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Abstract

This paper proposes a time-domain test of a process being I(d), 0 < d < 1;
under the null against the alternative of being I(0) with deterministic compo-

nents subject to structural breaks at known or unknown dates. Denoting by
AB(t) the di¤erent types of structural breaks in the deterministic component

of a time series considered by Perron (1989), the test statistic proposed here is
based on the t-ratio (or the in…mum of a sequequence of t-ratios) of the esti-

mated coe¢cient on yt¡1 in an OLS regression of ¢dyt on ¢dAB(t) and yt¡1;
possibly augmented by a suitable number of lags of ¢dyt to cater for autocor-

related errors. The statistic is labelled as the NFDF (new Fractional Dickey-
Fuller) test since it is based on the same principles as the well-known Dickey-

Fuller unit root test. Both its asymptotic behavior and …nite sample properties
are analyzed, and an empirical application is provided. The proposed NFDF

test is computationally simple and presents a number of advantages over other
available test statistics addressing a similar issue.

¤We are grateful to MCYT for …nacial support through grant SEC01-0890.
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INTRODUCTION

The issue of distinguishing between a time-series process exhibiting long-range de-
pendence (LRD) and one with short memory but su¤ering from structural shifts has
been around for some time in the literature. The detection of LRD e¤ects is often
based on statistics of the underlying time series, such as the sample ACF, the peri-
odogram, the R/S statistic, the rate of growth of the of variances of partial sums of
the series, etc. In the statistical literature, however, it has been pointed out by some
authors (see e.g., Bhattacharya et al. ,1983, and Teverosky and Taqqu ,1997), that
statistics based on short memory perturbed by some kind of nonstationarity may dis-
play the same properties as those prescribed by LRD under alternative assumptions.
In particular, the sample variance of aggregated time series and the R/S statistic may

exhibit LRD type of behaviour when applied to short-memory processes a¤ected by
shifts in trends or in the mean. More recently, a similar observation regarding this
identi…cation problem has been made in the econometric literature when analyzing …-
nancial data. For example, Ding and Granger (1996) and Mikosch and Starica (1999)
claim that the LRD behaviour detected in both the absolute squared log-returns
of …nancial prices (bonds, exchange rates, options, etc.) may be well explained by
changes in the parameters of one model to another over di¤erent subsamples due to
signi…cant events, such as the Great Depression of 1929, the oil-price shocks in the
1970s, the Black Monday of 1987 or the collapse of the EMS in 1992.

There does not exist a unique de…nition of LRD (see e.g., Beran, 1994, Baillie,
1986, and Brockwell and Davies, 1996). One possible way to de…ne it for a stationary
time series (yt) is via the condition that limj!1

P
j

¯̄
½y(j)

¯̄
= 1; where ½y denotes

the ACF of sequence (yt): Typically, for series exhibiting long-memory, this requires a
hyperbolic decay of the autocorrelations instead of the standard exponential one. An
equivalent form of expressing that property in the frequency domain is to require that
the spectral density fy(!) of the sequence is asymptotically of order L(!)!¡d for some
d > 0 and a slowly varying function L(:), as ! " 0. Speci…cally, if, for some constants
c½ and cf , ½y(j) ¼ c½ j2d¡1 for large j and d 2 (0; 12), fy(!) ¼ cf !¡2d for small
frequencies !; and the normalized partial sums of such a series converge to fractional
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Brownian motion (fBM), then yt is said to be fractionally integrated of order d, I(d).

An I(d) process is de…ned as ¢dyt = ´t, when 0 < d < 0:5; ¢ = 1¡ L and ´t is an
I(0) error term, and as (1 ¡ L)yt = ¢1¡d´t, 0:5 · d < 1 when (1¡ L)yt = ¢1¡d´t.
Hence, fractional integration is a particular case of LRD.

To illustrate the above-mentioned source of confusion between long-memory and
short memory processes subject to structural breaks, let us consider a simple example
where yt is generated by an I(0) process subject to a break in its mean at date TB

yt = ®1 + (®2 ¡ ®1)DUt(¸) + ut; (1)

such that ut is a stationary zero-mean process, ¸ = TB=T and DUt(¸) = 1(t > TB);
1 < TB < T , is an indicator function.: Then, denoting the sample mean by yT , the
sample autocovariances of the sequence (yt) are given by

e°T;y(j) =
1
T

T¡jX

t=1

ytyt+j ¡ (yT )
2; j 2 @: (2)

By the ergodic theorem it follows that for …xed j ¸ 0, with ¸ 2 (0; 1);as T " 1

e°T;y(j) ! °u(j) + ¸(1¡ ¸)(®2 ¡ ®1)2 a.s. (3)

From (3), even if the autocovariances °u(j) decay to zero exponentially as j " 1;
the sample autocovariances, e°y(j);approaches a positive constant given by the second
term in (3), as long as ®2 6= ®1, for longer lags, as if the process exhibited LRD.
Note that this result can be easily generalized for multiple breaks in the mean (see
Mikosch and Starica, 1999). In order to check the consequences of ignoring such a
structural break, a small Monte Carlo experiment is performed by simulating 100
series of sample size T = 20; 000 where yt is generated according to (2), with ¸ = 0:5;
®1 = 0; "t » n:i:d: (0; 1), and (®2 ¡ ®1) = 0 (no break), 0:2 (small break) and 0:5
(large break). Then, d is estimated, ignoring the break in the mean, by means of

the Geweke and Porter-Hudak (GHP,1983) ´estimator at di¤erent frequencies !0 =
2¼=g(T), including the popular choice in GPH estimation of g(T) = T 0:5. From
the results shown in Table 1, it becomes clear that the estimates of d monotonically
increase with the size of the break in the mean, giving the wrong impression that yt
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is I (d) when clearly it is not. This is the source of confusion which has been stressed

in the literature. This problem aggravates even more when the DGP contains a
break in the trend. For example, using the same experiment with a DGP given by
yt = ®1 + ¯1DT (¸)t + "t , with DTt (¸) = (t ¡ T ¤)1(T¤+1·t·T) and ¯1 = 0:1 yields
estimates of d in the range (1:008; 1:031), depending on the choice of frequency, well
in accord with the results of Perron (1989) about the lack of consistency of the DF
test of a unit root in such a case.

Table 1
Estimates of d (DGP(1))

Frequency T 0:5 T 0:45 T 0:4 T 0:35

®2 ¡ ®1 = 0:0 -0.004 -0.004 -0.003 -0.005
®2 ¡ ®1 = 0:2 0.150¤¤ 0.212¤¤ 0.298¤¤ 0.404¤¤

®2 ¡ ®1 = 0:5 0.282¤¤ 0.3709¤¤ 0.477¤¤ 0.585¤¤

¤¤Rejection of the null hypothesis d = 0 at 1% S.L.

