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Abstract 
Spatial econometrics has been so far concerned with the specification of regression models that 
seek to explain the spatial dependence inherent with spatial data in a similar fashion as the time 
series models try to capture serial dependence. In most of the cases the literature that treated both 
the purely spatial (cross-sectional) and the spatio-temporal (panel data) cases examined almost 
exclusively two models: the so-called spatial lag and spatial error models (Anselin and Bera, 
1999; LeSage, 1999) whose probabilistic basis are quite weak. When alternatives to the basic 
linear regression model are considered the framework does not change in its substance. In this 
paper we wish to present the spatial linear regression model within a framework that is explicitly 
linked with the theory of random fields introduced by Yaglom (1962. This will allow us to present 
the problem in a more general way and to introduce a wider variety of possible specifications that 
can be adapted to the various empirical situations. 
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1 Introduction 
  
Historically, spatial econometric methods directly stem from the developments 

that were introduced in the last century in the statistical literature to give consideration 
to the problem of the violation of the classical sampling model (the urn paradigm) with 
a big emphasis given to similarities due to spatial proximity. These developments were 
necessary to provide the right environment for the explanation of spatial diffusion 
phenomena like those frequently encountered in many applied fields like epidemiology, 
geography, agricultural studies, geology, image analysis, regional sciences, astronomy, 
archaeology and many others (for a review see Haining, 2003). 

The spatial statistical techniques that are at the basis of spatial econometrics date 
back to about half a century ago and can be conventionally dated to a seminal paper by 
Peter Whittle (1954) followed by other important contributions of the same author 
(Whittle, 1962; 1963), by Bartlett (1964; 1975) and by Besag (1974) amongst the 
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others. The main results obtained led to a first codification in the seventies with some 
important publications like the celebrated books by Cliff and Ord (1973) and Bennett 
(1979). Other well-established textbooks followed in the eighties (Ripley, 1981; 1988; 
Upton and Fingleton, 1985; 1989; Griffith, 1988; Arbia, 1989 amongst the others), in 
the nineties (Haining, 1990; Cressie, 1991) and at the beginning of the new century 
(Haining, 2003). 

The term “spatial econometrics” was coined by Jean Paelinck in the late seventies 
(see Paelink and Klaassen, 1979), and it is meant to represent “a blend of economic 
theory, mathematical formalisation, and mathematical statistics” (page vii). Apart from 
some remarkable example of the possibility of using spatial statistical methods in 
economics (like e. g. that of Granger in the sixties and seventies; see Granger, 1969, 
1974), an important step forward in the historical development of the discipline is 
certainly constituted by the book published by Luc Anselin in the late eighties (Anselin, 
1988).  

However the integration between spatial methods and econometrics is still at an 
early stage. No mention is made, for instance, in some of the most recent introductory 
textbooks like Baltagi (1999), Berndt (1991), Davidson (2000), Dougherty (2002), 
Goldberg (1998), Griffith et. al (1993), Greene (2003), Gourieroux and Montfort 
(1995), Hayashi (2000), Hendry and Morgan (1997), Kennedy (1998), Peracchi (2001), 
Ruud (2000), Spanos (1999), Thomas (1997) and Verbeek (2000), Woolridge (2002b).  

Kmenta (1997; p. 512) acknowledges the problem of non independence of 
statistical observations in space. However no mention is made to  possible solutions to 
this problem. Maddala reports only a brief mention to the problem of spatial dependence 
amongst contiguous residuals of a linear regression (see Maddala, 2001, p. 228). A short 
mention can also be found in Johnston (1991; page 305), Kennedy (2003) and (Gujarati, 
2003; p. 441). 

The second edition of Baltagi’s well known textbook on panel data includes a short 
discussion of the problems generated by treating spatial panels. (Baltagi, 2001a; pp. 195-
197). Finally Woolridge (2002a) devotes a mention in the very first pages of his book to 
the issue of  spatial dependence (Woolridge, 2002; p. 6) and devotes a short section that 
develops the idea a bit more thoroughly when dealing with the various forms of 
dependence amongst (Woolridge, 2002a; p. 134).  

