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Abstract

This paper provides a control function type estimator to adjust for endogeneity in the
triangular simultaneous equations model where there are no available exclusion restrictions
to generate suitable instruments. Our approach is to exploit the presence of heteroskedas-
ticity in the model to adjust the conventional control function estimator. In the presence of
heteroskedasticity this adjustment takes a non-linear form and this provides the necessary
source of identification. We are able to provide such an estimator without any additional
assumptions about the heteroskedasticity other than it takes a multiplicative form. In ad-
dition to providing the estimator and deriving its properties we present some simulation
evidence which indicates the estimator works well. We also provide an empirical example
which investigates the return to education.

1 Introduction

The estimation of linear models with endogenous regressors via the use of instrumental variables
(IV) is one of the most commonly employed methodologies in empirical economic investigations.
However, while there is general agreement that IV is the appropriate form of estimation for
a large class of models with endogeneity there is frequently very little agreement about the
exclusion restrictions which are imposed in specific empirical applications. In fact, so relatively
infrequently is there an obvious exclusion restriction which can be employed, that many papers
are now equally motivated by the availability of such a restriction as much as by an interest in the
substantial issue under investigation. Moreover, in an attempt to avoid the criticism associated
with the use of instruments which can not be justifiably excluded from the conditional mean of
the dependent variable of interest there are frequently cases where the search for such exclusions
has led to the use of instruments which violate the other condition for instrument validity, namely
that the instrument is sufficiently correlated with the endogenous regressor. This has lead to a
large and growing literature related to the use of weak instruments.
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It is well known that IV can be implemented in a number of ways. One method is to
employ the residual from the reduced form from the endogenous regressor as an additional
variable in the primary equation of interest. This approach is commonly referred to as a control
function procedure. Irrespective of how it is implemented, however, the presence of endogeneity
is generally tackled via statements about the conditional means of the endogenous regressors.
For example, the control function procedure operates by subtracting the appropriate component
of the reduced form error from the primary equation. The quantity that is deducted clearly
is reflected by the value of the control function and its estimated coefficient where the latter
captures the correlation between the reduced form and primary equation error normalized by
the variance of the reduced form error. When the errors are homoskedastic the mapping of one
error to the other is constant and the variation in the quantity deducted across observations
depends purely on the value of the control function. Moreover as the control function is a linear
function of the endogenous regressor and the explanatory variables the model is only identified
in the presence of an exclusion restriction. However, consider the case where the errors in each
equation are heteroskedastic. The quantity now deducted still relies on the correlation between
the errors and the variance of the reduced form error but the values of the correlation and
variance depend on whereabouts in the data they are evaluated. If one can isolate the form of the
heterosedasticity one is then able to estimate the constant mapping between the homoskedastic
errors by appropriately adjusting the value of the control function. Thus the model is now
identified even in the absence of exclusion restrictions. A model with heteroskedasticity suggests
that the unobservables in the reduced form are ”priced” differently in the primary equation
depending on whereabouts in the sample space they are evaluated. The ability to identify this
mapping provides a form of model identification.
This logic indicates that a potential way to identify models is to make some assumptions

about the variances and covariances of the errors. Clearly, and as is shown below, it is relatively
simple to estimate the form of heteroskedasticity in the reduced form equation without making
particularly strong assumptions. However, in order to make the appropriate form of adjustment
to the control function it is necessary to estimate the variance function from the primary equation
and this is more difficult given that one cannot immediately estimate the primary equation
residual. Thus, in previous attempts to exploit heteroskedasticity as an identification device it
has generally been necessary to state that the heteroskedasticity in the primary equation has
specific and somewhat undesirable properties (see Vella and Verbeek 199? and Rummery, Vella
and Verbeek 199?) or that the form of the heteroskedasticity is known up to some unknown
parameters (see Rigobon 2003). One exception is Klein and Vella (2003) which examines the
identification of a binary treatment effect in models with heteroskedasticity.
In this paper we derive a consistent estimator for the parameters of the triangular model in

