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Abstract

This paper introduces a new class of parameter estimators for dynamic models, called Sim-

ulated Nonparametric Estimators (SNE). The SNE minimizes appropriate distances between

nonparametric joint (or conditional) densities estimated from sample data and nonparametric

joint (or conditional) densities estimated from data simulated out of the model of interest.

Sample data and model-simulated data are smoothed with the same kernel. This makes the

SNE: 1) consistent independently of the amount of smoothing (up to identifiability); and 2)

asymptotically root-T normal when the smoothing parameter goes to zero at a reasonably

mild rate. Furthermore, the estimator displays the same asymptotic efficiency properties as

the maximum-likelihood estimator as soon as the model is Markov in the observable variables.

The methods are flexible, simple to implement, and fairly fast; furthermore, they possess finite

sample properties that are well approximated by the asymptotic theory. These features are

illustrated within the typical estimation problems arising in financial economics.
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1 Introduction

This paper introduces a new class of parameter estimators for dynamic models with possibly

unobserved components, called Simulated Nonparametric Estimators (hereafter SNE). The SNE

works by making the finite dimensional distributions of the model’s observables as close as possi-

ble to their empirical counterparts estimated through standard nonparametric techniques. Since

the distribution of the model’s observables is in general analytically intractable, we recover it

through two steps. In the first step, we simulate the system of interest. In the second step,

we obtain model’s density estimates through the application of the same nonparametric devices

used to smooth the sample data. The result is a consistent and root-T asymptotically normal

estimator displaying a number of attractive properties. First, our estimator is based on simula-

tions; consequently, it can be implemented in a straightforward manner to cope with a variety of

estimation problems. Second, the SNE is purposely designed to minimize distances of densities

smoothed with the same kernel; therefore, up to identifiability, it is consistent regardless of the

smoothing parameter behavior. Third, if the SNE is taken to match conditional densities and the

model is Markov in the observables, it achieves the same asymptotic efficiency as the maximum-

likelihood estimator (MLE). Finally, Monte Carlo experiments reveal that our estimator does

exhibit a proper finite sample behavior.

Systems with unobserved components arise naturally in many areas of economics. Examples

in macroeconomics include models of stochastic growth with human capital and/or sunspots,

job duration models, or models of investment-specific technological changes. Examples arising

in finance include latent factor models, processes with jumps, continuous-time Markov chains,

and even scalar diffusions. While the general theory we develop in this article is well suited

to address estimation issues in all such areas, the specific applications we choose to illustrate

our methods cover the typical models arising in financial economics (latent factor models and

diffusion models).

As is well-known, the major difficulty arising from the estimation of dynamic models with

unobserved components is related to the complexity of evaluating the criterion functions. A

natural remedy to this difficulty is to make use of simulation-based methods. The simulated

method of moments (McFadden (1989), Pakes and Pollard (1989), Lee and Ingram (1991) and

Duffie and Singleton (1993)), the simulated pseudo-maximum likelihood method of Laroque and

Salanié (1989, 1993, 1994), the indirect inference approach of Gouriéroux, Monfort and Re-

nault (1993) and Smith (1993), and the efficient method of moments (EMM) of Gallant and

Tauchen (1996) represent the first attempts at addressing this problem through extensions of

the generalized method of moments. The main characteristic of these approaches is that they

are general-purpose. Their drawback is that they lead to inefficient estimators even in the case

of fully observed systems. The only exception is the EMM, which becomes indeed efficient as

the (parameter) dimension of the auxiliary score gets larger and larger - a condition known as

2



“smooth embedding”. There exist alternative simulation-based econometric methods, which di-

rectly approximate the likelihood function through simulations (e.g., Lee (1995) or Hajivassiliou

and McFadden (1998)). These methods do lead to asymptotic efficiency. Yet all the estimators

arising within this class of methods are designed to address very specific estimation problems.

More recently, the focus of the literature has shifted towards a search for estimators combin-

ing the attractive features of both moments generating techniques and ML. In addition to the

EMM, two particularly important contributions in this area are Fermanian and Salanié (2004)

and Carrasco, Chernov, Florens and Ghysels (2004). Precisely, Fermanian and Salanié (2004)

introduced a general-purpose method in which the (intractable) likelihood function is approxi-

mated by kernel estimates obtained through simulations of the model of interest. The resulting

estimator, called nonparametric simulated ML (NPSML) estimator, is then both consistent and

asymptotically efficient as the number of simulations goes to infinity and the smoothing param-

eter goes to zero at some (typical) convergence rate. Carrasco, Chernov, Florens and Ghysels

(2004) developed a general estimation technology which also leads to asymptotic efficiency in the

case of fully observed Markov processes. Their method leads to a “continuum of moment con-

ditions” matching model-based (simulated) characteristic functions to data-based characteristic

functions.

This article belongs to this new strand of the literature. Our strategy is indeed to construct

criterion functions leading to a general estimation approach. And in many cases of interest, these

criterion functions are asymptotically equivalent to Neyman’s chi-square measures of distance. It

is precisely such an asymptotic equivalence which makes our resulting estimators asymptotically

efficient. However, we emphasize that our estimators are quite distinct from any possible approx-

imation to the MLE - they thus work rather differently from the Fermanian and Salanié NPSML

estimator. In the language of indirect inference theory, we rely on “auxiliary criterion functions”,

which generally give rise to asymptotically inefficient but consistent estimators. But as soon

as model and data’s transition densities are estimated with a smoothing parameter converging

to zero, these criterion functions converge to Neyman’s chi-squares, and our estimator becomes

efficient. In this sense, the role played by the smoothing parameter in our context parallels the

role played by the smooth embedding condition within the EMM.1 One distinctive feature of our

method is that we allow the smoothing parameter to go to zero at a reasonably mild rate. Fur-

thermore, we smooth model-generated data and observations with the same kernel. Therefore,

the behavior of the smoothing parameter does not affect the consistency of the estimator. An

asymptotically shrinking smoothing parameter can only affect the precision of our estimator.

Our method is also related to the estimators introduced by Carrasco, Chernov, Florens and

Ghysels (2004). Indeed, our SNE also relies on a “continuum of moments”, but in a very differ-

ent manner. First, we do not need an infinite number of simulations to ensure consistency and

1We are grateful to one anonymous referee and Christopher Sims for bringing this point to our attention.
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asymptotic normality of our estimators. Second, we use more classical ideas from the statisti-

cal literature, and develop estimating equations leading to match model-based density estimates

(not characteristic functions) to their empirical counterparts. As for the NPSML estimator, the

SNE is thus both conceptually very simple and fairly easy to implement. Earlier estimators

based on ideas similar to ours include the ones introduced by Gallant (2001) and Billio and

Monfort (2003). Precisely, Gallant (2001) estimator matches cumulative distributions, but it

does not lead to asymptotic efficiency. Billio and Monfort (2003) estimator minimizes distances

between observation-based and simulated-based expectations of test functions smoothed with

kernel methods. While their estimator is not asymptotically efficient, it is still (up to identifi-

ability) consistent independently of the amount of smoothing. Yet the rate of convergence of

their estimator is nonparametric - although the rate of convergence to zero of their smoothing

parameter can be made very slow. As noted earlier, the convergence rate of our estimator is the

usual parametric one, but this attractive feature of our methods is obtained with one additional

computational cost: To match nonparametric density estimates, the evaluation of our objective

functions requires the computation of a Riemann integral.

Finally, Äıt-Sahalia (1996) is one additional fundamental contribution which this article is

clearly related to. Äıt-Sahalia developed a minimum distance estimator in which the measure of

distance is a special case of the general class of measures of distance we consider here. But our

estimator is different for three additional important reasons. First, the asymptotic behavior of

Äıt-Sahalia’s estimator critically depends on the smoothing parameter; as we argued earlier, our

estimator is designed in a way that the smoothing parameter plays a relatively more marginal role.

Second, Äıt-Sahalia’s estimator only matches marginal densities. Third, Aı̈t-Sahalia’s method

does not rely on simulations; therefore, it is feasible only when the density implied by the model

has a fairly tractable form.

The paper is organized in the following manner. Section 2 introduces basic notation and

assumptions for the model of interest. Section 3 provides large sample theory. Section 4 illus-

trates how our methods can be used to estimate the typical diffusion models arising in financial

economics. Section 5 assesses the finite sample properties of our estimators. Section 6 con-

cludes. The appendix gathers proofs and regularity conditions omitted in the main text; and an

unpublished appendix available upon request provides additional technical details.
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2 The model of interest

Let Θ ⊂ Rpθ be a compact parameter set, and for a given parameter vector θ0 ∈ Θ, consider the
following reduced-form data generating process:

yt+1 = f (yt, t+1; θ0) , t = 0, 1, · · ·, (1)

where yt ∈ Rd, f is known and { t}t=1,··· is a sequence of Rd-valued identically and independently

distributed random variables (with known distribution). The purpose of this paper is to provide

estimators of the true parameter vector θ0. We consider a general situation in which some

components of y are not observed. Accordingly, we partition vector y as:

y =

⎛⎜⎝ yo

· · ·
yu

⎞⎟⎠ ,

where yo ∈ Y o ⊆ Rq∗ is the vector of observable variables and yu ∈ Y u ⊆ Rd−q∗ is the vector of

unobservable variables. Data are collected in a q∗×T matrix with elements {yoj,t}j=1,···,q∗;t=1,···,T ,
where yoj,t denotes the t-th observation of the j-th component of vector y

o, and T is the sample

size. Since our general interest lies in the estimation of partially observed processes, we may wish

to recover as much information as possible about the dependence structure of the observables in

(1). We thus set q = q∗(1 + l), for some l ≥ 1, let yot = (yo1,t, · · ·, yoq∗,t) and

xt ≡
¡
yot , · · ·, yot−l

¢
, t = tl ≡ 1 + l, · · ·, T, (2)

and define X ⊆ Rq as the domain of xt. In practice, there is a clear trade-off between increasing

the highest lag l and both speed of computations and the curse of dimensionality. In Section 3.2,

we succinctly present a few practical devices on how to cope with the curse of dimensionality.

Let π(x; θ) denote the joint density induced by (1) on x when the parameter vector is θ ∈ Θ.
Let π0(x) ≡ π(x; θ0) and let |∇θπ (x; θ)|2 denote the outer product of vector ∇θπ (x; θ). We now

make assumptions further characterizing the family of processes we are investigating.

Assumption 1 (a) π(x; θ) is continuous and bounded on X ×Θ. (b) For all x ∈ X, function

θ 7→ π(x; θ) is twice differentiable and its derivatives are bounded on Θ. Furthermore, f is

continuous and twice differentiable on Θ.

To ensure the feasibility of the asymptotic theory related to our estimation methods, we also

need to make the following assumption on the decay of dependence in the observables in (1):
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Assumption 2. Vector y is a Markov β-mixing sequence with mixing coefficients βk satisfying

limk→∞ kµβk → 0, for some µ > 1.

The mixing condition of assumption 2 is critical for the application of a functional central

limit theorem due to Arcones and Yu (1994). Precisely, assumption 2 ensures convergence of

suitably rescaled integrals of kernel functions to stochastic integrals involving generalized Brow-

nian Bridges. This kind of convergence is exactly what we need to prove asymptotic normality

of our estimators.

3 Theory

3.1 “Twin-smoothing”

Our estimation methodology is related to the classical literature on goodness-of-fit tests initiated

by Bickel and Rosenblatt (1973). Let πT be a nonparametric estimator of π0, obtained as πT (x) ≡
(Tλq)−1

PT
t=tl

K ((xt − x)/λ), where x ∈ Rq, the bandwidth λ > 0, and K is a symmetric

bounded kernel of the r-th order.2 Consider the following empirical measure of distance:

IT (θ) =

Z
Rq
[π (x; θ)− πT (x)]

2wT (x)dx, (3)

where wT > 0 is a weighting function possibly depending on data, and θ is a given parameter

value. Let θ̂ be some consistent estimator of θ0. Typical measures of fit of the parametric model

{π (·; θ), θ ∈ Θ} to data are based on the empirical distance IT (θ̂).3 Alternatively, the empirical
distance in (3) can be utilized to estimate the unknown parameter vector θ0. For example, Äıt-

Sahalia (1996) defined an estimator minimizing (3) (with weighting function wT ≡ πT ) in the

context of scalar diffusions:

θIT = argmin
θ∈Θ

IT (θ) . (4)

An important feature of the empirical measure of distance IT (θ̂) is that a parametric density

estimate, π(·; θ̂), is matched to a nonparametric one, πT (·). Under correct model specification,
πT (x)

p→ K ∗ π (x; θ0) ≡
R
Rq λ

−qK ((u− x)/λ)π (u; θ0) du (x-pointwise). As is well-known, the

result that πT (·)
p→ π (·; θ0) only holds if the bandwidth satisfies λ ≡ λT , limT→∞ λT → 0 and

limT→∞ TλqT →∞. Therefore, bandwidth choice is critical for (3) and (4) to be really informative
in finite samples.

2A symmetric kernel K is a symmetric function around zero that integrates to one. It is said to be of the r-th
order if: 1) ∀µ ∈ Nq : |µ| ∈ {1, · · ·, r − 1} (|µ| ≡ q

j=1 µj), u
µ1
1 · · · uµqq K(u)du = 0; 2) ∃µ ∈ Nq : |µ| = r and

u
µ1
1 · · · uµqq K(u)du 6= 0; and 3) kukrK(u)du <∞.
3Precisely, rescaled versions of (3) are classically used to implement tests of model misspecification (see, e.g.,

Pagan and Ullah (1999) for a comprehensive survey on those tests). Corradi and Swanson (2005) have recently
developed new specification tests for diffusion processes based on cumulative probability functions.
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To circumvent this problem, we consider a measure of distance alternative to (3). A simple

possibility is an empirical distance in which the nonparametric estimate πT is matched by the

model’s density smoothed with the same kernel and conditional on a given bandwidth value:

LT (θ) =

Z
Rq
[K ∗ π(x; θ)− πT (x)]

2wT (x) dx. (5)

Fan (1994) developed a class of bias-corrected goodness of fit tests based on the previous em-

pirical distance and weighting function wT ≡ πT . And Härdle and Mammen (1993) devised a

similar bias-correction procedure for testing the closeness of a parametric regression function to

a nonparametric one.

