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Abstract

This paper argues that large-dimensional dynamic factor models are
suitable for structural analysis. We establish sufficient conditions for identi-
fication of the shocks and the associated impulse-response functions. More-
over, we propose a consistent method (and n,7T rates of convergence) to
estimate such shocks and response functions, as well as a bootstrapping
procedure for statistical inference. The main features of the model, i.e.
(i) a large panel on which to condition shocks estimation and (ii) a small
number of macroeconomic shocks, allow us to recover the fundamental
structural shocks by exploiting the cross-sectional dimension. The method
therefore provides a solution for the “problem of fundamentalness” in struc-
tural VARs. We illustrate our method and ideas by revisiting the empirical
analysis of King et al. (1991).
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1 Introduction

Recent literature has shown that approximate (or generalized) dynamic factor
models can be used successfully to forecast macroeconomic variables (Forni,
Hallin, Lippi and Reichlin, 2002, Stock and Watson, 2002a, 2002b, Boivin and
Ng, 2003, Giannone, Reichlin and Sala, 2005) if estimated on the basis of large
panels of time series. These models assume that a given time series can be ex-
pressed as the sum of two orthogonal components: the “common component”,
capturing that part of the series which comove with the rest of the economy and
the “idiosyncratic component” which is the residual. The vector of the common
components is collinear, i.e. it can be written as a process driven by few shocks
which generate common dynamics. Indeed, evidence based on different datasets
points to the robust finding that few shocks explain the bulk of dynamics of
macro data (cfr Sargent and Sims, 1977 and Giannone, Reichlin and Sala, 2002
and 2005).

If the common component is large, a forecasting model which is based on a
projection onto some linear combination of these shocks does well because, while
being parsimonious, it captures the essential comovements in the economy and
can therefore account for information based on high dimensional datasets.

This paper argues that these models can be successfully used not only for fore-
casting, but also for the estimation and identification of macroeconomic shocks
and their propagation mechanism. Our aim is to open the black box of factor
models and show how statistical constructs such as factors can be related to eco-
nomically meaningful shocks so as to use these models for structural analysis in
an environment where economic agents have access to large information.

We define macroeconomic shocks as those sources of variations whose effect
on all variables in the panel does not vanish as the cross-sectional dimension n
becomes large. These shocks generate comovement between macro series (com-
mon shocks) and they are the ones we seek to identify. We disregard idiosyncratic
shocks whose effect remains local and captures either micro dynamics or measure-
ment error.

Our definition of macro shocks as cross-sectionally pervasive allows us to
state precise conditions under which they can be distinguished from idiosyncratic
shocks. These are the asymptotic conditions analyzed in Forni, Hallin, Lippi and
Reichlin, 2000 and Forni and Lippi, 2001.

Under those conditions we show that, when the number of shocks is small
relative to the number of variables and the panel is sufficiently heterogeneous in
terms of its dynamic structure, the shocks can be recovered from the present and
past observations of the data (the shocks are fundamental).

The two features of our framework — large information and small number of
shocks relative to the number of variables — allow us to solve the problem that
affects small models such as structural VARs where conditions for recovering



fundamental shocks are unlikely to be met (on this point see Hansen and Sar-
gent, 1991, Lippi and Reichlin, 1993 and 1994 and, more recently, Chari, Kehoe
and Mcgrattan, 2005, Fernandez-Villaverde, Rubio-Ramirez and Sargent, 2005).
Since our model can be estimated on the basis of large panels, we do not need to
limit arbitrarily the size of the information set used to recover the shocks and we
can base modelling on more realistic information assumptions than in VARS (on
the importance of this feature for monetary models, see Bernanke and Boivin,2003
and Giannone, Reichlin and Sala, 2002 and 2005). Large information, by giving
us a chance to capture heterogeneous dynamics, allows us to recover fundamental
shocks and their impulses.

If fundamentalness is satisfied, restrictions based on economic theory allows
us to recover the common shocks uniquely. Identification is then reached in two
steps. First, identify a linear combination of the fundamental macroeconomic
shocks. Second, chose a particular rotation of the latter with a structural in-
terpretation. The economic assumptions, are imposed as in structural VARs
(SVAR). Like in those models, identification is obtained by multiplying a vector
of orthogonal shocks by an orthonormal matrix. The key difference is that in
factor models, the number of shocks, say ¢, is no longer equal to the number of
variables n. In VARs we estimate a reduced form and then we identify the shocks
by imposing a number of economic restrictions that depends on n. In factor
models, we impose technical restrictions to extract the ¢ common shocks from
the n variables and then we identify them by imposing a number of economic
restrictions which depends on ¢. All the identification schemes proposed in the
SVAR literature can be applied to structural factor models as well. Identification
restrictions can be imposed on any variable in the panel, so that we can easily
obtain overidentification by imposing zero long-run or impact effect on groups of
variables, like for instance real variables, production indexes, interest rates and
so on. Obviously, after identification and estimation, we can analyze the effect of
a shock on many variables within a unified framework.

The identification analysis carried here should be distinguished from what
studied in the traditional factor literature (see Sargent and Sims, 1977, Geweke,
1977, Geweke and Singleton, 1981, Altug, 1989, Sargent, 1989, Giannone, Reich-
lin and Sala, 2003). Since our model is approximate and feasible for large panels
we need less stringent assumptions to identify the common from the idiosyncratic
component (we do not need to impose cross-sectional orthogonality of the idio-
syncratic residuals) and by analyzing identification as n increases we are able to
provide a precise definition to macroeconomic shocks.

Finally, let us observe that our approach is different from the recently sug-
gested FAVAR model (Bernanke, Boivin and Eliasz, 2005) which consists in aug-
menting the VAR by factors in order to condition on a large information set
and then estimating shocks and impulses. While we focus on common shocks
and their impulse response functions, the FAVAR method focuses on the idio-



syncratic shocks for a block of variables of interest, i.e. on the residuals of a
regression on the common factors.

A contribution of the paper is to show that the asymptotic identification
assumptions for the common and idiosyncratic components are sufficient to es-
timate a linear combination of the shocks and their coefficients consistently and
derive rates of convergence for time 7" and the cross-section n without imposing
additional ad hoc technical assumptions. Therefore, we provide the complete
theory for estimation and identification of common shocks and their propagation
mechanisms when the factor model is based on a “large” panel of data.

The paper is organized as follows. In Section 2, we define the model and
discuss the conditions needed to recover the macroeconomic shocks from the
panel. Section 3 develops the structural analysis by showing conditions needed
for recovering fundamental shocks and identify them uniquely. Section four proves
consistency and rates for the estimation of the shocks and the impulse response
functions. Section five analysis an empirical example on US macroeconomic data
which revisits the results of King et al. (1991) in light of our discussion on
fundamentalness.

2 The Model

In this paper we refer to the following dynamic factor model, which is a special
case of the generalized dynamic factor model of Forni, Hallin, Lippi and Reichlin
(2000) and Forni and Lippi (2001). Such model, and the one used here, dif-
fers from the traditional dynamic factor model of Sargent and Sims (1977) and
Geweke (1977), in that the number of cross-sectional variables is infinite and the
idiosyncratic components are allowed to be mutually correlated to some extent,
along the lines of Chamberlain (1983), Chamberlain and Rothschild (1983) and
Connor and Korajezyk (1988). Closely related models have been recently studied
by Stock and Watson (2002a, 2002b), Bai and Ng (2002) and Bai (2003).