the absence of exclusion restrictions and in the presence of multiplicative heteroskedasticity. We
do so by making relatively minimal assumptions about the form of the heteroskedasticity. We
also allow the heteroskedasticity in each equation to be unknown functions of the same exogenous
variables which appear in the conditional means of the equations. The approach of the estimator
is based on the logic discussed in the previous paragraph. That is, we develop a control function
estimator which is adjusted for the presence of heteroskedasticity. To do so we show we are able
to estimate the form of heteroskedasticity in each of the equations and make the appropriate
adjustments.
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In the following section we outline the model in which we are interested. In sections 3 and
4 we discuss estimation strategies and how they might be implemented. Formal results are
contained in section 5. Section 6 provides some simulation evidence and section 7 provides an
empirical investigation. Concluding comments are contained in section 8. We note that this
draft is preliminary and incomplete. The Appendix, which contains all proofs, will be included
in the final draft.1

2 Model

Consider the following triangular model

Y1i = Xiβ + θY2i + ui (1)

Y2i = Xiπ + vi (2)

ui = Su(Xiδu) ∗ u∗i (3)

vi = Sv(Xiδv) ∗ v∗i (4)

where Y1i and Y2i are continuous endogenous variable; Xi is a vector of variables that are inde-
pendent of the error components u∗i , v

∗
i ; Su and Sv are unknown functions; β, θ, π, δu and δu are

unknown parameters; and u∗i and v∗i are zero mean random variables with non zero covariance
and each with constant variance. Moreover, we assume that the u∗i and v∗i are correlated. The
primary objective of estimation is to conduct inference on the parameters β and θ. Note that
the model allows the same X 0s in the both the reduced form and the primary equation without
imposing any restrictions on the parameter values. We also allow the exact same X 0s to appear
in the functions underlying the process generating the heteroskedasticity in each equation.
It is immediately apparent from the structure of the model that least squares estimation of the

main equation 2 will lead to inconsistent estimates of β and θ due to the endogeneity of Y2i oper-
ating through the correlation of the errors across the two equations. Moreover, given the absence
of exclusion restrictions, in that we make no assumptions about the elements of β and π, there
are no available instruments in this model. In the absence of making some additional statements
about the form of the heteroskedasticity, which would then provide some additional moments
one could exploit in estimation, it is not clear how one could produce consistent estimates of β
and θ.
We show below that it is possible to identify all the features of the above model that are of

interest by exploiting the presence of heteroskedasticity while making relatively few assumptions
about its form. To provide some intuition for our approach consider the case where the errors
are jointly normal. In the conventional control function approach, and in the absence of het-
eroskedasticity, the endogeneity of the Y2i is controlled for by including an estimate of vi in 1 as
an additional regressor. This approach works because the inclusion of vi captures the component
of Y2i that is correlated with ui. In the absence of heteroskedasticity the mapping from the vi
to ui is linear so one requires an exclusion restriction for the model to be identified. That is,
the mapping is simply E[ui|vi] = (σuv/σ2v) vi. Thus the mapping captured by (σuv/σ2v) does not

1The complete paper, including the appendix, will be available upon request in approximately 1-2 months.
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depend on i. However, when the model contains heteroskedasticity the E[ui|vi] = (σuv,i/σ2vi) vi
where the covariance and variance terms which capture the manner in which v maps into u varies
across i. Provided that the mapping is not linear, in that (σuv,i/σ2vi) does not equal C ∗ (σuv/σ2v)
for some constant C, this nonlinearity provides a form of identification which can be exploited.
The challenge we confront in this paper is to show that we are able to estimate (σuv,i/σ2vi) while
making as few assumptions as possible about the process generating the heteroskedasticity.
To begin it is useful to think about the estimation of the model also under the assumption that

the error terms, u∗ and v∗ are jointly normal. In this case the log of the likelihood conditioned
on X and v has the following form (up to an additive constant):

ln L=− 1
2

NX
i=1

(
Y1i −Xiβ − θY2i − α(Sui ∗ v∗i )