A key idea in this paper is to combine the appealing idea underlying the estimator θIT in

(4) with the bias-corrected empirical measure in (5). To achieve this objective, we consider an

estimator minimizing the distance in (5) rather than in (3), and consider a general empirical

weighting function wT . Specifically, define the following estimator:

θLT = argmin
θ∈Θ

LT (θ) , (6)

where wT (x)
p→ w(x) uniformly, and w is another positive function. In (5), kernel smoothing

operates in the same manner on model-implied density and on data-based density estimates.

Therefore, bandwidth conditions affect the two estimators θIT and θ
L
T in a quite different manner.

Table 1 summarizes these bandwidth conditions. Under our regularity conditions, consistency of

θLT holds independently of bandwidth behavior. That is, up to identifiability (see assumption 3-(a)

below), λ can be any strictly positive number. On the contrary, consistency of θIT requires the

additional conditions that λT → 0 and TλqT →∞.4
The “twin-smoothing” procedure underlying the estimator θLT in (6) is intimately related to

the general indirect inference strategy put forward in the seminal papers of Gouriéroux, Monfort

and Renault (1993) and Smith (1993). In the language of indirect inference, we are matching

a model-implied (infinite-dimensional) auxiliary parameter (K ∗ π (x; θ)) to the corresponding
(infinite-dimensional) parameter computed on real data (πT (x)). These auxiliary parameters can

be estimated with an arbitrary bandwidth choice; yet, and up to identifiability, our estimator is

still consistent in exactly the same spirit of the indirect inference principle.

Our basic idea is also related to the kernel-based indirect inference approach developed by Bil-

lio and Monfort (2003). Billio-Monfort estimator matches conditional expectations of arbitrary

test-functions estimated through nonparametric methods - one conditional expectation computed

4Other estimators related to (4) suffer from exactly the same drawback. Two examples are 1) estimators based
on nonparametric density estimates of the log-likelihood function obtained through simulations; and 2) estimators
based on the so-called Kullback-Leibler distance (or relative entropy) Rq log[π(x, θ)/π0(x)]π(x, θ)dx. We are
grateful to Oliver Linton for having suggested the latter example to us.
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on true data and one conditional expectation computed on simulated data. This makes asymp-

totic bias issues irrelevant for their estimator. One important difference between our estimator

θLT in (6) and Billio-Monfort estimator is that our estimator is consistent at the usual paramet-

ric rate. The rate of convergence of Billio-Monfort estimator is contaminated by the rate of

convergence of their bandwidth sequence to zero - although in practice the convergence of their

bandwidth can be made very slow. Intuitively, Billio-Monfort estimator matches a finite number

of test-functions. Instead, we match a continuum of moment conditions. But at the same time,

this attractive feature of our estimator (matching a continuum of moments) brings an additional

computational cost related to the evaluation of the Riemann integral in (5). Finally, our idea to

directly focus on matching objects related to density functions resembles the “effective calibra-

tion” strategy of Gallant (2001). The main difference is that Gallant (2001) considers matching

cumulative distribution functions. As we demonstrate in later sections, the advantage to focus

on density functions is that it allows us to address efficiency issues.

Similarly as for consistency, θLT and θ
I
T are asymptotically normally distributed under different

bandwidth restrictions. Our estimator θLT is asymptotically normal under the standard assump-

tions that λT → 0 and
√
TλqT →∞.5 Instead, θIT is asymptotically normal under one additional

condition on the order of the kernel (i.e.
√
TλrT → 0). Intuitively, this order condition guarantees

that a density bias estimate vanishes at an appropriate rate without affecting the asymptotic

behavior of θIT . In contrast, density bias issues are totally absent if one implements estimator

θLT . As summarized in Table 1, bandwidth restrictions are only required to make our estimator

θLT asymptotically normal - not consistent. And as we demonstrate in the Monte Carlo experi-

ments of Section 5, bandwidth restrictions in Table 1 are considerably less critical for asymptotic

normality than for consistency.

Table 1 - Bandwidth assumptions and asymptotic behavior of θIT and θLT

Consistency Asymptotic normality

θIT TλqT →∞, λT → 0
√
TλqT →∞, λT → 0, and

√
TλrT → 0

θLT no asymptotic bandwidth restrictions
√
TλqT →∞, λT → 0

3.2 Simulated Nonparametric Estimators

Our fundamental objective is to extend the previous ideas to general situations. Specifically,

suppose that the analytical solution for density π (x; θ) in (5) is unknown, but that it is still

possible to simulate from that density. Accordingly, the first step of our estimation strategy

requires simulated paths of the observable variables in (1). To generate S simulated paths for a

5More sophisticated versions of our estimator are asymptotically normal under an additional assumption guar-
anteeing that certain derivatives of density estimates are well-behaved (i.e.

√
Tλq+1T →∞) (see theorem 1).
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given parameter value θ, we draw y0 (θ) from its stationary distribution, and compute recursively

yt+1 (θ) = f (yt (θ) , t̃+1; θ) , t = 0, 1, · · ·, T,

where { t̃}T+1t=1 is a sequence of random numbers drawn from the distribution of . Let xi (θ) =©
xit (θ)

ªT
t=tl

(i = 1, · · ·, S), where xit (θ) is the i-th simulation of the t-th observation when the
parameter vector is θ, and define yi (θ) in a similar way. Let πiT (x; θ) ≡ (Tλ

q
T )
−1PT

t=tl
K((xit(θ)−

x)/λT ), where K and λ are the same kernel and bandwidth functions used to compute the

nonparametric density estimate πT (·) on sample data.
We are now in a position to provide the definition of the first estimator considered in this

paper:

Definition 1. (SNE) For each fixed integer S, the Simulated Nonparametric Estimator (SNE)

is the sequence {θT,S}T given by:

θT,S = argmin
θ∈Θ

Z
X
[π̃T (x; θ)− πT (x)]

2wT (x)dx, (7)

where π̃T (·; ·) ≡ S−1
PS

i=1 π
i
T (·; ·) and wT (·) > 0 is a sequence of bounded and integrable functions

satisfying wT (x)
p→ w(x), x-pointwise, for some function w.

The appealing feature of this estimator is that πiT and πT are computed with the same kernel

and bandwidth. Such a twin kernel smoothing procedure operates on sample and model generated

data in exactly the same manner as in (5). Consequently, the asymptotic properties of θT in (7)

and θLT in (6) are quite comparable. Moreover, consistency of θT does not require an infinite

number of simulations S. Even in correspondence of a finite number of simulations, the objective

function in (7) is asymptotically equivalent to the objective function in (5). These two features of

the SNE make our estimation strategy quite distinct from the estimation strategy introduced by

Fermanian and Salanié (2004) - in which the likelihood function is directly approximated by kernel

estimates of model-simulated data. But our approach also entails the additional computational

cost related to the evaluation of the Riemann integral in (7).

We consider kernels satisfying the following regularity conditions:6

6Assumption K is needed to prove the lemmata in appendix A through Andrews (1995) strategy of proof.
Andrews (1995) (assumption NP4(b), p. 566-567) required that (1 + kzkr) supb≥1 |Φ (bz)| dz < ∞. Assumption
K imposes the weaker condition that |Φ (z)| dz <∞. We deleted the (1 + kzkr) multiplicand because y is strong
mixing by assumption 2. The supb≥1 requirement is not to be ignored in all applications with data-dependent
bandwidths.
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Assumption K. Kernels K are bounded, continuously differentiable with bounded derivatives

up to the fourth order, and absolutely integrable with an absolutely integrable Fourier transform

Φ (z) ≡ (2π)q
R
exp

¡
iz>u

¢
K (u) du.

Let LT (θ) ≡
R
[π̃T (x; θ)− πT (x)]

2wT (x)dx. Let the expectation of the kernel for a given

bandwidth value λ be denoted as:

m(x; θ) ≡ K ∗ π(x; θ) = 1

λq

Z
K

µ
x− u

λ

¶
π(u; θ)du.

Accordingly, set L(θ) ≡
R
[m (x; θ)−m (x; θ0)]

2w(x)dx. Criteria are required to satisfy the

following regularity and identifiability conditions:

Assumption 3 (a). For all θ ∈ Θ, LT (θ) is measurable and continuous on Θ a.s. Moreover,

L (θ) is continuous on Θ, ∃ unique θ0 : L (θ0) = 0, and lim infT→∞minθ∈Nc
T
LT (θ) > 0, where

N c
T is the complement in Θ of a neighborhood of θT,S .

The first part of assumption 3-(a) is needed to ensure existence of our SNE, and holds un-

der mild conditions on the primitive model. For example, it holds under the previous kernel

assumption K, and the assumption that function f in (1) is continuous on Θ. The second part

of this assumption merits further discussion. We are designing our estimator in such a way that

bandwidth choice is virtually irrelevant for consistency. But to accomplish this task, we need to

make sure that the (infinite-dimensional) “auxiliary” parameter K ∗π has information content on
the “structural” parameter θ. The last part of assumption 3-(a) then makes our SNE identifiably

unique.7 Consistency of the SNE requires the following additional assumption:

Assumption 3 (b). There exists a α > 0 and a sequence κT bounded in probability as T becomes

large such that for all (ϕ, θ) ∈ Θ×Θ, |LT (ϕ)− LT (θ)| ≤ κT · kϕ− θkα2 .

Assumption 3-(b) is a standard high level assumption. In Altissimo and Mele (2005, appendix

F), we have developed specific examples of primitive conditions ensuring that assumption 3-(b)

does hold. We now formulate one assumption we use to prove asymptotic normality of the SNE.

Let Kj
T (x; θ) ≡

¯̄̄
K 0((xit (θ)− x)/λT )(∂y

i
,t (θ) /∂θj)

¯̄̄
(j = 1, · · ·, pθ and i = 1, · · ·, S), where yi,t (θ)

is the i-th simulation at t of the -th component of xt in (2) ( = 1, · · ·, q∗). We have:

7See, e.g., Gallant and White (1988, definition 3.2 p. 19). One referee suggested that identifiability may break
down if the bandwidth λ is larger than the support of data. In Altissimo and Mele (2005, appendix F.1), we
formalize this referee’s suggestion and provide an example of kernels, bandwidth levels and data generating process
(with bounded support) such that identifiability does break down. In Altissimo and Mele (2005), we also argue that
if kernels satisfy assumption K and have for example unbounded support, the identifiably uniqueness condition in
assumption 3-(a) holds with sufficiently small bandwidth values (not necessarily shrinking to zero).
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Assumption 4 (a). For all j = 1, ···, pθ and (x, θ) ∈ X×Θ, Kj
T (x; θ) is continuous, bounded and

satisfies assumption 2; and ∂Kj
T (x; θ) /∂θm is bounded for all m = 1, · · ·, pθ; ∂ρ+1π (x; θ) /∂θ∂xρ

is uniformly bounded for some ρ ≥ r. (b) supx∈X |wT (x)− w (x)| = Op(T
−1
2λ−qT ) +Op(λ

r
T ).

All in all, assumption 4 on Kj
T is needed to make the first order conditions satisfied by the

SNE analytically tractable. (Basically, it allows one to interchange the order of derivation and

integration in ∇θLT (θ).) The assumption on ∂ρ+1π (x; θ) /∂θ∂xρ ensures uniform convergence

of score functions to their asymptotic counterparts (see lemmata 5 to 10 in appendix A). Finally,

the assumption on the weighting function wT is obviously under the investigator’s control. As

an example, one may take wT (x) ≡ πT (x) γ (x), where γ is another function. By lemma 1 in

appendix A, this choice satisfies assumption 4-(b).

The following result provides the asymptotic properties of the SNE:

Theorem 1. Let assumptions 1-(a), 2 and 3 hold ; then, the SNE is (weakly) consistent. Fur-

thermore, let Ψ (x) ≡ [
R
|∇θπ (u; θ0)|2w (u) du]−1∇θπ (x; θ0)w (x). Then, under the additional

assumption 1-(b) and 4, and the conditions that λ ≡ λT → 0 and T
1
2λq+1T →∞ as T →∞,

√
T (θT,S − θ0)

d→ N

µ
0,

µ
1 +

1

S

¶
V

¶
,

where V ≡ var [Ψ (x1)]+
P∞

k=1 {cov [Ψ (x1) ,Ψ (x1+k)] + cov [Ψ (x1+k) ,Ψ (x1)]}, provided it exists
finitely.

Proof. In appendix B. ¥
The asymptotic theory underlying the SNE displays four basic distinctive features. First, and

up to identifiability (see assumption 3-(a)), consistency does not rely on any condition regarding

the bandwidth parameter. The only bandwidth conditions we actually need only ensure that

the SNE is asymptotically normal. In particular, the order of the kernel plays no role within

our asymptotic theory.8 We shall see that this conclusion is only slightly modified even in more

sophisticated versions of our basic estimator (see theorems 2 and 3 below).

Second, the (unscaled) variance V of theorem 1 collapses to the variance of the estimator

in Äıt-Sahalia (1996) in the scalar case and when wT = πT . However, we emphasize that the

two estimators are radically different. Äıt-Sahalia (1996) requires an analytical form of the

model’s density and, consequently, consistency of his estimator may only follow if both λT → 0

and TλqT → ∞. The twin-smoothing procedure makes our SNE considerably less sensitive to
8The main technical reason explaining this result is that conditions such as

√
T · λrT → 0 would be important

if the theory required a functional limit theorem for
√
T ( πT − π0). We do not need such a demanding result.

We only need a functional limit theorem for
√
T ( πT − E (πT )).

11



bandwidth issues - a fact also documented in our Monte Carlo experiments.9 Furthermore, the

SNE can address estimation of multivariate models driven by partially observed state variables

with unknown distribution. Also, we explicitly consider matching joint densities of data, not

marginal densities. Finally, the SNE minimizes a measure of closeness of two nonparametric

density estimates - one on true data and the second on simulated data. Under correct model’s

specification, the resulting biases in the two kernel estimates cancel out each other, and asymptotic

normality can then be obtained without relying on any bias-reducing devices. For all these reasons,

the SNE is potentially apt to exhibit a finite sample behavior that is well approximated by the

asymptotic theory. And such a finite sample behavior is indeed documented by our Monte Carlo

experiments in Section 5.