In fact it is not however until the years between the two millennia that we 
experience a growing interest of mainstream econometrics to spatial statistical methods, 
an interest that is witnessed by the increasing number of spatial econometric papers 
appeared in the econometric and applied economic journals. Amongst these important 
contribution are presented by Pinkse at al. (2002); Baltagi and Li (2001), Lee (2002), 
Conlwy and Topa (2002), Gelfand (1998), Bloomstein and Koper (1998), Pinkse and 
Slade (1998), Conley (1999), keleijan and Prucha (2001), Chen and Conley (2001), 
Baltagi at al. (2003) Keleijan and Prucha (2003), Giacomini and Granger (2003), 
Driscol and Kraay (1998) Bella and Bockstael (2000) Beron at al., ( 2003). In a recent 
thorough review Florax and De Vlist (2003) survey 11 articles in econometric journals 
and 30 in applied economic journals only in the period after the year 2000! 

In all these applications the specification of spatial econometric models has been 
restricted to only two models: the so-called spatial lag model and spatial error model 
(Anselin and Bera, 1999; LeSage, 1999) whose probabilistic basis are quite weak. When 
alternatives to the basic linear regression model are considered (like e.g. in Beron and 
Vijverberg, 2004) the framework does not change. In this paper we wish to present the 
spatial linear regression model within a framework that is explicitly linked with the 
theory of random fields introduced by Yaglom (1957; 1961; 1962) and studied by 
Matern (1960) and Whittle (1954; 1963) this will allow us to present the problem in a 
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more general way and introduce a wider variety of possible specifications that can be 
adapted at the various empirical situations. 

In Section 2 we will review the two basic spatial regression models used in spatial 
econometrics. In Section 3 we discuss the specification of a spatial linear regression 
model based on a specific random field: the so-called bivariate Conditional 
AutoRegressive model (CAR) introduced by Besag (1974). In Section 4 we derive the 
likelihood of this model and we construct the test statistics for the hypothesis of spatial 
dependence. In Section 5 we extend this to the multivariate case. Finally in Section 6 we 
draw some tentative conclusions and indicate the path for further generalization and 
developments. 

 
 
2. Traditional model specifications in spatial econometrics 
 

 
2.1 The spatial error model 
 
 One of the most commonly used alternatives to the classical a-spatial regression 
that can be found in the spatial econometric literature is  the so-called spatial error 
model which represents a way to express formally the violation of the unrealistic 
condition of error independence across spatial units. The spatial error model is based on 
the hypothesis that, rather than modelling the whole set of variables involved in the 
specification as a vector random field, the problem of dependence can be eliminated by 
modelling the error component as a univariate random field. In this way the problem 
shifts from the direct modelling of the random field, say Zi = (Yi, Xi

 T)T, to the simpler 
problem of postulating a plausible form of spatial dependence for the errors. Of course, 
at least in principle, any random field model could be used for this aim (on random 
fields models see e.g. Besag, 1974; Cressie, 1993; for econometric applications see 
Arbia, 2005). However one of the most popular alternative to the white noise hypothesis 
adopted in the literature consists in postulating a SAR model for the non-systematic 
component. This formulation is referred in the literature as the “Spatial Error Model” or 
SEM (see Anselin, 1988Anselin and Bera, 1998; Anselin et al., 2004). 
 If we decide to model the non-systematic component of the model as a SAR 
random field, we need to redefine the linear regression model by supplementing the 
fundamental equation: 
 

ii
T

i ey += xβ     (43) 
 
with the simultaneous autoregressive expression for the error term: 
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where ui is a Gaussian spatial white noise, W∈ijw  and W a properly defined weight 
matrix based on the definition of neighbours  
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(on the definition of weight matrices see e.g.  
 In compact matrix notation Equations (43) and (44) become respectively 
 

 y = Xβ + e                                                                 (45)  
 

with x an n-by-k matrix of observations and  
 

uWee += ρ                                              (46) 
 

