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1 Introduction

It has long been emphasized1that for a large part of the cross-section of firms, invest-

ment responds to innovations in the cash-flow process. Interestingly, it has also been

established that the sensitivity of capital expenditures to variations in cash flows is

much greater for small and young firms. Such sensitivity may be due to a simple

selection process, as in the models of Jovanovic [17] and Alti [2]. In either paper,

entrepreneurs start out not knowing the productivity of their firms and learn about

it by observing the cash-flows realizations. An alternative explanation, investigated

in a number of recent empirical studies,2is that the investment cash-flow sensitivity

is due to financing constraints. In this paper we consider an infinitely repeated bor-

rowing and lending relationship, where asymmetric information with respect to the

borrower’s (firm’s) cash-flows induces moral hazard. We show that borrowing con-

straints emerge as a feature of the optimal long-term lending contract, and that such

constraints relax as the value of the borrower’s claim to future cash-flows increases.

The optimal contract predicts that, in agreement with the empirical evidence,3 the

survival rate increases, and the investment cash-flow sensitivity decreases, with age

and size.

The model is as follows. At time zero the borrower (entrepreneur) has a project

that requires a fixed initial investment. The initial investment is financed by a lender

(bank), with unlimited resources. Once the project is in operation, an advancement

of working capital is required each period, which is also provided by the bank.

Revenues increase with the amount of capital advanced. At any point in time the

project can be discontinued. Both, the borrower and the lender, are risk neutral and

discount future flows at the same rate. Furthermore, every period there is a positive,

constant probability that revenues are lost. We assume that the revenues’ realization

is private information for the firm; the lender does not have the possibility to verify

whether revenues are strictly positive or zero.

To our knowledge, Fazzari, Hubbard and Petersen [11] are the first to use the

1See Fazzari, Hubbard, and Petersen [11], for example
2See the survey later in this section.
3See, for example, Evans [10], Hall [16], and Dunne, Roberts, and Samuelson [8].
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cross-sectional variation in the correlation between investment and cash-flows to in-

vestigate whether the same correlation is as a signal of financing constraints. They

estimate reduced-form investment equations across groups of firms classified by their

dividend behavior. Their results indicate a substantially greater sensitivity of in-

vestment to cash flows for those firms that plow back most of their earnings. It has

been rightly pointed out, however, that a positive investment-cash flow sensitivity

can be interpreted as a signal of borrowing constraints only if we can adequately

control for the marginal value of investment. A natural way to do so is to include

Tobin’s Q in the regression equation. The problem is that if average Q (the measure

actually observed) differs from marginal Q, cash-flows could be positively correlated

with investment just because they provide information on the marginal value of

investment that is not already reflected in the control.

Gilchrist and Himmelberg [14] address this issue. In their study, they use esti-

mates from a set of VAR forecasting equations in order to construct a proxy for the

expected discounted stream of marginal return to investment. Most importantly,

cash flow is included as one of the fundamentals in the VAR equations, so that

any additional sensitivity of investment to cash flow can be interpreted as evidence

of capital market imperfections. Their results are essentially consistent with the

findings of Fazzari, Hubbard, and Petersen.

Gertler and Gilchrist [13] consider the response of manufacturing firms of differ-

ent size to innovations in monetary policy. They find that small firms account for

a disproportionate share of the decline in production that follows a tightening of

monetary policy.

Whited [22] applies a methodology already used in consumption studies in or-

der to study the effects of borrowing constraints on household expenditures. This

methodology exploits the observation that the investment Euler equation of the

standard neoclassical model should be violated for firms that face financing con-

straints. Whited partitions the firms in his sample in two sets depending on several

measures of financial distress and finds that the unconstrained Euler equation fails

to hold for the a priori constrained firms, while it performs much better for the

remaining firms.
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There is an extensive literature on optimal financing contracts with moral haz-

ard. In borrowing/lending relationships, moral hazard can have either one of two

sources: limited commitment (risk of repudiation) or asymmetric information. To

our knowledge, Eaton and Gersowitz [9] were the first to model the case of limited

commitment. A more recent contribution in this line of research is Albuquerque

and Hopenhayn [1], which in some sense can be considered companion to this pa-

per, given the similarity of the two environments. Atkeson [3] studies the effects

of both limited commitment and asymmetric information in his analysis of interna-

tional lending.

Gertler [12] studies the optimal contract between a lender and a borrower in a

three-period production economy with asymmetric information. Even though our

structure and Gertler’s look very much alike, they differ in at least two fundamental

respects. First, Gertler focuses on the ability of his model to generate large output

fluctuation through the magnification of relatively small productivity shocks, while

our interest is mainly in the predictions for industry dynamics. Second, while Gertler

considers a finite-horizon model, our choice is to analyze the infinite-horizon case.

The recursive structure of our problem allows us a much sharper characterization

of the optimal contract and of its implications.

The studies that are closest to ours are working papers by Quadrini [18] and

DeMarzo and Fishman [7]. Both characterize the optimal lending contract in envi-

ronments characterized by asymmetric information. Quadrini, in particular, focuses

on the implications of the contract for firm dynamics. DeMarzo and Fishman in-

stead, are interested mainly in the implementation of the long-term arrangement by

means of simple contracts.

Finally, we want to acknowledge that, as it is the case for all papers that study

infinitely repeated relationships with moral hazard, our own paper owes a great deal

to the early work of Radner [19], Rogerson [20], Green [15], and Spear and Srivastava

[21].