Sui
p
1− ρ2

)2
− (N/2)

NX
i=1

Ln
¡
S2ui
¡
1− ρ2

¢¢
(5)

where v∗i is equal to vi/Sv(Xiδv) and where ρ is the correlation coefficient between u∗i and v
∗
iThe

form of this likelihood function immediately reveals a number of the features of the estimation
problem we confront. First, given that v∗i can be obtained from estimation of the reduced form
(in a manner described below), the estimation of the primary equation would be straightforward
if one knew Sui. Second, when Sui is known it is possible to consistently estimate the parameters
from the primary equation by linear least squares procedures. Third, given that the estimator
of the main equation is a least squares procedure, identification requires that the matrix W =
[Xi : Y2i : Sui ∗ vi] is of full rank. This will be satisfied provided that the Sui ∗ vi term is not
recoverable from any linear combination of Xi and Y2i. This will generally be true in the presence
of heteroskedasticity.
It is useful to examine this correction term Sui ∗ v∗i as this provides some insight into why the

heteroskedasticity identifies the model but also why the estimation of the model is complicated
by its presence. Recall that the correction has the form Sui ∗ v∗i which is equal to Sui

Svi
∗ v∗i .

Again a number of points are worth noting. First, the presence of heteroskedasticity generally
ensures that Sui

Svi
varies across i and this variation ensures that W is of full rank. Second, while

heteroskedasticity will generally produce a W of full rank, the heteroskedaticity is insufficient if
Sui
Svi
is equal to some constant. Thus the model requires that the heteroskedasticity is not of the

same form in both equations. Finally, the estimation of the model requires that one estimates
Sui and this is the feature of the estimation which complicates the process.
Previous papers have attempted to exploit the presence of heteroskedasticity as a form of

identification. Vella and Verbeek (1997), and subsequently Vella et al (1999) develop an esti-
mation procedure based on the rank order of the reduced form residuals for various subsets of
the data. The variable determining the selection of subsets is also assumed to be responsible
for the heteroskedasticity. The papers then define various estimators where the rank is used as
an instrument or control function, or as the basis for various data transformations, as a means
for controlling for endogeneity. The estimators all require, however, that the heteroskedasticity
in the main equation is uncorrelated with that in the reduced form. Thus while the proposed
estimator(s) were all relatively simple to implement, and the assumptions regarding the het-
eroskedasticity may seem reasonable in some empirical applications, the general structure of the
model is quite limited. Thus while the estimator we propose below is somewhat more compli-
cated we feel that the added generality it brings outweighs the additional costs of computation.
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Another approach which might be employed would be to parameterize the Su and Sv functions.
If this is done in the appropriate manner it would then be possible to derive additional moments
which can be exploited in a GMM framework and under certain conditions this will also identify
the model. This methodology is employed by Rigobon (2003). Our approach is more general
in that we do not parameterize the heteroskedasticity although our methodology is restricted to
the triangular structure whereas the approach adopted by Rigobon is not. Finally note that the
idea ”creating” instruments or control functions in the absence of exclusion restrictions is not
limited to cases where the model is contaminated with heteroskedasticity. Dagenais (199?) and
Lewbel (1999) also discuss estimation of models where there are endogenous regressors and no
exclusion restrictions. They show that when there is measurement of a specific form one is able
to use instruments based on the higher powers of the included variables. The estimator which
we present is not related to the approach adopted there.