 Since u is Gaussian white noise field, then e is also Gaussian. If we make these 
assumptions the problem is transformed to a situation where it is necessary to make 
inference on the vector of unknown parameters θ ≡ (β, σ2, ρ) and, with the additional 
feature of normality introduced through the hypothesis on the random field u, the 
violation of the random sampling hypothesis is reduced to the study of the spatial 
autocorrelation which is present in the non-systematic component. 
 We know (see e.g. Cressie, 1993) that a SAR process is characterised by a 
variance-covariance matrix: 
 

T1 BIΣBIV −− −−= )()(                                                   (47) 
 
with B ≡ { ρ ij}, e ρij = ρ wij and Σ  a diagonal matrix of generic element σi

2= Var(ui), 
or, in the case of constant variances:  
 

T1 BIBIV −− −−= )()(2σ                                                       (48) 
 
 From Equation (45) we then derive e = y - Xβ and, since e is assumed to be 
distributed as a Gaussian SAR random field, we easily obtain the likelihood function 
given by: 
 

⎭
⎬
⎫

⎩
⎨
⎧−= −−

eVeVeeβ 122
1

22 ),(
2
1exp),()();,,( σρσρσρ TcL                  (49) 

 
 By substituting the expression e = y - Xβ and the explicit expression for the 
matrix V in this last equation and by taking the log we finally obtain the log-likelihood 
function: 
 

=),;,,( 2 Xyβσρl  

[ ] )()()()(
2

1)()(ln
2
1)ln(

2
),( 1

2
2 XβyBIBIXβyBIBIXy T1T1 −−−−−−−−−=

−−−−− Tnc
σ

σ  

      (50) 
 

It is known (Anselin, 1988; Le Sage, 1999) that Equation (50) cannot be 
maximized analytically due to the high degree of nonlinearity in the parameters and the 
computational procedures employed in the available softwares (e. g. Lesage, 1998, 
Geoda, ) are based on a partial likelihood function version of it. GLS estimators 
(Anselin, 1988) and approximate iterative techniques (Hordijk, 1974, Bartels, 1980 and 
Anselin, 1980) were also proposed in the literature. 
 Starting from the likelihood function reported in Equation (50) it is possible to 
build up tests of spatial independence. Indeed, if we consider that the non-systematic 
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component of the model obeys a SAR random field as postulated in this section, the test 
can be constructed considering the null hypothesis ρ=0 against the alternative 
hypothesis ρ≠0. Thus the likelihood-ratio test for the hypothesis of spatial independence 
can be easily obtained as: 
 

[ ] )()()()(1)()(ln 1

2 XβyBIBIXβyBIBI T1T1 −−−−−−−−=
−−−−− TLRT

σ
 

 )()(1
2 XβyXβy −−+ T

σ
                                              (51) 

 
 The above test is distributed as a χ2 with one degree of freedom. Two further 
tests of spatial independence based on the general expressions of the Wald test and of 
the Lagrange Multiplier were also proposed in the literature (Anselin, 1988; Arbia, 
2005).   
 
2.2 The Spatial Lag model 

   
A second alternative, that is particularly popular in the spatial econometric 

literature, is not based on any specific random field model. It rather consists in a 
technical expedient that seeks to account for the spatial dependence amongst data by 
adding the spatially lagged value of y as an extra independent variable in a similar 
fashion to the inclusion of a serially autoregressive term in a time series context. This 
model is often referred as the spatial lag model (e.g. in Anselin and Bera, 1998), or as 
the mixed regressive spatial autoregressive model (Anselin, 1988), or finally, as spatial 
autoregressive or SAR model (LeSage, 1999). This last definition is, however, 
particularly misleading because with the acronym SAR in spatial statistics we indicate 
the Simultaneous AutoRegressive field.  

The model can be written as the set of the following hypotheses: 
  

 i

n

j
jiji

T
i uywy ++= ∑

=1
ρxβ    (52) 

  
where β  is the usual k-by-1 vector of regressive parameters, xi the k-by-1 vector of 
explicative variables at site i, ρ   an autoregressive parameter, W∈ijw  the elements of 
a (possibly row-standardized) weight matrix and u a Gaussian spatial random field such 
that: 

 
 )u( Xuf  ∼ N(0, σ2In)   (53) 
 
with In an n-by-n identity matrix.  