The remainder of this paper is organized as follows. The model is introduced in

Section 2. In Section 3 we characterize the main properties of the optimal contract.

The implications for firm survival are described in Section 4. In Section 5 we provide
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necessary and sufficient conditions for the existence of the optimal contract and we

relate the value attributed by the contract to the entrepreneur, to his initial capital.

Section 6 concludes.

2 The Model.

Time is discrete and the time horizon is infinite. At time zero the entrepreneur has a

project which requires a fixed initial investment I0 > 0 and a per-period investment

of working capital. Let kt be the amount of working capital invested in the project

- its scale - in period t. The project is successful with probability p, in which case

the entrepreneur collects revenues R(kt). If the project fails, revenues are zero.

We assume that the function R is continuous, uniformly bounded from above, and

strictly concave. At the beginning of every period the project can be liquidated.

The liquidation generates a scrap value S.

We assume that the lender cannot observe the revenue outcome. In other words,

such outcome is private information for the entrepreneur.

The entrepreneur’s net worth is given by M < I0. Therefore, to undertake the

project, he requires a lender (bank) to finance part of the initial setup cost and

the project investments in every period. We assume that in every period the en-

trepreneur is liable for payments to the lender only to the extent of current revenues.

Therefore the firm is restricted at all times to a nonnegative cash flow. 4

Both the borrower and the lender are risk neutral, discount flows using the same

discount factor δ ∈ (0, 1), and are able to commit to a long term contract.

We model the relation between the bank and the entrepreneur as a messaging

game. At time 0 the bank makes a take-it-or-leave-it offer to the entrepreneur. The

offer consists of a contract whose terms can be contingent on all public information.

Let θ be a Bernoulli random variable, with θ ∈ Θ ≡ {H, L} and prob{θ = H} = p.

Revenues are positive (and equal to R(k)) when θ = H and identically zero when

θ = L. We invoke the Revelation Principle to reduce the message space to the set

Θ. Thus a reporting strategy for the entrepreneur is given by θ̂ = {θ̂t(θ
t)}∞t=1, where

θt = (θ1, ..., θt).

4This assumption can be easily relaxed to a lower bound.
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Figure 1: The Timing.

We say that a sequence of realizations θt induces an history ht = (θ̂1, ..., θ̂t). A

long-term contract is denoted by σ = {αt(h
t−1), Qt(h

t−1), kt(h
t−1), τt(h

t)}. That is,

the contract specifies a contingent policy of liquidation probabilities αt and transfers

Qt from the lender to the entrepreneur (conditional on liquidation) and capital

advancements kt and transfers τt from the entrepreneur to the lender (conditional

on survival).

The timing is the same at every information node (i.e. after every history ht) and

is described in Figure 1. At the beginning of the period, the lender has the chance

of liquidating the project. The contract dictates that he will do so with probability

αt(h
t−1). In case liquidation occurs, the entrepreneur is compensated with a value

Qt(h
t−1), while the lender receives S−Qt(h

t−1). In the alternative case, in which the

project is not liquidated, the lender provides the entrepreneur with capital kt(h
t−1).

Thereafter, the entrepreneur observes the revenue realization and makes a report to

the lender. The lender will require a transfer τt(h
t), where ht = (ht−1, θ̂t).

At every time t, conditional on success, the entrepreneur will receive a net cash-

flow R(kt)− τt. We assume, without loss of generality, that these resources are fully

consumed by the entrepreneur (i.e. not reinvested in the business venture).5 As

a consequence, the nonnegativity constraint on cash-flows of the firm requires that

τt ≤ R(kt), implying that when the project fails no payments are made to the bank.

5Alternatively, we might allow the entrepreneur to save and assume that the bank can observe
the return on his wealth and monitor the size of the project.
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We are now in the position to provide our definition of feasible contract.

Definition 1 A contract σ is feasible if ∀ t ≥ 1 and ∀ ht−1 ∈ Θt

(i) αt(h
t−1) ∈ [0, 1],

(ii) Qt(h
t−1) ≥ 0,

(iii) τt(h
t−1, H) ≤ R(kt(h

t−1)),

(iv) τt(h
t−1, L) ≤ 0.

After every history ht−1, a pair (θ̂, σ) implies expected discounted cash flows

for the entrepreneur and the lender. Denote such values as Vt(θ̂,σ, ht−1) and

Bt(θ̂,σ, ht−1), respectively.

Definition 2 A contract σ is incentive compatible if ∀ θ̂.

V1(θ, σ, h0) ≥ V1(θ̂, σ, h0)

Now define the set V ≡ {V | ∃ σ s.t. (feas), (ic) and V1 [σ,θ, h0] = V } . V is

the set of equity values that can be generated by feasible and incentive compatible

contracts. Then, if V is the expected discounted cash flow that the lender offers to

the entrepreneur, the bank will choose the contract that delivers to him the value

sup B(V ), where B (V ) ≡ {B | ∃ σ s.t. V1 [σ,θ, h0] = V and B1 [σ,θ, h0] = B}.

2.1 A Benchmark: Contracts under Symmetric Informa-
tion.

Before venturing into the characterization of the optimal contract with private in-

formation, we find it useful to study the case of symmetric information. This is, the

scenario in which the lender observes the revenue realizations and thus can condi-

tion the terms of the contract on them. Since the two agents discount cash flows

at the same rate, the optimal contract will maximize the total expected discounted

profits for the match. In turn, this result is achieved by having the lender provide

the entrepreneur with the unconstrained efficient amount of capital in every period.

