < δ, (k, b) ∈ [k0, ks(δ)]× [0,Mbδ],

and (k0, b0) ∈ [kn, k0]× [0,Mbδ],

|qs−δ (k, b)− 1− xs−(δ)(k − ks(δ))| < mδ2

and

|qn+δ (k0, b0)− 1− xn+(δ)(k − kn)| < mδ2.

Using the fact that ks(δ) = kn + O(δ), xs−(δ) = x− + O(δ), xn+(δ) = x+ + O(δ),

λs−(δ) = λ−+O(δ) and λn+(δ) = λ++O(δ), we see that there exists δ > δ > 0 andM > 0
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such that for all δ < δ, (k, b) ∈ [k0, ks(δ)]× [0,Mbδ], and (k0, b0) ∈ [kn, k0]× [0,Mbδ],

|qs−δ (k, b)− 1− x−(k − ks(δ))| < Mδ2

and

|qn+δ (k0, b0)− 1− x+(k − kn)| < Mδ2.

The q = 1 + x+(k − kn) plane intersects the k = k0 plane along the line k = k0, q =

1+x+(k0−kn). Similarly the q = 1+x−(k−ks(δ)) plane intersects the k = k0 plane along

the line k = k0, q = 1 + x−(k0 − ks(δ)). Therefore, if δ < δ , we have that

1 + x−(k0 − ks(δ)) +Mδ2 > 1 + x+(k − kn)−Mδ2. (28)

is a necessary condition for the intersection of the unstable manifold of the normal steady

state with the vertical k = k0 plane to lie below the intersection of stable manifold of the

speculative steady state with the vertical k = k0 plane in the region b ∈ [0,Mbδ].

Similarly, a sufficient condition is

1 + x−(k0 − ks(δ))−Mδ2 > 1 + x+(k − kn) +Mδ2. (29)

We can rewrite (28) and (29) as

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
+
2Mδ2

k0 − kn

and

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
− 2Mδ2

k0 − kn
.

Using the fact that k0−kn > εδ, we see that a necessary condition for a transition when

δ < δ is

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
+
2Mδ

ε

and that a sufficient condition for a transition is

λ+ − 1
1− λ−

<
ks − k0

k0 − kn
− 2Mδ

ε
.
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Notice that 2Mδ
ε → 0 when δ → 0.This shows that if λ+−1

1−λ− < ks−k0
k0−kn , then there exists

mb > 0 such that a transition is possible for δ small enough and 0 < b0 < mbδ, and that if
λ+−1
1−λ− > ks−k0

k0−kn then for δ small enough, for every fmb > 0, there exists 0 < b0 < fmbδ such

that no transition is possible with initial bubble b0.

This condition holds if and only if

Λ =
λ+ − 1
1− λ−

<
kn − k0

k0 − ks
,

which is exactly the same condition as without bubbles. The discussion of the possibility

of a transition is therefore entirely similar.

Q.E.D.

Proof of Proposition 5:

It is also clear that the projection of the trajectory of the transition path with initial

bubble b0 > 0 on the plane b = 0 will lie below the trajectory of the transition path with zero

initial bubble. To see this, note that the projection of a trajectory with positive bubble can

only cross the projection of a trajectory with zero bubble from below. This proves the claim

since the projection of a transition path, with or without bubble ends in the speculative

steady state (ks, 1, 0).

By the capital accumulation equation, this in turn implies that a transition path with

initial bubble b0 > 0 will reach every plane k = h with kn < h ≤ ks after a larger number

of periods than the transition path with zero initial bubble.

Q.E.D.

C Proof of Propositions in Section 4

C.1 Fiscal

We can rewrite the capital market equilibrium condition as

s ((1− τ)w(kt), rt) + τw(kt)− gt =

µ
qt + xt +

1

2
θ−1(xt − γ)2

¶
kt + dt,

where

gt = g + α(wt − wn).

Let us define a net saving function
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es(w(kt), rt) = s ((1− τ)w(kt), rt) + τw(kt)− gt.