3 Estimation Strategy

If one ignores the presence of the heteroskedasticity the obvious approach would be to simply
employ the residual from estimating the reduced form and including this as an additional re-
gressor in the primary equation. This however, does not work for the obvious reason that W
is not of full rank. The conditional likelihood function given above indicates that the appro-
priate control function to be employed is Suiv∗i . If this is what we employ the condition that
we require for consistency is that the new error term is uncorrelated with Y2i. • That is, with
α ≡ cov (u∗, v∗) /V ar (v∗) :

E[Y2i ∗ (Suiu∗i − αSuiv
∗
i )] = 0

E[Y2i ∗ {Sui(u∗i − αv∗i )}] = 0

E[Sviv
∗
i ∗ {Sui(u∗i − αv∗i )}] = 0

noting this is satisfied by the fact that the component of Y2i that is correlated with the error is
that operating through v∗i . Thus the inclusion of Suiv

∗
i in the model accounts for the endogeneity

although, as noted above, there is the problem that Sui is unknown and needs to be estimated.
An alternative control function procedure • would be to include that component of Sviv∗i that

is related to suiu
∗
i . Namely, with Svi = E[Svi|Xiδu)], include the variable Sviv

∗
i in the model to

obtain:
Y1i = Xiβ + θY2i + ᾱSviv

∗
i

Consistency now requires
E
£
[Sviv

∗
i ]
£
Suiu

∗
i − ᾱSviv

∗
i

¤¤
= 0.

If we take expectations of this over the informations set u∗, v∗ and Xiδu we get

E
££
Sviv

∗
i

¤ £
Suiu

∗
i − ᾱSviv

∗
i

¤¤
= E

£¡
SuiSvi

¢¤
E [u∗i v

∗
i ]− ᾱE

³
S
2

vi

´
E
¡
v∗2i
¢
.
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Thus for

ᾱ =

µ
cov(u∗i v

∗
i )

var(v∗i )

¶
E(SuiSvi)

E
³
S
2

vi

´
we find that the condition is satisfied. This naturally requires that • δ1 is known. • Thus the
above shows that we have two controlled equations that we can exploit in estimation to derive
consistent estimates of the primary equation parameters. These are

Y1i = Xiβ + θY2i + αSuiv
∗
i (6)

Y1i = Xiβ + θY2i + αSviv
∗
i . (7)

A major advantage of the second formulation, involving the use of Svi is that it does not
require the estimation of Sui. That is, for any candidate value of the index parameters δu we can
compute the remaining parameters of the model. In this manner, we can employ this equation
to concentrate out all parameters other than the index parameters δu. In the following section
we discuss how to exploit this concentration and equation (7) to obtain consistent estimates of
all the parameters of the model.
Before proceeding one should note that the presence of the heteroskedasticity in the model

suggests that the use of GLS will lead to more efficient estimates. We explore this possibility
below in developing an estimator.

4 The Estimator: Implementing Strategies

We first obtain consistent estimates of the reduced form slope parameters by regressing Y2i on
Xi to get bπ. We then estimate the residuals asbvi = Y2i −Xibπ
To obtain an estimate of the v∗i we also require an estimate of the Sv function which also requires
δv. To obtain this estimate we perform a semi-parametric least squares regression of ln(bv2i ) on
Xi to obtain bδv. We then estimate Sv from:cS2vi = bE ³bv2i |Xi

bδv´
where the bE is a non-parametric estimator based on the use of kernels. Using this estimate bSv
one can then produce an estimate of v∗i as bv∗i = bvi/bSv.
Once we have an estimate of v∗i we can define estimates of the other parameters of the model

as functions of the index parameters δu. That is, once we have an estimate of δu it is relatively
straightforward to compute the other parameters using the relationship in 7. With the true index
parameters given by δu employ OLS on (6) to obtain the estimates β(δu) and θ(δu). We can
then obtain an estimate of the residual from 1 as

ui(δu) = Y1i −Xiβ(δu)− θ(δu)Y2i = Sui(δu)u
∗
i (8)