Third, our SNE makes use of general weighting functions. If wT = πT , the corresponding SNE

would overweight discrepancies occurring where observed data have more mass. More generally,

Theorem 1 reveals that the asymptotic variance of the estimator depends indeed on the limiting

weighting function w at hand. However, a weighting function minimizing such an asymptotic

variance is unknown, even in the case of fully observable processes.10 In the next Section, we

show that this problem can considerably be simplified through an appropriate change of the

objective function in (7).11

Fourth, the estimator’s variance has to be rescaled by (1 + S−1) - similarly as in the familiar

asymptotics of Indirect Inference estimators (e.g., Gouriéroux, Monfort and Renault (1993)).

This scaling term arises because the model’s joint density is recovered by means of simulations.

As for other nonparametric density based-estimators, the SNE is subject to the curse of

dimensionality. But as in related contexts, the SNE can be extended to mitigate this issue. As

an example, we may let,

θT,S = argmin
θ∈Θ

lX
=1

L
( )
T (θ) , L

( )
T (θ) ≡

Z
X

h
π̃T (x ; θ)− πT (x )

i2
wT (x )dx , X ⊆ R2q∗ ,

where xt = (yot , y
o
t− ) (see eq. (2)). In proposing the above estimator, we imitated Fermanian

and Salanié (2004, Section 4), who also considered addressing dimensionality issues through the

use of lagged observable variables. But even when the dimension of the model’s observables q∗ is

small, in practice l should be a small number given the current state of computational power. In

9Accordingly, the Äıt-Sahalia’s estimator could also be modified through the bias correction procedure we
suggested in (5).
10An exception arises exactly in the i.i.d. case. Under regularity conditions given in section 3.3, the optimal

weighting function would be given by wT (x) = TT (x) · πT (x)−1, where TT (·) is a trimming function converging
pointwise to 1 as T →∞.
11Pastorello, Patilea and Renault (2003) have recently proposed a “latent backfitting” method to estimate

partially observed systems through information provided by standard economic theory. In Altissimo and Mele
(2005, appendix G), we have extended the theory in this paper to the ideal situation in which partially observed
systems are estimated in conjunction with asset pricing models holding without measurement error.
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tests involving stochastic volatility models, the SNE computed with l = 1 (i.e. with a matching

of the joint density of two adjacent observations) had a very encouraging behavior (see Section

5). Dimensionality issues related to the spatial dimension q∗ can be mitigated in the same vein.

3.3 Conditional Density SNE, and Efficiency

This section introduces a modification of the SNE, and addresses efficiency issues within the case

of fully observable diffusions. We show that by casting the estimation problem as a matching of

conditional densities (instead of joint ones), our resulting estimator is asymptotically (first-order)

efficient whenever the state y in (1) is fully observable.

To prepare the analysis, consider again vector x ∈ X ⊆ Rq in (2). For each t, partition xt as

xt = (zt, vt), where zt ≡ yot ∈ Z ⊆ Rq∗ is the vector of observable variables, and vt ∈ V ⊆ Rq−q∗ ,

is the vector of predetermined variables:

vt ≡
¡
yot−1, · · ·, yot−l

¢
, t = tl ≡ 1 + l, · · ·, T.

Consider the following conditional density matching estimator:

Definition 2. (CD-SNE) For each fixed integer S, the Conditional Density SNE (CD-SNE) is

the sequence {θT,S}T given by:

θT,S = argmin
θ∈Θ

Z
Z

Z
V
[π̃T (z| v; θ)− πT (z| v)]2wT (z, v)T2T,δ (v; θ) dzdv, (8)

where πT (z| v) ≡ πT (z, v)/πT (v), π̃T (z| v; θ) ≡ S−1
PS

i=1 π
i
T (z, v; θ)

±
πiT (v; θ), {TT,δ}T is a

sequence of trimming functions satisfying assumption T below, and wT > 0 is a sequence of

weighting functions satisfying assumption 4-(b).

The CD-SNE relies on nonparametric conditional density estimates obtained as ratios between

joints over marginals. Small values of the denominators in πT (z| v) may hinder numerical stability
of the estimator, and the asymptotic theory. Therefore, we need to control the tail behavior of

marginal density estimates. The role of trimming function TT,δ is to accommodate this task.
Trimming functions are widely used in related contexts (see, e.g., Stone (1975), Bickel (1982),

or more recently, Linton and Xiao (2000) and Fermanian and Salanié (2004)). In this paper, we

consider trimming devices related to the original work of Andrews (1995).

Assumption T. Let g be a bounded, twice differentiable density function with support [0, 1],

g (0) = g (1) = 0, and let gδ (u) ≡ 1
δg(

u
δ − 1). We set, TT,δ (v; θ) ≡

QS
i=0 T

¡
πiT (v; θ)

¢
(π0T (·) ≡

πT (·)), where T ( ) ≡
R
0 gδT (u) du, for some sequence δT → 0.
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By construction, TT,δ is increasing, smooth and satisfies, TT,δ (v; θ) = 0 on {v : πiT (v; θ) < δT ,

i = 0, 1, ···, S}; and TT,δ (v; θ) = 1 on {v : πiT (v; θ) > 2δT , i = 0, 1, ···, S}. As T →∞ and δT → 0,

and under additional regularity conditions, πT (z|v)
p→ π (z|v) - uniformly over expanding sets on

which the trimming function TT,δ is nonzero (see lemma 3 in appendix A). In appendix C (see
assumptions T1-(a,b)) we gather all regularity conditions on the asymptotic behavior of δT we

need to demonstrate consistency and asymptotic normality of the CD-SNE.12

Let L̄T (θ) ≡
RR
[π̃T (z| v; θ)− πT (z| v)]2wT (x)dx. We define the asymptotic counterpart of

L̄T as L̄ (θ) ≡
RR
[n (z, v; θ)− n (z, v; θ0)]

2w(x)dx, where n (z, v; θ) ≡ m (z, v; θ)/m (v; θ). To

prove consistency of the CD-SNE, we need conditions paralleling the ones in assumption 3:

Assumption 5. L̄T and L̄ are as LT and L in assumption 3-(a), and for all (ϕ, θ) ∈ Θ × Θ,¯̄
L̄T (ϕ)− L̄T (θ)

¯̄
≤ κT · kϕ− θkα2 , where α and κT are as in assumption 3-(b).

The following result provides the asymptotic properties of the CD-SNE.

Theorem 2. Let assumptions 1-(a), 2, 5 and assumption T1-(a) in appendix C hold ; then the

CD-SNE is (weakly) consistent. Under the additional assumptions 1-(b) and 4, and assumption

T1-(b) in appendix C, √
T (θT,S − θ0)

d→ N (0, V ) ,

where V ≡ D−13 · var[ 1S
PS

i=1(D
i
1 −Di

2)− (D0
1 −D0

2)] ·D>−1
3 , provided it exists finitely; and the

terms {Di
1}Si=0, {Di

2}Si=0 and D3 are given in appendix C.2.

Proof. In appendix C. ¥
The variance structure of the CD-SNE differs from the one in the asymptotic distribution of

the SNE (see Section 3.2). In the CD-SNE case, one has to cope with additional terms arising

because conditional densities are estimated as ratios of two densities (joints over marginals).

These additional terms are {Di
2}Si=0. As we show in appendix D.2, there exist weighting functions

wT making these terms identically zero. In those cases, the variance terms in theorem 2 have

the same representation as the variance terms in Section 3.2. Proposition 2 in appendix D.2

summarizes our results on these issues.

We now argue that as soon as y in (1) is fully observable, there exists a weighting function

wT making the CD-SNE asymptotically attain the Cramer-Rao lower bound. Precisely, let,

wT (z, v) =
πT (v)

2

πT (z, v)
TT,α (z, v) , TT,α (z, v) ≡ Tα (πT (z, v; θ)) , (9)

12Linton and Xiao (2000) suggested the following example of trimming functions with a closed-form solution. Let
the Beta-type density g (u) ∝ zk (1− z)k (for some integer k); then T ( ) is a (2k + 1)-polynomial in ( − δT )/ δT .
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where Tα ( ) ≡
R
0 gαT (u) du, and gαT is as in assumption T. Similarly as for the CD-SNE in

definition 2, TT,α (z, v) is a trimming function needed to control the tail behavior of the joint
density estimate on sample data. If wT is as in (9), the criterion in (8) reduces to:Z

Z

Z
V

∙
π̃T (z|v; θ)
πT (z|v)

− 1
¸2

πT (z, v)T2T,δ (v; θ)TT,α (z, v) dzdv,

which asymptotically becomes a Neyman’s chi-squared measure of distance. A Taylor’s expansion

of the first order conditions satisfied by the CD-SNE around θ0 yields that in large samples,

−JT (θ0) ·
√
T (θT,S − θ0)

d
=

ZZ
T

∙
π̃T (z|v; θ0)
πT (z|v)

− 1
¸ ∙
∇θπ̃T (z|v; θ0)

πT (z|v)

¸
πT (z, v) dzdv

d
=

ZZ
T
[π̃T (z, v; θ0)− πT (z, v)] ·∇θ lnπ (z|v; θ0) · dzdv

=
1

S

SX
i=1

Hi
T (θ0)−H0

T (θ0) (10)

where

JT (θ0) =

ZZ
T

¯̄̄̄
∇θπ̃T (z|v; θ0)

πT (z|v)

¯̄̄̄
2

πT (z, v) dzdv

Hi
T (θ0) =

ZZ
T

©
πiT (z, v; θ0)−E

£
πiT (z, v; θ0)

¤ª
·∇θ lnπ (z|v; θ0) · dzdv, i = 0, 1, · · ·, S

(with π0T ≡ πT ) and integrals with a subscript T are integrals trimmed under the action of

functions TT,α and TT,δ. But JT (θ0) and Hi
T (θ0) satisfy JT (θ0)

p→ E [|∇θ lnπ (z1|v1; θ0)|2] and
Hi
T (θ0)

d→ N(0, var(∇θ lnπ (z|v; θ0))) (i = 0, 1, · · ·, S) (see appendixes C.2 and D.2 for technical
details on such a law of large numbers and central limit theorem13). Since the system is fully

observable and Markov, zt = yt, and ∇θ lnπ (yt|yt−1; θ0) is a martingale difference with respect to
the sigma-fields generated by y. Therefore, the variance of the CD-SNE (rescaled by (1 + S−1))

does attain the Cramer-Rao lower bound E [|∇θ lnπ (y2|y1; θ0)|2]
−1.

The previous arguments are obviously heuristic. For example, one critical issue is to ensure

that as αT → 0, the weighting function in (9) wT (z, v)
p→ w (z, v) - uniformly over expanding

sets on which TT,α is nonzero (see lemma 2 in appendix A). In appendix D, we gather all joint
asymptotic restrictions on αT and δT leading to consistency and asymptotic normality of the

CD-SNE with weighting function as in (9) (see assumption T-2(a,b)). We have:

13The central limit theorem can be understood heuristically as follows. Consider approximating H·
T (θ0) with

H̃T ≡ ω (x) dAT (x), where x ≡ (z, v), AT (x) =
√
T [FT (x)−E (FT (x))], ω ≡ ∇θ lnπ, and FT (x) =

1
T

T
t=tl

Ixt≤x. We have, H̃T = T−
1
2

T
t=tl

ω (x) (dIxt≤x −E (dIxt≤x)) = T−
1
2

T
t=tl

[ω (xt)−E (ω (xt))], where
the last equality holds because dIxt≤x = δ (x− xt) dx, where δ (·) is the Dirac’s delta. Now apply the central limit
theorem to conclude.
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Theorem 3. (Cramer-Rao lower bound) Suppose that the state is fully observable (i.e., q∗ = d).

Let the CD-SNE match one-step ahead conditional densities (i.e., (z, v) ≡ (yt, yt−1) in (8)) and let
wT be as in (9). Let assumptions 1-(a), 2, 5 and assumption T2-(a) in appendix D hold ; then, the

CD-SNE is (weakly) consistent. Under the additional assumptions 1-(b), 4-(a) and assumption

T2-(b) in appendix D, the CD-SNE is as in theorem 2, and it attains the Cramer-Rao lower bound

as S →∞.

Proof. In appendix D. ¥
The previous efficiency result follows because the weighting function in (9) makes the CD-SNE

asymptotically equivalent to the score as soon as the system is fully observable (see eq. (10)). We

emphasize that this property corresponds to the classical first-order efficiency criterion in Rao

(1962). Furthermore, results by which estimators based on closeness-of-density retain efficiency

properties are not a novelty in the statistical literature. In the context of independent observations

with discrete distributions, Lindsay (1994) presented a class of estimators encompassing a number

of minimum disparity estimators based on Hellinger’s distance, Pearson’s chi-square, Neyman’s

chi-square, Kullback-Leibler distance, and maximum likelihood. Lindsay showed that while all

these estimators are first-order efficient, they may differ in terms of second-order efficiency, and

robustness. Basu and Lindsay (1994) extended this theory to the case of continuous densities.

Such an extension can be used to illustrate some fundamental properties of our estimator. In the

i.i.d. case, our CD-SNE can be thought of as a member belonging to a general class of minimum

disparity estimators θT defined by the following estimating equation:

0 =

Z
T
A (φ(x)) [∇θ (K ∗ π (x; θT ))] dx, φ(x) ≡ πT (x)−K ∗ π (x; θT )

K ∗ π (x; θT )
,

where A is an increasing continuous function in (−1,∞).14 Under regularity conditions, function
A determines how sensitive an estimator is to the presence of outliers. Indeed, function φ is high
exactly when a point in the sample space has been accounted much more than predicted by the

model. Accordingly, a robust estimator is one able to mitigate the effect of large values of φ. As

a benchmark example, the likelihood disparity sets A(φ) = φ. Estimators with the property that

A(φ)¿ φ for large φ are more robust to the presence of outliers than maximum likelihood. For

instance, the Hellinger’s distance sets A(φ) = 2[
√
φ+ 1 − 1], and the Kullback-Leibler distance

has A(φ) = ln (1 + φ). It is easily seen that if wT = πT (x)
−1 TT,α (x), our LT is asymptotically a

Neyman’s chi-squared measure of distance, with A (φ) = φ/ (1 + φ). These simple facts suggest

that the class of estimators that we consider displays interesting robustness properties.

Naturally, the aim of theorem 3 was to extend the above class of estimators to the case of

dynamic models. However, we do not further investigate robustness properties of our estimators.