Along the same argument, the previous results have been also pointed out by
Granger and Hyung (1999) who propose an extreme version of the DGP in (1) where

now yt is assumed to be generated by

yt = mt + "t; (4)

¢mt = qt´ t;

with qt following an i:i:d: binomial distribution such that qt = 1 with probability
p and qt = 0 with probability (1 ¡ p), and "t » i:i:d(0; ¾2"); ´t » i:i:d(0; ¾2´). Then,
var(yt) = tp¾2´ + ¾2"; and it can be shown that the ACF veri…es

e½T;y(j) =
c¾2´
6 (1¡ j

T )(1¡ 2 jT )
2

c¾2´
6 + ¾2"

; j 2 @: (5)

where c = pT is the expected number of structural breaks in the sample period T .
It is easy to check that if 0 < c < 1; then e½T;y(j) ! (1 + 6¾2"

c¾2´
)¡1 as T " 1 for …xed

j, implying that the sample ACFs tend to stabilize around a positive value for long
lags, again as if there were LRD
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A further generalization of this process is the so-called error duration (ED) model

proposed by Parke (1999) whereby

yt =
tX

s=¡1
gs;t"s; (6)

where gs;t = 1(s · t · s+ns) is now an indicator function for the event that a shock
arising in period s survives until s+ns. Assume that "s and gs;t are independent for all
t ¸ s and that pj is the probability of survival from s to s+j, i.e., ps = P (gs;s+j = 1);
such that p0 = 1: Then, Parke (1999) shows that °y(j) = ¾2"

P1
s=j ps and that var

(yt) = ¾2"(1 + ¸) with ¸ =
P1
s=1ps. Next, assuming that for some constant c° and

d > 0; °y(j)=c°j2d¡1 ! 1 as j " 1; it can be easily checked that °y(j) = O(T 2d¡1)
yielding again a LRD property.

For data generating processes (DGP) such as (1) and (4), the property that the
spectral density behaves as !¡&; & > 0; near zero, and therefore has a singularity
at zero, holds. In e¤ect, under (1), Mikosch and Starica (1999) show that for ! " 0,
fy(!) ¼ fu(!)+ (T!2)¡1(1¡cos(2¼¸))(®1¡®2)2, which explodes at zero if !2 = 2¼T¡±

with 1
2 < ±: Likewise, if (4) holds, for ! " 0; then fy(!) ¼ f"(!)+c!¡2, which explodes

at frequency zero when 0 < c < 1:
In the same vein, Diebold and Inoue (2001) de…ne LRD in terms of the growth

rate of variances of partial sums, i.e., var(ST ) = O(T 2d+1) with ST =
PT¡j
t=1 yt and

0 < d < 1: For a DGP like (4), if p = O(T 2d¡2) so that c = pT = O(T 2d¡1); namely

the expected number of breaks goes to zero as T " 1, then var(ST ) = O(T 2d+1) as if
it were an I(d) process:

Nonetheless, Davidson and Sibbersten (2003) have recently pointed out that the
normalized partial sums of (yt) generated by the ED model in (6) do not converge to
fBM. Hence, despite sharing some properties with I(d) processes, the ED model is not
able to reproduce this key result of I(d) processes. The intuition behind this result
lies in that ¢yt = "t+

Pt¡1
s=¡1 ¢gst; where ¢gst = gs;t¡gs;t¡1 = gst¡1; since survival

from period s to period t clearly implies survival to t¡ 1. Hence, even with Gaussian
shocks, a linear representation like for an I(d) process cannot be obtained since the
number of nonzero terms for s < t is a random variable with mean falling between
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zero (when gst = 1) and ¡1 (when gst = 0). However, Taqqu et al. (1997) have shown

that cross-sectional aggregation of processes generated by (6), suitably normalized,
does converge to fBM. In e¤ect, choosing M independent copies of yt; i.e., y

(1)
t ; :::; y

(M)
t

, and de…ning Y (M)
t = M¡1=2 PM

i=1 y
(i)
t and ¾2T =

PT
l=1

PT
m=1 °jl¡mj = E(

PT
t=1 Y

(M)
t );

it follows that Y (M)
T (r) = ¾¡1T

P[Tr]
t=1 Y

(M)
t ; 0 · r · 1 and [x] being largest integer not

exceeding x, converges in distribution to a fBM with ¾T = O(T d+
1
2 ).

Summing up, all the models described so far are nonlinear models capable of re-
producing some observationally equivalent characteristics of I(d) processes , albeit
not all. Given that among all the models sharing properties with long-memory pro-
cessses, the ones having more impact on empirical research are those popularized by
Perron, where the deterministic components of I (0) processes are subject to struc-
tural breaks , our aim in this paper is to devise statistical procedures to distinguish
them from long-memory ones. Thus, our testing strategy confronts directly an I(d)
series with an I(0) series subject to occasional regime shifts. In parallel with Perron
(1989) who uses suitably modi…ed Dickey-Fuller (DF) tests for the I(1) vs. I(0) case
in the presence of regime shifts, our starting point is the DF´s approach generaliza-
tion proposed by Dolado, Gonzalo and Mayoral (DGM, 2002) to test I(1) vs. I(d),
0 · d < 1, adjusted now to test I(d) vs. I(0): In DGM (2002) it was shown that if
d1 < d0, where d0 and d1 denote the orders of integration of the series under the null
and the alternative hypothesis, respectively, then an unbalanced OLS regression of
the form ¢d0yt = Á¢d1yt¡1+"t, or that regression augmented with a suitable number
of lagged values of ¢d1yt when the error term in the DGP is autocorrelated, yields
a consistent test of H0 : d = d0 based on the t-ratio of bÁols. In the spirit of DF´s
popular methodology such a test is denoted as a Fractional Dickey-Fuller (FDF) test.
To operationalise the FDF test for unit roots , the regressor ¢dyt¡1 is constructed
by applying the truncated binomial expansion of the …lter (1¡ L)d to yt¡1, so that

¢dyt =
Pt¡1

0 ¼i(d) yt¡i where ¼i(d) is the i-th coe¢cient in that expansion. The
degree of integration under the alternative hypothesis (d1) can be taken to be known
or, alternatively estimated with a T

1
2 -consistent estimator. Empirical applications

of such a testing procedure can be found in DGM (2003a) and a generalization of
the FDF test in the I(1) vs. I(d) case allowing for deterministic components (drift/
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linear trend) under the maintained hypothesis is in DGM (2003b).

Following the previous developments, we propose in this paper a test of I (d); 0 <
d · 1; vs. I(0) cum structural breaks, namely d0 = d and d1 = 0; along the lines of
the well-known procedures proposed by Perron (1989) when the date of the break is
taken to be a priori known, and the extensions of Banerjee et al. (1992) and Zivot and
Andrews (1992) when it is assumed to be unknown. The test considered in this paper
is will only be derived for a single break, in order to highlight its basic principles.
However, extensions to more than one break, along the lines of Bai (1999) and Bai
and Perron (1998), should not be too di¢cult to devise once the simple case is worked
out. We leave this issue for further research. As in Perron (1989) the following shifts
will be considered: a crash shift, a changing growth one, and a combination of both.

In order to avoid confusion with the FDF for unit roots, the test presented here
for I(d) vs. I(0) processes will be henceforth denoted as the new FDF test (NFDF),
which this time is based on the t-ratio of bÁols in an OLS regression of the form ¢d0yt =
¦(L)AB(t) + Á yt¡1 + "t, where ¦(L) = ¢d ¡ ÁL and AB(t) captures the di¤erent
structural breaks de…ned above. Hence, as in the cases of the FDF test, the NFDF
test is based on the principle of unbalanced regressions which underlies the popular
DF approach.