We then obtain an estimate of Sui(δu) from

S2ui(δu) = bE ¡(ui(δu))2i |Xiδu
¢
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where the bE again represents a non-parametric estimator based on the use of kernels.
One might now think of the two following optimization problems, based on our discussion

above, to recover δu and β(δu), and θ(δu) :

min
δu

X
{Y1i −Xiβ(δu)− θ(δu)Y2i − ᾱ(δu)Sui(δu)v

∗
i }2 (9)

min
δu

X©
Y1i −Xiβ(δu)− θ(δu)Y2i − α(δu)Svi(δu)v

∗
i

ª2
(10)

An interesting feature of the model under examination is that the estimates produced by 9
produces consistent estimates while those produced by 10 do not. The reason for this is discussed
below. Nevertheless the estimates of all the parameters from 9 are consistent.
However, in examining the finite sample performance of the estimators produced by 9 we

noted that while all the estimates displayed only a small degree of bias, the variance for the
estimator of δu was unacceptably large. Intuitively, the information in (9) is ”weak” for purposes
of estimating index parameters. Instead, by focusing on the residuals, ûi, it would seem preferable
to estimate the u-index in the same way that we estimated the v-index. Accordingly, to obtain
better behaved estimates of δu we employ the following procedure. Given an estimator of δu we
can obtain an estimate of ui(δu) as is done in 8. We can then define the following optimization
problem as a means to obtaining δu

min
δu

X
{f(ui(δu))− f(ui(δu)|Xiδu)}2

for any function f(.). Given the form of the heteroskedasticity that we assume, the function we
choose is the log of the squared residual. 2Thus we estimate δu through the following optimization
problem

min
δu

X©
(ui(δu)

2)− (ui(δu)2|Xiδu)
ª2

(11)

This will lead to consistent estimates providing we have a consistent starting value. Accordingly,
we employ the value from 9 as the starting value for 11. We then use the relationship in 7 to
define the other parameters for the estimated δu.

5 Properties of Proposed Estimator

6 Simulation Evidence

To examine the performance of our proposed procedure under a control setting we performed a
number of simulation exercises. To make the setting as least favorable we simulated the following
model where the same exogenous variables appear in the conditional means and the conditional

2Here, the residual must be appropriately modified and trimmed so that it is finite for every N and so that it
can not become ”too large” as N increases.
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variances of both endogenous variables. The model has the form

Y1i = 2 + 2 ∗ x1i + 2 ∗ x2i + 2 ∗ Y2i + ui

Y2i = 2 + 2 ∗ x1i + 2 ∗ x2i + vi

ui = {γ ∗ (1 + exp(.25 ∗ x1i + .75 ∗ x2i) + (1− γ)} ∗ u∗i
vi = {γ ∗ (1 + exp(.75 ∗ x1i + .25 ∗ x2i) + (1− γ)} ∗ v∗i
u∗ = .75 ∗ v∗i +N(0, 1) and v∗i ∼ N(0, 1).

In the simulations we examine we employ both normal and chi-squared x0s and we also experi-
mented with different distributions for the disturbances. The parameter γ controls the level of
heteroskedasticity in the model so we examine the impact of different values of this parameter
for the estimates. Accordingly we experimented with different values for this parameter. The
simulation results for n = 1000 and 100 replications are reported in Table 1. Before discussing
the simulation results it is worth highlighting the structure of the model that we simulate. We
employ the same exogenous variables in both the conditional means and the conditional vari-
ances. Moreover, we use the same functional forms for the heteroskedasticity in each equation.
Given that the estimator is required to purge E[Sv|Xiδu] from the main equation this is likely
to be more difficult when the Sv and Su are highly correlated. Thus the design we examine is
constructed to be one which is difficult for our procedure to work well.
An examination of Table 1 reveals a number of interesting features of the simulations. First