Denote by :rr;f = (®it)i=1... m:t=1,. 7 an n X T rectangular array of observations.
We make two preliminary assumptions:

PA1. X7 is a finite realization of a real-valued stochastic process
X=A{zy,ieNJt€Z, xy € Lo(QF,P)}
indexed by N x Z, where the n-dimensional vector processes
{Zy = (v1y - xy)', t€Z}, mneN,

are stationary, with zero mean and finite second-order moments I',, =
E[xntx;utfk]a ke N.



PA2. For all n € N, the process {x,;,t € Z} admits a Wold representation z,; =
Yoieo Crwy, ¢—k, where the full-rank innovations w,,, have finite moments of
order four, and the matrices C}' = (C7; ) satisfy 3232, [CF: | < oo for all
n,i,J5 € N.

We assume that the process x;; is the sum of two unobservable components,
the common component x; and the idiosyncratic component &;. The common
component is driven by ¢ common shocks w, = (us ua --- ug)’. Note that ¢ is
independent of n (and small as compared to n in empirical applications'). More
precisely:

FMO. Defining x,,,= (x1t --- Xnt) and &,,= (&1t ... &ue)', we have

Tny = Xnt+£nt
2.1
= Bu(L)us + &, (2.1)

where u; is a g-dimensional orthonormal white noise vector.

We assume that

B,(L) = A,N(L),

where (i) N(L) is an r X g absolutely summable matrix function of L, (ii) 4,
is an n X r matrix, nested in A,, for m > n. Defining the r x 1 vector f, as

fi=N(L)uy, (2.2)
(2.1) can be rewritten as

Tne = Anft + gnt (23)

In our model, the common component is driven by ¢ exogenous shocks, which
we seek to identify, and can be written as a linear combination of r static factors
fi+. While ¢, the rank of the spectral density of the x’s (see the comment on
Assumption FM2 below), denoted by ¥X(6), is determined by the common sources
of exogenous variation in the model, the rank of their variance-covariance matrix
r, depends on the degree of dynamic heterogeneity of the impulse responses to
the g shocks.

In the sequel, we shall use the term static factors to denote the r entries of f,
and the term dynamic factors to mean the ¢ entries of u;,.

1On evidence on this point on the basis of different datasets, see Sargent and Sims, 1977
and Giannone, Reichlin and Sala, 2002 and 2005



FM1. The process u; is orthogonal to &;, i1 =1,... ,n, t € Z.

Model (2.2)-(2.3) provides a dynamic representation which is parsimonious
and quite general. It accommodates for two interesting special cases.

Case 1. The finite-order moving average factor model

T = Cn(L)ts + & (2.4)

where C,, (L) = Cy+C7L+- - -+C?L*, so that the entries of C),(L) are polynomials
of order s. This model can always be written in the form (2.2)-(2.3) by setting
r=gq(s+1), A4, =(CyC} --- C), fr = (u; u;_y ... u;_,) and N(L) =
(I, I,L ... I,L*)", where I, is the q dimensional identity matrix?,

Case 2.

T = Co(L)U(L)uy + €, (2.5)

where W(L) is a ¢ x ¢ filter. In this case, the dynamic is infinite, but we are
imposing a restriction on the heterogeneity of the impulse responses to the shocks.
This model can be written in the form (2.2)-(2.3) by setting r and A,, as in Case
1, but N(L) = (¥(L)" W(LYL ... W(L)L*)".

In what follows we will define the conditions that allow us to extract the
common component from the observables. This step is a prerequisite for the
identification of the Common shocks which will be analysed in the next Section.

Indicate by X, and re > the k-lag covariance matrix of x,,, and &, respectwely
Denote by p,,; and ufw the j-th eigenvalue, in decreasing order, of I'Y, and I‘
respectively.

FM2. There exists constants c;, ¢y, ..., ¢, ¢, such that

0<ec <liminfn 'uX <@ <..<¢g <liminfn 'uX, <7 < oo

n—oo n—oo

FM3. There exists a real A such that ,ufll < A for any n € N.

2The model can also accommodate (2.4) with v linear restrictions on the coefficients, with
v < q(s 4+ 1). For example, suppose that v = 1 and that

Apd =0,

for all n, where d is a ¢(s+ 1)-dimensional vector. It is easily shown that (2.4) can be rewritten
in the form (2.2)-(2.3) with a vector f, of dimension ¢(s + 1) — 1.
3This is the specification chosen by Quah and Sargent, 1993 for example.



FM3 limits the cross-correlation generated by the idiosyncratic shock. It
includes the case in which the idiosyncratic components are mutually orthogonal
with an upper bound for the variances. Mutual orthogonality is a standard,
though highly unrealistic assumption in factor models; condition FM3 relaxes
such assumption by allowing for a limited amount of cross-correlation among the
idiosyncratic components.

FM2 entails that, for n sufficiently large, A/, A,/n has full rank r. Conse-
quently, regressing the observations z; on the factor loadings A, it is possible to
extract the » common factors f,. Precisely,

(A,A,) 7 ALy = fo 4+ (A, A0) 7 ALE,

and by assumption F'M3, the last term converges to zero in mean square as
n — 00 since

, -1
B[(( a0 46| = (a0 Amsaa, () < 2 (Ft)
(see Forni, Hallin, Lippi and Reichlin, 2000).

Assumption FM2 implies the weaker condition that each common shock u;; is
pervasive in the sense that it affects all items of the cross-section as n increases.
Precisely, denoting by A%, (6), k = 1,2,...,n, the eigenvalues of the spectral
density matrix ¥X(#), in decreasing order at each frequency, Assumption FM2
implies that AX () — oo as n — oo, for ¢ a.e. in [~7 7]. Forni and Lippi (2001)
show that the number ¢ is unique, i.e. a representation (2.1)-(2.3) with a smaller
number of dynamic factors is not possible. This notion of pervasiveness provide
statistical content to the notion of a macroeconomic shock.

The example below will help understand the role of assumption FM2 in our
analysis and the role played in the model by the parameters ¢ and r. For a
discussion of r and ¢ in the context of a dynamic general equilibrium model, see
also Giannone, Reichlin and Sala, 2003.

Example. Part A. Suppose that

Xit = @i(1 — ¢;L)uy

Here we have one exogenous common shock and ¢ = 1 no matter what is the
value of the coefficients. The number of factors r, on the other hand, depends on
the heterogeneity in the panel. We have:

r = 11if ¢; = ¢. In this case, f; = (1 — cL)uy, (An)i = a;

r = 2 if for at least one ¢ and j, ¢; # ¢;; f; = (wr, w1)'s (An)i = [as, aici

(i-th row of A,)



Notice that if » = 1 we can only extract f; = (1 — c¢L)u;. We will return to
this case in Section 3.
To understand the role of FM2, notice that:

If r = 1, necessary condition to satisfy FM2 is that the common shocks u; is
loaded by “almost all” the x’s with coefficients that do not decline as n — oo
(pervasiveness). More precisely, FM2 requires that there exist constants a
and @, such that for n large enough:

> a; <a < oo; (2.6)

If r = 2 FM2 is satisfied only if, in addition to (2.6), we have ¢; # ¢; for infinitely
many (7, j) (pervasiveness of heterogeneity). Precisely, it requires that there
exist constants p and p, such that for n large enough*:

Zafcl-<JgZa?$%Za%c%<ﬁ<oo; (2.7)
i=1 i=1

To identify the exogenous shocks u,; and the coefficients of the filter B(L)
we need more than the technical assumptions FM2-FM3. This requires to intro-
duce informational and economic assumptions as it will be discussed in the next
Section.