The presence of the spatially lagged term amongst the esplicative variables 
induces (unlike the time series analogous specification) a correlation between the error 
term and the lagged variable itself (see Anselin and Bera, 1999). Thus Ordinary Least 
Squares do not provide consistent estimators in this specification. It is important to 
remark that this specific result does not depend on assumption A2 and it is irrespective 
of the properties of the non-systematic component. 

Let us write assumption (52) in a more compact matrix notation as 
 
 y = Xβ + Wyρ + u                     (54)  
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with X now indicating a n-by-k matrix of observations.  
 In what follows we will provide a probabilistic justification to Equation (54) 
using concepts of the random fields theory and we will introduce the derivation of the 
likelihood function for this alternative spatial regression model. Equation (54) can be 
interpreted as a non-stochastic linear regression where the matrix of observations X is 
assumed to be a fixed set of numbers. As a consequence of the lack of probabilistic 
assumptions on the dependent variables X, Equation (54) can be interpreted as a 
differential equation leading to a simultaneous Autoregressive (SAR) random field  in 
which it appears the additional constant term Xβ. The introduction of this term only 
affects the expected value of the random field: neither its variance nor its structure of 
dependence. We can therefore exploit the results related to the SAR field (and 
specifically use the variance-covariance matrix defined in Equation (30)) after 
introducing the necessary amendments.  
 Formally, let us re-formulate our model as: 
 
 εWyy += ρ    (55) 
 
with a non-systematic component ε  defined as uXβε +=  and with u a spatial white 
noise field such that );0( 2

nN Iu σ≈ . As a consequence of the Gaussian assumption on 
the white noise component we have that ε  is also Gaussian, but with non-zero expected 
values such that );( 2IXβε σN≈ . 
 Let us now isolate the variable y in Equation  (55) and reformulate the model as: 
 
 ( ) εWIy 1−−= ρ       

  

 It is now possible to derive the properties of the random field y thus generated, 
and consequently the likelihood associated to a set of empirical observations, as 
follows. To start with the expected value of the random field y is given by: 
 
 ( )[ ] ( ) XβWIεWIy 11)( −− −=−= ρρEE   (56) 
 
 Secondly (from Equation (30)) the variance covariance matrix of the field is 
given by: 
 
 ( ) ( ) TTE −− −−== WIWIVyy ρρσρσ 122 ),()(  (57) 
 
 From (56) and (57) we then derive the Gaussian log-likelihood of a sample of 
observations and obtain: 

 

[ ] [ ]XβWIyVXβWIyVy
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      (58) 
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 The determinant of the matrix ),( 2 ρσV , remembering Equation (57), is equal to 

( ) 222 ),( −−= WIV ρσρσ n . If we use this result and substitute (57) into (58) after some 
algebra we obtain: 
 

=);,,( 2 yβρσl  

[ ] [ ]XβyWIXβyWIWIy −−−−−−−−= )()(
2

1lnln
2

)( 2
2 ρρ

σ
ρσ Tnc  (59) 

 
that represents the formal expression of a spatial lag linear regression model.  (For 
details see Arbia, 2005). 
  Once the log-likelihood of the spatial lag linear regression model has 
been derived, we can maximize it in order to obtain maximum likelihood estimates of 
the parameters of interest. Unfortunately likewise the spatial error model Equation 
(4.86) cannot be maximized anlitically. Anselin (1988) proposed an approximate 
solution based on the idea of the profile likelihood and LeSage (1998) uses it to derive 
the informatic procedures for its computation.  
 From the log-likelihood thus derived it is immediate to define a test statistic for 
the hypothesis of spatial independence. In fact under the alternative hypothesis of a 
linear regression with an additional spatial lag the log-likelihood assumes the expression 
 

=);,,( 2 yβρσl  

[ ] [ ]XβyWIXβyWIWIy −−−−−−−−= )()(
2
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2
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σ
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whereas, under the null hypothesis we have that 0   :0 =ρH  and, hence, the log-
likelihood can be expressed as: 
 

=);,( 2
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 As a consequence the likelihood ratio test statistics after some straightforward 
algebra can be written as: 
 

[ ] [ ] [ ] [ ]
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⎩
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σ

ρρ
σ
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        (62) 
 

Equation (62), as it is known, is distributed asymptotically as a χ² random variable 
with one degree of freedom and can be used to test the hypothesis of spatial dependence 
within the framework of the linear regression model treated in this section. 