In this proposition, we perform a comparative statics exercise varying α (or equiva-

lently gt) and keeping the normal steady state fixed. Therefore, let us denote by sk =
∂s((1−τ)w(kt),rt)+τw(kt)−g

∂kt
and sr =

∂s((1−τ)w(kt),rt)+τw(kt)−g
∂rt

. These numbers do not depend

on α.

Note that a first order approximation of wages around the normal steady state is:

w(kt) = wn + π1k
n bkt.

We therefore have the following first order approximation for the net saving function

es(w(kt), rt) =
 sαkkt + srrt + sα0 , k < ko;

sαkkt + srrt + sα0 + δ, k ≥ ko,

where sαk = sk − απ1k
n, and sα0 = s0 +

απ1(kn)
2

sr
.

Assumption 4 guarantees that the normal steady state is in a dynamically efficient

region, while the speculative steady state, if it exists, is in a dynamically inefficient region.

The speculative steady state, if it exists, is characterized by the following equations

ks > k0,

es(w(ks), rs) = ds + (1 + γ)ks,

rs = π0 − π1k
s,

ds =
1 + rs

γ − rs
(g + α(ws − wn)− τws).

Similarly, in the normal steady state, we have

es(w(kn), rn) = (1 + γ)kn,

rn = π0 − π1k
n,

g = τwn.
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Using these equations, we can rewrite the conditions characterizing the speculative

steady state as

ks > k0,

sαk (k
s − kn) + sr(r

s − rn) + δ = ds + (1 + γ)(ks − kn),

rs − rn = −π1(ks − kn),

ds =
1 + rs

γ − rs
(α− τ)(ws − wn),

ws − wn = π1k
n(ks − kn).

We can solve these equations for ks, ws, rs and ds.

In particular, we get

[sαk − π1sr − (1 + γ)] (ks − kn) + δ =
1 + rn − π1(k

s − kn)

γ − rn + π1(ks − kn)
(α− τ)π1k

n(ks − kn).

We can rewrite this equation as

δ = [(1 + γ)− sk + π1sr] (k
s−kn)+απ1kn(ks−kn)+(α− τ)

[1 + rn − π1(k
s − kn)]π1k

n(ks − kn)

γ − rn + π1(ks − kn)
.

(30)

Using the fact that 1 + rs = 1 + rn − π1(k
s − kn) > 0, (1 + γ) − sk − π1sr > 0 and

ks > k0, we see that for α ≥ τ , the right hand side of this equation is greater than

[(1 + γ)− sk + π1sr] (k
0 − kn) + απ1k

n(k0 − kn).

It is clear that

lim
α→+∞

©
[(1 + γ)− sk + π1sr] (k

0 − kn) + απ1k
n(k0 − kn)

ª
= +∞.

This proves that for α high enough (30), has no solution.

We have the stronger result that a sufficient condition for (30) not to have a solution is

α ≥ max
(
∆

π1kn

δ
∆

(k0 − kn)
(1− k0 − kn

δ
∆

), τ

)
.
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Therefore if ∆
π1kn

δ
∆

(k0−kn)(1− k0−kn
δ
∆

) < 1, it can be the case that there is no solution for

α ≥ α where α < 1.

Q.E.D.

C.2 External

We continue to assume that δ is small so that we can make a first order approximation

around q = 1 and k = kn for the transition from kn to ks, if such transition is possible. Letbqt ≡ (qt − 1), bkt ≡ (kt − kn), and zt = (zt − znt ) then the linearized dynamic system can be

written as:

dqt+1 = ·(1 + rn)(1− γ) + (π1θ +fπ1 (1 + θ))
kn

1 + γ

¸ bqt+[π1+fπ1 1 + γ − sk
1 + γ

]bkt−1{bkt ≥ bko} fπ1δ
1 + γ

,

(31)

dkt+1 = θkn

1 + γ
bqt + bkt. (32)

The analysis and proofs that follow refer to the dynamic system described by (31) and

(32).