3 Identification of the shocks: structural factor
models

3.1 Fundamentalness: n large and the role of information

The shocks u; can be recovered from past x’s only if the shocks can be recov-
ered from the past and present of the observations. This is the fundamentalness
condition F:

(F) u, is fundamental for x;, i = 1,...,00; i.e. up, h =1,...,¢ belong to the
linear space spanned by the present and the past of x4, 1 =1,... 0.

41f ¢1 # cg, while all other are such that ¢; = ¢, r = 2, then |p| = 1. In this case heterogeneity
is not sufficiently pervasive and we can only recover u;. FM2 rules out such situation.



For model (2.1)-(2.3), we require the existence of a  x n one-sided filter S, (L)
such that S, (L), converges to u; in mean square as n goes to infinity. This
condition is stronger than what assumed so far since, in addition to identifying
the unobserved common component from the data (conditions FM1-FM3), we
need to extract the shocks from the common component and its past values
(fundamentalness of the u’s with respect to the x’s).

The requirement above is satisfied if:

(FM4) There is a left-inverse for N(L), i.e. a r x ¢ one-sided filter G(L) exists such
that G(L)N(L) = 1,.

Proposition 1
If FMO-FM4 are satisfied, u, is fundamental for z;, i =1,..., 0c0.

Proof. Setting, S, (L) = G(L) (Al A,) " A, where G(L) satisfy FM4, we have:
Sn(L)Xne = G(L) (A%An)il ALAf = G(L)f = GIL)N(L)uy = u,

Moreover, S,(L),, = G(L) (A’ A,)~" A€, converges to zero in mean square by
assumptions FM2 and FM3. Q.E.D.

Assumption FM4 is very mild in factor models with n large and sufficient
dynamic heterogeneity (r > ¢). This is what makes factor models for large cross-
sections particularly interesting for structural analysis. For example, for model
(2.4) it easily seen that the filter G(L) = (I, 0,...0,), where 0, is a ¢ X ¢
matrix of zeros, satisfies FM4. For (2.5), assumption FM4 is satisfied if ¥(L) is
invertible. It this case, G(L) = (¥(L)™' 0,...0,).

If FM4 is satisfied, G(L) can be approximated by a filter of finite order.
Hence, f, can be approximated by an autoregressive representation of order p.
In what follow, we strengthen FM4 by assuming that factors have a VAR(1)
representation:

(FM4)" The r-dimensional static factors f; admit a VAR(1) representation
fe=Ff 1+ Ru (3.8)

where R is a constant matrix of dimension r X ¢ with rank ¢ < r.



The VAR(1) specification could be generalized to the case of a VAR(p) with-
out introducing new theoretical difficulties. However, (3.8) provides a dynamic
representation which is parsimonious and quite general. For example, in Case 1
of Section 2, FM4’ is always satisfied. In Case 2, FM4’ requires that W(L)™! is
of finite order k, not larger than s+ 1. More generally, if  >> ¢ (heterogeneity),
the order of the autoregressive representation of the factors is very likely to be
small. The intuition is that, when the panel dynamic is very heterogenous, we
are likely to capture it by exploiting the cross-sectional information so that many
lags on the factors are not needed.

Below we will develop Example 1 of Section 1 to illustrate this discussion.

Example. Part B.

Xit = @i(1 — ¢;L)uy

with ¢; > 1 for all 4, so that there are no invertible submatrices (the fundamen-
talness condition is violated for each row).
Nonetheless, if ¢; # ¢; for at least a couple (i, j), then

(IZ(]_ - ciL)ajcj - (lj(l - CjL)CLZ‘CZ‘

=1.
(a; — ci)asa,
Therefore we can set s,(L) = 0 for h # i, j;
a; Qg
si(L) = —L—; sj(L) = Z
(a; — a;)a; I (a; — a;)a;

Hence, fundamentalness of the whole system is insured by heterogeneity of the
propagation mechanism of the common shocks, u;. In this case, r = 2, f, =
(ug, us—q) and FM4 is clearly satisfied with G(L) = (1 0). The intuition is that,
in this case, by exploiting the cross-sectional dimension, we are able to recover
information on the dynamics of the panel and extract the lags of the common
shocks.

The only case in which we have non-fundamentalness for the system is when
¢; = cfor any i and | ¢ |> 1. In this case, r = 1, f; = (1 — ¢L)u; and FM4 is not
satisfied.

This example illustrates three points:

e if r >> ¢ (heterogeneity), the whole system is likely to be fundamental, i.e.
the ¢ x 1 common shocks are likely to be fundamental with respect to the
(r x 1) common factors f,.

e fundamentalness of the whole n dimensional system does not imply funda-
mentalness of any ¢ x ¢ subsystem.

10



e the fundamentalness of any r xr subsystem in not insured since this requires
that the variables in the chosen subsystem have heterogeneous propagation
mechanism. This is why even in the case in which we want to focus on
r variables for economic reasons, large n helps because it gives us a big-
ger chance to consider a sufficient number of variables with heterogenous
impulses.

The previous discussion shows that, while recovering n fundamental shocks
by estimating a dynamic system with n variables requires conditions that are
unlikely to be met, when n >> ¢ the conditions to recover the q shocks are likely
to be satisfied. We will discuss this point further in the next sub-section, in
relation with the VAR literature.

Information (n large) helps provided that (a) by adding variables we do not
increase the dimension of the shocks and (b) there is sufficient dynamic hetero-
geneity in the panel (lead-lag relations) so that r >> ¢. A factor model with
large n and small ¢ is therefore particularly interesting for structural analysis.

3.2 Economic conditions for shocks identification

Let us disregard the idiosyncratic component and concentrate on the common
components

The model is not identified since (3.9) is equivalent to

where C,,(L) = B, (L)H(L) and vy = H(L')u;, and H(L) is a ¢ x ¢ Blaschke
matrix, i.e. H(L)H(L™') = I,. However, if FM4 holds then the common shocks
are fundamental. This implies that only static rotations of the common shocks
are admissible, i.e. H(L) = H. Precisely:

Proposition 2 If
X, = Cn(L)vy (3.11)

for any n € N where v; is a g-dimensional fundamental orthonormal white noise
vector, then representation (3.11) is related to representation (3.9) by

C.(L) = B,(L)H (3.12)
v, = Huy,

where H is a ¢ x ¢ unitary matrix, i.e. HH' = I,.

11



Proof. Projecting v; entry by entry on the linear space U; spanned by the present
and the past of up,, h=1,...,q we get

V= Z Hk’ll/t_k; + 7y, (313)
k=0

where r; is orthogonal to u; ,, £ > 0. Now consider that U; and the space
spanned by present and past of the y;’s, call it A}, are identical, because the
entries of x;_x, k < 0, belong to U; by equation (3.9), while the entries of u; ,
k < 0, belong to &; by condition FM4. The same is true for &; and the space
spanned by present and past of the vy;’s, call it V;, so that U; = V,. Hence r; = 0.
Moreover, serial non-correlation of the wy,’s imply that > 72, Hyu,—, must be
the projection of v; on U;_1, which is zero because U;_; = V;_1. It follows that
v; = Houy. Orthonormality of v, implies that Hy is unitary HyH|} = I. QED

Once fundamentalness is satisfied, identification consists in choosing H such
that economically motivated restrictions on the matrix B,,(L)H are fulfilled. For
instance, identification can be achieved by maximizing or minimizing an objec-
tive function involving B, (L)H (see, for example, Giannone, Reichlin and Sala,
2005). An alternative is to impose zero restrictions either on the impact effects
B,,(0)H or the long-run effects B,,(1)Hy or both. In this case we have to impose
q(q — 1)/2 restrictions (since orthonormality entails g(q + 1)/2 restrictions). No-
tice that, once the conditions FMO0-FM4 are satisfied, the number of economic
identification restrictions we need to identify the shocks depend on ¢ and not on
n. This is an advantage for structural analysis, since, provided ¢ is small, we need
few restrictions for identification while we are not limited on the informational
assumptions (size of the panel).