The properties we have assumed for the revenue functions R are clearly suffi-

cient for existence and uniqueness of the solution to the static profit maximiza-

tion problem. Thus the unconstrained efficient capital advancement is given by
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k∗ ≡ arg max
k

pR (k) − k and the per-period total surplus is π∗ ≡ max
k

pR (k) − k.

Then the total surplus generated by the optimal contract under symmetric infor-

mation is given by W̃ ≡ π∗
1−δ

. In order to avoid trivial results in the analysis that

follows, we assume that W̃ > S.

All subdivisions of the surplus W̃ among the lender and entrepreneur are feasible,

provided that a nonnegative value is assigned to the entrepreneur. It is enough to

choose the appropriate stationary transfer policy τ(i), i = H, L.

2.2 The Contract with Private Information: a Recursive
Representation.

Following Green [15] we now recast the lender’s problem in recursive form, adopting

the entrepreneur’s entitlement V as state variable.6 It is important to notice that,

the entrepreneur being risk-neutral, the state variable V is in effect the expected

discounted value of the cash-flows that will accrue to the entrepreneur himself.

Therefore, it can be thought of as the value of the firm’s equity. We denote the

value function of the problem as W (V ). W (V ) is the expected discounted sum of

net revenues for the match when the entitlement of the borrower is V . In finance

jargon, W denotes the total value of the firm. The residual B ≡ W −V is the value

of debt. At the beginning of every period the lender decides whether to liquidate the

project, obtaining the value S, or keep it in operation. We start by defining the value

of letting the entrepreneur continuing. The value that the contract promises to the

entrepreneur is given by the expected current net cash-flow plus the discounted value

of the stream of future cash-flows. Therefore the optimal choices of a pair (k, τ) and

continuation values (V H , V L) must satisfy the following consistency requirement

(promise-keeping constraint):

V = p (R(k)− τ) + δ
[
pV H + (1− p) V L

]
. (1)

6Green [15] and Spear and Srivastava [21] were the first to show that, under mild boundedness
conditions, there exists a recursive formulation for the maximization problem faced by the principal
in models of repeated moral hazard. Such conditions hold in our case. We decide to omit the proof
of equivalence between the sequence problem and the recursive problem in our case, because it
consists of the mere application of the techniques used by Atkenson and Lucas [4], among the
others.
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By the unimprovability principle, the incentive compatibility principle stated in

the previous section holds if and only if the following condition holds:

R(k)− τ + δV H ≥ R(k) + δV L.

This condition is known in the literature as temporary incentive-compatibility

constraint. We rewrite it as

τ ≤ δ
(
V H − V L

)
. (2)

Finally, the limited liability constraint requires that

τ ≤ R (k) . (3)

A continuation value V i (i = H, L) must be supported by a feasible continuation

contract. Any positive continuation value V i ≥ 0 is feasible, since it can be obtained

by giving the entrepreneur no capital and a transfer equal to V i, and then liquidating

the project. Any continuation value V i < 0 is not feasible, for it would violate the

limited liability constraint (3) in some future period. Hence, a value V can be

supported by a feasible contract if, and only if, V ≥ 0 . The optimal value of the

program (P1) defines the value of continuing the project, denoted as Ŵ (V ).

Ŵ (V ) = max
k,τ,V H ,V L

pR (k)− k + δ
[
pW

(
V H

)
+ (1− p) W (V L)

]

subject to (1), (2), (3),

and V H , V L ≥ 0.

(P1)

We now turn to the liquidation decision. Allowing for randomizations over the

liquidation decision is equivalent to assuming that at the beginning of every period

the lender offers a lottery to the borrower. The firm is liquidated with probability α,

in which case the borrower receives Q, and it is kept in operation with probability 1−
α. In the latter case, the borrower receives Vc, where c is mnemonic for continuation.7

Then the function W (V ) solves the following functional equation:

7In Section 3 we will show that randomizing on the liquidation choice is actually welfare-
improving.
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W (V ) = max
α∈[0,1],Q,Vc

αS + (1− α)Ŵ (Vc)

subject to αQ + (1− α) Vc = V,

and Q, Vc ≥ 0.

(P2)

We now turn to the characterization of the value function. Existence and unique-

ness of W (V ) follow from standard dynamic programming arguments. In order to

prove monotonicity and concavity we just need to verify that the contraction map-

ping defined by the programs (P1) and (P2) maps increasing and concave functions

into increasing and concave functions. The proofs of Propositions 1 and 2 show that

if the function W (V ) in problem (P1) satisfies these properties, so does Ŵ (V ).

Figure 3 below shows that the mapping defined by the problem (P2) preserves the

two properties. Also, notice that Ŵ (0) = δS. In fact, given the non-negativity

constraints on the continuation values, the only way to award a value of 0 to the

borrower is to set k = τ = 0 and liquidate with probability 1 in the following period.

It is easy to see that if the borrower’s entitlement reaches the level Ṽ ≡ pR(k∗)
1−δ

,

then the choices k = k∗, τ = 0, and V H = V L = Ṽ are feasible and are surplus-

maximizing. This implies that whenever the threshold Ṽ is reached, no further

constraints on capital will be necessary. The value entitlement is so high that the

firm is given every period the optimal capital advancement k∗ with no need of

repayment. As a consequence, we have that W (Ṽ ) = W̃ .