The speculative steady state is characterized by bks = fπ1δ
π1(1+γ)+fπ1(1+γ−sk) > 0 and bzs =

π1δ
π1(1+γ)+fπ1(1+γ−sk) > 0.
For a speculative growth path to exist, it must be the case that the unstable path of

the normal steady state intersects the ko line below the intersection of the latter and the

saddle path of the speculative steady state. We can express this condition as

Λe ≡ λe+ − 1
1− λe−

<
ks − k0

k0 − kn
, (33)

where the superscript e stands for external and

λe+ = 1+
−1+(1+rn)(1−γ)+ fπ1(1+θ)kn

1+γ
+
π1θk

n

1+γ
+

r³
−1+(1+rn)(1−γ)+ fπ1(1+θ)kn

1+γ
+
π1θk

n

1+γ

´2
+4

fπ1θkn(1− sk
1+γ )

1+γ
+4

π1θk
n

1+γ

2

and

λe− = 1+
−1+(1+rn)(1−γ)+ fπ1(1+θ)kn

1+γ
+
π1θk

n

1+γ
−
r³

−1+(1+rn)(1−γ)+ fπ1(1+θ)kn
1+γ

+
π1θk

n

1+γ

´2
+4

fπ1θkn(1− sk
1+γ )

1+γ
+4

π1θk
n

1+γ

2 .

We have

Λe = −1 + 2 1

1− 1vuuuut1+ 4
fπ1θkn(1− sk

1+γ )

1+γ +4
π1θk

n

1+γ·
−1+(1+rn)(1−γ)+ fπ1(1+θ)kn

1+γ +
π1θk

n

1+γ

¸2
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This is true because we have assumed that Assumption 0’ holds, which implies that

−1 + (1 + rn)(1− γ) + fπ1kn
1+γ > 0 and therefore

−1 + (1 + rn)(1− γ) + fπ1(1+θ)kn
1+γ + π1θkn

1+γ > 0.

Λe is a decreasing function of

Υe ≡
4
fπ1θkn(1− sk

1+γ
)

1+γ + 4π1θk
n

1+γh
−1 + (1 + rn)(1− γ) + fπ1(1+θ)kn

1+γ + π1θkn

1+γ

i2 .
Υe is non-monotonic in θ. It is increasing on (0,eθe) and decreasing on (eθe,+∞), where

eθe = −1 + (1 + rn)(1− γ) + fπ1kn
1+γ

(π1+fπ1)kn
1+γ

.

In addition limθ→0Υe = 0, and limθ→+∞Υe = 0.

As a result, Λe is non-monotonic in θ. It is decreasing on (0,eθe) and increasing on
(eθe,+∞), and reaches a minimum for θ = eθe. In addition, we have limθ→0Λe = +∞, and

limθ→+∞Λe = +∞.

Q.E.D.

C.3 Technological progress

Let us assume that δp = 1 − p is small so that we can make a first order approximation

around q = 1 and k = kn for the transition from kn to ks, if such transition is possible. Letbqt ≡ (qt − 1) and bkt ≡ (kt − kn), then the linearized dynamic system can be written as:

dqt+1 =

h
(1 + rn)(1− γ) +

³
π1θ
1+γ +

θ+1
sr

´
kn
i bqt + ∆

sr
bkt, kt < ko;h

(1 + rn)(1− γ) +
³
π1θ
1+γ +

θ+1
sr

´
kn
i bqt + ∆

sr
bkt + h(1 + rn)γ − π1θ

1+γk
n + γ−θ

sr
kn
i
δp, k ≥ ko,

(34)

dkt+1 =
 θkn

1+γ bqt + bkt, kt < ko;

θkn

1+γ bqt + bkt + θkn

1+γ δp k ≥ ko,
(35)

The analysis and proofs that follow refer to the dynamic system described by (34) and

(35).

Assumption 5 (Minimum technological progress):

δp > δp =
∆
sr

1 + rn + 1+γ
sr

kn
(k0 − kn).
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Proposition 10 (Multiple Steady States)

If Assumption 3 is satisfied, the economy has two non-degenerate steady states, kn and ks,

with:

kn =
s0 + π0
∆

< ko < kn +
1 + rn + (1 + γ)kn/sr

∆
δp = ks, (36)

where ∆ ≡ π1 + (1 + γ − sk)/sr > 0, and the superscripts “n” and “s” stand for normal

and speculative, respectively.