The connection with VAR analysis is immediate if we think of the x; as a
vector of observables. To see this point, let us abstract from the idiosyncratic
components and consider a block of ¢ common components x; = (x1t -+ Xqt)"-
Assume:

X; = B(L)u,. (3.14)

and that B(L) is invertible so that x, can be represented as a finite VAR process
on ¢ variables:

A(L)x; = uy.

Invertibility of B(L) implies fundamentalness. Technically this requires that
det B(L) has its roots outside the unit circle. This assumption is typically implicit
in structural VAR analysis (for a critique of structural analysis in VARs based
on this observation, see Hansen and Sargent, 1991 and Lippi and Reichlin, 1993
and 1994). Given this assumption, u, is identified up to a ¢ X ¢ unitary matrix H

12



and economic analysis can be used to impose ¢(q¢ — 1)/2 restrictions to identify
the shocks. Obviously if ¢ is large, we need many of those restrictions.

Let us now go back to a system on n common components driven by ¢ shocks.
The discussion of Section 3.1 tells us that while there is no guarantee that the ¢ xq
subsystem of interest is fundamental, it is likely that the n system is, provided
that n >> ¢ and r >> ¢. However, once a large factor model is estimated,
we can focus on a ¢ dimensional block of interest and fundamentalness can be
checked empirically by looking at the roots of the determinant of the estimated
B(L) along the lines suggested by Lippi and Reichlin, 1991 and 1993. If the
idiosyncratic components of the variables in the block are small, this will also tell
us whether a VAR representation on those ¢ variables is admissible. We illustrate
this point in the empirical Section.

4 Estimation

Going back to equation (2.3) it is easily seen that the static factors f, are identified
only up to pre-multiplication by a non-singular r x r matrix. Hence we cannot
estimate f;. However, we can estimate the common-factor space, i.e. we can
estimate an r-dimensional vector whose entries span the same linear space as the
entries of f;. Such vector can be written as g, = G f,, were G is a non-singular
matrix.

The static factor space can be consistently estimated by the first r principal
components of the panel z,,; as in Stock and Watson, 2001b and 2002. °.

Precisely, the estimated static factors will be

1

gt \/ﬁ

where W is the n x 7 matrix having on the columns the eigenvectors correspond-
ing to the first r largest eigenvalues of the sample variance-covariance matrix of
Tt say [0, We do not normalize the factors to have unit variance. The esti-
mated variance-covariance matrix of g, is the diagonal matrix having on the diag-
onal the normalized eigenvalues of I'*? in descending order, A7 = LW I'T2I T,
The corresponding estimate of the common components is obtained by regressing
z,; on the estimated factors to get

Wg/xnt, (415)

Xt = WEWEImnt. (4.16)

Having an estimate of g;, we have still to unveil the leading-lagging relations
between its entries, in order to find out the underlying dynamic factors (or, better,

5 Alternative (n,T) consistent estimators proposed in the literature are Forni and Reichlin
(1998), Boivin and Ng (2003) and Forni, Hallin, Lippi and Reichlin (2005).

13



a unitary transformation of such factors v; = Hu;, with HH’ = I;). This can be
done in our dynamic factor model by projecting g, on its first lag. This approach
is also followed in Giannone, Reichlin and Sala (2002, 2005).

4.1 Population formulas

By equation (3.8), any non-singular transformation of the common factors g; =

Gf: has the VAR(1) representation

9. =GFG g, +€ = Dg,_1 + €. (4.17)
Note that
D =T[4, (4.18)
where T = E(g:9,_,), and
var(e,) = I'§ — DT§D". (4.19)
By (3.8), the residual €, can be written as
¢ = GRu; = (GRH') Huy = KM Huy, (4.20)
where

i) M is the diagonal matrix having on the diagonal the square roots of the first
g g g
q largest eigenvalues of the variance-covariance matrix of €, i.e. the matrix
GRR'G' =T} — DT{D’, in descending order.

(ii) K is the r x ¢ matrix whose columns are the eigenvectors corresponding to
such eigenvalues.

(iii) H is a ¢ X ¢ unitary matrix;
By inverting the VAR we get
g = (I — DL)"'K M Hu,.
On the other hand, by equations (2.1) and (2.3)
Xnt = Bo(Lus = Ay fe = A, G g = Qng:, (4.21)
where
Qn = E(xngt) = E(Tng})- (4.22)

Hence, we have
Xnt = Bn(L>ut
Qn(I — DL) "KM Hu,
= Q.(I+ DL+ D*L*+ ---)KM Hu,. (4.23)
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4.2 Estimators

By substituting g, = #WRT 'e,, for g,, it is quite natural to estimate Q,, by
7
of g;, can be estimated by %WE’F%WHT = LAT and I'{ by %WE’F%WHT, o
that, basing on equation (4.18), we estimate D, by DT = WT'T=TT(AT)-1,
Finally, to estimate the eigenvectors and eigenvalues in K,, and M, we estimate
the variance-covariance matrix of €, by SI = (A7 — DIATDI") (see equation
(4.19)).

Summing up, in analogy with (4.23) we propose to estimate the impulse-

response functions by

LZTWT (see equation (4.22)). Moreover, I}, the variance-covariance matrix

BI(L)= QL (I+ DIL+(DI)’L* +--) K M!H, (4.24)
where

N OT — 1 paTyyT aT ; : :
(i) @, = Lo Wa » where I is the sample variance-covariance matrix of &y

and W the n x r matrix having on the columns the eigenvectors corre-

sponding to the first r largest eigenvalues of I'2]’;

i T _ wT'peTyyT(ATY-1 zT ; ;
(ii) D, = W, T= W (A,,)~", where I'?] is the sample covariance matrix of x,,
and Tnt—1;

(iii) MT is the diagonal matrix having on the diagonal the square roots of the
first ¢ largest eigenvalues of the the matrix 2 (AT —DTATDT") in descending
order;

(iv) KT is the r X ¢ matrix whose columns are the eigenvectors corresponding
to such eigenvalues.

(v) H is a unitary matrix to be fixed by the identifying restrictions.

In order to render operative the above procedure we need to set values for r
and ¢g. Unfortunately, there are no criteria in the literature to fix jointly ¢ and r.
Bai and Ng (2002) propose some consistent criteria to determine r. As regards
the number of dynamic factors, we can follow a decision rule like that proposed
in Forni, Hallin, Lippi and Reichlin (2000) i. e., we go on to add factors until
the additional variance explained by the last dynamic principal component is less
than a pre-specified fraction, say 5% or 10%, of total variance.

4.3 Consistency

Consistency of (4.24) as estimator of the impulse-response functions follows from
the fact that as n,T" — oo the static factor space can be consistently estimated
by principal components. Precisely:
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Proposition 3 Under assumptions PA1-2, FM1-3, we have, as min (n,7T) — oo:
() VBl (L) — bi(L)] = Op(1),i =1, ..