  

 3. The Bivariate CAR re-specification of the linear regression model 

 
In this section we wish to present the spatial linear regression model within a 

framework that is explicitly linked with the theory of random fields. We claim this 
specification to be more probabilistically grounded than the two specifications 
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presented in Section 2 and that it can help in introducing a wider variety of possible 
models that can be adapted to the various empirical situations. 
 Let Yi be the dependent variable of the model at location si, Xi a vector of 
esplicative variables of dimension k (including a constant term), and Z(si) = Zi = [Yi, 
Xi

T]T a collection of random variables belonging to the vector random field {Z(si)  s∈ } 
defined on the probability space (Ω, B, P(.)) which generates a set of data observed in n 
locations of coordinates (s1, s2 ......sn) on a continuous or discrete space. We shall 
assume that we want to build up a model which explains the behaviour of the economic 
variable Yi in location si in terms of the behaviour of the other random variables Xi that 
constitute the random field. We shall indicate the random field Z(si) = Zi = (Yi, Xi

 T)T 
and the sample observations z(si) = zi = [yi, xi

T]T . 
 To start with let us summarize the basic assumptions on which is based a linear 
regression model specified in a conditional form.  

 The fundamental assumption is that the joint distribution of the random variables 
involved (both Yi and the explicative variables Xi ) is multivariate Gaussian, that is: 
 
 { } i

1         Zand              ;);,( +ℜ⊂ΘΘ∈==Φ k
iiii

f θθzZZ ∼MVN (63) 
 
where Φ represents a parametric family of density functions, θ the associated 
parametrization and Θ the parametric space 
 All other hypotheses concerning the probability model (PM) are consequences 
of this basic assumption. In fact from the joint normality it follows the normality of the 
conditional distributions, the linearity of the expected value (regression function), the 
constancy of the conditional variance (also called skedasticity function) and, finally, the 
hypothesis of spatial invariance of the parameters. 

The statistical generating mechanism (GM) it is constituted by a systematic 
(forecastable) component and a non-systematic (non forecastable) component. In the 
basic linear regression model the two components are combined linearly. In particular, 
the systematic component is represented by the conditional expectation of yi given xi 
while the non-systematic component is simply the unexplained part of the model, 
measured by the difference between the observed value and the systematic component. 
From the linearity of the mean, assumed in the PM, we then have : 

 
 Yi = βT xi + ui   (64) 
 
 From the normality postulated in the PM, we also have that the only parameters 
of interest of the model are θ ≡ (β; σ2) 1+ℜ⊂Θ∈ kθ and that Xi is weakly exogenous 
with respect to θ ≡ (β; σ2) . Finally no restrictions are imposed a priori on the range (if 
deterministic) or on the distribution (if stochastic) of the parameters θ and we assume 
that the observed data matrix is of full rank whatever the observed sample 

Finally concerning the sampling model (SM) the basic assumption is that the data 
are drawn with a simple random criterion from the conditional distribution of Y given 
X. The SM assumption of simple random sampling is certainly the most important 
among those the linear regression model is based on. In practice none of the results 
related to the estimation and hypothesis testing remain valid if it is rejected on the basis 
of empirical data. More precisely the implications of the violation of the simple random 
sampling hypothesis on SM are that the OLS estimates of β and σ2 are inefficient and 
inconsistent even if still unbiased. Moreover the sampling variances are biased and in 
most cases significantly underestimated. As a consequence the coefficient of 
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determination (R2) as well as the test statistics t and F tend to be inflated leading to 
acceptance of the model more frequently than it should (Maddala, 2001).  
 If we retain the PM assumptions, but we consider the violation of the SM 
hypothesis, we need to re-specify our model as a vector Gaussian random field as 
described in Section 2 for which we have: 
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where each µi represents a k-by-1 vector of expected values at site i, and Vi and Cij the 
matrices of cross-covariance and, respectively, of spatial autocovariance and spatial 
cross-covariance between pairs of sites defined by: 
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)(iiklγ being the covariance between the random variables Xk and Xl at location i and 
)(ijklγ  the cross- covariance between Xk and Xl at locations i and j.  