14As λ ↓ 0, A and φ collapse to Lindsay’s (1994) adjustment function and Pearson’s residual, respectively.
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Using robustness, and/or second-order efficiency criteria as discrimination devices of alternative

parameter estimators of dynamic models is an interesting area that we leave for future research.

4 Applications to continuous-time financial models

All available simulation-based techniques (and the methods developed in this article) rest on the

obvious assumption that the model of interest can be simulated in a simple manner. Unfortu-

nately, continuous-time models can not even be simulated - except in the trivial case in which

the transition density is known.15 The simple reason is that a continuous-time model can only

be imperfectly simulated through some discretization device. In this section, we show that our

theory still works if we allow the discretization to shrink to zero at an appropriate rate.

4.1 The model

Let Θ ⊂ Rpθ be a compact parameter set, and for a given parameter vector θ0 ∈ Θ, consider the
following data generating process y = {y(τ)}τ≥0:

dy(τ) = b (y(τ), θ0) dτ + a (y(τ), θ0) dW (τ), τ ≥ 0, (11)

where W is a standard d-dimensional Brownian motion; b and a are vector and matrix valued

functions in Rd and Rd×d, respectively; a is full rank almost surely; and y takes values in Y ⊆ Rd.

As in Section 3, we partition y as y = (yo
... yu), where yo ∈ Y o ⊆ Rq∗ is the subvector of observable

variables. Data are assumed to be sampled at regular intervals, and we still let q ≡ q∗ (1 + l) and

xt ≡
¡
yot , · · ·, yot−l

¢
(t = 1 + l, · · ·, T ), where {yot }Tt=1 is the observations sequence and T is the

sample size. We consider the following regularity condition:

Maintained assumptions. System (11) has a strong solution and it is strictly stationary.

Furthermore, assumptions 1 and 2 (with mixing coefficients β̄k and exponent µ̄ > 1, say) hold in

the context of model (11).

Chen, Hansen and Carrasco (1999) provide primitive conditions guaranteeing that assumption

2 holds in the case of scalar diffusions. A scalar diffusion is β-mixing with exponential decay if

their “pull measure”, defined as b
a −

1
2
∂a
∂y , is negative (positive) at the right (left) boundary (the

authors also provide conditions ensuring β-mixing with polynomial decay in the case of zero pull

measure at one of the boundaries (see their remark 5)). As regards multidimensional diffusions,

15To date, estimation methods specifically designed to deal with diffusion processes include moments generating
techniques (e.g., Hansen and Scheinkman (1995), Singleton (2001)), approximations to maximum likelihood (e.g.,
Pedersen (1995) and Santa-Clara (1995), and Äıt-Sahalia (2002, 2003)) and, on a radically different perspective,
Markov Chain Monte Carlo approaches (e.g., Elerian, Chib and Shephard (2001)).
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β-mixing with exponential decay can be checked through results developed by Meyn and Tweedie

(1993) for exponential ergodicity, as in Carrasco, Hansen and Chen (1999). Finally, Carrasco,

Hansen and Chen (1999) provide more specific results pertaining to partially observed diffusions.

4.2 Estimation

To generate simulated paths of the observable variables in (11), various discretization schemes

can be used (see, e.g., Kloeden and Platen (1999)). In this paper, we consider the simple Euler-

Maruyama discrete time approximation to (11):

hyh(k+1) − hyhk = b (hyhk, θ) · h+ a (hyhk, θ) ·
√
h · k+1, k = 0, 1, · · ·, (12)

where h is the discretization step and { k}k=1,··· is a sequence of independent Rd-valued i.i.d.

random variables. Let xih(θ) = {xit,h(θ)}Tt=tl denote the “pseudo”-skeleton of the i-th simulation
path (i = 1, · · ·, S) at the parameter value θ.16 That is, xit,h(θ) is the i-th simulation of the t-th
observation when the parameter vector is θ. Finally, define yih(θ) in the same way.

The behavior of the high frequency simulator is regulated by the following conditions:

Assumption D.1. For all θ ∈ Θ, (a) The high frequency simulator (12) converges weakly17 to
the solution of (11) i.e., for each i, yih(θ)⇒ y(θ) as h ↓ 0. (b) The diffusion and drift functions
a and b are Lipschitz continuous in y; their components are four times continuously differentiable

in y; and a, b and their partial derivatives up to the fourth order have polynomial growth in y.

(c) Finally, as h ↓ 0 and T →∞: (c.1) h ·
√
T → 0; or (c.2) h · T → 0.

The maintained assumption that (11) is stationary implies that the “observed skeleton” of

the diffusion inherits the same features of the continuous-time process. Since the simulation step

h can not be zero in practice, we extend assumption 2 to cover the “pseudo”-skeleton behavior:

Assumption D.2. For all θ ∈ Θ, ∃h0 > 0 depending on θ : for all h ∈
¡
0, h0

¢
, yih(θ) is β-mixing

with mixing coefficients βk (h) : limk→∞maxh∈(0,h0) k
µhβk (h)→ 0 for some sequence {µh}h > 1;

and limh↓0 µh = µ̄, limh↓0 βk (h) = β̄k, where µ̄ and β̄k are as in the maintained assumptions.

Primitive conditions ensuring that assumption D.1-(a) holds are well-known and can be found,

for instance, in Kloeden and Platen (1999). Primitive conditions guaranteeing that assumption

D.2 holds are also well-known (see, e.g., Tjøstheim (1990) for conditions ensuring that (12)

16We used the wording “pseudo”-skeleton because h is nonzero.
17Let (yhk)

∞
k=1 be a discrete time Markov process, and (y(τ))τ≥0 be a diffusion process. When the probability

laws generating the entire sample paths of (yhk)
∞
k=1 converge to the probability laws generating (y(τ))τ≥0 as h ↓ 0,

(yhk)
∞
k=1 is said to converge weakly to (y(τ))τ≥0.
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is exponentially ergodic for fixed h). Assumptions D.1-(b,c) make our estimators asymptoti-

cally free of biases arising from the imperfect simulation of model (11) (model (11) is imper-

fectly simulated so long as h > 0). Precisely, such biases arise through terms taking the form√
T [E(K(xit,h(θ0)) − E(K(xt))], where K is a symmetric bounded kernel. But by results sum-

marized in Kloeden and Platen (1999, chapter 14),
√
T [E(K(xit,h(θ0))−E(K(xt))] = O(h ·

√
T )

whenever assumptions D.1-(a,b) hold and K is as differentiable as a and b are in assumption

D.1-(b). The role of assumption D.1-(c) is then to asymptotically eliminate such bias terms.

Naturally, more precise high frequency simulators would allow h to shrink to zero at an even

lower rate. Finally, assumption D.1-(b) can considerably be weakened. For example, one may

simply require that a, b be Hölder continuous, as in Kloeden and Platen (1999, theorem 14.1.5 p.

460). These extensions are not considered here to keep the presentation as simple as possible.

Let LT,h and L̄T,h be the criterions of the SNE (definition 1) and the CD-SNE (definition 2),

and consider a sequence {hT }T of discretization stepsizes converging to zero. Let Kj
T,h (x; θ) be

defined similarly as Kj
T (x; θ) in Section 3.2. We need the following regularity conditions:

Assumption D.3 (a) Either (a.1) LT,h satisfies assumption 3; or (a.2) L̄T,h satisfies assump-

tion 5. (b) With Kj
T,h replacing K

j
T , (b.1) assumption 4 holds; or (b.2) assumption 4-(a) holds.

Assumptions D.1-D.3 are the additional assumptions we need to prove that our estimators

work as in the previous Section 3. Precisely, the following theorem is proven in Altissimo and

Mele (2005, appendix E).

Theorem D.1. Let assumptions D.1-(a,b) and D.2 hold. Then, under the additional assumptions

D.1-(c.1) and D.3-(a.1,b.1), the SNE is as in theorem 1; under the additional assumptions D.1-

(c.2) and D.3-(a.2,b.1), the CD-SNE is as in theorem 2; and under the additional assumptions

D.1-(c.2) and D.3-(a.2,b.2), the CD-SNE is as in theorem 3.

5 Monte Carlo experiments

In this section we conduct Monte Carlo experiments to investigate finite sample properties of our

estimators. We wish to address four points: First, we wish to ascertain whether the finite sample

properties of our estimators are accurately approximated by the asymptotic theory. Second, we

study how our SNE and CD-SNE compare with alternative estimators such as the Fermanian

and Salanié (2004) NPSML estimator, and even the MLE. Third, we examine how the SNE and

the CD-SNE compare with each other. And fourth, we investigate how bandwidth choice and

the possible curse of dimensionality impart on our estimators’ finite sample performance.

To address these points, we consider four distinct models: Two continuous-time models com-

monly utilized in finance (namely, the standard Vasicek model and one simple extension of the
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Vasicek model with stochastic volatility); and two discrete-time stochastic volatility models (one

univariate and one bivariate). Our experiments on all these models share some common features.

First, nonparametric density estimates are implemented through Gaussian kernels. Second, our

bandwidth choice closely follows the suggestions made by Chen, Linton and Robinson (2001) in

the context of conditional density estimation with dependent data; precisely, for each Monte Carlo

replication, we select the bandwidth by searching over values minimizing the asymptotic mean

integrated squared error of the conditional density estimated on sample data. Third, we trim 2%

of the observations. Fourth, we set the number of path simulations equal to 5 in all experiments

(i.e. S = 5). Fifth, in cases in which our estimators can not be efficient, asymptotic standard

deviations are approximated through Newey-West windows of ∓12. Sixth, we run 1000 Monte
Carlo replications in each experiment. Finally, the experiments related to the continuous-time

models are implemented with data sampled at weekly frequency; and models simulated through

the Euler-Maruyama scheme (12) with stepsize h = 1/(5× 52).18

5.1 Continuous-time models

We start by considering the celebrated Vasicek model of the short-term interest rate,

dr(τ) = (b1 − b2r(τ)) dτ + a1 × dW (τ), (13)

where b1, b2 and a1 are parameters and W is a Brownian motion. This model is the continuous-

time counterpart of a discrete-time AR(1) model. Given its simplicity, it is a natural starting

point. Moreover, this model can also be easily estimated by maximum likelihood. Therefore, it

is a useful benchmark. The parametrization we choose for this model is b1 = 3.00, b2 = 0.50 and

a1 = 3.00. These parameter values imply that the model-generated data have approximately the

same mean, variance and autocorrelations as the US short-term interest rate.

We consider four estimators. The first estimator is the CD-SNE in (8) implemented with

the weighting function in (9). As we explained in Section 3.3, this estimator matches the model

conditional density to the conditional density πT (rt|rt−1) estimated from sample data. As we also
demonstrated in Section 3.3, the use of the weighting function wT (rt, rt−1) =

πT (rt−1)2

πT (rt,rt−1)
makes

the resulting CD-SNE first order efficient in this case.

The second estimator is the SNE in (7) obtained by matching the joint density of any two

adjacent observations πT (rt, rt−1). We use wT (rt, rt−1) = πT (rt, rt−1) as a weighting function.

According to our theory, the resulting estimator is not first-order efficient. This experiment will

18In the most demanding applications (diffusion processes and sample sizes of 1000 observations), computation
time on a Pentium 4 with 1.7GHz is between 3 and 6 minutes. Computation time may vary according to the
dimension of the parameter vector, the programming language, the optimization algorithm and sometimes, the
spread of the uniform distribution we draw the initial guesses from (see footnotes 20-22 below).
In the Monte Carlo experiments of this section, our estimators are implemented with Fortran-90. The objective

functions are optimized through a Quasi-Newton algorithm, with a convergence criterion of the order of 10−5.
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thus help us to understand the effects of suboptimal choice of the objective function on the finite

sample properties of our estimators.

The third estimator, labelled Analytical-NE, is a modification of the SNE in which the simu-

lated nonparametric estimate S−1
PS

i=1 π
i
T (rt, rt−1; θ) is replaced with its analytical counterpart

πvas (rt, rt−1; θ).19 Precisely, the objective function of the Analytical-NE takes the form,Z
(rt,rt−1)∈R2

[πvas (rt, rt−1; θ)− πT (rt, rt−1)]
2 πT (rt, rt−1)drtdrt−1. (14)

Naturally, the Analytical-NE is practically unfeasible in most models of interest. We consider

this estimator because it provides us with useful information about the importance of the “twin-

smoothing” procedure discussed in Section 3.1 - i.e. the importance to apply the same kernel

smoothing procedure to sample data and model-related data.

The fourth and last estimator we consider is the MLE.

Table 2 provides results of our Monte Carlo experiments when model (13) is estimated through

the previous methods. We report mean, median, and sample standard deviation of the estimates

over the Monte Carlo replications.20 As regards the CD-SNE and the SNE, Table 2 also reports:

1) asymptotic standard deviations (obtained through the relevant theory developed in Section

3); and 2) coverage rates for 90% confidence intervals computed through the usual asymptotic

approximation to the distribution of the estimator - that is, the estimate plus or minus 1.645

times the asymptotic standard deviation.

When the size of the simulated samples is 1000, the performance of the CD-SNE and MLE are

comparable in terms of variability of the estimates. Specifically, the CD-SNE has a lower standard

deviation than the MLE as regards the estimation of the parameter b2 tuning the persistence of

r; and the MLE is more precise than the CD-SNE as regards the estimation of the diffusion

parameter a1. As it turns out, the sample standard deviation of the CD-SNE estimates of a1 is

larger than its asymptotic counterpart, and this is reflected in a coverage rate below the nominal

one. As regards biases, the MLE tends to under-estimate the dependence of the data and largely

over-estimate the constant b1 in the drift term. Interestingly, this phenomenon does not emerge

when the model is estimated with the CD-SNE.

As expected, the results in Table 2 clearly demonstrate that moving from CD-SNE to SNE

causes an increase in the variability of the estimates; this result is pronounced for the diffusion pa-

rameter a1. Furthermore, the Analytical-NE produces a much larger variability of the estimates;

even more interestingly, it estimates the parameters with large biases: in particular, minimizing

19As is well known, the transition density πvas (rs|rt; θ) from date t to date s (s > t) is Gaussian with expecta-
tion equal to b1/b2 + [r(t)− (b1/b2)] exp (−b2(s− t)) and variance equal to a21/(2b2) [1− exp (−2b2(s− t))]. The
marginal density is obtained by letting s→∞.
20Initial values of the parameters are drawn from a uniform distribution on [1.5, 4.5] (for b1 and a1); and on

[0.1, 0.9] (for b2). The correlations (over the Monte Carlo replications) between initial values and final estimates
are 0.07 (for the SNE) and 0.08 (for the CD-SNE) on average over the parameters.
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(14) over-estimates the diffusion coefficient a1 by 0.55 and the constant b1 in the drift term by 0.47.