(i) nE[(g: — GTf)(d: — GTf.)| = 0(1).

(iii) GT = ﬁWnT'WnWT’LAn is bounded and of full rank r.

where d,; = min(n, T), bL.(L) and b;(L) denote the ith row of BT (L) and B, (L)
respectively,

Proof. See the appendix.

Proposition 3 shows that consistency is achieved along any path for (n, T") with
T and n both tending to infinity. The consistency rate is given by min <\/T , \/ﬁ)
This implies that if the cross-section dimension n is large relative to the sample
size T (T'/n — 0) the rate of consistency is v/7', the same we would obtain if the
common components were observed, i.e. if the variables were not contaminated
by idiosyncratic component. On the other hand, if n/T — 0, then the consistency
rate is \/n reflecting the fact that the common components are not observed but
have to be estimated.S.

4.4 Standard errors and confidence bands

To obtain confidence bands and standard errors we propose the following boot-
strap procedure.
First, compute BT (L) and x! according to (??) and (4.24), and £Z, = 2T, —xT..
Second, for each one of the estimated idiosyncratic components, estimate the
univariate autoregressive models

aj(L)ng:ijjt, j=1,...,n,

whose the order can be fixed by the Schwarz criterion, and take the estimated

coefficients a] (L) and o] and the unit variance residuals w},. Third, generate
new simulated series for the shocks, say u; and wj,, j = 1,...,n, by drawing
from the standard normal Use these new series to construct x5, = BI(L)u},
= a]T(L)*laijjt, j=1,...,n,and z}, = x:, + &,

Finally, compute new estimates of the impulse-response functions B (L) start-
ing from z7,.

By repeating the two last steps N times we get a distribution of estimated
values which can be used to obtain standard errors and confidence bands. Note

6Tt should be pointed out that, under the model assumptions of Stock and Watson (2002a
and 2002b) or Bai and Ng (2002), an alternative proof of consistency has been proposed by
Giannone, Reichlin and Sala(2002).
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that the estimates will in general be biased, since the estimation procedure in-
volves implicitly the estimation of a VAR. An estimate of such bias is provided
by the difference between the point estimate BI(L) and the average of the N
estimates B} (L).

5 Empirical application

We illustrate our proposed structural factor model by revisiting a seminal work
in the structural VAR literature, i.e. King et al. (1991, KPSW from now on).
To this end, we constructed a panel of macroeconomic series including the series
used by KPSW, with the same sampling period. Just like KPSW, we identify
a long-run shock by imposing long-run neutrality of all other shocks on per-
capita output. The data are well described by three common shocks, so that the
comparison with the three-variable exercise of KPSW is particularly appropriate.
Having the same data, the same identification scheme and the same number of
shocks, different results can only be due to the additional information coming
from the other series in the panel.

5.1 The data

The data set was constructed by downloading mainly from the FRED II database
of the Federal Reserve Bank of St. Louis and Datastream. The original data of
KPSW have been downloaded from Mark Watson’s home page. We collected
89 series, including data from NIPA tables, price indeces, productivity, indus-
trial production indeces, interest rates, money, financial data, employment, labor
costs, shipments, and survey data. A larger n would be desirable, but we were
constrained by both the scarcity of series starting from 1949 (like in KPSW) and
the need of balancing data of different groups. In order to use Datastream series
we were forced to start from 1950:1 instead of 1949:1, so that the sampling period
is 1950:1 - 1988:4. Monthly data are taken in quarterly averages. All data have
been transformed to reach stationarity according to the ADF(4) test at the 5%
level. Finally, the data were taken in deviation from the mean as required by our
formulas, and divided by the standard deviation to render results independent of
the units of measurement. A complete description of each series and the related
transformations is reported in the Appendix.

5.2 The choice of r and the number of common shocks

As a first step we have to set r and ¢q. Let us begin with r. We computed
the six consistent criteria suggested by Bai and Ng (2002) with » = 1,...,30.
The criteria IC); and IC),3 do not work, since they do not reach a minimum for
r < 30; ICy has a minimum for » = 12. To compute PC,,, PCy and PCys
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we estimated 62 with r = 15 since with » = 30 none of the criteria reaches a
minimum for r < 30. PC, gives r = 15, PC)y gives r = 14 and PC)3 gives
r = 20. Below we report results for r = 12, » = 15 and r» = 18, with more
detailed statistics for r = 15. With r = 15, the common factors explain on
average 79.7% of total variance. With reference to the variables of interest in
KPSW, the common factors explain 85.6% of total variance for output, 84.4% for
investment and 89.4% for consumption.

Regarding the choice of ¢, as explained above, for the sake of comparison we
start with a strong preference in favor of ¢ = 3. This choice is consitent with
the decision rule proposed in Forni, Hallin, Lippi and Reichlin (2000), since, with
Bartlett lag window size 18, the overall variance explained by the third dynamic
principal component is larger than 10% (10.2%), whereas the variance explained
by the fourth one is less than 10% (6.8%).

5.3 Fundamentalness

Now let us focus on the 3 x 3 impulse-response function system for the three
variables of KPSW, i.e. per capita consumption, per capita income and per
capita investment. As observed at the end of Section 3, we can compute the
roots of the determinant of this system to check whether it is invertible or not.”
Figure 1 plots the moduli of the two smallest roots of the above determinant as
a function of r, for r varying over the range 3-30. Note that for » = 3 all roots
must be larger than one in modulus, since they stem from a three-variate VAR.
This is in fact the case for r = 3 and r = 4, but for r > 5 the smallest root is
declining and lies always within the unit circle. For r > 22 the second smallest
root becomes smaller than one in modulus.

Figure 2 reports the distribution of the modulus of the smallest root for r = 15
across 1000 bootstrapping replications. The mean value is 0.71, indicating a non-
negligible upward bias, since our point estimate for » = 15 is 0.54. We shall come
back to the estimation bias below. Here we limit ourselves to observe that if the
smallest root is overestimated on average, the true value could be even smaller
than 0.54. Without any bias correction, the probability of an estimated value
larger than one in modulus is less than 22%.

We conclude that the true, structural impulse-response function system for
the common components associated with these three variables is probably non-
fundamental. As a consequence, such impulse response functions, as well as
the associated structural shocks, cannot be recovered by estimating a three-
dimensional VAR.

"Note that these roots (and therefore fundamentalness) are independent of the identification
rule adopted and the rotation matrix H.
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Figure 1: The moduli of the first and the second smallest roots as functions
of r
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Figure 2: Frequency distribution of the modulus of the smallest root
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5.4 Impulse-response functions and variance decomposi-
tion

Coming to the impulse-response functions, as anticipated above we impose long-
run neutrality of two shocks on per-capita output, like in KPSW. This is sufficient
to reach a partial identification, i.e. to identify the long-run shock and its response
functions on the three variables.

Figure 3 shows the response functions of per capita output for » = 12, 15, 18.
The general shape does not change that much with r. The productivity shock has
positive effects declining with time on the output level. The response function
reach its maximum value after 6-8 quarters with only negligible effects after two
years. It should be observed that this simple distribuited-lag shape is different
from the one in KPSW, where there is a sharp decline during the second and the
third year, which drives the overall effect back to the impact value.
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Figure 3: The impulse response function of the long-run shock on output for
r=12,15,18
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In Figure 4 we concentrate on the case r = 15. We report the response
functions with 90% confidence bands for output, consumption and investment
respectively. Confidence bands are obtained with the procedure explained above
(with 1000 replications). The shapes are similar for the three variables, with a
positive impact effect followed by important, though declining, positive lagged
effects.