The results reached so far are formally stated in the next two propositions.8

Proposition 1 The value function is strictly increasing up to Ṽ and constant at

the level W̃ thereafter.

Proposition 2 The value function is concave.

3 Properties of the Optimal Lending Contract.

In this section we characterize analytically the properties of the optimal lending

contract. We begin by discussing the optimal liquidation policy and we then char-

8The proofs which are not included in the main body of the paper can be found in the Appendix.
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Figure 2: The Function Ŵ (V ).

acterize the policy functions (k, τ, V H , V l). The results derived here will be used in

Section 4 in order to determine predictions for firm survival.

3.1 Liquidation.

Given the discussion carried out above, it is clear that there exists a range of values

for the entrepreneur’s entitlement V , such that liquidation of the project is the

surplus-maximizing decision. Figure 3 shows that randomizing over such decision

yields a Pareto-improvement over deterministic liquidation. Since the objective

function in (P2) does not depend on the value Q and the function Ŵ (V ) is increasing,

it is clearly always optimal to set Q = 0 and (1−α)Vc = V . The continuation value

Vc that maximizes the surplus is given by Vr, where Vr is such that Ŵ (Vr) lies on the

tangent departing from S. Proposition 3 and Corollary 1 summarize these findings.

Proposition 3 There exists a value Vr, 0 < Vr < Ṽ such that W (V ) is linear over

[0, Vr].

Corollary 1 The probability of liquidation is given by

α(V ) =

{
(Vr−V )

Vr
if V ∈ [0, Vr],

0 if V > Vr.
(4)

Notice that for V ≤ Vrthe probability of liquidation is decreasing linearly in the

entrepreneur’s value entitlement.
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3.2 Optimal Pay-back Policy.

Proposition 4 states that, prior to achieving the unconstrained optimum Ṽ , it is

optimal to set τ = R(k). That is, all cash-flows produced by the project accrue

to the lender and the entrepreneur receives nothing. Once the value V reaches

the threshold Ṽ , the optimal pay-back policy becomes indeterminate, because the

surplus does not depend on the time pattern of the transfer τ . In particular, among

the optimal pay-back policies is the one that requires the entrepreneur to transfer all

the cash flows to the lender until his value reaches Ṽ , and to pay nothing thereafter.

The economic intuition behind these findings is straightforward. At every date

t, the lender needs to decide how to deliver on his promise Vt. He can reward the

entrepreneur with cash (i.e. allowe him to retain part of the current revenues) or

promise him an higher future value. Given that both agents are risk-neutral and

discount future cash-flows at the same rate, the optimal pay-back schedule is the

one that allows the equity value V to reach the threshold Ṽ in the shortest time

possible. In fact, as we have already argued, when V = Ṽ , it will possible for the

lender to advance the unconstrained efficient capital forever after.

Proposition 4 When V H (V ) < Ṽ , a necessary condition for the optimal contract

is that τ = R (k) . On the other hand, when V H (V ) ≥ Ṽ , any value τ such that

pR (k) + δV L ≤ V is consistent with the optimal contract.

Proof. For the sake of contradiction, assume there exists V such that W
(
V H

)
is
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strictly increasing and τ < R (k). Then it is possible to increase both τ and V H in

such a way that the constraints are still satisfied, but the surplus of the match has

increased strictly. ¥

Proposition 4 implies that, for the purpose of characterizing the remaining policy

functions, there is no loss of generality in making the following assumption.

Assumption 1 From now on we assume that τ = R (k) for every V .

We will see shortly that this hypothesis facilitates greatly our analysis.

3.3 The Dynamics of The Entrepreneur’s Value V.

Assumption 1 allows us to rewrite the problem (P1) as follows.

Ŵ (V ) = max
k,τ,V H ,V L

pR (k)− k + δ
[
pW

(
V H

)
+ (1− p) W (V L)

]

subject to δ
[
pV H + (1− p) V L

]
= V (5)

R (k) ≤ δ
(
V H − V L

)
(6)

and V H , V L ≥ 0.

Proposition 2 (concavity) implies that the value function is differentiable almost

everywhere. In turn, this means that in all but a countable number of entitlements

V , the following conditions are necessary for the optimal contract:

R
′
(k) =

1

p− µ
(7)

W
′ (

V H
)

=

(
λ− µ

p

)
(8)

W
′ (

V L
)

= λ +
µ

1− p
(9)

λ, µ ≥ 0

, where λ and µ are the multipliers attached to constraints (5) and (6) respec-

tively. Using the envelope condition along with conditions (8) and (9), we also have

that
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λ = W
′
(V ) = pW

′ (
V H

)
+ (1− p) W

′ (
V L

)
. (10)

Figure 4 shows the qualitative behavior of the functions V H (V ) and V L (V ).9 We

already know that, for V < Vr, randomizing over the liquidation decision emerges

as an optimal strategy. Proposition 5 states that for V ≥ Vr the continuation values

are nondecreasing functions of the value entitlement. Notice that as a consequence

of Proposition 4, for V H (V ) > Ṽ the shape of the function V H (V ) depends on

the particular choice of pay-back policy τ(V ). Consistently with Assumption 1, we

choose to represent the case in which τ(V ) = R[k(V )] for every V .