These results are perfectly consistent with our theoretical explanation of a second order biases

arising when the model density and the sample density are not smoothed with the same kernel.

As is well-known, the practical performance of nonparametric methods hinges on the proper

choice of the bandwidth parameter. Table 2 also shows the effects of bandwidth selection on the

small samples performance on the CD-SNE. We have implemented two experiments: in the first

one, estimation is performed with a bandwidth level which is double the size suggested by Chen,

Linton and Robinson (2001) - which we utilized earlier; in the second experiment, the bandwidth

size is half the one we utilized earlier. The results in Table 2 suggest that while these bandwidth

choices produce some effects on the estimates, those effects are marginal. In particular, under-

smoothing the data introduces some volatility in the density estimates - which is reflected in a

higher standard deviation of the parameters estimates. And over-smoothing the data tends to

increase the mean bias of the parameter estimates.

Finally, Table 2 also documents the performance of the CD-SNE, SNE and MLE in shorter

samples of 500 observations. As expected, the variability of the estimates increases with all these

methods. As regards the estimates of the b1 and b2 parameters, the mean bias of the MLE almost

doubles with respect to the longer sample; and the mean biases of the CD-SNE remain small

relatively to the corresponding MLE mean biases.

A simple extension of model (13) is one in which the instantaneous volatility of the short-term

rate r is proportional to an unobservable process {σ(τ)}t≥0 with constant elasticity of variance,(
dr(τ) = (b1 − b2r(τ)) dτ + a1 × σ(τ)dW1(τ)

dσ(τ) = b3 × (1− σ(τ)) dτ + a2 × σ(τ)dW2(τ)
(15)

where W1 and W2 are two uncorrelated Brownian motions, and b3 and a2 are parameters related

to the volatility dynamics. Naturally, the presence of the unobservable volatility component in

model (15) now makes MLE an unfeasible estimation alternative.

The parametrization of the stochastic volatility model (15) is b1 = 3.00, b2 = 0.5, a1 = 3.00,

b3 = 1.0 and a2 = 0.3. This parametrization implies that the unobservable volatility process is

strongly dependent, but not as strongly as the observable process r itself. The parameters’ values

we are using are consistent with estimates of similar models on US short-term interest rates data.

We consider two estimators. The first estimator is the CD-SNE matching the model’s condi-

tional density to the conditional density πT (rt|rt−1) of any two adjacent observations; we imple-
ment the CD-SNE with the weighting function in (9) of Section 3.3. The second estimator is the

SNE implemented by matching the joint density πT (rt, rt−1) of two adjacent observations; we use

πT (rt, rt−1) as a weighting function. The performance of both estimators is gauged in samples of

1000 and 500 observations, and the results are reported in Table 3.21

21Initial values of the parameters are drawn from a uniform distribution on [1.5, 4.5] (for b1 and a1); on [0.1, 0.9]
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As regards the larger simple size case and the CD-SNE, the standard deviation and the

bias associated with the parameters b1 and b2 of the observable process are of the same order

of magnitude as in Table 2; the presence of the unobservable volatility component makes the

estimate of a1 become more imprecise than the corresponding estimates in Table 2. As regards

the bias terms, there is a tendency to over-estimate the parameter b3; this phenomenon becomes

more pronounced in the smaller sample size.

In contrast with our previous results obtained with the Vasicek model (13), we do not ob-

serve a clear ranking between the properties of the CD-SNE and the SNE. This phenomenon is

particularly clear when the two estimators’ properties are compared in terms of the variance of

the estimates. Intuitively, the unobservable volatility process {σ (τ)} destroys the Markovianity
property of the short-term interest rate {r (τ)}. Precisely, the joint process {r (τ) , σ (τ)} in (15)
is clearly Markov, but the “marginal” process {r (τ)} is not. Therefore, the conditions in Theo-
rem 3 for asymptotic efficiency of the CD-SNE are not met. As a result, there is no reason for

the CD-SNE to outperform the SNE. This makes the SNE an interesting alternative to look at in

practical applications such as the ones considered in this section. The Monte Carlo experiments

for discrete-time models reported below do reinforce this conclusion.

5.2 Discrete-time models

Discrete-time stochastic volatility models are also very often utilized in financial applications.

The first model we consider in this section is the following one,(
yt = σb × exp(y∗t /2)× 1t

y∗t = φ× y∗t−1 + σe × 2t
(16)

where {yt}t=1,2,··· is the observable variable; {y∗t }t=1,2,··· is the (latent) volatility process; 1t and

2t are two standard normal i.d. innovations; and φ, σb and σe are the parameters of interest.

Our economic interpretation of the observable variable yt is one of the unpredictable part of some

long-lived asset return. One important reason leading us to focus on model (16) is that this model

has become a workhorse in previous Monte Carlo studies - for example, Fermanian and Salanié

(2004) tested their NPSML estimator on this model.

The parametrization of the discrete-time model (16) is φ = 0.95, σb = 0.025 and σe = 0.260.

We consider sample sizes of 500 observations. Table 4 reports the results of our Monte Carlo

experiments when model (16) is estimated through the CD-SNE and the SNE. As in our previous

Monte Carlo experiments on continuous-time models, we implement the CD-SNE by matching the

model’s conditional density to the conditional density πT (yt|yt−1) of two adjacent observations,
and utilize the weighting function (9) πT (yt−1)2

πT (yt,yt−1)
of Section 3.3. Similarly, we implement the

(for b2); on [0.5, 1.5] (for b3); and on [0.1, 0.5] (for a2). The correlation (over the Monte Carlo replications) between
initial values and final estimates are 0.12 (for the SNE) and 0.11 (for the CD-SNE) on average over the parameters.
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SNE by matching the model’s joint density to the joint density πT (yt, yt−1) of two adjacent

observations, and use πT (yt, yt−1) as a weighting function.22 Table 4 also reports the finite sample

properties of three alternative estimation methods available in the literature, and summarized by

Fermanian and Salanié (2004) (see their Table 4).

The results in Table 4 reveal that the finite sample properties of the CD-SNE and the SNE

are very satisfactory, also in comparison with alternative estimation methods. In particular, the

sample variability of the estimates of φ and σb obtained with our methods is in line with the

asymptotic counterpart. As it turns out, it is relatively more difficult to estimate the volatility

parameter σe of the latent process {y∗t }; this results in a sample standard deviation larger than
its asymptotic counterpart for both the CD-SNE and the SNE.

In our last Monte Carlo experiment, we explore how our methods are affected by the dimen-

sionality of nonparametric density estimates. We consider a simple model in which two (unpre-

dictable parts of) asset returns exhibit stochastic volatility. We make the simplifying assumption

that the two asset returns volatilities are driven by a common volatility factor,⎧⎪⎨⎪⎩
y1t = σb1 × exp(y∗t /2)× 1t

y2t = σb2 × exp (y∗t /2)× 2t

y∗t = φ× y∗t−1 + σe × 3t

(17)

where {yit}t=1,2,··· (i = 1, 2) are the observable variables; {y∗t }t=1,2,··· is the (latent) volatility
process; 1t, 2t and 3t are three standard normal i.d. innovations; and σbi (i = 1, 2), φ and σe

are the parameters of interest.

The presence of a common source of stochastic volatility in asset returns can be rationalized

by many recent theoretical models of long-lived asset price fluctuations. For example, models

with external habit formation predict that a common volatility factor arises because all assets in

the economy are consistently priced by a single pricing kernel. Therefore, time-varying volatility

in the pricing kernel induced by habit formation propagates to all the asset returns (see, e.g.,

Menzly, Santos and Veronesi (2004)). Naturally, a sensible model for applied work is one in which

returns volatilities also feature idiosyncratic components. But here we simply aim at isolating

the effects of the curse of dimensionality on our estimators finite sample performance and, for

obvious computational reasons, the Monte Carlo design has to be as simple as possible.

Similarly as for the previous experiments, we consider sample sizes of 500 observations, and

parametrize model (17) as follows: φ = 0.95, σb1 = σb2 = 0.025 and σe = 0.260. We examine

finite sample properties of both the CD-SNE and the SNE. The CD-SNE is implemented by

matching the conditional density πT (y1t, y2t|y1t−1, y2t−1) = πT (y1t,y2t,y1t−1,y2t−1)
πT (y1t−1,y2t−1)

of two adjacent

pairs of observations - with the weighting function (9). The SNE is implemented by matching

22Initial values of the the parameters are drawn from a uniform distribution on [0.15, 0.35] (for σe); on [0.9, 0.99]
(for φ); and on [0.015, 0.035] (for σb). The correlation (over the Monte Carlo replications) between initial values
and final estimates are 0.09 (for the SNE) and 0.11 (for the CD-SNE) on average over the parameters.
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the joint density πT (y1t, y2t, y1t−1, y2t−1) of two adjacent pairs of observations - with weighting

function πT (y1t, y2t, y1t−1, y2t−1).23 The results are displayed in Table 5.

The increase in dimensionality may produce two effects on the estimates. On the one hand,

the observation of two asset returns may facilitate our understanding of the dynamic properties

of the common unobserved volatility process. On the other hand, the larger dimension of the

nonparametric density estimates may impinge upon the precision of the estimates. The results in

Table 5 suggest that these effects do arise in our experiments. Overall, an increase in dimension-

ality does not seem to have jeopardized the performance of our estimators in this experiment.

6 Conclusions

This paper has introduced new methods to estimate the parameters of partially observed dynamic

models. The building block of these methods is indeed very simple. It consists in simulating the

model of interest for the purpose of recovering the corresponding density function. Our estimators

are the ones which make densities on simulated data as close as possible to their empirical

counterparts. We made use of classical ideas in the statistical literature to build up convenient

measures of closeness of densities. Our estimators are easy to implement, fast to compute and in

the special case of fully observed Markov systems, they can attain the same asymptotic efficiency

as the maximum likelihood estimator. Furthermore, Monte Carlo experiments revealed that their

finite sample performance is very satisfactory, even in comparison to maximum likelihood.

Using simulations to recover model-implied density is not only convenient “just” because it

allows one to recover estimates of densities unknown in closed-form. We demonstrated that our

“twin-smoothing” procedure makes this feature of our methods stands as a great improvement

upon alternative techniques matching “closed-form” model-implied densities to data-implied den-

sities. Consistently with our asymptotic theory, finite sample results suggest that a careful choice

of both the measures of closeness of density functions and the bandwidth functions does enhance

the performance of our estimators, but mainly in terms of their precision. Furthermore, our trick

to use simulations to recover model-implied densities makes our estimators attain a high degree

of accuracy in terms of unbiasedness, even in cases of unsophisticated objective functions and/or

bandwidth selection procedures.

In our numerical experiments, we emphasized applications related to some typical models

arising in financial economics. But we also demonstrated that our approach is quite general, and

can be used to address related estimation problems. As an example, the typical Markov models

arising in applied macroeconomics may also be estimated with our methods. In these cases, too,

the previous asymptotic efficiency and encouraging finite sample properties make our methods

stand as a promising advance into the literature of simulation-based inference methods.

23Initial values of the parameters are drawn as in the previous footnote. Correlations between initial guesses and
final estimates are also of the same order of magnitude as in the previous footnote.
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Appendix

An extensive appendix including the proofs of lemmata 1-10 in appendix A and further compu-

tations in appendixes B, C and D can be found in Altissimo and Mele (2005) (hereafter Al-M05).

A. Lemmata

Lemma 1. Let assumptions 1-(a), 2 and K hold and for each t, let xt ≡ (zt, vt), as in the main
text. We have,

(a) supx∈Rq |πT (x)−m0 (x)| = Op

³
T−

1
2λ−qT

´
.

(b) supx∈Rq |πT (x)− π0 (x)| = Op

³
T−

1
2λ−qT

´
+Op (λ

r
T ).

Lemma 2. Let assumptions 1-(a), 2 and K hold, and set AT ≡ {(z, v) ∈ Z × V : πT (z, v) > αT },
where limT→∞ αT → 0, limT→∞ T

1
2λqTα

3
T →∞ and limT→∞ λq

∗

T αT → 0. We have:

(a) Let limT→∞ λT ≥ 0; then,

sup
(z,v)∈AT

∙
1

m0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄¸
p→ 0,

where m0 (·) ≡ m (·; θ0) and n0 (·) ≡ n (·; θ0).

(b) Let limT→∞ λT = 0, and limT→∞ α3Tλ
−r
T =∞; then,

sup
(z,v)∈AT

∙
1

π0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− π0 (v)

π0 (z| v)

¯̄̄̄¸
p→ 0.

Lemma 3. Let assumptions 1-(a), 2 and K hold, and set BT ≡ {v ∈ V : πiT (v; θ) > δT ,

i = 0, 1, · · ·, S, all θ ∈ Θ} (π0T ≡ πT ), where limT→∞ δT → 0, limT→∞ T
1
2λq−q

∗

T δ2T → ∞
and limT→∞ T

1
2λqT δT →∞. We have:

(a) Let limT→∞ λT ≥ 0; then sup(z,v)∈Z×BT

¯̄̄
πT (z,v)
πT (v)

− n0 (z, v)
¯̄̄

p→ 0.

(b) Let limT→∞ λT = 0, and limT→∞ δ2Tλ
−r
T =∞; then sup(z,v)∈BT

¯̄̄
πT (z,v)
πT (v)

− π (z| v)
¯̄̄

p→ 0.

Lemma 4. Let assumptions 1-(a), 2 and K hold, and let limT→∞ αT → 0, limT→∞ δT → 0,

limT→∞ T
1
2λqTα

2
T δT →∞ and limT→∞ T

1
2λq−q

∗

T α2T δ
2
T →∞. We have:
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(a) Let limT→∞ λT ≥ 0; then, for each i = 1, · · ·, S, and θ ∈ Θ,

sup
(z,v)∈AT∩BT

∙
1

m0 (z, v)n0 (z, v)

¯̄̄̄
πiT (z, v; θ)

πiT (v; θ)
− n (z, v; θ)

¯̄̄̄¸
p→ 0.