Note that confidence bands are not centered around the point estimate, es-
pecially for consumption, suggesting the existence of a non-negligible bias. This
is not surprising, since formula (4.24) implicitly involves estimation of a VAR,
where in addition the variable involved (the static factors) contain errors (a resid-
ual idiosyncratic term). Figure 5 shows the point estimate along with the mean
of the bootstrap distribution for the output. Such a large bias is probably due
to the small cross-sectional dimension. We have evidence of a much smaller bias
for the larger data set of Giannone, Reichlin and Sala (2002). We do not make
any attempt here to correct for the bias, but a procedure like the one suggested
in Kilian (1998) could be appropriate.

Table 1 reports the fraction of the forecast-error variance attributed to the
permanent shock for output, consumption and investment at different horizons.
For ease of comparison we report the corresponding numbers obtained with the
(restricted) VAR model and reported in Table 4 of KPSW.

At horizon 1, our estimates are smaller. The difference is important for con-
sumption: only 0.30 according to the factor model as against 0.88 according to
the KPSW model. But at horizons larger than or equal to 8 quarters our esti-
mates are greater and the difference is very large for investment. At horizon 20
(5 years) the permanent shock explains 46% of investment variance according to
KPSW as against 86% with the factor model. This result is interesting in that it
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Figure 4: The impulse response function of the long-run shock on output,
consumption and investment for r = 15
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Figure 5: Estimation bias
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solves a typical puzzle of the VAR literature: the finding that technological and
other supply shocks explain a small fraction of investment variations even in the
medium-long run.

6 Conclusions

In this paper we have argued that dynamic factor models are suitable for struc-
tural macroeconomic modeling and an interesting alternative to structural VARs
when the objective is to analyse large panels of time series.

We have shown that large information and a small number of shocks generat-
ing the comovement of many variables, allow the econometrician to recover the
fundamental shocks driving the economy under general conditions. They require
that the structure of leads and lags is rich enough so that the cross-section can
convey information on dynamic relations. These conditions - we also show - are
more plausible that those needed in VAR analysis where the problem is to re-
cover n shocks from n variables (the problem of fundamentalness highlighted by
Hansen and Sargent, 1991, Lippi and Reichlin, 1993 and 1994 and, more recently,
by Chari, Kehoe and Mcgrattan, 2005, Fernandez-Villaverde, Rubio-Ramirez and
Sargent, 2005).

Having established sufficient conditions for identification, we have suggested
a procedure for the estimation of the impulse response functions. Moreover, we
have shown consistency of such a procedure and have suggested a bootstrapping
method for the construction of confidence bands and inference purposes.

In the empirical application, we have revisited the seminal paper by King et
al. (1991, KPSW). We have designed a large data set including output, consump-
tion and investment (the data analysed by KPSW) on the same sample period.
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Table 1: Fraction of the forecast-error variance due to the long-run shock

Dynamic factor model KPSW vector ECM

Horizon Output Cons. Inv. Output Cons. Inv.

1 037 030 007 045 088  0.12
(0.18)  (0.21) (0.19) (0.28) (0.21) (0.18)
4 057 077 042 058 089  0.31
(0.12)  (0.12) (0.19) (0.27)  (0.19) (0.23)
8 078 087 072 068 083 040
(0.07)  (0.11) (0.16) (0.22) (0.18) (0.18)
12 086 090 0.80 073  0.83  0.43
(0.05)  (0.11) (0.16)  (0.19)  (0.18) (0.17)
16 089 091 08 077 085 044
(0.04) (0.11) (0.16) (0.17)  (0.16) (0.16)
20 091 092 08 079 087  0.46

(0.03)  (0.11) (0.16) (0.16) (0.15) (0.16)

We have estimated a large factor model with a three-shock specification and, af-
ter having identified the shocks as in KPSW, we have analysed impulse response
functions on the three variables of interest: output, consumption and investment.
We find that the smallest root of the determinant of the impulse-response func-
tions formed by the three variables sub-system is non-fundamental and therefore
could have not be obtained by estimating a VAR on these three variables alone.
These impulse response functions imply a larger effect of the permanent shock on
output and investment than those found by KPSW.

23



Appendix 1: Proof of Proposition 3

Let A and E be two n X n symmetric matrices and denote by o;(-),j =1,...,n
the eigenvalues in decreasing order of magnitude. Throughout this section we
will use the following inequalities due to Weyl (cfr. Stewart and Sun, 1990):

|0 (A +E) — 0j(A)] < \Jou(E?) < \/trace(E?)

Denote by A, and AL, the » x r diagonal matrices having on the diagonal

elements the first r largest eigenvalues of I'y, and I'%,, respectively. Writing

W, and WT for the n x r matrices having on the columns the corresponding
eigenvectors, we have, by definition:

TTWT = WAL

Let us recall here our notation for the eigenvalues of the relevant matrices:

gy =05 (Trg), piiy = 0y (U5g), ;= 05(Tho), iy = 05(The), 4 =1,..,m
we have A, = diag(py,, ..., uX,) and AL = diag(p2T, ..., u=T)

Using the following non-singular transformation of the common factors, g; =
G, f, where G,, = ﬁWéAn, we have (cfr. Section 4.1):

1 1

Qn X W, Dy = W DKW, A and 3, = —A,, — =D, A, D),
n n

1
=—I
N4D
Lemma 1 Under assumptions PA1-2, FM1-3, as n,T" — oo, we have:

(i) trace [(IfF —T%,)2] = 0, (%), k=0,1
(i) 22 =L+ 0 (L) + 0, (J5) fork=1,...n

Proof. By assumption PA2, there exists a positive constant K < oo, such that
forall T e Nand,j € N

TE[(’AY(Q)C% - 7§ij)2] < K
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as ' — oo, where 701] and ~g;; denote the ¢, jth entries of 2T and I'g . respectively.

We have:

n

trace | (057 = T5,)%] = 3- D_ (05 — 6)°

i=17=1

Taking expectations, we obtain:

E z":zi: %zg %zg } = En:i:E {(735 - 7&]‘)2} =0, <%2>

i=1 i=1j=1

Result (i), for & = 0, follows from the Markov inequality. The result for £ = 1
can be easily proved using the same arguments.

Turning to (ii), from the Weyl inequality, we have:

2
(uzt = pz;)” < trace (TG = T5,)?]
moreover, from assumption FMO0-3:
1, 1 1 1 1
oy S g+ u = —fln; O (—)
n n n

The desired result follows. Q.FE.D.

Corollary 1 Under assumptions PA1-2, FM1-3, as n,T — oo, we have:
(i) 2AT = 1A, + 0,(F) + 0, (2)
(i) WoWT =1+ 0,(1) +0, (%)

Proof. Result (i) trivially follows from Lemma 1. Turning to (ii), we have the
following decomposition:

]_ ]_ ! / /
“AL =W W = —WTW AW W Ly WT+ Wl (Taf = T%) Wil
n n

From results Lemma 1 (i) we get:

1 . 1 . . 1
W (U3 = D) W <y fbrace [(TET — T6,)2] = O < ﬁ)
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Moreover, WI'TSOW!T < i, = O,(1) by assumption FM3. The desired result
follows. Q).E.D..

Lemma 2 Under assumption PA1-2, FM1-FM3, as n,T — oo, we have:
() Qi = @ui =0, (35) + 0, (7)
(ii) DT — D_O( =)+ 0, ()
(iii) ST -5, =0, (&) + 0, ()
where QT and Q,; denote the ith row of QT and Q,,, respectively.