Proposition 5 The following conditions hold in the optimal contract:

1. (i) V < Ṽ implies V L (V ) < V < V H (V ); (ii) V ≥ Ṽ implies V L (V ) ≤ V ≤
V H (V ).

2. the policy functions V H (V ) and V L (V ) are nondecreasing in V .

Up to this point we have dedicated a sizeable part of our discussion to the

liquidation decision and to the recommendations of the contract in the case in which

V reaches the threshold Ṽ . However, we have not discussed whether and under

which conditions either one of the two events actually occur. We are now in the

9Lemma 4 shows that the policies V H and V L are single-valued and continuous.
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position to fill this gap. Proposition 6 characterizes the limiting behavior of the

stochastic process for the equity value Vt. It turns out that either the firm exits (it

is liquidated) or it reaches the unconstrained optimum.

Lemma 1 The optimal contract implies that Vt is a submartingale.

Proof. Using (1) and (3) we obtain that V ≤ pV 1 + (1− p) V L. ¥

Proposition 6 The firm either exits or reaches the unconstrained optimum almost

surely. That is, the limit distribution of firm’s value exists and is degenerate, with

two absorbing points.

Proof. Given Lemma 1, the convergence of Vt follows easily from a standard Sub-

martingale Convergence Theorem like Theorem 7.4.3 in Ash (1972). Since V H (V )

is continuous and increasing for V ≤ Ṽ and V H
(
Ṽ

)
> Ṽ , it follows that a finite

sequence of positive revenue realizations is sufficient for a firm with entitlement V to

reach the state Ṽ . Since any such sequence occurs with positive probability, a firm

which does not exit reaches the unconstrained state with probability measure one.

On the other hand, V L (V ) is also increasing, continuous and uniformly bounded

from below, implying that lim
V→Vr

V L (V ) < Vr. Thus a sequence of negative shocks

is sufficient to lead to the randomization area a firm starting from any V < Ṽ . In

other words, a firm that does not reach Ṽ will exit almost surely. ¥

Figure 6 shows a few sample paths for the equity value V . While some firms end

up being liquidated, others reach the unconstrained state Ṽ . We find it remarkable

that a simple model with i.i.d. shocks is able to generate such a level of heterogeneity

in the evolution of the stochastic process Vt.

3.4 The Optimal Capital Advancement Policy.

In Section 1 we have briefly summarized a series of empirical papers that support

the conjecture that the observed investment-cash flow sensitivity is actually due to

existence of borrowing constraints. In subsection 2.1 we have shown that, under

symmetric information, it would always be optimal for the lender to provide the en-

trepreneur with the unconstrained efficient amount of capital. However, this ceases
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to be the case when the lender cannot observe the firm’s cash flows. Proposition

7 proves that borrowing constraints are indeed a feature of the optimal long-term

contract under asymmetric information.

Proposition 7 i) V < Ṽ implies k(V ) < k∗;(ii) V ≥ Ṽ implies k (V ) = k∗.

Using equations (7), (8) and (9) we obtain that a necessary condition for the

optimal contract is that

(1− p)[W
′
(V L)−W

′
(V H)] = 1− 1

pR′(k)
. (11)

Condition (11) shows that the optimal capital advancement k satisfies k < k∗

if and only if W
′
(V L) > W

′
(V H). In light of Proposition 5, strict concavity of the

value function W (V ) would be sufficient to prove Proposition 7. Even without this

property, however, we are able to show that the result holds.

The economic intuition behind this finding is as follows. Lemma 3 in the ap-

pendix shows that for V < Ṽ the incentive compatibility constraint (2) binds.

Therefore the level of capital advancement is tied to the spread in equity’s values

(V H − V L). Jensen inequality implies that such spread is costly, so that k < k∗ un-

less the value function W is flat in the relevant portion. Figure 7 shows a few sample

paths for the capital advancement. Paths terminate either because of liquidation or

because the firm reached the optimal size k∗.

Given the results presented so far, the reader may expect the capital advancement

to be strictly increasing in the value entitlement V . Proposition 8 shows that this

is not the case. At a given value entitlement V < Ṽ , any increase in k must be

accompanied by an increase in the spread between promised values (V H − V L).

Condition (11) dictates that the optimal level of capital will equate the marginal

benefit deriving from higher current surplus to the marginal cost consisting in lower

future surplus. This implies that the capital advancement will be increasing in V if

and only if this marginal cost is decreasing. We know that in a neighborhood of Ṽ

this is actually the case, since the value function is globally concave, and linear for

V > Ṽ . However, this is not a global property. Just to the right of Vr, the marginal
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cost is increasing, since the value function is linear also over the randomization zone

[0, Vr].

Proposition 8 There exist value entitlements V ∗ and V ∗∗ , with Vr < V ∗ ≤ V ∗∗ <

Ṽ , such that:

1. the policy function k (V ) is non-increasing for V ∈ [Vr, V
∗];

2. the policy function k (V ) is non-decreasing for V ∈
[
V ∗∗, Ṽ

]
.

Proof. We have just seen that a necessary condition for the optimal contract is that

(1− p)
(
W

′ (
V L

)−W
′ (

V H
))

= 1− 1
pR′ (k)

.

1) By Proposition 4, it follows that V L (Vr) < Vr. By continuity of the function

V L (·), there exists V > Vr such that V L (V ) < Vr. Combining this fact with

monotonicity of V H (·) and concavity of the value function yields the prediction

that
(
W

′ (
V L

)−W
′
(V 1)

)
is non-decreasing and thus k (·) non-increasing at Vr.