The advantages of the NFDF test, in line with those of the FDF test, rely on its
simplicity (time-domain instead of frequency- domain) and on its good performance in
…nite samples both in terms of size and power. Speci…cally, it has several advantages
over some other statistical procesures available in the literature to address a similar
issue. For example, some authors like Choi and Zivot (2002) estimate d from the
residuals of an OLS projection the original series on a set a potential structural breaks
whose unknown dates are determined by means of the sequential Bai and Perron ´s
(1998) procedure. The problem with this approach is that the limiting distribution

of the estimate of d obtained from the residuals is di¤erent from that obtained by
GPH (1983) and is most likely not to be invariant to the values of the deterministic
components and the choices of the breaking dates. By contrast, this di¢culty does
not arise if one uses Robinson´s (1994) LM test as Gil-Alaña and Robinson (1997) do
since working under the null implies that the value d0 is known when tested against
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d0+µ. Thus, ¢d0yt can be regressed on ¢d0A(t) and a test with N(0; 1) limiting

distribution be performed on those residuals. The problem, however, is that, being
an LM test, there is no simple alternative making it impossible to reject an I(d)
process in favour of an I (0) plus structural breaks. More recently, Mayoral (2004)
has proposed a LR test of I(d) vs. I(0) subject to potential structural breaks which
is an UMPI test under a sequence of local alternatives. Nonetheless, the problem
with Mayoral´s test is that deviations from gaussianity in the innovations are bound
to a¤ect its good power properties. Hence, the NFDF test, despite not being UMPI,
presents the advantage of not requiring a correct speci…cation of a parametric model
and other distributional assumptions, besides being computationally simple.

The rest of the paper is organized as follows. Section 2 derives the properties of
the NFDF test in the presence of deterministic components like a constant or a linear
trend and discusses the e¤ects of ignoring structural breaks in means or slopes. Given
that power can be severely a¤ected under those circumstances, a NFDF test of I(d)
vs. I(0) with a single structural break at a known or an unknown date is derived
in Section 3 where both its limiting and …nite-sample properties are discussed at
length. Section 4 contains a brief discussion of how to modify the test to cater
for autocorrelated disturbances, in the spirit of the ADF and AFDF test (where
“A” stands for augmented versions of the test-statistics) and conjectures on how to
generalize the testing strategy to multiple breaks rather than a single one. Section 5
contains an empirical application using long U.S GNP and GNP per capita series for
which there has been quite a lot of controversy in the literature about the stochastic
or deterministic nature of their trending components. Finally, Section 6 concludes.
An Appendix (to be completed) gathers the proofs of theorems and lemmae.
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THE NFDF TEST FOR LONG MEMORY VERSUS TREND
STATIONARITY

Preliminaries

Before considering the main goal of the paper, it is convenient to analyze the
problem of testing for fractional integration, i.e. I (d) with 0 < d < 1, against
trend stationarity, i.e. d = 0; within the NFDF framework. The motivation for
doing this is twofold. First, taking an I (d) process as a generalization of the unit
root parameterization, the question of whether the trend is better represented as a
stochastic or a deterministic component arises on the same grounds as in the I (1) case.
And, secondly, the analysis in this subsection will serve as the basis for the general
case where non-stationarity can arise due to the presence of structural breaks.

Under the alternative hypothesis, H1;we consider processes with an unknown mean
¹ or a linear trend (¹+ ¯t)

yt = ¹+
"t1(t>0)

¢d0 ¡ ÁL ; (7)

yt = ¹+ ¯t+
"t1(t>0)

¢d0 ¡ ÁL (8)

where, "t is assumed to be i:i:d.(0, ¾2" ) and d0 2 (0; 1]: Hence, under H1;

¢d0yt = ® +¢d0± + Áyt¡1 + "t (9)

¢d0yt = ®+ ¢d0± + °t+ '¢d0¡1 + Áyt¡1 + "t (10)

where ® = ¡Á¹, ± = ¹; ° = ¡Á¯ and ' = ¯: For simplicity, hereafter we will
write "t1(t>0) = "t. Under H0; when Á = 0; ¢d0yt = ¹¢d0 + "t in (9) and ¢d0yt =
¹¢d0 + ¯¢d0¡1 + "t in (11 (10).1 Thus E(¢dyt) = ¢d¹ and E(¢dyt) = ¢d(¹+ ¯t),
respectively. Note that ¹¢d = ¹

Pt¡1
i=0 ¼i (d) and ¯¢d¡1 = ¹

Pt¡1
i=0 ¼i (d ¡ 1) where

the sequence f¼i(»)1i=0g comes from the expansion of (1¡ L)» in powers of L and the
coe¢cients are de…ned as ¼i(») = ¡(i¡ »)=[¡(¡»)¡ (i +1)]: In the sequel, we use the
notation ¿t (») =

Pt¡1
i=1 ¼i (») : Also note that ¿t (d) for d < 0 induces a deterministic

1Note that ¢dt = ¢d¢¡1 = ¢d¡1; after suitable truncation.
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trend which is less steep than a linear trend and coincides with it when d = ¡1 since

¿ t (¡1) =
Pt¡1
i=0 ¼i (¡1) = t: As shown in DGM (2003, Figure 1) for values of d < 0;

¿ (:) is a concave function, being less steep the smaller d is. UnderH1; the polynomial
¦(z) =

³
(1 ¡ z)d ¡ Áz

´
has absolutely summable coe¢cients and veri…es ¦(0) = 1

and ¦(1) = ¡Á 6= 0: All the roots of the polynomial are outside the unit circle if
¡2d < Á < 0. As in the DF framework, this condition excludes explosive processes.
By contrast, under H1; with the previous restriction on Á, yt is I (0) and admits the
representation

yt = ¹+ ut; or yt = ¹+ ¯t+ ut;

ut = ¤(L) "t; ¤(L) = ¦ (L)¡1

Computing the trends ¿t (») ; » = d or d¡ 1 in (9) or (10) does not entail any di¢-
culty since only depends on d0; which is a known parameter since it is the integration
order under H0. This case, also considering the presence of a linear trend under the
null of d0 = 1 against the alternative of d1 = d; 0 < d < 1; has been analyzed at
length in DGM (2003) where it is shown that the FDF test is (numerically) invariant
to the value of ¹ in the DGP. Note that an alternative computational strategy for
the NFDF test arises from simple use of the Frisch-Waugh Theorem implying that
the test statistics can also be computed in a two-step procedure as follows. First,
regress ¢dyt and yt¡1 on a constant term and ¿t (d0) in (9) and on those terms plus
¿ t (d0 ¡ 1) in (10), in order to obtain the residuals denoted ¢d but and but¡1; respec-
tively. Secondly, compute the t-ratio of the estimated coe¢cient in the regression of
¢d but on but¡1:

Next, we derive the corresponding result forH0 : d0 = d; 0 < d · 1;vs. H1 : d1 = 0:
The following theorem summarizes the main result:

Theorem 1 Under the null hypothesis that yt is an I (d) process as de…ned in (7) or
(8) with Á = 0; the OLS coe¢cient associated to Á in regression model (9) ; Á̂

¹
ols; or

(10) ; Á̂
¿
ols; respectively is a consistent estimator of Á = 0 and converges at a rate T d if

0:5 < d · 1 and at the usual rate T 1=2 when 0 < d < 0:5. The asymptotic distribution
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of the associated t¡ statistic, t
Á̂
i
ols
; i={¹; ¿g is given by

t
Á̂
i
ols

w!
R 1
0 B

i
d (r) dB (r)

³R 1
0 (Bid (r))

2 d (r)
´1=2
; if 0:5 < d · 1,

and
t
Á̂
i
ols

w! N (0; 1) ; if 0 < d < 0:5.

where Bid (r) ,i ={¹; ¿g is a “detrended” fBM, appropiately de…ned in the Appendix.