consider the first two columns for the case when γ is equal to 1. The OLS estimates for the main
equation’s parameters in this specification are a long way from the true values of 2 indicating
that there is a large degree of endogeneity in this model. While the estimates for the x0s are
less than 1, indicating a bias of over 50 percent, the coefficient for the endogenous regressor is
approximately 27 percent. Consider now the lower panel of columns 1 and 2. First focus on the
estimates of δu. Given the form of the model and the parametrization that we employ, the true
value of this parameter .33. The estimate δu1 corresponds to the parameter which is estimated
by minimizing 9 noting that we expect that this estimate is likely to have some difficulty in
obtaining an accurate value given that it does not directly exploit the fact that the variance of
the residuals are a function of δu1. The average point estimate of .431 is not bad but the standard
error of the estimate is high at .395. Along δu2 we provide the estimate of δu which comes from 11
where we note that is this a more natural estimate in the sense that it more directly exploits the
role of δu in determining the variance of u. The average point estimate from this specification is
.389 and, in contrast to δu1, there is a relatively large decrease in the magnitude of the standard
error which is now .177. Finally in this lower panel we examine the point estimates from both the
least squares and the generalized least squares procedures. Both the procedures appear to work
well and represent an effective way to eliminate the bias in the model. The adjusted ordinary
least squares estimates all display a bias of approximately 2 to 3 percent while the GLS estimates
have a bias in the order of 3.5 percent. If we contrast this to the unadjusted OLS estimates the
procedures we have suggested provide a remarkable improvement. Also note that the simulations
indicate that there are some reasonable efficiency gains in employing the GLS procedure over
the least squares method.
One would expect that the performance of the estimator depends on the form and degree

of heteroskedasticity. Accordingly, it is useful to consider other designs where there is less
heteroskedasticity by decreasing the value of γ.We reduced this parameter to .75 and the results
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are also shown in table 1 noting that these results are only for 72 replications. First note that
in the upper part of Table 1 that the change in the design has slightly increased the level of
bias in the OLS estimates. The bias for the exogenous variables remains over 50 percent while
the bias for the endogenous regressor is still around 25 percent. Now consider the lower panel.
The reduction in the level of heteroskedasticity has had very little effect on the ability of the
procedure to reduce the bias. For all of the estimates the bias is of the order of 3 to 4 percent.
There appears to be a slight increase in the standard error of the estimated coefficients.
The simulation evidence we report here is very supportive of our procedure. Note, however,

we examined a number of variations on the design that, while we do not report the results in
detail here, are worth mentioning. First, we generate the identical design to that used here where
the only change is that we employed exogenous variables generated as χ squareds. This had no
notable impact on the results indicating that the favorable features of the normal X 0s, which
are often seen as enhancing the performance of estimation procedures, is not important here.
Second, we also experiment with a sightly different design which reduced the correlation between
the Sv and Su. We did this by changing the dgp’s for the heteroskedasticity to

ui = {γ ∗ (1 + exp(.15 ∗ x1i + .85 ∗ x2i) + (1− γ)} ∗ u∗i
vi =

©
γ ∗ (1 + exp(.75 ∗ x1i + .05 ∗ x22i) + (1− γ)

ª ∗ v∗i
and we simulated the model for 500 observations. The results are shown in Table 1 under the
heading design 2. The results are reported for 100 replications. Even with the smaller sample size
we see that the estimator is able to exploit the heteroskedasticity sufficiently well to substantially
reduce the bias. Note that the smaller sample size is more than compensated by the reduction
in the correlation between the two forms of heteroskedasticity. One might expect that this lower
level of correlation is a more accurate description of what is likely to be found in practice. For
this reason the simulation results are very encouraging. Note that in this design the true value
for δu is .176. Table 1 indicates that even our preferred estimator has some difficulty estimating
this parameter with precision.