2) We know that V H
(
Ṽ

)
> Ṽ . By continuity of the function V H (·), there exists

V < Ṽ such that V H (V ) > Ṽ . Combining this fact with monotonicity of V L (·) and

concavity of the value function yields the prediction that
(
W

′ (
V L

)−W
′ (

V H
))

is

non-increasing and thus k (·) non-decreasing at V . ¥

All of our computer simulations show that the set of entitlement values V such

that k(V ) is non-increasing is very small. Figure 8 shows the typical shape of the

policy function for the capital advancement.

Given the available empirical evidence on the sensitivity of investment to cash-

flows, it is of great interest to characterize how capital advancement reacts to the

realizations of the revenue process in our model. Since by Proposition 5, V H(V ) >

V > V L(V ) for V < Ṽ , monotonicity of the policy function k(V ) would insure that,

when V < Ṽ , the level of capital invested increases following a success (positive

revenues) and decreases following a failure (no revenues). As we have just seen,

however, the function k(V ) is not monotone. Thus we evaluate the performance

of our model along this dimension by means of numerical experiments. It turns

out that for most parameterizations, the result still holds. Figure 9 shows how the
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growth rate of capital responds to good and bad realizations of the revenue process.

Success is followed by an increase in the capital invested, while failure triggers a

decline. Also, notice how the magnitude of the response of investment to cash-flow

innovations changes with V . Percentage changes in capital tend to be larger (in

absolute value) for small values of V and show a tendency to decline as V increases.

When V equals the threshold Ṽ , the level of capital invested is independent of

cash-flows.

4 Firm’s Survival.

As mentioned in the introduction, there is widespread agreement on the finding that

failure rates decrease with firm’s age and size. Moreover, conditional on age, a larger

size implies a lower failure rate. Our model predicts that the conditional probability

of survival increases with the value of the firm’s equity V . The formal argument

is given by Proposition 9, which states that the probability of a firm exiting before

any given date, conditional on not having exited before, is weakly decreasing in the

value of the firm’s equity V , and it equals zero for V ≥ Ṽ .

Proposition 9 Let T be the life length of the firm. Then the reliability function

RV (t), where RV (t) = Pr (T > t | V ), is increasing in V .

Proof. Let Ωi consists of the events {∅, {L} , {H} , Ωi}. Denote by (Ωi,Fi, µi) the

obvious probability space. Recall that θi is the random variable which equals H when

revenues are strictly positive and equals L when revenues are zero. Then, for any n ≥
1, there exists a probability space (Ωn,Fn, µn) such that Ωn = Πn

i=1Ωi , µn = Πn
i=1µi

and Fn is the Borel σ-algebra generated by Ωn. Obviously the random sequence

θn = {θi}n
i=1 is measurable with respect to Fn. For any measurable sequence en,

denote by Wen (V ) the surplus attained by a match with starting entitlement V , after

the sequence en has occurred. We say that the path en is terminated for V , if T < n

along that path. Finally and for every m, m < n, we say that em ⊂ en if en and em

coincide for i ≤ m. Now consider any pair of entitlement values (V, V
′
) such that

V < V
′
. For every n, consider the set of measurable paths {en} which are terminated

for V . By monotonicity of the policy functions V H (V ) and V L (V ) it must be the
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case that those paths are not terminated yet for V
′
, and Wen

(
V
′)

> Wen (V ). This

fact insures that for any n, the set of measurable sequences which are terminated

for the firm starting with V
′
has a lower probability measure than the ones which

are terminated for the firm starting with V . ¥

A corollary of Proposition 9 is that for every cohort of firms and for every value

V < Ṽ , the fraction of entrepreneurs having an equity value less than V is de-

creasing and goes asymptotically to zero. The mass of firms in the unconstrained

state increases with time. In the limit, all surviving firms will receive the efficient

amount of capital. This implies that the exit rate is decreasing with age and tends

asymptotically to zero.

Corollary 2 The exit rate decreases with firm age.

It is important to notice that this result is due to the positive correlation between

firm age and value V . If we condition on V , the relation between exit rate and age

vanishes.

Proposition 8 shows that the optimal capital advancement policy is not increasing

in the value V for every V < Ṽ . However, as already argued in Subsection 3.4, our

computer simulations show that for most parameterizations the set of equity values

for which the function k(V ) is not monotone, is very small. To the extent that k

is increasing in V , our model produces the further result that the failure rate is

decreasing in size, both unconditionally and controlling for age.

5 Existence.

So far we have overlooked two important questions. Under which conditions does

the optimal contract exist? Conditional on existence, how is the surplus (firm value)

split among lender and borrower at the time in which the contract is signed (i.e. as

of time t = 0)? In this section we address both questions.

Recall that the entrepreneur’s net worth is given by M < I0, where I0 is the initial

investment required by the project. Let V0 denote the expected discounted cash flow

that the contract assigns to the borrower at the time in which it is stipulated. Then

18



-

6

V

W (V )

Ṽ
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Figure 5: Existence.

the lender will be willing to provide financing to the entrepreneur, as long as V0

satisfies

[W (V0)− V0]− [I0 −M ] ≥ 0.

The term in the first square bracket is the portion of the expected discounted

value of cash flows generated by the project, that accrues to the lender, i.e. the

value of debt B0. The term in the second square bracket is the portion of the initial

investment that is financed by the lender. The entrepreneur will be willing to borrow

as long as V0 > M .