.

Assumption 6 (Speculative adjustment costs region):

λ+ − 1 +
∆
sr

kn

1+γ

1+rn+ 1+γ
sr

kn
θ

1− λ− −
∆
sr

kn

1+γ

1+rn+ 1+γ
sr

kn
θ

<
ks − k0

k0 − kn
.

Proposition 11 (Multiple Equilibria and Speculative Growth)

If Assumptions 5 and 6 hold, there is a speculative growth path that takes the economy from

kn to ks.

Proof:

Imposing dqt+1 = bqt and dkt+1 = bkt and solving for bks and bqs in
dqt+1 = ·(1 + rn)(1− γ) +

µ
π1θ

1 + γ
+

θ + 1

sr

¶
kn
¸ bqt+∆

sr
bkt+·(1 + rn)γ − π1θ

1 + γ
kn +

γ − θ

sr
kn
¸
δp

and dkt+1 = θkn

1 + γ
bqt + bkt + θkn

1 + γ
δp,

we find that bks = 1+rn+ 1+γ
sr

kn

∆
sr

δp and bqs = −δp. This is a steady state if and only ifbks > bk0 = k0 − kn, which we can rewrite as

δp >δp=
∆
sr

1+rn+ 1+γ
sr

kn

¡
k0 − kn

¢
.

Let us now assume that this inequality holds. We now ask under what conditions a

transition from the normal steady state to the speculative steady state is possible. For a

speculative growth path to exist, it must be the case that the unstable path of the normal

steady state intersects the ko line below the intersection of the latter and the saddle path

of the speculative steady state. We can express this condition as

λ+ − 1
θkn

1+γ

¡
k0 − kn

¢
<
1− λ−
θkn

1+γ

¡
ks − k0

¢− δp. (37)
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We can rewrite (37) as

λ+ − 1 +
∆
sr

kn

1+γ

1+rn+ 1+γ
sr

kn
θ

1− λ− −
∆
sr

kn

1+γ

1+rn+ 1+γ
sr

kn
θ

<
ks − k0

k0 − kn
.

Q.E.D.

D Proof of Claims in Section 5

The curve nt = 0 intersects the q = 1 line at a point (1, k) if and only if

γ = µ
w(kt)− c

kt
− f 0(kt)
1 + r

.

We make the assumption that this equation has at least one solution. If we assume for

example that f(kt) = Akαt , with 0 < α < 1 and µ(1 + r) > α
1−α and c < maxk>0{µw(k) −

f 0(k)k
1+r − γk}, this assumption will be verified and the equation nt = 0 will have exactly two

solutions.

Let k0 < k1 be the two first intersections of this curve with the q = 1 line (k1 = +∞ if

there is no second intersection).

We assume that there are two steady states kn < ks where kn < k0, and k0 < ks < k1.

Because in this framework it is now the interest rate in the normal steady state r + δ

that depends on δ, we will approximate the dynamics of the system around the speculative

steady state (where the interest rate is r). Letting δ tend to 0, we are moving the normal

steady state while keeping the speculative steady state fixed.

Assumption 7: ∆ ≡ srπ1 + (1 + γ − sk) > 0, k
s ≡ π0−r

π1
> k0.

Assumption 8 (Minimum growth-funding feedback): δ > δ ≡ srπ1(k
s − k0).

Assumption 9: (1 + µ)π1k
s − γ − r

1+r > 0 and (θ + γ)− π1θks

1+γ > 0.

The last assumption is made to make sure that locally, the n = 0 curve is upward sloping

line with the low interest rate region to its right.

Let

Ξt =
£
γ + (θ + γ) (qt − 1) + θ(qt − 1)2

¤
kt − µw(kt)− c+

f 0(1+γ+θ(qt−1)1+γ kt)

1 + r
kt.