7 Empirical Example: Estimating the Returns to Educa-
tion

We now focus on applying our procedure to an existing data set. Given that a great deal of
the discussion of lack of suitable instruments and the presence of endogeneity is related to the
return to schooling literature, we choose to focus on this type of example to illustrate how
our procedure can be appropriate for tackling such an issue. We employ data taken from the
1985 wave of Australian Longitudinal Survey. This is a data set which contains labor market
and background information on a sample of Australian youth. In this paper we examine the
determinants of wages for a sample of working individuals. Note that in this paper we focus on
the wage determination process conditional on working and thus we do not address the issue of
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the endogeneity of the working decision. The model we estimate has the following form

ln wagei = β0 +
X
j=1

β1j ∗ family +
2X

j=1

β2j ∗ parent0s education+ β3 ∗ siblings+ (12)

X
β4 ∗ state of school +

X
β5 ∗ school type+

2X
j=1

β6j ∗ work chars

β7 ∗Gender + β8 ∗Australian+ β9 ∗Age+ β10 ∗Age2 + θ ∗ schooling

schoolingi = π0 +
X
j=1

π1j ∗ family +
2X

j=1

π2j ∗ parent0s education+ π3 ∗ siblings+ (13)X
π4 ∗ state of school +

X
π5 ∗ school type+ π6 ∗Gender

+π7 ∗Australian+ π8 ∗Age
where the family variables capture the composition of the family when the individual was aged
14 and also if the mother was employed in market work when the individual was aged 14; parent0s
education are dummy variables indicating whether each of the parents had college degree; siblings
denotes number of siblings; state of school and school type are dummy variables indicating the
region and type of school the individual attended; Australian denotes Australian Born; work
chars captures whether the individual is engaged in union and government employment and the
remaining variables are self explanatory.
Note that the specification of the education and wage equations are different. More impor-

tantly, the wage equation includes all of the variables included in the education equation plus
a quadratic in age and some work related variables. There appears to be no justification for
including these variables in the educational attainment equation. We employ the same variables
for the conditional variances for each equation as we do for the conditional means. Most impor-
tantly, note that the model is not identified as there are no variables included in the education
equation which do not appear in the wage equation.
A feature of the literature devoted to the returns to education is that it is not clear what

factors affect the individual’s propensity to invest and the subsequent rate of return. For example,
many of the background variables are included to capture the possibility that the individuals
environment during his/her youth not only directly affect the individual’s level of investment
but also directly the individual’s performance in the labor market, including his/her wage. As a
result there appear to be no obvious exclusion restrictions which one can employ to control for
the endogeneity. Accordingly we employ the control function procedure outlined above.
It is useful to consider why heteroskedasticity might appear in this model. First consider the

schooling equation. Rummery, Vella and Verbeek (1999) argue that one source of heteroskedas-
ticity in the schooling equation might be captured by the regional variables. That is, one might
consider that the location of schools within a region may be capable of generating heteroskedas-
ticity. For example, consider the case where the distance to the nearest school influenced the
schooling decision. Then, one can see that various allocations may produce the same expected
level of schooling but drastically different variances. The same is also true of many of the other
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variables. For example, consider the variable which captures whether or not the school attended
was Roman Catholic. It is well established that attendance at a Catholic school increases ed-
ucational attainment but there is a large amount of heterogeneity across Catholic schools in
Australia and it seems almost implausible that one would expect the same impact irrespective
of the quality. Similar logic applies to the presence of heteroskedasticity in the wage equation.
In short, while many of the variables would be expected to influence the wage rate it does not
seem likely that the impact is constant.
We now employ our procedure using a sample of approximately 4000 individuals from the

Australian Longitudinal Survey. Note that we only report the estimates for the wage equation
and this is done in Table 2. The standard errors for the estimates are reported in parentheses
under the estimates. First consider the estimation of the OLS equation noting that we employ
age and age squared in place of the more conventionally employed experience and experience
squared. This approach generates quite different estimates of the return to education and we
discuss this below. A number of features are worth noting from the OLS estimates in Table 2.
First, there is little evidence that the background variables exercise much influence on the wage
level. Second, with the exception of one the regional dummies there is no indication that the
school type or region influences the wage level. This latter result is somewhat unexpected since
one might expect that there is some direct return to attending a private school. Note, however,
that the absence of any such effect in these data might reflect the endogeneity of the schooling
decision. This naturally is what makes the decision to exclude the background or school type
variables unjustified in the absence of additional information. Finally, the return to education
in these data, on the basis of the OLS estimates, is .022 percent. This number seems very low
but two factors should be taken into account. First, these individuals are very young (15 to 26
years old) and the returns to their investment. Second, the return to education is sensitive to the
inclusion of age in the place of experience where experience is calculated as age-schooling minus
6. When we replace age and age squared with experience and experience squared the return to
schooling is approximately 7 percent.
Now focus on the adjusted control function procedures which are reported alongside the OLS