Thus the existence of the contract depends crucially on the difference [I0 −M ].

As it is clear from Figure 5, if such difference is large enough, a contract will not

exist.

For those cases in which the contract exists, our assumptions are not sufficient

to pin down the portion of surplus V0 attributed to the borrower. Howerever, if we

assume that the lending market is competitive, the value V0 will be determined by

the following simple problem:

max V0

s.t. [W (V0)− V0]− [I0 −M ] = 0. (12)

Differentiating the condition (12), we obtain that the optimal starting equity
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value V ∗
0 must satisfy

dV0

dM
=

1

1−W ′ (V ∗
0 )

.

It follows that, as long as W
′
(V ∗

0 ) < 1, the value of the entrepreneur V ∗
0 is

increasing in the initial net worth M . It turns out that W
′
(V ∗

0 ) < 1 is also a

necessary condition for optimality. In fact, by Propositions 1 and 2, if there exists

a value V0 such that (12) holds and W
′
(V0) > 1, then there must be a larger value

V ∗
0 that satisfies (12) and W

′
(V ∗

0 ) < 1. Thus we can state the following result.

Proposition 10 The equity value V ∗
0 is strictly increasing in the net worth of the

entrepreneur M .

6 Conclusion.

In this paper we have modelled a multi-period borrowing/lending relationship where

asymmetric information induces moral hazard. We have characterized the optimal

lending contract and we have shown that financing constraints arise endogenously as

a feature of such contract. We have also shown that, consistently with the empirical

evidence, financing constraints relax, and the survival rate increases, with age and

size.

There are obviously alternative ways of modelling borrowing constraints. At

this stage, it is not clear which one deserves more merit. It is our opinion that

empirical implications generated by different models can be used to discriminate

among them. Albuquerque and Hopenhayn [1] analyzes with great generality a

model of the borrower-lender relationship in which financing constraints arise as a

result of the assumption of limited commitment on the side of the borrower. It is

certainly of some interest to compare the predictions of the two models with respect

to firm dynamics. The two environments differ in an important respect. In fact

Albuquerque and Hopenhayn [1] predicts that, conditional on the state of nature,

profits will be non-decreasing over time. In other words, every time in which the

firm will transit in a state for which it had already transited in the past, it will

receive a greater capital advancement than in that instance. Our model instead

does not impose this restriction on firm dynamics.
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In the introduction to this paper, we have recalled that economists still disagree

on the causes of the observed correlation between investment and cash-flows. Once

again, we believe that empirical implications of alternative models can be useful

in order to discriminate among the possible explanations. In particular we notice

that our model predicts that firm size is the real determinant of the cross-sectional

variation in investment cash-flow sensitivity and survival rates. Such phenomena

are correlated with age only because age is positively correlated with size. Selection

models such as Jovanovic [17] and Alti [2] predict exactly the opposite. That is,

age is the determinant of the variation in both investment cash-flow sensitivity and

survival rates.

Finally, we suggest that our model has interesting applications in macroeco-

nomics. Starting with Bernanke and Gertler [5], there has been a growing interest

in understanding to what extent various forms of frictions in financial markets may

generate and/or amplify macroeconomic fluctuations. However, the financial ar-

rangements that are considered in this literature are never intertemporally optimal,

meaning that contracts’ provisions are not contingent on all public information. The

only exception is recent work by Cooley, Quadrini, and Marimon [6], that embed the

model by Albuquerque and Hopenhayn [1] in a general equilibrium framework. It

would definitely be of interest to perform a similar exercise with the model developed

in this paper, and then contrast the predictions generated by the two approaches.
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A Appendix - Proofs and Lemmas

Proposition 1.

Proof. We first prove weak monotonicity. In order to do so we just need to prove

that if the function W (V ) in the problem (P1) is non-decreasing, then so is Ŵ (V ).

Thus assume the value function on the right-hand side of the operator is increasing.

Consider any couple V , V
′
such that V

′
> V . Then it is feasible to choose k

(
V
′)

=

k (V ), τ
(
V
′)

= τ (V ) and V H
(
V
′)

> V H (V ), V L
(
V
′)

> V L (V ) such that (1)

is satisfied. It follows that Ŵ
(
V
′) ≥ Ŵ (V ). Now we prove that V > Ṽ implies

W (V ) = W̃ . Consider any V such that V ≥ Ṽ ; then it must be that W (V ) ≤ W̃

because the information-constrained optimal contract cannot attain a strictly higher

surplus than the one attained by the contract with perfect information. Thus we just

have to prove that W
(
Ṽ

)
= W̃ . Notice that it is feasible to choose V H = V L = Ṽ

, k = k∗ and τ = 0. Then it easy to verify that W̃ satisfies the Bellman equation

for V = Ṽ . Finally we prove that W (V ) < W̃ implies V < Ṽ . For the sake of

contradiction, assume that there exists V < Ṽ such that W (V ) = W̃ . In turn, this

implies that k = k∗ and W
(
V H

)
= W

(
V L

)
= W̃ . By Lemma 2 below, we have

that in this case V L (V ) < V must hold. By repeating this argument, we eventually

get that W (V ) = W̃ for every V . But this cannot be true because W (0) = S.