(b) Let limT→∞ λT = 0, limT→∞ α2T δTλ
−r
T = ∞ and limT→∞ α2T δ

2
Tλ
−r
T = ∞; then, for each

i = 1, · · ·, S, and θ ∈ Θ,

sup
(z,v)∈AT∩BT

∙
1

m0 (z, v)n0 (z, v)

¯̄̄̄
πiT (z, v; θ)

πiT (v; θ)
− π (z| v; θ)

¯̄̄̄¸
p→ 0.

Lemma 5. Let assumptions 1, 2, K hold. For each t, let xt ≡ (zt, vt), as in the main text,

and let Kj
T (z, v; θ) satisfy the mixing condition in assumption 2 ( j = 1, · · ·, pθ). Finally let

∂ρ+1π (x; θ) /∂θ∂xρ be uniformly bounded for some ρ ≥ r. Then, for all θ ∈ Θ and i = 1, · · ·, S,

sup
x∈Rq

¯̄
∇θj π̃T (x; θ)−∇θjπ (x; θ)

¯̄
= Op

³
T−

1
2λ−q−1T

´
+Op (λ

r
T ) , j = 1, · · ·, pθ.

In lemmas 6 through 10 below, αT and δT denote the same sequences introduced in the

previous lemmas 2 and 3.

Lemma 6. Let the assumptions in lemma 5 hold. Then, for all θ ∈ Θ and j = 1, · · ·, pθ

sup
(z,v)∈Z×BT

¯̄
∇θj π̃T (z| v; θ)−∇θjπ (z| v; θ)

¯̄
= Op

³
T−

1
2λ−q−1T δ−2T

´
+Op

³
T−

1
2λ
−(q−q∗)−1
T δ−2T

´
+Op

³
T−

1
2λ
−(q−q∗)
T δ−3T

´
+Op

¡
λrT δ

−3
T

¢
.

Lemma 7. Let the assumptions in lemma 5, and assumption 4-(b) hold. Then, for all θ ∈ Θ and
j = 1, · · ·, pθ

sup
(z,v)∈Z×BT

¯̄̄̄∇θj π̃T (z| v; θ0)wT (z, v)

πT (v)
−
∇θjπ(z| v; θ0)w(z, v)

π (v; θ0)

¯̄̄̄
= Op

³
T−

1
2λ−q−1T δ−3T

´
+Op

³
T−

1
2λ
−(q−q∗)−1
T δ−3T

´
+Op

³
T−

1
2λ
−(q−q∗)
T δ−4T

´
+Op

¡
λrT δ

−4
T

¢
.

Lemma 8. Let the assumptions in lemma 7 hold. Then, for all θ ∈ Θ and j = 1, · · ·, pθ

sup
(z,v)∈Z×BT

¯̄̄̄∇θj π̃T (z| v; θ0)E [πT (z, v)]wT (z, v)

π1T (v; θ0) · πT (v)
−
∇θjπ(z| v; θ0)π0 (z, v)w(z, v)

π (v; θ0)
2

¯̄̄̄
= Op

³
T−

1
2λ−q−1T δ−4T

´
+Op

³
T−

1
2λ
−(q−q∗)−1
T δ−4T

´
+Op

³
T−

1
2λ
−(q−q∗)
T δ−5T

´
+Op

¡
λrT δ

−5
T

¢
.

27



Lemma 9. Let the assumptions in lemma 5 hold. Let v 7→ ξ1T (v) ( v ∈ V ⊆ Rq−q∗) be a sequence

of real, bounded functions satisfying supv∈V |ξ1T (v)− ξ1 (v)| = Op(T
−1
2λ
−(q−q∗)
T ) + Op (λ

r
T ), for

some function ξ1. Then, for all θ ∈ Θ and j = 1, · · ·, pθ,

sup
(z,v)∈AT×BT

¯̄̄̄∇θj π̃T (z| v; θ0)πT (v) ξ1T (v)
πT (z, v)

−
∇θjπ(z| v; θ0)π0 (v) ξ1 (v)

π0 (z, v)

¯̄̄̄
= Op

³
T−

1
2λ−q−1T α−1T δ−2T

´
+Op

³
T−

1
2λ
−(q−q∗)−1
T α−1T δ−2T

´
+Op

³
T−

1
2λ
−(q−q∗)
T α−1T δ−3T

´
+Op

¡
λrTα

−1
T δ−3T

¢
+Op

³
T−

1
2λ
−(q−q∗)
T α−1T

´
+Op

³
T−

1
2λ−qT α−2T

´
+Op

¡
λrTα

−2
T

¢
.

Lemma 10. Let the assumptions in lemma 5 hold, and let ξ1T (v) be the sequence of functions

in lemma 9. Then, for all θ ∈ Θ and j = 1, · · ·, pθ,

sup
(z,v)∈AT×BT

¯̄̄̄∇θj π̃T (z| v; θ0)E [πT (z, v)] ξ1T (v)πT (v)
π1T (v; θ0)πT (z, v)

−∇θjπ(z| v; θ0)ξ1 (v)
¯̄̄̄

= Op

³
T−

1
2λ−q−1T α−1T δ−3T

´
+Op

³
T−

1
2λ−qT α−2T δ−1T

´
+Op

³
T−

1
2λ
−(q−q∗)
T α−1T δ−4T

´
+Op

¡
λrTα

−1
T δ−4T

¢
+Op

¡
λrTα

−2
T δ−1T

¢
+Op

¡
λrT δ

−1
T α−1T

¢
.

B. Proof of theorem 1

B.1 Consistency

Proposition 1. Let assumptions 1, 2 and 3-(a) hold. Then ∀θ ∈ Θ, LT (θ)
p→ L(θ) as T →∞.

According to a well-known result (see Newey (1991, thm. 2.1 p. 1162)), the following condi-

tions are equivalent:

C1: limT→∞ P (supθ∈Θ |LT (θ)− L(θ)| > ) = 0.

C2: ∀θ ∈ Θ, LT (θ)
p→ L(θ), and LT (θ) is stochastically equicontinuous.

By Newey and McFadden (1994, lemma 2.9 p. 2138), assumption 3-(b) guarantees that LT (θ)

is stochastically equicontinuous, and so weak consistency follows from the equivalence of C1 and

C2 above, assumption 3-(a,b), compactness of Θ, and a classical argument (e.g., White (1994,

theorem 3.4)). So we are only left to prove proposition 1.

Proof of proposition 1. We have:

|LT (θ)− L(θ)| ≤
Z
|gT (x; θ)| dx,
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where

gT (x; θ) ≡ σ1T (x; θ) + [|π̃T (x; θ)− πT (x)|− |m (x; θ)−m (x; θ0)|] · [ρT (x; θ) + ρ (x; θ)]

≤ σ1T (x; θ) + |[π̃T (x; θ)−m (x; θ)]− [πT (x)−m (x; θ0)]| · [ρT (x; θ) + ρ (x; θ)]

≡ σ1T (x; θ) + σ2T (x; θ)

σ1T (x; θ) ≡ |π̃T (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x)− w(x)|
ρT (x; θ) ≡ |π̃T (x; θ)− πT (x)| · wT (x)

ρ (x; θ) ≡ |m (x; θ)−m (x; θ0)| · w(x)

We claim that for all θ ∈ Θ,
R
σ1T

p→ 0. Indeed, for fixed θ, σ1T is clearly bounded by in-

tegrable functions independent of T . As T → ∞, σ1T (x; θ)
p→ 0, x-pointwise. By dominated

convergence, limT→∞E [σ1T (x; θ)] = E [limT→∞ σ1T (x; θ)] = 0 all (x, θ) ∈ X × Θ. By Fubini,
E
£R

σ1T (x; θ) dx
¤
=
R
E [σ1T (x; θ)] dx all θ ∈ Θ. Again by dominated convergence,

lim
T→∞

E

∙Z
σ1T (x; θ) dx

¸
= lim

T→∞

Z
E [σ1T (x; θ)] dx =

Z
lim
T→∞

E [σ1T (x; θ)] dx = 0, ∀θ ∈ Θ.

By Markov’s inequality:

∀ > 0, P

½Z
σ1T (x; θ) dx >

¾
≤

E
£R

σ1T (x; θ) dx
¤
, ∀θ ∈ Θ.

Hence, for all θ ∈ Θ,
R
σ1T

p→ 0. The proof for the σ2T term is similar. The additional argument

is the observation that for all x, θ ∈ X×Θ, max [m (x; θ)− π̃T (x; θ), 0] ≤ m (x; θ), which is clearly

integrable, and so by π̃T (x; θ)
p→ m (x; θ), x-pointwise, and dominated convergence,

for all θ ∈ Θ,
Z
|m (x; θ)− π̃T (x; θ)| dx = 2

Z
max [m (x; θ)− π̃T (x; θ), 0] dx

p→ 0.

Hence by arguments nearly identical to the ones leading to
R
σ1T

p→ 0, we also have that for all

θ ∈ Θ,
R
σ2T

p→ 0, and the proof is complete. The case λ ≡ λT ↓ 0 is identical. ¥

B.2 Asymptotic normality

Let 0n denote a column vector of n zeros. By assumption 4-(a), the order of derivation and

integration in ∇θLT (θ) may be interchanged (see Newey and McFadden (1994, lemma 3.6 p.

2152-2153)), and the first order conditions satisfied by the SNE are,

0pθ =

Z
[π̃T (x; θT,S)− πT (x)]∇θπ̃T (x; θT,S)wT (x)dx.
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Let θ(c) ≡ c ◦ (θ0 − θT,S) + θT,S, where, for any c ∈ (0, 1)pθ and θ ∈ Θ, c ◦ θ denotes the vector
in Θ whose i-th element is c(i)θ(i). By assumption 4-(a), there exists a c∗ in (0, 1)pθ such that:

0pθ =
√
T

Z
[π̃T (x; θ0)− πT (x)]∇θπ̃T (x; θ0)wT (x)dx

+

∙Z ¯̄
∇θπ̃T (x; θ̄)

¯̄
2
wT (x)dx+

¡
θ̄ − θ0

¢
· k1T

¡
θ̄
¢
+ k2T

¡
θ̄
¢¸
·
√
T (θT,S − θ0), (B1)

where θ̄ ≡ θ(c∗), |b|2 denotes the outer product b · b> of a column vector b, and for some θ∗,¯̄
k1T

¡
θ̄
¢¯̄
≤

Z
|∇θπ̃T (x; θ

∗)|
¯̄
∇θθπ̃T

¡
x; θ̄

¢¯̄
wT (x)dx¯̄

k2T
¡
θ̄
¢¯̄
≤

Z
|π̃T (x; θ0)− πT (x)|

¯̄
∇θθπ̃T

¡
x; θ̄

¢¯̄
wT (x)dx

By assumption 4-(a), the term ∇θθπ̃T
¡
x; θ̄

¢
is bounded in probability as T becomes large. Hence

a) so is
¯̄
k1T

¡
θ̄
¢¯̄
; and b) by lemma 1,

¯̄
k2T

¡
θ̄
¢¯̄ p→ 0pθ×pθ . Moreover,Z ¯̄

∇θπ̃T (x; θ̄)
¯̄
2
wT (x)dx =

Z
|∇θπ̃T (x; θ0)|2wT (x)dx+RT

¡
θ̄
¢
,

where ¯̄
RT

¡
θ̄
¢¯̄
i,j
≤
Z ¯̄¯̄
∇θπ̃T (x; θ̄)

¯̄
2
− |∇θπ̃T (x; θ0)|2

¯̄
i,j
wT (x)dx.

Since
R
|wT − w| p→ 0 and θ̄

p→ θ0, then by lemma 5,
¯̄
RT

¡
θ̄
¢¯̄
i,j

p→ 0 for all i, j. Hence,Z ¯̄
∇θπ̃T (x; θ̄)

¯̄
2
wT (x)dx+

¡
θ̄ − θ0

¢
k1T

¡
θ̄
¢
+ k2T

¡
θ̄
¢ p→

Z
|∇θπ(x; θ0)|2w(x)dx. (B2)

Next, consider the first term in (B1). For all x ∈ X and fixed T , E
£
πiT (x; θ0)

¤
= E [πT (x)]

(i = 1, · · ·, S). Hence,

√
T

Z
[π̃T (x; θ0)− πT (x)]∇θπ̃T (x; θ0)wT (x)dx

=

Z √
T [π̃T (x; θ0)−E(π̃T (x; θ0))]∇θπ̃T (x; θ0)wT (x)dx

−
Z √

T [πT (x)−E(πT (x))]∇θπ̃T (x; θ0)wT (x)dx. (B3)

Let G be a measurable V-C subgraph class of uniformly bounded functions (see, e.g., Arcones

and Yu (1994, definition 2.2 p. 51)). By Arcones and Yu (1994, corollary 2.1 p. 59-60), for each

G ∈ G, T−1/2
PT

t=tl
[G(xt)−EG] converges in law to a Gaussian process under assumption 2.

Now λ−qT K ((xt − x)/λT ) ∈ G. Let F (x; θ) =
R x
0 π(v; θ)dv, FT (x) =

R x
0 πT (v)dv and F (x) =
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R x
0 π0(v)dv. Under the theorem’s assumptions,

AT ≡
√
T (FT (x)−E(FT (x)))⇒ ω0 (F (x)) ,

where ω0 (F ) is a Generalized Brownian Bridge with covariance kernel,

min (F (x) , F (y)) [1− F (y)] +
∞X
k=1

h
F k (x, y) + F k (y, x)− 2F (x)F (y)

i
,

and F k (x, y) ≡ P (x0 ≤ x, xk ≤ y). We have,

JT ≡
√
T

Z
[πT (x)−E (πT (x))]∇θπ̃T (x; θ0)wT (x)dx

=

Z
[wT (x)− w(x)] [∇θπ̃T (x; θ0)−∇θπ(x; θ0)] dAT (x)

+

Z
[∇θπ̃T (x; θ0)−∇θπ(x; θ0)]w (x) dAT (x)

+

Z
[wT (x)− w(x)]∇θπ(x; θ0)dAT (x) +

Z
∇θπ(x; θ0)w (x) dAT (x)

≡ J1T + J2T + J3T + J4T .

By the continuous mapping theorem,

J4T
d→ J4 ≡

Z
∇θπ (x; θ0)w(x)dω

0 (F (x)) .