The intuition for this result is similar to the one o¤ered by DGM (2002) for the I(1)
vs. I(d) case with 0 < d < 1. When d0 (= 1 in that case) and d1 are close, then the
asymptotic distribution is asymptotically normal whereas it is a functional of fBM

when both parameters are far apart. Hence, since in our case d0 = d; 0 < d · 1; and
d1 = 0; asymptotic normality arises when 0 < d · 0:5: Also note that d0 = 1 renders
the standard DF limiting distribution

The …nite-sample properties of the NFDF test for this particular case are presented
in Tables 2a, b and 3. Three sample sizes are considered, T = 100; 400 and 1; 000,
and the number of replications is 10; 000. Table 2a gathers the corresponding critical
values for the case where the DGP is a pure I(d) without drift (since the test is
invariant to the value of ¹); i.e, ¢dyt = "t with "t » N (0; 1) ; when (9), or the
two-step procedure, is considered as the regression model. Table 2b, in turn, o¤ers
the corresponding critical values when (10) is taken to be the regression model. As
can be observed, the empirical critical values are close to those of a standardized
N(0; 1) (whose critical values are ¡1:28, ¡1:64 and ¡2:33, respectively, for the three
signi…cance levels reported below) when 0 < d · 0:5; particularly for T ¸ 400:
However, for d > 0:5 the critical values start to di¤er drastically from those of a
normal distribution, increasing as d gets larger. As for power, Table 3 reports the
rejection rates at the 5% level of the NFDF in (11) when the data are generated
according to the DGP: yt = ® + ¯t + "t with ® = 0:1; ¯ = 0:5: Except for low values
of d and T = 100, where power still reaches 55%, the test is very powerful in all the
remaining cases.
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TABLE 2a
Critical Values

Percentage points of the asymptotic distribution of t¹Áols
T = 100 T = 400 T = 1000

d0/ S.L. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -1.547 -1.894 -1.891 -1.326 -1.698 -2.397 -1.308 -1.668 -2.352

0.2 -1.567 -1.9497 -1.983 -1.367 -1.814 -2.420 -1.350 -1.727 -2.390

0.3 -1.640 -2.003 -1.991 -1.439 -1.832 -2.520 -1.407 -1.784 -2.432

0.4 -1.683 -2.132 -2.132 -1.573 -1.862 -2.578 -1.432 -1.805 -2.512

0.5 -1.712 -2.137 -2.173 -1.670 -1.921 -2.607 -1.573 -1.8758 -2.586

0.6 -2.641 -2.201 -2.546 -2.075 -2.407 -3.099 -2.028 -2.382 -3.004

0.7 -2.769 -2.364 -2.720 -2.252 -2.577 -3.208 -2.217 -2.540 -3.180

0.8 -2.804 -2.50 -2.837 -2.394 -2.689 -3.320 -2.397 -2.710 -3.326

0.9 -2.812 -2.599 -2.929 -2.551 -2.857 -3.497 -2.485 -2.784 -3.351

TABLE 2b
Critical Values

Percentage points of the asymptotic distribution of t¿Áols
T = 100 T = 400 T = 1000

d0/ S.L 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -1.567 -1.913 -2.788 -1.368 -1.733 -2.442 -1.2289 -1.638 -2.383

0.2 -1.616 -1.957 -2.815 -1.719 -1.797 -2.470 -1.589 -1.648 -2.404

0.3 -2.049 -2.096 -2.845 -1.853 -1.801 -2.528 -1.767 -1.677 -2.429

0.4 -2.138 -2.166 -2.897 -2.051 -1.847 -2.678 -1.795 -1.747 -2.487

0.5 -2.465 -2.531 -3.521 -2.284 -2.631 -2.913 -2.231 -2.163 -2.641

0.6 -2.694 -3.021 -3.658 -2.560 -2.894 -3.560 -2.488 -2.800 -3.407

0.7 -2.935 -3.257 -3.895 -2.824 -3.131 -3.764 -2.773 -3.086 -3.750

0.8 -3.159 -3.480 -4.087 -3.067 -3.367 -3.921 -3.011 -3.320 -3.930

0.9 -3.366 -3.700 -4.390 -3.291 -3.590 -4.143 -3.250 -3.553 -4.094
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TABLE 3
Power (Nominal size: 5%)

R.M.: ¢d0yt = ®+ ±¿ t(d) + °t+ '¿ t(d¡ 1) + Áyt¡1 + "t

DGP: yt = ®+ ¯t+ "t;

d0/ sig. lev. T = 100 T = 400 T = 400
0.2 54.9% 98.9% 100%
0.4 98.4% 100% 100%
0.5 99.6% 100% 100%
0.7 100% 100% 100%
0.9 100% 100% 100%
1.0 100% 100% 100%

The e¤ects of structural breaks on the NFDF test

To assess the e¤ects of the presence of a drift in the level of the series or a shift in
the slope of the trend on the NFDF tests for I(d) vs. I(0); let us consider …rst the
consequences of performing the NFDF test in (10) when there is a break in the mean,
so that yt is generated by

DGP 1 : yt = ¹+ ³DUt(¸) + "t; (11)

where "t » iid(0; ¾2") and DUt (¸) = 1(TB+1·t·T): According to (9), where this kind
of break is ignored, the NFDF test is based on the following regression model that
we repeat for convenience

¢dyt = ®+ ±¿t(d) + Áyt¡1 + "t: (12)

Then, the following theorem holds

Theorem 2 If yt is given by DGP 1 and model (12) is used to estimate Á;then for
0 < ¸ < 1 it follows that

bÁols
p! ¡d¾

2
"[C2

1(d) ¡ C2(d)]
D(d; ¾2")

; if 0 < d < 0:5;
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bÁols
p! ¡ d¾2"

[³2¸(1¡ ¸) + ¾2"]
; if 0:5 < d · 1;

and

tbÁols
p! ¡1; if 0 < d · 1

with ;

D(d; ¾2") = C
2
1(d)[³¸(1¡ ¸) + ¾2" ]¡ C2f³2[1 ¡ ¸+ (1 ¡¸1¡d)(2¸ ¡ ¸1¡d ¡ 1)] + ¾2"g

and
C1(d) = (d ¡ 1)¡(¡d) , C2(d) = ¡2(¡d)(2d ¡ 1)