Proof. Let us start from result (i). We have the following decomposition

1 e T T T 1 T T\ 11T
Write 1,,; for the n dimensional vector with entries equal to zero at the ith
position and zero for the rest. Consequently:

QT

1 1 1
T I T _ ’ FxZ”rl ’ FX ”rT / F§ ”rT
ni 1nz Q n 1m n 1m n0""'n 1m n0""'n

\/_ 0 \/_ \/_ \/ﬁ

Let us study separately each term of the right hand side. For the first term,
Corollary 1 (ii), imply:

1, (50 = Ing ) Wil

1 1 1
U W = 1 DWW W = QuWV W = Qu+0, ( )+0 ( )
\/— n0 \/— ni— n0 n''n Q n Q 1 \/T

since W, W/ A,, = A,, by Assumption FMO.

For the second term, we have:

1 1 1
TlngiOWnT S %\/1’ Fgolm\/WT/FfLOW 7 = Op <—>

from assumption FM3.

Writing w for the entry of W in the jth row and the hth columns, the third
term can be ertten as:
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\/_

1, (T8 = T28 ) Wi | < e S [S5a (085 — 160wl

< ﬁ 2 h=1 \/Z?:1(7§5 - 73@)2\/2?:1(1”%)2 = ﬁ 2 h=1 \/Z?:1(7§5 — Yig)?

since W,I' is orthonormal. Because E[ (s — 7&»)2} = 0, (%), from the
Markow inequality, we get

1 / zT T T _ 1
ﬁ]‘m (FnO - FnO) Wn - OP ﬁ

This proves result (i).

Turning to (ii), we have:

1 1. : :
—DIAT = —wI'reTyw? = WT w4 WT rewr 4 — W’ (T — T W,
n n

¢ From result (ii) of Corollary 1, we have:

1 . 1, - 1 1 1
- FX T:_ T /Fx / T :_DnAn <_> -
an W n(W" W)W, L W (W, W) - +0, - + 0, T
since W,,W/ A, = A, by Assumption FMO.

By assumptions PA1-2 and FM3, WI'T$, W7 = O,(1). Moreover, Lemma 1
(i) implies that: ~W/(T2] — T2 )W, = O,( T) Result (ii), hence, follows from
Corollary 1 (i) and Assumption FM2.

Finally, result (iii) is an immediate consequence of Lemma 1 (i) and result (ii)
above.

Q.E.D.

Proof of Proposition 2

Note that the matrix ¥, is of fixed dimension r. Because of continuity of the
eigenvalues and eigenvectors with respect to the matrix entries, by Lemma 2 (iii)
and the continuous mapping theorem we have

1 1
MnT:MnjLOp(ﬁ)—i-Op(ﬁ) as n,T — oo
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and

v VT

Continuity of the matrix product (notice that D,, has fixed dimension r), implies:

(DI)" = (D" + 0, (%) +0, <%) as 1, T — 00

Result (i) is hence an immediate consequence of Lemma 2 (i) and (ii).

1 1
KZ:Kn+OP<—>+Op <—> as n,T — oo

For result (ii) and (iii), since W, W/} A, = A,, by Assumption FMO, we have:

g0 = JaWiww = FWI At W 6
= WI'W,Gofi+ =WE
From FMa3:

1 1 1
E <5W§'£nt5;tW§> < 5#%1 =0, <E> as n, T — o0

Denote GT = WI'W,G,,. Assumption FM3 implies that G,, has full rank n. The
desired result then follows from Corollary 1 (ii).
Q.E.D.
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Appendix 3: Data description and data treat-
ment
Original Variable ID Code in Orig. Seas.
Database Source  Description the Database Units Freq. Adj. Treatment