By wT and w bounded, and lemma 5, JiT = [Op(T
− 1
2λ−q−1T ) + Op (λ

r
T )]1pθ , i = 1, 2. By as-

sumption 4-(b), J3T = [Op(T
− 1
2λ−qT ) + Op (λ

r
T )]1pθ . By the theorem’s conditions, therefore,

JT
d→ N (0, VJ), VJ ≡ var (J4). By the same computations in Aı̈t-Sahalia (1994) (proof of thm.

1 p. 21-22) and Äıt-Sahalia (1996) (proof of eq. (12), p. 420-421),

VJ = var [∇θπ (x1; θ0)w(x1)] +
∞X
k=1

{cov [∇θπ (x1; θ0)w (x1) ,∇θπ (x1+k; θ0)w (x1+k)]

+ cov [∇θπ (x1+k; θ0)w (x1+k) ,∇θπ (x1; θ0)w (x1)]} . (B4)

Finally, let F i
T (x; θ) ≡

R x
0 πiT (v; θ)dv, i = 1, · · ·, S. As for AT , A

i
T (x; θ0) ≡

√
T [F i

T (x; θ0) −
E(F i

T (x; θ0))]⇒ ω0i (F (x)), where ω
0
i (F ) are independent Generalized Brownian Bridges. Hence,

√
T

SX
i=1

£
F i
T (x; θ0)−E(F i

T (x; θ0))
¤
⇒

SX
i=1

ω0i (F (x)) .
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Since E(F i
T (x; θ0)) = E(F j

T (x; θ0)) for all i, j = 1, · · ·, S, we have, similarly as for the JT term,Z
[
√
T (π̃T (x; θ0)−E(π̃T (x; θ0)))]∇θπ̃T (x; θ0)wT (x)dx

d→ N

µ
0,
1

S
VJ

¶
,

where VJ is as in (B4). Finally, A and Ai
T , i = 1, · · ·, S, are all independent. Therefore, by (B3),

√
T

Z
[π̃T (x; θ0)− πT (x)]∇θπ̃T (x; θ0)wT (x)dx

d→ N

µ
0,

µ
1 +

1

S

¶
VJ

¶
. (B5)

Hence by (B1), (B2), (B5) and Slutzky’s theorem,
√
T (θT,S − θ0)

d→ N
¡
0,
¡
1 + 1

S

¢
V
¢
, where

V ≡
∙Z

|∇θπ(x; θ0)|2w(x)dx
¸−1

· VJ ·
∙Z

|∇θπ(x; θ0)|2w(x)dx
¸>−1

.

C. Proof of theorem 2

The following assumption contains one set of regularity conditions mentioned in the statement

of theorem 2:

Assumption T1. We have,

(a) δT → 0 and T
1
2 δ2T →∞.

(b) In addition to assumption T1-(a), λ ≡ λT → 0, T
1
2λq−q

∗

T δ5T → ∞, T
1
2λq+1T δ4T → ∞, and

δ5Tλ
−r
T →∞.

C.1 Consistency

Similarly as for the SNE, the objective function of the CD-SNE L̄T satisfies
¯̄
L̄T (θ)− L̄(θ)

¯̄
≤RR

(s1T (z, v; θ) + s2T (z, v; θ)) dzdv, where

s1T (z, v; θ) ≡ |π̃T (z| v; θ)− πT (z| v)|TT,δ (v; θ) · |n (z, v; θ)− n (z, v; θ0)| · |wT (z, v)− w(z, v)| ;
s2T (z, v; θ) ≡ |[π̃T (z| v; θ)TT,δ (v; θ)− n (z, v; θ)]− [πT (z| v)TT,δ (v; θ)− n (z, v; θ0)]|

× [rT (z, v; θ) + r (z, v; θ)] ;

rT (z, v; θ) ≡ |π̃T (z| v; θ)− πT (z| v)|TT,δ (v; θ) · wT (z, v);

r (z, v; θ) ≡ |n (z, v; θ)− n (z, v; θ0)| · w(z, v).

We now show that
RR
(s1T + s2T )

p→ 0 for all θ ∈ Θ. We study the two integrals separately.
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- For all (z, v, θ) ∈ Z × V ×Θ, s1T (z, v; θ) ≤ T (z, v; θ) · r2T (z, v; θ), where

T (z, v; θ) ≡ |n (z, v; θ)− n (z, v; θ0)| · |wT (z, v)− w (z, v)|

r2T (z, v; θ) ≡
1

S

SP
i=1

¯̄
πiT (z| v; θ)− n (z, v; θ)

¯̄
TT,δ (v; θ) + |πT (z| v)− n (z, v; θ0)|TT,δ (v; θ)

+ |n(z, v; θ)− n (z, v; θ0)|TT,δ (v; θ) .

For each θ ∈ Θ, function T is bounded by integrable functions independent of T , and

T
p→ 0 (z, v)-pointwise. Moreover,

sup
(z,v)∈Z×V

¯̄
πiT (z| v; θ)− n (z, v; θ)

¯̄
TT,δ (v; θ)

p→ 0, i = 1, · · ·, S,

as a consequence of lemma 3-(a), and the conditions in the theorem. This result clearly holds

for the second term of r2T as well. Finally, |n (·, ·; θ)− n (·, ·; θ0)| is bounded. Therefore,RR
s1T (z, v; θ)

p→ 0 for all θ ∈ Θ.

- For all (z, v, θ) ∈ Z × V ×Θ,

s2T (z, v; θ)

≤
∙
1

S

SP
i=1

¯̄
πiT (z| v; θ)TT,δ (v; θ)− n (z, v; θ)

¯̄
+ |πT (z| v)TT,δ (v; θ)− n (z, v; θ0)|

¸
r3T (z, v; θ) ,

(C1)

where r3T (z, v; θ) ≡ r (z, v; θ) + rT (z, v; θ) ≤ r (z, v; θ) + r2T (z, v; θ)wT (z, v). For each

i = 1, · · ·, S, and (z, v, θ) ∈ Z × V ×Θ,¯̄
πiT (z| v; θ)TT,δ (v; θ)− n (z, v; θ)

¯̄
r3T (z, v; θ)

≤ n (z, v; θ) [1− TT,δ (v; θ)] · [r (z, v; θ) + r2T (z, v; θ)wT (z, v)]

+
¯̄
πiT (z| v; θ)− n (z, v; θ)

¯̄
TT,δ (v; θ) · [r (z, v; θ) + r2T (z, v; θ)wT (z, v)]

≡ s21T (z, v; θ) + s22T (z, v; θ) ,

where the inequality holds by the triangle inequality. Since wT , r and n are bounded, and wT

and r are also integrable,
RR

s22T (z, v; θ)
p→ 0 for all θ ∈ Θ by lemma 3-(a). As for the s21T

term, clearly |1− TT,δ (v; θ)| ≤ 1. Moreover, 1− TT,δ (v; θ)
p→ Pπ {π0 (v1) < limT→∞ δT}−R

v:π0(v)∈(limT→∞ δT ,2 limT→∞ δT )
TT,δ (v; θ)Pπ (dv), where Pπ is the stationary measure of v.

Hence, by the conditions in the theorem and again lemma 3-(a),
RR

s21T (z, v; θ)
p→ 0 for

all θ ∈ Θ. By reiterating the previous arguments, one shows that the same result holds for
the second term in (C1) and therefore,

RR
s2T (z, v; θ)

p→ 0 for all θ ∈ Θ.
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The case λ ≡ λT ↓ 0 is dealt with similarly through lemma 3-(b) instead of lemma 3-(a), and
the proof of consistency is complete by the same arguments in appendix B.1.

C.2 Asymptotic normality

By assumption 4-(a), the CD-SNE satisfies the following first order conditions,

0pθ =
1

S

SX
i=1

ZZ ∙
πiT (z, v; θT,S)

πiT (v; θT,S)
− πT (z, v)

πT (v)

¸
∇θπ̃T (z| v; θT,S)wT (z, v)T2T,δ (v; θT,S) dzdv

+

ZZ
[π̃T (z| v; θT,S)− πT (z| v)]2wT (z, v)TT,δ (v; θT,S)∇θTT,δ (v; θT,S) dzdv.

In Al-M05, we demonstrate that the trimming effects are asymptotically negligible under the

conditions in the theorem. More precisely, an expansion of the first order conditions satisfied by

the CD-SNE around θ0 leaves:

0pθ =
1

S

SX
i=1

√
T

ZZ ∙
πiT (z, v; θ0)

πiT (v; θ0)
− πT (z, v)

πT (v)

¸
∇θπ̃T (z| v; θ0)wT (z, v)T2T,δ (v; θ0) dzdv + op(1)1pθ

+

∙ZZ
|∇θπ̃T (z| v; θ0)TT,δ (v; θ0)|2wT (z, v)dzdv + op(1)1pθ×pθ

¸
·
√
T (θT,S − θ0) ,

where the op(1) term arises for arguments similar to ones leading to (B2) in appendix B.2 (see

Al-M05 for more details). Tedious computations (also detailed in Al-M05) then lead to,

0pθ =
1

S

SX
i=1

¡
Di
1T +Di

2T

¢
−D0

1T + [D3T + op(1)1pθ×pθ ] ·
√
T (θT,S − θ0) ,

where

Di
1T ≡

ZZ ∇θπ̃T (z| v; θ0)wT (z, v)

πiT (v; θ0)
T2T,δ (v; θ0) dAi

T (z, v; θ0) ;

D0
1T ≡

ZZ ∇θπ̃T (z| v; θ0)wT (z, v)

πT (v)
T2T,δ (v; θ0) dAT (z, v) ;

Di
2T ≡

ZZ ∇θπ̃T (z| v; θ0)E [πT (z, v)]wT (z, v)

πiT (v; θ0) · πT (v)
T2T,δ (v; θ0) dz

£
dAT (v)− dAi

T (v; θ0)
¤
;

D3T ≡
ZZ

|∇θπ̃T (z| v; θ0)TT,δ (v; θ0)|2wT (z, v)dzdv;

and Ai
T (z, v; θ0), AT (z, v), AT (v) and Ai

T (v; θ0) are defined similarly as in appendix B.2. One

may now make use of the same strategy of proof in appendix B.2, and lemmas 6-8, and show
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that (see Al-M05 for details),

Di
1T

d→ Di
1 ≡

ZZ ∇θπ (z| v; θ0)w (z, v)
π (v; θ0)

dω0i (F (z, v)) , i = 0, 1, · · ·, S;

Di
2T

d→ D0
2 −Di

2 ≡
Z

V
γ (v) dω̂00 (F (v))−

Z
V
γ (v) dω̂0i (F (v)) , i = 1, · · ·, S;

D3T
p→ D3 ≡

ZZ
|∇θπ (z| v; θ0)|2w(z, v)dzdv;

where ω0i , i = 0, 1, · · ·, S, are independent Generalized Brownian Bridges; and ω̂0i , i = 0, 1, · · ·, S,
are also independent Brownian Bridges; and

γ (v) ≡
Z
Z

∇θπ(z| v; θ0)π0 (z, v)w(z, v)
π (v; θ0)

2 dz. (C2)

As in appendix B.2, the terms Di
1, i = 0, 1, · · ·, S, are all independent and asymptotically cen-

tered Gaussian. Therefore,
√
T (θT,S − θ0) is asymptotically centered Normally distributed with

variance V ≡ D−13 · var[ 1S
PS

i=1(D
i
1 −Di

2)− (D0
1 −D0

2)] ·D>−1
3 .

D. Proof of theorem 3

The following assumption contains one set of regularity conditions mentioned in the statement

of theorem 3:

Assumption T2. We have,

(a) αT → 0, δT → 0, T
1
2α3T →∞, T

1
2 δ2T →∞, and T

1
2α2T δ

2
T →∞.

(b) In addition to assumption T2-(a), λ ≡ λT → 0, T
1
2λqTα

3
T → ∞, T

1
2λqTα

2
T δT → ∞,

T
1
2λq+1T αT δ

3
T → ∞, T

1
2λq−q

∗

T α2T δ
2
T → ∞, T

1
2λq−q

∗

T αT δ
4
T → ∞, α3Tλ−rT → ∞, δ2Tλ

−r
T → ∞,

α2T δ
2
Tλ
−r
T →∞, and αT δ

4
Tλ
−r
T →∞.

D.1 Consistency

By appendixes B.1 and C.1, we only have to show that for all θ ∈ Θ,
RR

siT (z, v; θ) dzdv
p→ 0,

i = 1, 2, where siT are defined in appendix C.1, with wT (z, v) = [πT (v)/πT (z| v)]TT,α (z, v),
w (z, v) = m0 (v)/n0 (z, v). We proceed as in appendix C.1, and study these two integrals

separately.
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- For all (z, v, θ) ∈ Z × V ×Θ,

s1T (z, v; θ)

≤ |π̃T (z| v; θ)− πT (z| v)| |n (z, v; θ)− n (z, v; θ0)|
¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,δ (v; θ)TT,α (z, v)

+ |π̃T (z| v; θ)− πT (z| v)|TT,δ (v; θ) |n (z, v; θ)− n (z, v; θ0)|
m0 (v)

n0 (z, v)
[1− TT,α (z, v)]

≤ 1T (z, v; θ) · 2T (z, v; θ) ·m0 (z, v) |n (z, v; θ)− n (z, v; θ0)|
+ 2T (z, v; θ) · [n(z, v; θ)− n (z, v; θ0)]

2m0 (z, v)TT,δ (v; θ)

+ 3T (z, v; θ) |n (z, v; θ)− n (z, v; θ0)|m0 (z, v)m0 (v) [1− TT,α (z, v)]

+
m0 (v)

n0 (z, v)
[n (z, v; θ)− n (z, v; θ0)]

2 TT,δ (v; θ) [1− TT,α (z, v)]

≡ s11T (z, v; θ) + s12T (z, v; θ) + s13T (z, v; θ) + s14T (z, v; θ) ,

where

1T (z, v; θ) ≡
∙
1

S

SP
i=1

¯̄
πiT (z| v; θ)− n (z, v; θ)

¯̄
+ |πT (z| v)− n (z, v; θ0)|

¸
TT,δ (v; θ)

2T (z, v; θ) ≡
1

m0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,α (z, v)

3T (z, v; θ) ≡ 1T (z, v; θ)

m0 (z, v)n0 (z, v)

By lemmas 2-(a), 3-(a) and 4-(a),
RR

s1jT
p→ 0 for all θ ∈ Θ and j = 1, 2, 3. As regards the

s14T term, notice that function n (z, v; θ0)
−1 [n (z, v; θ)− n (z, v; θ0)]

2m0 (v) is the integrand

of the asymptotic objective function, which is bounded and integrable by assumption. More-

over, |TT,δ (v; θ) [1− TT,α (z, v)]| ≤ 1, and [1− TT,α (z, v)]
p→ Pπ {π0 (z1, v1) < limT→∞ αT}−RR

(z,v):π0(z,v)∈(limT→∞ αT ,2 limT→∞ αT )
TT,α (z, v)Pπ (dz, dv), where Pπ is now the stationary

measure of (z, v). Hence
RR

s14T
p→ 0 for all θ ∈ Θ, and so

RR
s1T

p→ 0 for all θ ∈ Θ as well.