Assuming that δ and ns are small, let us perform a first order approximation around

q = q∗ = 1 and k = ks.
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Up to second order terms in bqt = (qt − 1) , bkt = (kt − ks), bk0 = (k0 − ks), brt = (rt − rs),bnt = nt − ns, δ and ns, we have:

bΞt = γ bkt + (θ + γ) ksbqt − (1 + µ)π1k
s bkt − π1θk

s2

1 + γ
bqt + r

1 + r
bkt

=

·
(θ + γ) ks − π1θk

s2

1 + γ

¸ bqt − ·(1 + µ)π1k − γ − r

1 + r

¸ bkt.
We have brt = 0 if bΞt ≤ −Ξs and brt = − δ

sr
if bΞt > −Ξs. Note that by assumption,

Ξs = γks − µ(ws − c) + r
1+rk

s < 0 and ckn = − δ
srπ1

< bk0 < 0.
dqt+1 = ·(1 + rs)(1− γ) +

π1θk
s

1 + γ

¸ bqt + π1 bkt + 1{ bΞt ≤ −Ξs} δ
sr

(38)

dkt+1 = θkL
1 + γ

bqt + bkt. (39)

The analysis and proofs that follow refer to the dynamic system described by (38) and

(39).

For a speculative growth path to exist two conditions must be satisfied. First, it must

be the case that the unstable arm of the normal steady state is less steep than the bΞt = −Ξs
line. Second it must be the case that the unstable arm of the normal steady state intersects

the bΞt = −Ξs line below the intersection of the latter and the saddle path of the speculative
equilibrium. We can express these conditions as

Ψf ≡ (1 + µ)π1k
s − γ − r

1+r

(1 + γ)
¡
1 + γ

θ

¢− π1ks
−
³
λf+ − 1

´
≥ 0,

Λf ≡

λf+−1
(1+µ)π1k

s−γ− r
1+r

(1+γ)(1+ γ
θ )−π1ks

−(λf+−1)

1−λf−
(1+µ)π1k

s−γ− r
1+r

(1+γ)(1+ γ
θ )−π1ks

+(1−λf−)

<
ks − k0

k0 − kn
,

where

λf+ = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
−1+

rh
(1+rs)(1−γ)+π1θk

s

1+γ
−1
i2
+4

π1θk
s

1+γ

2 and

λf− = 1 +
(1+rs)(1−γ)+π1θk

s

1+γ
−1−

rh
(1+rs)(1−γ)+π1θk

s

1+γ
−1
i2
+4

π1θk
s

1+γ

2 .

We can rewrite Λf as:
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Λf = 1 +
(1 + µ)π1k

s − γ − r
1+r

(1 + γ)
¡
1 + γ

θ

¢− π1ks
λ−

λ+ − 1− (1+µ)π1ks−γ− r
1+r

(1+γ)(1+γ
θ )−π1ks

.

We have

lim
θ→0
Ψf < 0

so that no transition is possible for too large adjustment costs because the slope of the

unstable arm of the normal steady state goes to +∞ while the slope of the bΞt = −Ξs tends
to a finite positive limit.

Similarly

lim
θ→+∞

Ψf = −∞,

so that no transition is possible because the unstable arm of the normal steady state

is too steep (the slope of which tends to a finite strictly positive limit) and overshoots thebΞt = −Ξs line (the slope of which tends to 0).
Therefore, a transition can only occur for intermediate adjustment costs.

Let us define the Assumption 10 as requiring that the two conditions for a transition be

satisfied.

Assumption 10: Ψf (θ) > 0 and Λf (θ) < ks−k0
k0−kn

We have proved the following propositions.

Proposition 12 (Multiple Steady States)

If Assumptions 7, 8 and 9 are satisfied, the economy has two non-degenerate steady states,

kn and ks, with:

kn =
π0 − (r + δ

sr
)

π1
< ko < ks =

π0 − (r + δ
sr
)

π1
. (40)

Proposition 13 (Multiple Equilibria and Speculative Growth)

If Assumptions 7, 8, 9 and 10 hold, there is a speculative growth path that takes the economy

from kn to ks. Along that path, q̂t > 0
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