Thus, Theorem 2 shows that, under the crash hypothesis the limit depends on the
size of relative shift in the mean, ³: Note that if ¸ = 0 or1; i.e., there is no break,
bÁols

p! ¡d, which makes sense under DGP 1, since being yt » I(0); the covariance
between ¢dyt and yt¡1 is ¼1(d) = ¡d: Further, for d = 1, it yields expression (a) in
Theorem 1 of Perron (1989). Hence, bÁols converges to a …nite negative number, and
hence T 1=2bÁols , for d 2 (0; 0:5) and T dbÁols; for d 2 (0:5; 1) and the corresponding
t-ratios in each case diverge to ¡1 . Thus the NFDF test would eventually reject
the null hypothesis of d = d0 , 0 < d0 < 1; when it happens to be false. Notice,
however, that the power of the NFDF will be decreasing with the distance between
the null and the alternative, namely as d gets closer to its true zero value.

Next consider the case where there is (continuous) break in the slope of the linear
trend, such that yt is generated by

DGP 2 : yt = ¹0 + ¯0t+ Ã0DT ¤t (¸) + "t; (13)

where DT ¤t (¸) = (t ¡ TB)1(TB+1·t·T); whilst the NFDF test is implemented ac-
cording to model (10), which does not account for the breaking trend, namely

¢dyt = ®+ °t+ ±¿ t(d) + '¿ t(d¡ 1) + Áyt¡1 + "t; (14)
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Theorem 3 If yt is given by DGP 2 and model (12) is used to estimate Á;then for

0 < ¸ < 1 it follows that

tbÁols
p! +1 if 0 < d < 0:5

and

tbÁols
p! 0; if 0:5 < d · 1

Hence, when ignoring a breaking trend, the FDF is unambiguously inconsistent.
The intuition behind this result, which generalizes Theorem 1 in Perron (1989, part

b), is that bÁols is Op(T¡d) with a positive limiting constant term for d 2 (0; 1] and
that s.d (bÁols) is T ¡1=2, implying that the t-ratio is Op(T 1=2¡d): Therefore, it will tend
to zero for 1 ¸ d > 0:5 and to +1 for 0 < d < 0:5.

In sum, the NFDF test without consideration of structural breaks is not consistent
against breaking trends and, though consistent against a beak in the mean, its power
is likely to be reduced if such a break is large. Hence, there is a need for alternative
forms of the NFDF test that could distinguish an I(d) process from a process being
I(0) around deterministic terms subject to structural breaks.

THE NFDF TEST OF I(D) VS. I(0) WITH STRUCTURAL BREAKS

In line with the above considerations, we now proceed to derive the NFDF invariant
test for I (d) vs. I(0) allowing for structural breaks under H1: To do so, it seems
convenient to consider the most common de…nition of (possibly) non-stationary I(d)
processes used, among others, by Beran (1995), Velasco and Robinson (2000) and
Mayoral (2003), which is as follows. Consider the ARFIMA(p; d0; q) process for yt,
t = 1; 2; :::; T which can be written as

©0 (L) ¢'0 (¢m0yt ¡ ¹0) = £0 (L)"t: (15)

where the memory parameter, d0, belongs to the closed interval [r1;r2]; with
¡0:5 <r1 < r2 < 1. Notice that d0 can be interpreted as the sum of an integer and
a fractional part such that d0 =m0+'0. On the one hand, the integerm0 = [d0+1=2];
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where [:] denotes integer part, is the number of times that yt must be di¤erenced

to achieve stationarity (therefore m0 ¸ 0). On the other, the parameter '0, the
fractional part, lies in the interval (¡0:5; 0:5), in such a way that, for a given d0;
'0 = d0 ¡ [d0 + 1=2]. Consequently, once the process yt is di¤erenced m0 times,
the di¤erenced process is a stationary fractionally integrated process with integration
order '0. For m0 = 0; ¹0 is the expected value of the stationary process yt and for
m0 ¸ 1, ¹0 6= 0 implies a deterministic polynomial trend. In particular m0 = 1
implies a linear time trend (i.e ¹0t).

To account to structural breaks, we consider the following maintained hypothesis

yt = AB(t) +
at1(t > 0)
¢d ¡ ÁL ; (16)

where AB(t) is a linear deterministic trend function that may contain breaks at un-
known dates (in principle, just a single break at date TB would be considered) and at
is a stationary I (0) process. From the above arguments, it can be easily shown that
if Á = 0, then yt is an I (d) process with 0 < d < 1, while, if Á < 1; then the resulting

process would be I (0) subject to structural breaks: Note that, under the null, the
model can be written as ¢d[yt¡AB(t)] = at or ¢d¡1[¢yt¡¹0] = at which corresponds
to the ARFIMA family de…ned in (16) with ¹0 = ¢AB(t) and ©0 (L) = £0(L) = 1

In common with Perron (1989) and Zivot and Andrews (1992), three de…nitions of
AB(t) are considered

Case A : AAB(t) = ¹0 + (¹1 ¡ ¹0)DUt (¸) (17)

Case B: ABB(t) = ¹0 + ¯0t+ (¯1 ¡ ¯0)DT ¤t (¸) (18)

Case C: ACB(t) = ¹0 + ¯0t+ (¹1 ¡ ¹0)DUt (¸) + (¯1 ¡ ¯0)DTt (¸) (19)

Case A corresponds to the crash hypothesis, case B to the changing growth hy-
pothesis and case C to a combination of both. The dummy variables DUt (¸) and
DT ¤t (¸)are de…ned as before, and DTt (¸) = tTB)1(TB+1·t·T) , where ¸ = TB=T: For
the time being, let us assume that the break date TB is taken to be known a priori.
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Then, the NFDF test of I(d) vs. I (0) in the presence of structural breaks is based on

the t- ratio on the coe¢cient Á in the regression model

¢dyt = ¢dAiB(t) ¡ ÁAiB(t¡ 1) + Áyt¡1 + at; i = A;B;C: (20)

As before, the NFDF test can be computed by …rst obtaining the residuals from re-
gressions of ¢dyt and yt¡1 on¢dAiB(t) andAiB(t¡1), denoted as ¢dbut and but¡1 respectively,
and next computing the t-ratio of bÁolsin the regression of ¢dbut on but¡1 . It is easy to
check that under H1 : Á < 0; yt is I(0) subject to the regime shifts de…ned by AiB(t)
whilst under H0 : Á = 0, it is I(d) such that E[¢d(yt ¡ AiB(t))] = 0: Moreover,
the NFDF test is invariant to the values of ¹0; ¹1; ¯0 and ¯1under H0: Using similar

arguments to those in Theorem 1, the following theory holds.

Theorem 4 Let yt be a process generated as in (16) with possibly ¹0 = ¹1 = ¯0 =
¯1 = 0. Then, under the null hypothesis of Á = 0; the OLS estimator associated to Á
in regression model (20) is consistent. The asymptotic distribution of the associated
t¡ ratio is given by

tibÁ(¸)
w!