- For all (z, v, θ) ∈ Z × V ×Θ,

s2T (z, v; θ)

≤ [rT (z, v; θ) + r (z, v; θ)] [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)
+ [rT (z, v; θ) + r (z, v; θ)] [n (z, v; θ)− n (z, v; θ0)] [1− TT,δ (v; θ)]
≡ s21T (z, v; θ) + s22T (z, v; θ) .
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For all (z, v, θ) ∈ Z × V ×Θ,

s21T (z, v; θ)

≤ |π̃T (z| v; θ)− n (z, v; θ)|TT,δ (v; θ)
1

m0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,α (z, v)m0 (z, v)

× [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)

+ |πT (z| v)− n0 (z, v)|TT,δ (v; θ)
1

m0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,α (z, v)m0 (z, v)

× [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)

+ |n (z, v; θ)− n0 (z, v)|TT,δ (v; θ)
1

m0 (z, v)

¯̄̄̄
πT (v)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,α (z, v)m0 (z, v)

× [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)
+ |n (z, v; θ)− n (z, v; θ0)|m0 (v)m0 (z, v)

× 1

n0 (z, v)m0 (z, v)
[|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)

+ |π̃T (z| v; θ)− πT (z| v)|TT,δ (v; θ)
m0 (v)

n0 (z, v)
TT,α (z, v)

× [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n (z, v; θ0)|]TT,δ (v; θ)
≡ s211T (z, v; θ) + s212T (z, v; θ) + s213T (z, v; θ) + s214T (z, v; θ) + s215T (z, v; θ)

By lemmas 2-(a), 3-(a) and 4-(a),
RR

s21jT
p→ 0 (all θ ∈ Θ and j = 1, 2, 3, 4). Similar results

for the s215T term lead to
RR

s215T
p→ 0 (all θ ∈ Θ), and so

RR
s21T

p→ 0 for all θ ∈ Θ.

Next, for all (z, v, θ) ∈ Z × V ×Θ,

s22T (z, v; θ) ≤
½
s∗22T (z, v; θ)m0 (z, v) + [n (z, v; θ)− n0 (z, v)]

2 m0 (v)

n0 (z, v)

¾
[1− TT,δ (v; θ)] ,

where

s∗22T (z, v; θ)

≡ [|π̃T (z| v; θ)− n (z, v; θ)|+ |πT (z| v)− n0 (z, v)|+ |n (z, v; θ)− n0 (z, v)|]TT,δ (v; θ)

× 1

m0 (z, v)

¯̄̄̄
πT (v; θ)

πT (z| v)
− m0 (v)

n0 (z, v)

¯̄̄̄
TT,α (z, v) · |n (z, v; θ)− n0 (z, v)|

+
1

m0 (z, v)n0 (z, v)
|π̃T (z| v; θ)− πT (z| v)|TT,δ (v; θ)m0 (v) · |n (z, v; θ)− n0 (z, v)|TT,α (z, v) .

Similarly as in the previous appendixes, 1−TT,δ (v; θ)
p→ 0 and since 1−TT,δ (v; θ) ≤ 1, and

bothm0 (z, v) and n (z, v; θ0)
−1 [n (z, v; θ)− n (z, v; θ0)]

2m0 (v) are bounded and integrable,

37



RR
s22T

p→ 0 for all θ ∈ Θ. Hence,
RR

s2T
p→ 0 for all θ ∈ Θ.

The case λ ≡ λT ↓ 0 is dealt with similarly through lemmas 2-(b), 3-(b) and 4-(b).

D.2 Asymptotic normality

Let ξ(z, v) ≡ π0 (z, v)w(z, v)/π0 (v)
2, and consider the definition of γ in appendix C.2 (see (C2)).

In terms of this new function ξ, γ is

γ (v) =

Z
Z
∇θπ (z| v; θ0) ξ(z, v)dz. (D1)

Next, let

W ξ
T ≡

½
wT (z, v) : wT (z, v) = ξ1T (v) ·

πT (v)
2

πT (z, v)
TT,α (z, v)

¾
,

where function ξ1T satisfies the conditions in lemma 9. We study the asymptotic behavior of the

CD-SNE for weighting functions wT ∈ W ξ
T . Consider the terms D

i
jT and D3T in appendix C.2,

and let wT ∈W ξ
T . By lemmas 9 and 10, and assumption T2,

Di
1T

d→ Di
1 ≡

ZZ ∇θπ (z| v; θ0)
π (z| v; θ0)

ξ(z, v)dω0i (F (z, v)) , i = 0, 1, · · ·, S;

Di
2T

d→ Di
2 ≡

Z
V
γ (v) dω̂00 (F (v))−

Z
V
γ (v) dω̂0i (F (v)) , i = 1, · · ·, S;

D3T
p→ D3 ≡

ZZ ¯̄̄̄
∇θπ (z| v; θ0)
π (z| v; θ0)

¯̄̄̄
2

ξ(z, v)π0 (z, v) dzdv.

Moreover, for any wT ∈ W ξ
T , the limiting function in (D1) ξ(z, v) = ξ1(v). But for all v ∈ V ,R

Z ∇θπ (z| v; θ0) dz = 0. Hence γ(v) = 0 for all v ∈ V , and then Di
2 ≡ 0. So we have shown the

following result:

Proposition 2. Under the assumptions of theorem 2 and assumption T2, CD-SNEs with weight-

ing functions wT ∈W ξ
T are consistent and asymptotically normal with variance/covariance matrix

V ≡
µ
1 +

1

S

¶
·
½
var (Ψ1) +

∞P
k=1

[cov (Ψ1,Ψ1+k) + cov (Ψ1+k,Ψ1)]

¾
(provided it exists finitely), where Ψi ≡ Ψ (zi, vi) and,

Ψ (z, v) ≡
∙ZZ ¯̄̄̄

∇θπ (u1|u2; θ0)
π (u1|u2; θ0)

¯̄̄̄
2

ξ1 (u2)π0 (u1, u2) du1du2

¸−1 ∇θπ (z| v; θ0)
π (z| v; θ0)

ξ1 (v) . (D2)

Theorem 3 is a special case of proposition 2 with ξ1(·) = ξ1T (·) ≡ 1 and (z, v) = (y2, y1) . The

efficiency claim follows by the standard score martingale difference argument.
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Fermanian, J.-D. and B. Salanié, 2004, “A Nonparametric Simulated Maximum Likelihood
Estimation Method,” Econometric Theory, 20, 701-734.

Gallant, A. R., 2001, “Effective Calibration,” working paper, University of North Carolina.

Gallant, A. R. and H. White, 1988, A Unified Theory of Estimation and Inference for Nonlinear
Dynamic Models, Oxford, Basil Blackwell.

Gallant, A. R. and G. Tauchen, 1996, “Which Moments to Match ?,” Econometric Theory, 12,
657-681.

Gouriéroux, C., A. Monfort and E. Renault, 1993, “Indirect Inference,” Journal of Applied
Econometrics, 8, S85-S118.

Hajivassiliou, V. and D. McFadden, 1998, “The Method of Simulated Scores for the Estimation
of Limited-Dependent Variable Models,” Econometrica, 66, 863-896.

Hansen, L. and J. A. Scheinkman, 1995, “Back to the Future: Generating Moment Implications
for Continuous-Time Markov Processes,” Econometrica, 63, 767-804.
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Laroque, G. and B. Salanié, 1993, “Simulation-Based Estimation of Models with Lagged Latent
Variables,” Journal of Applied Econometrics, 8, S119-S133.
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Tables 2 through 5

Table 2 - Monte Carlo experiments. (Vasicek model (13).) True parameter values are:
b1 = 3.00, b2 = 0.50 and a1 = 3.00.

Sample Estimators b1 b2 a1
T=1000 CD-SNE Mean 2.87 0.49 3.08

Median 2.89 0.47 3.10

Sample std. dev. 0.97 0.17 0.29

Asymptotic std. dev. 1.10 0.19 0.23

Coverage rate 90% conf. interval 0.95 0.92 0.82

CD-SNE - Double bandwidth Mean 2.65 0.43 3.23

Median 2.56 0.44 3.16

Sample std. dev. 0.84 0.17 0.28

CD-SNE - Half bandwidth Mean 2.98 0.54 2.97

Median 2.93 0.56 3.04

Sample std. dev. 1.06 0.23 0.40

SNE Mean 3.20 0.55 2.89

Median 3.07 0.52 2.76

Sample std. dev. 1.11 0.25 0.41

Asymptotic std. dev. 1.24 0.22 0.31

Coverage rate 90% conf. interval 0.95 0.85 0.81

Analytical-NE Mean 3.47 0.57 3.55

Median 3.20 0.47 3.46

Sample std. dev. 2.09 0.64 0.62

MLE Mean 3.74 0.62 3.01

Median 3.93 0.63 2.99

Sample std. dev. 1.21 0.20 0.07

T=500 CD-SNE Mean 2.95 0.48 3.14

Median 2.95 0.48 3.12

Sample std. dev. 1.03 0.24 0.42

Asymptotic std. dev. 1.36 0.26 0.32

Coverage rate 90% conf. interval 0.94 0.94 0.83

SNE Mean 3.06 0.58 2.58

Median 3.03 0.51 2.51

Sample std. dev. 1.41 0.35 0.71

Asymptotic std. dev. 1.65 0.31 0.57

Coverage rate 90% conf. interval 0.97 0.84 0.76

MLE Mean 3.99 0.70 2.99

Median 4.01 0.69 3.00

Sample std. dev. 1.36 0.27 0.10
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Table 3 - Monte Carlo experiments. (Continuous-time stochastic volatility model
(15).) True parameter values are: b1 = 3.00, b2 = 0.50, a1 = 3.00, b3 = 1.00 and
a2 = 0.30.

Sample Estimator b1 b2 a1 b3 a2
T=1000 CD-SNE Mean 3.03 0.48 3.05 1.11 0.34

Median 3.07 0.49 3.04 0.98 0.32

Sample std. dev. 0.93 0.22 0.40 0.59 0.20

Asymptotic std. dev. 1.17 0.22 0.32 0.45 0.16

Coverage rate 90% conf. interval 0.95 0.88 0.83 0.82 0.83

SNE Mean 2.91 0.48 2.97 1.10 0.38

Median 2.95 0.49 2.91 1.05 0.33

Sample std. dev. 1.15 0.22 0.50 0.52 0.20

Asymptotic std. dev. 1.20 0.23 0.31 0.50 0.18

Coverage rate 90% conf. interval 0.91 0.91 0.78 0.84 0.88

T=500 CD-SNE Mean 2.94 0.49 3.12 1.30 0.34

Median 2.99 0.49 3.07 1.11 0.31

Sample std. dev. 1.41 0.30 0.62 0.77 0.27

Asymptotic std. dev. 1.69 0.31 0.44 0.63 0.22

Coverage rate 90% conf. interval 0.95 0.89 0.80 0.83 0.85

SNE Mean 2.96 0.46 2.92 1.29 0.33

Median 3.01 0.47 2.87 1.12 0.29

Sample std. dev. 1.52 0.29 0.61 0.75 0.25

Asymptotic std. dev. 1.75 0.32 0.43 0.70 0.25

Coverage rate 90% conf. interval 0.94 0.92 0.81 0.87 0.89
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Table 4 - Monte Carlo experiments. (Univariate discrete-time stochastic volatil-
ity model (16).) True parameter values are: φ = 0.95, σb = 0.025 and σe = 0.260.
Sample size: T = 500.

Estimator φ σb σe
CD-SNE Mean 0.909 0.024 0.229

Median 0.939 0.023 0.210

Sample std. dev. 0.102 0.003 0.131

Asymptotic std. dev. 0.115 0.004 0.089

Coverage rate 90% conf. interval 0.92 0.93 0.74

SNE Mean 0.942 0.027 0.297

Median 0.960 0.026 0.274

Sample std. dev. 0.095 0.005 0.144

Asymptotic std. dev. 0.121 0.005 0.093

Coverage rate 90% conf. interval 0.94 0.89 0.72

QML∗ Mean 0.906 · · · 0.302

Sample std. dev. 0.18 · · · 0.17

MCL∗ Mean 0.930 · · · 0.233

Sample std. dev. 0.10 · · · 0.07

NPSML∗ Mean 0.913 0.022 0.318

Sample std. dev. 0.10 0.003 0.17

∗ QML stands for Quasi Maximum Likelihood; MCL for Monte Carlo Maximum Likelihood; and

NPSML for Nonparametric Simulated Maximum Likelihood.

Table 5 - Monte Carlo experiments. (Bivariate discrete-time stochastic volatility
model (17).) True parameter values are: φ = 0.95, σb1 = 0.025, σb2 = 0.025 and
σe = 0.260. Sample size: T = 500.

Estimator φ σb1 σb2 σe
CD-SNE Mean 0.916 0.025 0.026 0.289

Median 0.919 0.026 0.027 0.287

Sample std. dev. 0.072 0.004 0.004 0.101

Asymptotic std. dev. 0.080 0.004 0.004 0.113

Coverage rate 90% conf. interval 0.92 0.83 0.88 0.91

SNE Mean 0.913 0.027 0.027 0.365

Median 0.938 0.026 0.027 0.331

Sample std. dev. 0.084 0.004 0.004 0.164

Asymptotic std. dev. 0.085 0.005 0.005 0.154

Coverage rate 90% conf. interval 0.88 0.92 0.93 0.88
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