 In practice, in order to obtain an operative sampling model, it is useful to limit 
ourselves to one of the random fields introduced in Section 2 of which the properties are 
known. Given the continuous nature of many economic variables, and due to its 
simplicity, the obvious choice is represented by the auto-normal field. However the 
framework presented here is general enough to allow the application to any other 
random fields in those cases when the phenomenon under study requires a different 
specification. In the present section we shall redefine the basic hypothesis of the linear 
regression model in the case of a non-independent sampling model by making explicit 
reference to the auto-normal random field. 
 
5.2  Respecification of the hypotheses 
 
 A first way of redefining the linear regression model to keep into account the 
spatial nature of data is by redefining the probability model in such a way that the 
vector of random variables involved are assumed to obey an autonormal field, that is:  
 
 { } i

)1(2         Zand              ;);,( +ℜ⊂ΘΘ∈==Φ k
iiii

f θθzZZ ∼MVN (67) 
 
 From this this, fundamental, assumption we can derive a series of consequences 
in terms of the probability model. First of all we have the normality of the conditional 
distributions: 
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jii

θxXX ∈==  ∼ N  (68) 

 
 As a consequence of PM1 we have the linearity of the expected value that now 
(recalling the definition of a bivariate autonormal random field) can be expressed as  
 
 E(Yi| Xi  = xi; Yj =yj; j∈N(i), θ) = αT Σi≠j wij xj +β

Txi + ρ Σi≠j wij yj 
      
where α ≡ (α1, α2,…, αk) , Σi≠j wij xj ≡ (Σi≠j wij x1j, Σi≠j wij x2j , …, Σi≠j wij xkj)

T α, 
β and ρ being the parameters to be estimated and, in particular, α and ρ, are those that 
regulate the amount of spatial depenedence in the independent variables and, 
respectively in the lagged dependent variable. A second consequence of PM1 is the 
constancy of the conditional variance (homoskedasticity) that is: 
 
 Var(Yi| Xi  = xi; Yj =yj; j∈N(i), θ) = σ2  ∀ xi (69) 
 
 We also derive the constancy of all parameters with respect to space, that is:  
 
 θi (αT, β T, ρ, σ²) = θ   ∀i. (70) 
 
 From the statistical generation model we maintain the main hypothesis that the 
observations of the random variable Yi are generated by a linear combination of a 
systematic component and a non-systematic. The systematic component (say µi ) is 
constituted by the expectation of the variable Y in location i conditional upon the 
variables Y in the surrounding locations and on the variable X recorded at the same 
location i and in the surrounding locations that is: 
 
µi = E(yi| Xi=xi; Yj = yj; j∈N(i), θ)    (71) 

 
 From the linearity of the conditional expectation derived from PM2 and 
substiting into (   ) we obtain 
 
 Yi = αT Σi≠j wij xj +β

Txi + ρ Σi≠j wij yj   (72) 
 
 From the normality postulated in the PM we also have that the parameters of 
interst are θ ≡ (αT, β T, ρ, σ²). We also keep the hypothesis of weak exogeneity of Xi 
with respect to θ. The model considered here imposes some restrictions on the 
parameters that are connected with the symmetry of the variance-covariance matrix. In 
particular we have the following restrictions αlσi

2wij=αlσj
2wji   βlσi

2wij=βlσj
2wji    

ρσi
2wij=ρσj

2wji      ∀ i, j, l ,that ensure that the variance covariance matrix of the field is 
symmetrical. In practical terms, due to the assumption of constant variance, these 
restrictions only requires the choice of a symmetrical W matrix, a condition that is 
almost invariably respected in the generality of geographical applications. 