R 1
0 B

¤i
d (¸; r) dB (r)

³R 1
0 B

¤i
d (¸; r)2 d (r)

´1=2
if d 2 (0:5; 1]

tibÁ(¸)
w! B¤ (1) ´ N (0; 1) if d 2 (0; 0:5)

where B¤id (:) is the projection residual from the corresponding continuous time re-
gression associated to models i = fA;B;Cg:

Although previously we assumed that the date of the break was known, it seems
more plausible, along the lines of the arguments exposed in the Introduction, to
assume that TB is unknown a priori. Hence, following the approach in Banerjee et
al. (1992) and Zivot and Andrews (1992), an extension of the previous procedure
is to estimate this breakpoint in such a way that gives the highest weight to the
alternative I(0) alternative. The estimation scheme will therefore consist in choosing
the breakpoint that gives the least favorable result for the null hypothesis of I(d) using
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the NFDF test described above in each of the three cases, i = A;B;C . Thus, the

t¡statistic on Á̂
i
ols, tbÁ( )̧; is computed for several values of ¸ 2 ¤ = (2=T; (T ¡ 1) =T)

and then the in…mum value would be chosen to run the test. The test would be then
to reject the null hypothesis when

inf
¸2¤
tbÁ( )̧ > k

i
inf;®;

where kiinf;® is a critical value to be provided below. Under theese conditions, the
following theory holds.

Theorem 5 Let yt be a process generated as in (16) : Then, under the null hypothesis
of Á = 0; the OLS estimator associated to Á in regression model (20) is consistent.
Let ¤ be a closed subset of (0; 1). Then, the asymptotic distribution of the associated
t¡ statistic associated to Á is given by,

inf
¸2¤
tibÁ(¸)

w! inf
¸2¤

R 1
0 B

¤i
d (¸; r)dB (r)

³R 1
0 B

¤i
d (¸; r)2 d (r)

´1=2 if d 2 (0:5; 1];

inf
¸2¤
tibÁ(¸)

w! inf
¸2¤
B¤ (1) if d 2 (0; 0:5):

To generate critical values of the inf NFDF t-ratio test, a pure I (d0) process with
"t » n:i:d:(0; 1) has simulated 10; 000 times, whereas the three regression models (A,
B and C) have been considered for samples of size T = 100; 400; 1000. Tables 4a,
b, c, report the corresponding critical values. Note that they are larger than the
critical values of the NFDF test reported in Tables 2a, b when considering the left
tail. Hence, one should expect a loss in power.
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TABLE 4a
Critical Values

Percentage points of the asymptotic distribution of tAbÁ( )̧

T=100 T=400 T=1000

d0 / S.L 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.056 -2.427 -3.075 -1.739 -2.100 -2.807 -1.599 -1.975 -2.698

0.2 -2.271 -2.630 -3.349 -1.936 -2.297 -2.955 -1.738 -2.115 -2.827

0.3 -2.443 -2.784 -3.499 -2.119 -2.459 -3.085 -1.989 -2.334 -2.992

0.4 -2.668 -2.989 -3.645 -2.387 -2.726 -3.450 -2.236 -2.593 -3.188

0.5 -2.964 -3.315 -3.965 -2.688 -3.006 -3.653 -2.582 -2.895 -3.551

0.6 -3.236 -3.532 -4.161 -2.999 -3.342 -4.009 -2.918 -2.918 -3.219

0.7 -3.519 -3.847 -4.484 -3.331 -3.634 -4.221 -3.241 -3.241 -3.538

0.8 -3.761 -4.069 -4.692 -3.602 -3.875 -4.437 -3.561 -3.561 -3.861

0.9 -3.978 -4.266 -4.852 -3.870 -4.137 -4.613 -3.784 -3.784 -4.043

TABLE 4b
Critical Values

Percentage points of the asymptotic distribution of tBbÁ(¸)
T=100 T=400 T=1000

d0/ S.L. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.448 -2.797 -3.504 -1.950 -2.333 -3.016 -1.758 -2.123 -2.867

0.2 -2.681 -3.032 -3.713 -2.2001 -2.567 -3.195 -1.9474 -2.303 -2.984

0.3 -2.893 -3.244 -3.950 -2.432 -2.771 -3.405 -2.238 -2.577 -3.241

0.4 -3.178 -3.520 -4.176 -2.754 -3.113 -3.790 -2.554 -2.883 -3.505

0.5 -3.522 -3.872 -4.514 -3.1158 -3.452 -4.076 -2.946 3.274 -3.860

0.6 -3.848 -4.156 -4.801 -3.519 -3.855 -4.530 -3.379 -3.682 -4.254

0.7 -4.209 -4.532 -5.196 -3.936 -4.239 -4.788 -3.815 -4.105 -4.693

0.8 -4.540 -4.858 -5.494 -4.298 -4.577 -5.069 -4.239 -4.525 -5.090

0.9 -4.892 -5.198 -5.808 -4.627 -4.901 -5.406 -4.579 -4.859 -5.410
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TABLE 4c
Critical Values

Percentage points of the asymptotic distribution of tCbÁ( )̧

T=100 T=400 T=1000

d0 /S.L.. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.449 -2.800 -3.508 -1.951 -2.333 -3.016 -1.758 -2.129 -2.867

0.2 -2.683 -3.032 -3.7070 -2.201 -2.568 -3.200 -1.946 -2.303 -2.984

0.3 -2.895 -3.250 -3.962 -2.429 -2.770 -3.406 -2.238 -2.577 -3.241

0.4 -3.179 -3.524 -4.176 -2.755 -3.112 -3.788 -2.554 -2.881 -3.506

0.5 -3.525 -3.873 -4.522 -3.115 -3.453 -4.075 -2.946 3.273 -3.861

0.6 -3.848 -4.151 -4.797 -3.519 -3.856 -4.529 -3.379 -3.682 -4.253

0.7 -4.209 -4.533 -5.196 -3.938 -4.239 -4.789 -3.815 -4.106 -4.693

0.8 -4.540 -4.8580 -5.494 -4.298 -4.577 -5.069 -4.238 -4.525 -5.090

0.9 -4.892 -5.197 -5.809 -4.628 -4.901 -5.406 -4.579 -4.859 -5.410

In order to examine the power of the test, we have generated 1000 replications of
DGP 2 with sample sizes T=100, 400, where and ¸ = 0:5, that is a changing growth
model with a break in the middle of the sample (¸ = 0:5). Both regression models B
and C have been estimated. Rejection rates are reported in Table 5. An important
characteristic to check is whether power increases with the distance between the
alternative and the null hypotheses. Interestingly, this is not the case here, since
power is non-monotonic, …rst increasing and then decreasing, and attains a maximum
around values of d close to 0.6. From a technical viewpoint , the reason behind this
result is that the values of the statistics are, in general, monotonically decreasing in
d but the critical values decrease faster and therefore, power deteriorates. From an
intuitive viewpoint, what happens is that the trend functions of an I (1) process with
drift and a I (0) process with a linear trend are much more similar than those of the