1 MW Citibase Per Capita Real Consumption Expenditure DLOG

2 MW Citibase Per Capita Gross Private Domestic Fixed Investment DLOG

3 MW Citibase Per Capita Private Gross National product DLOG

4 MW Citibase Per Capita Real M2 (M2 divided by P) DLOG

5 MW Citibase 3-Month Treasury Bill Rate D

6 MW Citibase Implicit Price Deflator for Private GNP DDLOG

7 Fred I BEA Real Gross Domestic Product, 1 Decimal GDPC1 Bil. of Ch. 1996 $ Q YES DLOG

8 Fred II BEA Real Final Sales of Domestic Product, 1 Decimal FINSLC1 Bil. of Ch. 1996 $ Q YES DLOG

9 Fred II BEA Real Gross Private Domestic Investment, 1 Decimal GPDIC1 Bil. of Ch. 1996 $ Q YES DLOG
10 Fred II BEA Real State & Local Cons. Expend. & Gross Inv., 1 Dec. SLCEC1 Bil. of Ch. 1996 $ Q YES DLOG
11 Fred II BEA Real Private Residential Fixed Investment, 1 Dec. PRFIC1 Bil. of Ch. 1996 $ Q YES DLOG
12 Fred II BEA Real Private Nonresidential Fixed Investment, 1 Dec. PNFIC1 Bil. of Ch. 1996 $ Q YES DLOG
13 Fred II BEA Real Nonresidential Inv.: Equipment & Software, 1 Dec. NRIPDC1 Bil. of Ch. 1996 $ Q YES DLOG
14 Fred II BEA Real Imports of Goods & Services, 1 Decimal IMPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
15 Fred II  BEA Real Federal Cons. Expend. & Gross Investment, 1 Dec. FGCEC1 Bil. of Ch. 1996 $ Q YES DLOG
16 Fred II BEA Real Government Cons. Expend. & Gross Inv., 1 Dec. GCEC1 Bil. of Ch. 1996 $ Q YES DLOG
17 Fred II BEA Real Fixed Private Domestic Investment, 1 Decimal FPIC1 Bil. of Ch. 1996 $ Q YES DLOG
18 Fred II BEA Real Exports of Goods & Services, 1 Decimal EXPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
19 Fred II BEA Real Change in Private Inventories, 1 Decimal CBIC1 Bil. of Ch. 1996 $ Q YES NONE
20 Fred II BEA Real Personal Cons. Expenditures: Nondurable Goods PCNDGC96 Bil. of Ch. 1996 $ Q YES DLOG
21 Fred II BEA Real State & Local Government: Gross Investment SLINVC96  Bil. of Ch. 1996 $ Q YES DLOG
22 Fred II BEA Real Personal Consumption Expenditures: Services PCESVC96 Bil. of Ch. 1996 $ Q YES DLOG
23 Fred II BEA Real Personal Cons. Expenditures: Durable Goods PCDGCC96 Bil. of Ch. 1996 $ Q YES DLOG
24 Fred II BEA Real Personal Consumption Expenditures PCECC96 Bil. of Ch. 1996 $ Q YES DLOG
25 Fred II BEA Real National Defense Gross Investment DGIC96 Bil. of Ch. 1996 $ Q YES DLOG
26 Fred II BEA Real Federal Nondefense Gross Investment NDGIC96 Bil. of Ch. 1996 $ Q YES DLOG
27 Fred I  BEA Real Disposable Personal Income DPIC96 Bil. of Ch. 1996 $ Q YES DLOG
28 Fred II BEA Personal Cons. Expenditures: Chain-type Price Index PCECTPI Index 1996 = 100 Q YES DDLOG
29 Fred I BEA Gross Domestic Product: Chain-type Price Index GDPCTPI Index 1996 = 100 Q YES DDLOG
30 Fred I BEA Gross Domestic Product: Implicit Price Deflator GDPDEF Index 1996 = 100 Q YES DDLOG
31 Fred I BEA Gross National Product: Implicit Price Deflator GNPDEF Index 1996 = 100 Q YES DDLOG
32 Fred I BEA Gross National Product: Chain-type Price Index GNPCTPI Index 1996 = 100 Q YES DDLOG
33 Fred II BLS Nonfarm Business Sector: Unit Labor Cost ULCNFB Index 1996 = 100 Q YES DLOG
34 Fred II BLS Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB Index 1992 = 100 Q YES DLOG
35 Fred II  BLS Nonfarm Bus. Sector: Output Per Hour of All Persons OPHNFB Index 1992 = 100 Q YES DLOG
36 Fred II BLS Nonfarm Business Sector: Compensation Per Hour COMPNFB Index 1992 = 100 Q YES DLOG
37 Fred II  BLS Manufacturing Sector: Unit Labor Cost ULCMFG Index 1992 = 100 Q YES DLOG
38 Fred II BLS Manufacturing Sector: Output Per Hour of All Persons OPHMFG Index 1992 = 100 Q YES DLOG
39 Fred II BLS Business Sector: Output Per Hour of All Persons OPHPBS Index 1992 = 100 Q YES DLOG
40 Fred II  BLS Business Sector: Compensation Per Hour HCOMPBS Index 1992 = 100 Q YES DLOG
41 Fred I  St. Louis St. Louis Adjusted Reserves ADJRESSL Bil. of $ M YES DLOG
42 Fred IT  St. Louis St. Louis Adjusted Monetary Base AMBSL Bil. of $ M YES DLOG
43 Fred II  Moody’s Moody’s Seasoned Aaa Corporate Bond Yield AAA % M NO D
44 Fred II  Moody’s Moody’s Seasoned Baa Corporate Bond Yield BAA % M NO D
45 Fred II  FR Bank Prime Loan Rate MPRIME % M NO D
46 Fred II FR 3-Month Treasury Bill: Secondary Market Rate TB3MS % M NO D
47 Fred II  FR Currency in Circulation CURRCIR Bil. of $ M NO DD4LOG
48 Fred II FR Currency Component of M1 CURRSL Bil. of $ M YES DDLOG
49 Fred II  BLS CPI for All Urban Consumers: All Items Less Food CPIULFSL Ind. 1982-84 = 100 M YES DDLOG
50 Fred II  BLS Consumer Price Index for All Urban Consumers: CPIUFDSL Ind. 1982-84 = 100 M YES DDLOG
51 Fred II  BLS CPI For All Urban Consumers: All Items CPIAUCSL Ind. 1982-84 = 100 M YES DDLOG
52 Fred II BLS CPI: Intermediate Materials: Supplies & Components PPIITM Index 1982 = 100 M YES DDLOG
53 Fred II  BLS Producer Price Index: Industrial Commodities PPIIDC Index 1982 = 100 M NO DDLOG
54 Fred II  BLS PPI: Fuels & Related Products & Power PPIENG Index 1982 = 100 M NO DDLOG
55 Fred II  BLS PPI Finished Goods: Capital Equipment PPICPE Index 1982 = 100 M YES DDLOG
56 Fred II  BLS Producer Price Index: Finished Goods PPIFGS Index 1982 = 100 M YES DDLOG
57 Fred II  BLS Producer Price Index: Finished Consumer Goods PPIFCG Index 1982 = 100 M YES DDLOG
58 Fred II  BLS Producer Price Index: Finished Consumer Foods PPIFCF Index 1982 = 100 M YES DDLOG
59 Fred II  BLS PPI: Crude Materials for Further Processing PPICRM Index 1982 = 100 M YES DDLOG
60 Fred II  BLS Producer Price Index: All Commodities PPIACO Index 1982 = 100 M NO DLOG
61 Fred II  FR Commercial and Industrial Loans at All Comm. Banks BUSLOANS Bil. of $ M YES DLOG
62 Fred I FR Total Loans and Leases at Commercial Banks LOANS Bil. of $ M YES DLOG
63 Fred I FR Total Loans and Investments at All Commercial Banks LOANINV  Bil. of § M YES DLOG
64 Fred II FR Total Consumer Credit Outstanding TOTALSL Bil. of $ M YES DLOG
65 Fred I  FR Real Estate Loans at All Commercial Banks REALLN Bil. of $ M YES DLOG
66 Fred I FR Other Securities at All Commercial Banks OTHSEC Bil. of $ M YES DLOG
67 Fred II  FR Consumer (Individual) Loans at All Comm. Banks CONSUMER Bil. of $ M YES DLOG
68 Fred II BLS All Employees: Construction USCONS Thous. M YES DLOG
69 Fred II BLS Total Nonfarm Payrolls: All Employees PAYEMS Thous. M YES DLOG
70 Fred II BLS Employees on Nonfarm Payrolls: Manufacturing MANEMP Thous. M YES DLOG
71 Fred II BLS Unemployed: 16 Years & Over UNEMPLOY Thous. M YES DLOG
72 Fred II BLS Civilian Unemployment Rate UNRATE % M YES DLOG
73 Fred II BLS Civilian Participation Rate CIVPART % M YES DLOG
74 Fred II BLS Civilian Labor Force CLF160V Thous. M YES DLOG
75 Fred II BLS Civilian Employment: Sixteen Years & Over CE160V Thous. M YES DLOG
76 Fred II BLS Civilian Employment-Population Ratio EMRATIO % M YES DLOG
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Original Variable ID Code in Orig. Seas.

Database  Source Description the Database Units Freq. Adj. Treatment
77 EconStats FR Industrial Production: total Index M YES DLOG
78 EconStats FR Industrial Production: Manufacturing (SIC-based) Index M YES DLOG
79 Datastream ISM ISM Manufacturers Survey: Supplier Delivery Index USNAPMDL Index M YES NONE
80 Datastream ISM Chicago Purchasing Manager Business Barometer USPMCUBB % M NO NONE
81 Datastream ISM ISM Manufacturers Survey: New Orders Index USNAPMNO Index M YES NONE
82 Datastream ISM ISM Manufacturers Survey: Employment Index USNAPMIV Index M YES NONE
83 Datastream ISM ISM Manufacturers Survey: Production Index USNAPMEM Index M YES NONE
84 Datastream ISM ISM Purchasing Managers Index (MFG Survey) USNAPMPR Index M YES NONE
85 Datastream BC Manufacturing Shipments - Total USMNSHIPB Bil. of $§ M YES DLOG
86 Datastream BC Shipments of Durable Goods USSHDURGB Bil. of $§ M YES DLOG
87 Datastream BC Shipments of Non-Durable Goods USSHNONDBBIl. of $ M YES DLOG
88 Datastream S&P Standard & Poor’s 500 (monthly average) US500STK Index M NO DLOG
89 Datastream FT Dow Jones Industrial Share Price Index USSHRPRCF Index M NO DLOG
Abbreviations:

MW: Mark Watson’s home page (http://www.wws.princeton.edu/ mwatson/publi.html)

Fred II: Fred II database of the Federal Reserve Bank of St. Louis

BEA: Bureau of Economic Analysis

BLS: Bureau of Labor Statistics

FR: Federal Reserve Board

St Louis: Federal Reserve Bank of St. Louis
ISM: Institute for Supply Management

BC: Bureau of Census

S&P: Standard & Poors’

FT: Financial Times

Q: Quarterly

M: Monthly (we take quarterly averages)
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