Furthermore in order to avoid singularity of the variance-covariance matrix, we 
need also to assume that X ≡ (x1, x2, ....., xn)’ is a full rank (n-by-k) matrix for all the 
observed values of the random variables X 

Finally in the sampling model we shall assume that y ≡ (y1, y2, ....., yn)’ is a sample 
drawn from a stationary random field characterised by conditional distribution  
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));(;,( ijjiiiyY iNjyYyf
jii

θxXX ∈==     (73) 

 
is such that y ≡ (y1, y2, ....., yn)’ is independently drawn from 

));(;,( ijjiiiyY iNjyYyf
jii

θxXX ∈==  

 
 The model thus specified will be referred to as the multivariate CAR spatial 
linear regression model and notwithstanding its sound probabilistic foundations it was 
never exploited in the applied spatial econometric literature.  

 
5.3 The likelihood of a bivariate CAR spatial linear regression model 
  
In this section we shall limit ourselves to only bivariate autonormal fields Zi = (Yi, 

Xi)’. The extension to higher dimensional fields is treated in section 7.  
If Y and X are jointly distributed as a bivariate random field we know, from 

Section 2.4.2.8, that we can express the conditional expected value of Yi as 
 

[ ] ∑∑
≠≠

−+−+−+=
ji

jYjijiXi
ji

jXjijiYijji YXXXYXYE )()()(;; µρµβµαµ
   (74)

 

 
To simplify a notation that runs the risk of becoming too cumbersome, we shall 

express, without loosing in generality, each random variable as a deviation from the 
respective expected value. Equation (74) now becomes 
 
[ ] ∑∑

≠≠

++=
ji

jiji
ji

jijijji YXXXYXYE ρβα;;
      (75) 

 
with ijij wαα = , ijij wρρ = , α, β and ρ  parameters and W∈ijw

.
 the elements of a 

contiguity matrix properly defined.  
 This expression of the expected conditional value provides an operational form 
for the systematic component of the model. Therefore if we define the non-systematic 
component as: 
 

[ ] ∑∑
≠≠

−−−=−=
ji

jiji
ji

jijiijjiii YXXYXYXYEYu ρβα;;
   (76)

 

 
and we redefine the data generation statistical model as the sum of the systematic and 
the non-systematic component 
 

[ ] iijjii uXYXYEY += ;;   (77) 
 

we have 
 

i
ji

jiji
ji

jiji uYwXXwY +++= ∑∑
≠≠

ρβα   (78) 

 
 In this way each observation of the random variable Y at location i is expressed 
as a function of the observation of the variable X in the same location (as in a standard 
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linear regression model), but also of the spatially lagged values of the variable X and of 
the variable Y, or, in other words, as a function of the mean of the neighbouring values 
for both variables.  
 We know that a bivariate CAR field has a variance-covariance matrix given by 
Equation (25). Therefore it is immediate to redefine the likelihood function of the 
sample as a bivariate Gaussian density function with ),,,,( 22

yx σσρβαQQ =  as a 
variance-covariance matrix, that is: 

 

⎭
⎬
⎫

⎩
⎨
⎧−= −− ZQZQzz 12

1
22

2
1exp

2
1)();,,,,( T

yx cL
π

σσρβα   (79) 

 
and, consequently, the log-likelihood is defined as: 
 

ZQZQzz 122

2
1ln

2
1)();,,,,( −−−= T

yx cl σσρβα (80) 

 
 This expression is highly non linear in the parameters and therefore can only be 
maximized by using numerical algorithms in order to obtain maximum likelihood 
estimators. The likelihood thus derived constitute also the basis to build various 
hypothesis testing procedures as we will show in the next section.  
 
 6. Hypothesis testing in the bivariate CAR spatial regression model 
 

Now that we have fully specified the alternative hypothesis to the null hypothesis 
of spatial independence in the regression model, we are in the position to apply these 
general procedures to this particular instance. In fact, once the model is respecified as 
indicated in the preceding section 4.3.3.1, the system of hypotheses can be explicitly 
obtained by contrasting the null hypothesis 0: 000 == ραH , with the alternative 
hypothesis 0;0:1 ≠≠ ραH  
 In terms of the likelihood we have, under the null: 
 

⎭
⎬
⎫

⎩
⎨
⎧−= −− ZQZQzz 1

0
2
1

0
2

0,
2

0,0 2
1exp)();,,( T

yx cL σσβ (81)

 
 

with 0Q  the variance-covariance matrix that in this case is ),,( 2
0,

2
0,00 yx σσβQQ =  

Σ
βI

βI
I

1

0
0

*
−

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−=  implying independence between observations. 