latter process and an I (d) process with a value of d around 0.6. Hence with large
values d power decreases. This has a very interesting implication for empirical work,
namely that a test with null of I(d) with an intermediate value d in (0; 1], as in the
NFDF test, has much more power than a test based on the null of an I(1).
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TABLE 5
Power NFDF, FI(d) Structural breaks

dgp: yt = ¹0 + ¯0t+Ã0DT ¤t (¸) + "t; ¹0 = 1; ¯0 = 0:5;¾" = 1

Ã0 = 0:1 Ã0 = 0:2
d0 / S.L Model B Model C Model B Model C

T T=100 T=400 T=100 T=400 T=100 T=400 T=100 T=400

0.1 6.0% 54.8% 6.0% 56.0% 13.2% 100% 12.4% 99.4%

0.3 9.4% 98.2% 9.2% 98.0% 52.0% 100% 50.4% 100%

0.6 4.8% 98.8% 4.8% 98.0% 56.8% 100% 56.6% 100%

0.7 5.0% 71.2% 5.0% 71.2% 24.2% 100% 24.2% 100%

0.9 5.0% 7.9% 2.0% 4.8% 8.2% 100% 8.0% 100%

AUGMENTED NFDF TEST AND MULTIPLE BREAKS

The limiting distributions derived above are valid for the case where the innovations
are i:i:d: and no extra terms are added in the regression equations. If some autocorre-
lation structure or heterogeneous distributions are allowed in the innovation process,
then the asymptotic distributions will depend on some nuisance parameters. To solve
the nuisance-parameter dependency, two approaches have been tipically employed in
the literature. One is the non-parametric approach proposed by Phillips and Perron
(1987) which is based on …nding consistent estimators for the nuisance parameters.
The other, which is the one we follow here, is the well-known parametric approach
proposed by Dickey and Fuller (1981) which consists of adding a suitable number of
lags of ¢dyt to the set of regressors (see DGM; 2002): As Zivot and Andrews (1992)
point out, a formal proof of the limiting distributions when the assumption of i:i:d:
disturbances is relaxed is likely to be very involved. However, along the lines of the
proof for AFDF test in Theorem 7 of DGM (2002), we conjecture that if the DGP

is ¢dyt = ut1(t>0) and ut follows an invertible and stationary ARMA (p,q) process
®p(L)ut = ¯q(L)"t with E j"tj4+± < 1 for some ± > 0; then the inf NFDF test based
on the t-ratio of bÁols in regression models like (18)-(20) augmented with k lags of ¢dyt
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will have the same limiting distributions as in Theorem 5 above and will be consistent

when T ! 1 and k ! 1, as long as k3=T ! 0: Hence, the augmented NFDF test
(denoted as ANFDF) will be based on the regression model

¢dyt = ¢dAiB(t)¡ ÁAiB(t¡ 1) + Áyt¡1 +
kX

j=1

¢dyt¡j+ + at; i = A;B;C: (21)

A generalization of the previous results to multiple breaks can be done along the
lines of the procedure devised by Bai and Perron (1998). In their framework therem
possible breaks a¤ecting the mean and the trend slope and they suggest the following
procedure to select the number of breaks. Letting sup FT (l) be the F- statistic of
no structural break (l = 0) vs. k breaks (k · m); they consider two statistics to
test the null of no breaks gainst an unknown number of breaks given some speci…c
bound on the maximum number of shifts considered. The …rst one is the double
maximum statistic (UDmax) where UDmax = max1·k·m supFT (l) while the second
one is supFt(l + 1=l) which test the null of l breaks against the alternative of l + 1
breaks. In practice, they advise to use a sequential procedure based upon testing …rst

for one break and if rejected for a second one, etc., using the sequence of supFt(l+1=l)
statistics. Therefore, our proposal is to use such a procedure to determine ¸1;:::;¸k ;in
the AB(t) terms in (18)-(20). By continuity of the sup function and tightness of
the probability measures associated with tbÁols, we conjecture that a similar result to
that obtained in Theorem 5 will hold as well, this time with the sup of a suitable
functional of fBM. Derivation of these results and computation of the corresponding
critical values exceeeds the scope of this paper but is de…nitely in our future research
agenda.

AN EMPIRICAL APPLICATION

In order to provide some empirical illustrations of how the NFDF test can be ap-
plied in practice, we consider some long series of U.S. real GNP and real GNP per
capita which basically correspond to the same data set used in Diebold and Senhaji
(1996) (DS henceforth) in their interesting discussion on whether GNP data is infor-
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mative enough to distinguish between trend stationarity (T-ST) and …rst-di¤erence

stationarity (D-ST). The data are annual and range from 1869 to 2001 giving rise
to a sample of 133 observations where the last 8 observations have been added to
DS ś riginal sample ending in 1995; cf. Mayoral, 2004, for a detailed discussion of
the construction of the series. As in DS, the series have been obtained from the two
alternative sources which di¤er in their pre-1929 values but are identical afterwards.
These correspond to the historical annual real GNP series constructed by Balke and
Gordon (1989) and Romer (1989), so that the series are denoted as GNP-BG and
GNP-R series, respectively. In order to convert them in per capita (PC) terms, they
have been divided by the total population residing in theU.S ( in thousands of people)
obtained from the Historical Statistics of the United States (1869-1970, Table A-7)
and the Census Bureau´s Current Population Reports (Series P-25, 1971-2001). All
the series are logged.

According to DS´s analysis, there is conclusive evidence in favour of T-ST and
against D-ST. To achieve this conclusion, DS follow Rudebusch (1993)´s bootstrap
approach in computing the best-…tting T-ST and D-ST models for each of the four
series. Then, they compute the exact …nite sample distribution of the t-ratios of the
lagged GNP level in an augmented Dickey-Fuller (ADF) test for a unit root when the
best-…tting T-ST D-ST models are used as the DGPs. Their main …nding is that the
p-value of such the ADF test was very small under the D-ST model but quite large
under the T-ST model, implying that the sample value of the ADF test was very
unlikely under the latter model. Nonetheless, as DS acknowledge, rejecting the null
does not mean that the alternative is a good characterization of the data. Indeed,
Mayoral (2004) has pointed out that if the same exercise is done with the KPSS test,
then the null of TS-T is also rejected in all four series. This inconclusive outcome
leads Mayoral (2004) to conjecture that, since both the I(0) and I(1) null hypotheses

are rejected, it may be the case that the right process is an I(d), 0 < d < 1, for which
she …nds favourable evidence using the FDF test of I(1) vs. I(d), which rejects the
null , and a LR test of I(d) vs.I (0); which does not reject the null, in both cases with
values of d in the range 0.6- 0.7. However, by observing Figures 1 and 2, where both
logged GNP and logged GNP-PC are depicted ( only the GNP-R series are shown
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since they are not too di¤erent from the GNP-BG series), one could consider as well

that a reasonable conjecture is that the data are generated by a T-ST process subject
to some structural breaks. Hence, this example provides a nice illustration of the
usefulness of the NFDF test proposed here, since there is some mixed evidence about
the data being generated either by an I(d) process or by an I(0) cum structural
breaks alternative.