Strict monotonicity over the range
[
0, Ṽ

]
follows as a corollary of Proposition 2

(concavity). To see why, assume by contradiction that there exists V
′

< V < Ṽ

such that W
(
V
′)

= W (V ). Then by concavity of the value function it must be the

case that W
(
V
′)

= W (V ) = W̃ , which contradicts the result just proved. ¥

Proposition 2.

Proof. The first thing to notice is that the feasible set as defined by constraints (1)-

(3) is not convex. Thus we decide to introduce a change of variable. Let x = R (k).

Then we can rewrite the maximization problem as follows:
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Ŵ (V ) = max
x,τ,V H ,V L

px−R−1 (x) + δ
[
pW

(
V H

)
+ (1− p) W (V L)

]
,

subject to p (x− τ) + δ
[
pV H + (1− p) V L

]
= V,

τ ≤ δ
(
V H − V L

)
,

τ ≤ x,

and V H , V L ≥ 0.

Now assume that the value function W (V ) is concave. Then Ŵ (V ) is also

concave. ¥

Lemma 2 Let V < Ṽ and k = k∗. Then it follows that V L (V ) < V .

Proof. By (1), V L is maximal when τ = R(k). By (2), we obtain that R (k∗) ≤
δ
(
V H − V L

)
. Substituting in (1) we get that pR (k∗)+ δV L ≤ V or V L ≤ V−pR(k∗)

δ
.

Since
eV−pR(k∗)

δ
= Ṽ , we have that V−pR(k∗)

δ
< V . Combining the two inequalities we

get that V L < V . ¥

Lemma 3 The IC constraint (2) is binding for every V < Ṽ .

Proof. By Proposition 7, V < Ṽ implies that k (V ) < k∗. For the sake of con-

tradiction, assume there exists V such that R (k) < δ
(
V H − V L

)
. Then by strict

monotonicity of the revenue function it is possible to increase the surplus of the

match strictly just by raising k. But this contradicts optimality. ¥

Proof. We just need to show part ii). Since W (V ) = W̃ = pR(k∗)−k∗
1−δ

when V ≥ Ṽ ,

it must be the case that k (V ) = k∗. ¥

Lemma 4 The policies V H(V ) and V L(V ) are continuous and single-valued.

Proof. Again, consider the problem as it is written above:

Ŵ (V ) = max
x

px−R−1 (x) + δ

[
pW

(
V + (1− p) x

δ

)
+ (1− p) W

(
V − px

δ

)]

It turns out that the function on the right-hand side is strictly concave in x,

implying that x (V ) is single-valued. Then strict monotonicity of the revenue func-

tion and of the value function (on the range
[
0, Ṽ

]
) imply that the policies k (V ),

23



V H (V ) and V L (V ) are also single-valued. Continuity follows by the Theorem of the

Maximum, which implies that V H (V ) and V L (V ) are compact-valued and upper-

hemicontinuous correspondences. ¥

Proposition 5.

Proof. 1i) From above, we have that V H = V +(1−p)x
δ

V L = V−px
δ

. This already

implies V H > V and V H > V L. Then condition (10) implies that V > V L. In fact

λ = W
′ (

V H
)

= W
′ (

V L
)

would imply k = k∗, which has been ruled out. Thus in

solution it must be the case that W
′
(V 1) < λ < W

′ (
V L

)
.

1ii) Trivial.

2i) Assume there exist V , V
′

such that V
′

> V and V L
(
V
′)

< V L (V ). By

concavity of the value function and (9), µ
(
V
′) ≥ µ (V ) and thus k

(
V
′) ≤ k (V ).

In turn, this implies that
(
V H − V L

) (
V
′) ≤ (

V H − V L
)
(V ). Since V H

(
V
′) ≥

V H (V ) by (8), it must be the case that V L
(
V
′) ≥ V L (V ), contradicting the absurd

assumption.

2ii) The proof of the monotonicity of V H (·) is similar. Assume there exist V ,

V
′

such that V
′

> V and V H
(
V
′)

< V H (V ). Then by concavity of the value

function and (8), µ
(
V
′) ≤ µ (V ). On the other hand, since V L (·) is non-decreasing,

(
V H − V L

) (
V
′)

<
(
V H − V L

)
(V ) and k

(
V
′)

< k (V ) as well. Finally, by (7)

µ
(
V
′)

> µ (V ), leading to a contradiction. ¥

Proposition 7.

Proof. i) By contradiction, assume that k (V ) = k∗. If W
′ (

V H
)

< W
′ (

V L
)
, the

surplus can be raised by decreasing V H and increasing V L. If W
′ (

V H
)

= W
′ (

V L
)

then the value function is linear over the range
(
V L, V H

)
and thus pW

(
V H

)
+

(1− p) W
(
V L

)
= W

(
V
δ

)
. On the other hand, W (V ) < W̃ implies pW

(
V H

)
+

(1− p) W
(
V L

)
< W (V ). Thus pW

(
V H

)
+ (1− p) W

(
V L

)
= W

(
V
δ

)
> W (V ) >

pW
(
V H

)
+ (1− p) W

(
V L

)
which is a contradiction.ii) Notice that for V ≥ Ṽ ,

W (V ) = W̃ ≡ pR(k∗)−k∗
1−δ

. The only way such surplus can be achieved is by setting

k(V ) = k∗. ¥
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Figure 6: Sample Paths for the Equity Value V.
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Figure 8: The Policy Function for the Capital Advancement.
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Figure 9: Growth rates of capital conditional on revenue realization.
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