 As a consequence the log-likelihood can be expressed as: 
 

ZQZQzz 1
0

2
1

0
2

0,
2

0,0 2
1ln

2
1)();,,( −− −−= T

yx cl σσβ (82) 

 
 In contrast, under the alternative hypothesis of a bivariate CAR random field, the 
likelihood assumes the expression 
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⎭
⎬
⎫

⎩
⎨
⎧−= −− ZQZQzz 12

1
22

2
1exp)();,,,,( T

yx cL σσρβα (83)  

 
with ),,,,( 22

yx σσρβαQQ =  provided by Equation (25). Consequently the log-likelihood 
under the alternative hypothesis becomes: 
 

ZQZQz 122

2
1ln

2
1)();,,,,( −−−= T

yx czl σσρβα   (84)  

 
 A test of spatial independence therefore can be easily derived from the 
likelihood ratio test criterion: 
 

=LRT [ ]);(ln);(ln2 10 XLXL θθ −− =-2 [ ]);,,,,();,,( 222
0,

2
0,0 zz yxyx ll σσρβασσβ − = 

 

⎥⎦
⎤

⎢⎣
⎡ −−+= −−− ZQZQZQZQ 11

0
2
1

0 lnln TT   (85) 

 
( )2

0,
2

0,00 ,, yx σσβ≡θ ,and );,,,,( 22
1 zθ yx σσρβα≡ . Equation (85) represents the formal 

expression of a likelihood ratio test in the case of a bivariate Gaussian field. 
 An alternative way of obtaining a test statistics for the hypothesis of 
independence in a bivariate CAR linear regression model is to consider the fact that the 
data generation mechanism assumes different formulations if the random sampling 
hypothesis is veryfied or not. Indeed, when such a condition is respected the data 
generation model can be expressed as: 
 

iii uxY += β    (86) 
 
whereas in the second case, if we postulate a bivariate autonormal random field as an 
alternative, it is conversely given by: 
 

i
ji

jiji
ji

jiji uywxxwY +++= ∑∑
≠≠

ρβα   (87) 

 
 Consequently, a simple test for the independence hypothesis can be constructed 
using the general test statistic introduced in Section 3.5: 
 

F = 
[ ]

0

01

RSS
RSSRSS

r
rn −−                                                                               (88) 

 
with n the number of observations, r the number of constraints under the null 
hypothesis, 1RSS  the residuals sum of squares of model (87) and 0RSS the residual 
sums of squares of model (86). Expression (88) has a distribution of a Student central F-
distribution with r and n-r degrees of freedom. 
 

7. Likelihood of a multivariate CAR spatial linear regression model 
 
Let us now consider the more general case of a multivariate linear regression 

model and the extension of the derivation of the likelihood considered in Equation (80). 



 18

From Equation (27), the likelihood of the multivariate CAR model is given by:  
 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −Ω−−Ω=Ω − µµµ zzzz 12

1

2
1exp)(;, TcL      (89) 

 
and, hence, the log-likelihood by 
 

( ) ( ) ( ),
2
1ln

2
1)(;, 1 µµµ −Ω−−Ω−=Ω − zzzz Tcl         (90) 

 
Equation (90) can be expressed in a different way by assuming the following 

reparametrizations for  iµ  ,  Cij   and 

Vi : ( ),diag and : 22
1 piii υυ L=λµ VV ==∀ ,:, ijij wijji Φ=⇒≠∀ C  

where  Φ   is a  k-by-k  symmetric matrix and  Wwij ∈   is the generic element of a 
weights matrix .  

Under these assumptions, we can write 
 

,111 Φ−−− ⊗−⊗=Ω VWVIn        (91) 
 
so that the log-likelihood becomes: 
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   (92) 

 
and can be used in the estimation and hypothesis testing procedures. 
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