1869 1889 1909 1929 1949 1969 1989 2009
4
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9
GNP-R, series in logarithms

1869 1889 1909 1929 1949 1969 1989 2009
-6.5

-6

-5.5

-5
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-3.5
GNP-R per capita, series in logarithms

In Tables 6 and 7, we report the t-ratios of the NFDF test constructed according
to either (20) or (21) where up to three lags of ¢dyt have been included as additional
regressors in order to account for residual correlation. Table 6 presents the results
obtained from the GNP-BG and GNP-BG-PC series whereas Table 7 presents the
corresponding results for the GNP-R and GNP-R-PC series. In both instances the

critical values are those reported in Tables 4b,c for T=100. Values of d in the non-
stationary (albeit mean-reverting) range (0:5; 1) have been considered to construct
¢dyt and ¢dytAiB(t); i = A;B;C: In view of the series, the most appropiate model
would be either model B or C which account for the upward trending behaviour.
Hence results for model A are not reported. As it can be observed, except for the
case where there are no lags, in most instances, the null of I(d) is often rejected at the
5% level (signi…cant values marked with an asterisk) in favour of a changing growth
model with a breaking date located around 1939 coinciding with the beginning of
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World War II.

TABLE 6
NFDF and ANFDF Tests

GNP-BG PC

Model B C

Lags/d 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

0 1.93 0.48 -0.88 -2.16 0.84 -0.60 -2.00 -3.35

1 -5.38¤ -5.34¤ -5.39¤ -5.51¤ -6.35¤ -6.40¤ -6.57¤ -6.81¤

2 -4.55¤ -4.74¤ -4.93¤ -5.19¤ -4.94¤ -5.10¤ -5.34¤ -5.65¤

3 -3.96 -4.34 -4.51 -4.81 -4.86¤ -5.03¤ -5.24¤ -5.50¤

GNP-BG
0 -2.65 -0.17 -1.45 -2.65 0.07 -1.31 -2.72 -4.05

1 -4.91¤ -4.34 -4.59 -4.91 -6.21¤ -6.31¤ -6.50¤ -6.77¤

2 -5.29¤ -4.68¤ -4.97¤ -5.29¤ -6.05¤ -6.31¤ -6.58¤ -6.87¤

3 -4.63¤ -3.96 -4.28 -4.63 -5.07¤ -5.33¤ -5.62¤ -5.93¤

TABLE 7
NFDF and ANFDF Tests

GNP-R PC

Model B C

Lags/d. 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

0 1.21 -0.21 -1.53 -2.73 0.29 -1.12 -2.48 -3.79

1 -4.73¤ -4.84¤ -5.04¤ -5.32¤ -5.75¤ -5.92¤ -6.23¤ -6.67¤

2 -4.35¤ -4.46 -4.64 -4.90 -4.64¤ -4.72¤ -4.95¤ -5.27¤

3 -3.80 -4.04 -4.30 -4.57 -4.83¤ -4.96¤ -5.13¤ -5.36¤

GNP-R
0 -1.65 -0.27 -1.05 -2.35 0.47 -1.31 -2.72 -4.05

1 -4.71¤ -4.84¤ -5.09¤ -5.26¤ -7.21¤ -7.31¤ -7.50¤ -7.77¤

2 -4.39¤ -4.65¤ -4.97¤ -5.32¤ -5.65¤ -5.97¤ -6.28¤ -6.87¤

3 -3.73 -4.02 -4.38 -4.65 -5.67¤ -5.83¤ -6.02¤ -6.33¤
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CONCLUSIONS

In this paper we provide a simple test of the null hypothesis of a process being
I(d); d 2 (0; 1) against the alternative of being I(0) with deterministic terms subject
to structural changes at known or unknown dates. The test, denotes as NewFractional
Dickey-Fuller (NFDF) test is a time-domain one and performs well in …nite samples,
both in terms of power and size. Denoting by AB(t) the di¤erent types of structural
breaks considered by Perron (1989), the NFDF test is based on the t-ratio of the
coe¢cient on yt¡1in an OLS regression of ¢dyt on ¢dAB(t) and yt¡1;plus a suitable
number of lags of ¢dyt to cater for autocorrelated errors. Interestingly, power is
maximized for intermediate values of d which when the deterministic components of
the process under the null and the alternative di¤er the most. Hence, gains in power

relative to the conventional DF tests proposed by Perron (1998), for known breaking
date, and Banerjee et al (1992) and Zivot and Andrews (1992), for unknown breaking
date, can be sustantial. An empirical application of the test to long U.S real GNP
and GNP per capita series rejects the null of fractional integration in favour of a
changing growth model with a break around World War II.
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APPENDIX

Proof of Theorem 1
The proof of consistency of Á̂

i
ols is identical to that of Theorem 1 in DGM (2003) :

With respect to the asymptotic distributions, consider …rst the case 0:5 < d · 1;
where the process is a non-stationary FI (d) under the null hypothesis. Following
Phillips (1988) de…ne Bi (r) to be the stochastic process on [0,1] that is the projec-
tion residual in L2[0; 1] of a fractional brownian motion projected onto the subspace
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generated by the following 1) i = ¹ : 1, r¡d and 2) i = ¿ : 1, r¡d; r1¡d and r: That is,

Bd (r) = ®̂0 + ®̂2r¡d + B¹d (r) ;

and,
Bd (r) = ®̂0 + ®̂2r¡d + ®̂3r1¡d + ®̂4r + B¿d (r) ;

where Bd (r) is Type-I fBM as de…ned in Marinucci and Robinson (1999). Then,
a straightforward application of the Frisch-Waugh Theorem provides for the desired
result.

The case where 0 · d < 0:5 is similar to that consider in DGM (2003) and therefore
is omitted.¥

Proof of Theorem 2
The result is obtained from using the weighting matrix ¨T = diag(T¡1=2; T d¡1=2; T¡1=2)

in the vector of OLS estimators of µ = (®; ±; Á)¶in model (13) such that bµ = ¨¡1
T [¨¡1

T X¶X¨¡1
T ]¡1¨¡

T

with xt = (1; ¿ t(d); yt¡1)¶and zt = ¢dyt such that ¹ = 0 in DGP1 (due to the invari-

ance) and the following set of results:
P
¿ t = 1

C1(d)
O(T 1¡d),

P
¿ 2t = 1

C2(d)
O( T1¡2d) if d 2 (0; 0:5) and= O(1) if d 2 [0:5,1],

P
yt¡1 = ±(1¡ ¸)O(T); Py2t¡1 = [¾2"+±2(1¡ )̧]

C1(d)
O(T);

P
¿ tyt¡1 = ±(1¡¸1¡d)

C1(d)
O(T 1¡d);

P
¢dyt = 1¡¸1¡d

C1(d)
O(T 1¡d);

P
¿ t¢dyt = ±[1¡¸1¡2d]

C2(d)
O(T 1¡2d) if d 2 (0; 0:5) and= O(1)

if d 2 [0:5,1],
P
yt¡1¢dyt = ¡Td¾2"

Proof of Theorem 3
Similar to Theorem 2

Proof of Theorem 4 (to be added)
Proof of Theorem 5
To be added
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