estimates in Table 2. A number of remarkable features are note worthy. First, the correction
term has a statistically significant coefficient indicating that the estimator is able to identify the
presence of endogeneity in this particular setting. Second, a number of the point estimates are
quite different to the OLS estimates. In particular, the estimates on the school types are now
both statistically significant. Noting that the control (excluded group) is state financed school we
see that attendance at Roman catholic schools and other private schools directly increase wages
by around 5 percent. There continues to be no direct effect from the background variables with
the exception of the number of siblings but this effect appears to be small in magnitude. Finally
consider the coefficient on the variable of primary interest, namely education. The coefficient has
now increased to suggest a rate of return of 6 percent. Also, while it is less precise than the OLS
estimate it is still reasonably precisely estimated. Although it is impossible to draw conclusions
on the validity of this increase, given we do not know the true estimate, the increase to 6 percent
is consistent with many previous studies that find OLS underestimates the return to schooling.
The estimate that the control function procedure produces is also very reasonable in magnitude.
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Table 1: Simulation Results
γ = 1 γ = 1 γ = .75 γ = .75 Design 2
OLS

constant .925 .906 .981
(.099) (.095) (.131)

x1 .922 .903 .976
(.103) (.098) (.138)

x2 .932 .911 .987
(.095) (.096) (.141)

Y2i 2.539 2.550 2.511
(.048) (.045) (.062)
CF GLS CF CF GLS CF CF GLS CF

constant 2.055 2.075 2.078 2.076 2.020 2.053
(.300) (.263) (.305) (.282) (.346) (.255)

x1 2.052 2.073 2.076 2.073 2.018 2.053
(.298) (.261) (.307) (.283) (.346) (.248)

x2 2.058 2.073 2.079 2.073 2.022 2.051
(.304) (.264) (.310) (.285) (.347) (.247)

Y2 1.976 1.964 1.965 1.965 1.991 1.974
(.150) (.130) (.154) (.141) (.167) (.121)

δu1 .431 .454 .211
(.395) (.473) (.299)

δu2 .389 .391 .199
(.177) (.202) (.154)
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Table 2: Returns to Education
Variable OLS CF Variable OLS CF
Constant -5.309 -5.604 Roman Cath .019 .055

(.297) (.321) (.020) (.023)
Australian -.017 -.025 Private .024 .043

(.014) (.014) (.023) (.023)
Neither parent -.001 .001 Age Squared .584 .576

(.016) (.016) (.028) (.029)
Mother Only -.034 -.017 Age Squared -.012 -.012

(.033) (.032) (.001) (.001)
Father Only -.007 .005 Female -.044 -.059

(.040) (.040) (.009) (.009)
Mother Working .006 .004 Union .070 .072

(.090) (.090) (.010) (.010)
Mother with Degree -.007 -.014 Government .084 .079

(.024) (.024) (.095) (.095)
Father with Degree .004 -.015 Education .022 .060

(.017) (.019) (.002) (.013)
No. of Siblings .002 .006 Control Function -.038

(.003) (.003) (.014)
State 1 .054 .066

(.017) (.018)
State 2 .018 .031

(.017) (.018)
State 3 .014 .022

(.019) (.019)
State 4 .025 .028

(.022) (.022)
State 5 .008 .043

(.026) (.029)
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