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1 Introduction

This paper analyzes the local robustness properties of estimators derived from the Efficient Method
of Moments (EMM, Gallant and Tauchen, (1996)) and develops a new class of robust statistics for
the statistical analysis of parametric models that are estimated within a general EMM framework.
Precisely, we apply tools and concepts from the theory of robust statistics (see Huber (1981) and
Hampel et al. (1986) for an overview) to develop a new class of EMM statistics that are robust to
local misspecifications of the structural specification of some strictly stationary time series process.
Since several well-known examples of an EMM estimator imply - as we show below - an unbounded
influence function (IF, see Hampel (1968), (1974)), we propose a truncating algorithm by which
a non robust EMM estimator can be regularized to ensure a bounded IF and local smoothness of
the arising EMM functional in nonparametric neighborhoods of the relevant structural model.

The need for robust statistical procedures in estimation, testing and prediction has been
stressed by many authors and is now widely recognized; some references in this respect are for
instance Hampel (1974), Koenker and Basset (1978), Huber (1981), Koenker (1982), Peracchi
(1990, 1991), Markatou and Ronchetti (1997), Krishnakumar and Ronchetti (1997), Ronchetti
and Trojani (2001). This paper focuses on the robust EMM estimation of a general parametric
stationary process where the implied stationary density may be not computed analytically, and
proposes a broad framework for constructing robust EMM statistics in this context. This extends
the application field of robust statistics to very general time series settings, including situations
where the structural and the auxiliary models in the EMM estimating equations are different,
models with latent non linear dynamics, and models where no closed form expressions for the
robust pseudo score of the given EMM auxiliary model are available! .

Some authors already addressed some important issues related to a robust inference on time

series models, starting from different perspectives. For instance, some first definitions of an influ-

1 As a special case of our general robust EMM setting, robust M-estimators for time series models where the
robust score cannot be computed analytically are also easily obtained.



ence function for times series (extending the basic definitions in Hampel’s (1974) seminal work)
have been developed in Kiinsch (1984) and Martin and Yohai (1986). Kiinsch (1984) also derived
the optimality of a robust M-estimator for the parameters of a linear autoregressive process with
normally distributed error terms. In a similar vain, de Luna and Genton (2001) proposed more
recently a robust estimator for the parameters of a linear ARMA process. In the nonlinear time
series context Ronchetti and Trojani (2001) introduced a robust version of a general Generalized
Method of Moments (GMM) statistic for situations where a reference model for the underlying
data distribution can be assumed. For such a case, an algorithm for computing robust GMM
(RGMM) estimators and tests can be used to estimate fairly general models with rich time de-
pendence structures and non linear estimating equations® . This was a first attempt to extend the
application field of robust statistics to a general time series setting based on models with nonlinear
parametric structures. Finally, in a paper more directly related to the present one Genton and
Ronchetti (2003) have adressed the issue of robust estimation for models where the stationary
density of the structural model cannot be computed explicitly using an indirect inference ap-
proach & la Gourieroux and Monfort (1993). In this context and for some simple model settings
they show with some illustrative Monte Carlo examples that a robust estimation algorithm can
be quite successful in safeguarding an indirect inference estimation procedure against local model
misspecifications.

By contrast with previous research in the area we address the problem of a robust inference on
general parametric models for time series from a broad perspective that allows us to extend the
application field of robust procedures for time series essentially to all models that can be estimated
by a classical (non robust) EMM estimator. Indeed, several robust estimation procedures, like
for instance standard robust M-estimators (Huber (1981)), RGMM estimators (Ronchetti and

Trojani (2001)) or robust M-estimators where the robust score cannot be compute analytically

2 By embedding RGMM into our robust EMM setting we are able to strongly simplify the RGMM estimation
algorithm proposed in Ronchetti and Trojani (2001).



are obtained as special cases of our REMM estimators. The more specific contributions to the
literature are the following.

First, we compute the time series influence function (Kiinsch (1984)) of a general EMM esti-
mator and illustrate the asymptotic bias approximations arising in this context; by contrast with
more simple model settings, this allows to analyze the robustness impact of model quantities like
for instance the dimension of the auxiliary parameter set or the lag length in the dynamics of the
structural model behind the EMM.

Second, we propose two robust EMM estimators with bounded IF that ensure a bounded
asymptotic bias in neighborhoods of the given structural model. Both our robust EMM estimators
are obtained by truncating the auxiliary pseudo score function of the EMM in an appropriate
metric. They correct simultaneously for (i) the structural bias due to the estimation of an auxiliary
model in the EMM setting and (ii) the bias implied by a truncation of the initial (non robust)
pseudo score function. The first of the two REMM estimators is numerically easier to compute.
The second one requires some numerically more demanding computations that yield a higher
robustness, especially for EMM settings where the dimensions of the auxiliary and the structural
parameters sets are significantly different. This is obtained by truncating the auxiliary score
function only in directions that are influential for the implied structural EMM score (see below).

Third, we propose two algorithms to compute our REMM estimators which explicitly take into
account the time series properties of the given structural model and a possible dynamic misspec-
ification of the relevant auxiliary model. This last issue is important in the REMM setting, since
the metrics by which the robust EMM scores are obtained are directly related to the asymptotic
covariance matrix of the auxiliary pseudo score function.

Finally, we present some Monte Carlo experiments attempting to quantify the trade-off between
robustness and efficiency in the REMM estimation of an highly nonlinear model. To this end we
estimate a structural ARMA(1,1)-ARCH(2) model by means of an auxiliary AR(3)-ARCH(2)

model. This is a quite complex model setting from the viewpoint of robust parameter estimation,



implying highly nonlinear and non Markovian structural dynamics® . Nevertheless, both REMM
estimators proposed in the paper yield very satisfactory results in these experiments. Indeed, we
find in our simulations that the efficiency loss implied by a REMM estimation under a perfectly
specified structural model is virtually negligible, when compared with the results obtained by the
classical EMM procedure. Further, we observe that even a quite moderate model contamination
can induce a very important bias and a strong loss in efficiency of a classical EMM estimator
while both our REMM estimators are very successful in bounding the induced asymptotic bias
and efficiency loss. Finally, we find the outlier identification procedure implied by the robust
weights of our REMM procedures to be very efficient in all our experiments.

The paper is organized as follows. Section 2 introduces the standard (non robust) EMM setting
using a functional notation that highlights the functional structure of the different estimators
arising in the EMM. Section 3 starts by computing the time series IF of an EMM estimator which
is shown to be linearly related to the one of the estimator for the parameters of the auxiliary
model. The asymptotic bias approximations implied for a general time series context are then
discussed and illustrated. Section 4 introduces two REMM estimators that bound the implied
IF in an appropriate metric. Both REMM estimators are obtained by a suitable truncation of
the score function of the estimator for the parameters in the auxiliary model. The algorithms
by which REMM estimators can be computed are then explained and some points related to the
trade-off between robustness and efficiency in REMM estimation are discussed. Section 5 presents
some Monte Carlo experiments where the performance of our REMM estimators is evaluated in a

non trivial EMM setting. Section 6 summarizes and concludes.

2 Basic EMM Setting

Let X ={X;: Q@ — R’,v € N;t =1,2,---} be a strictly stationary and ergodic stochastic process

on a complete probability space (2, S, Qo). The goal in EMM estimation is to produce statistical

3 Previous work in this context focused on models that are simple special cases of the one considered in our
simulations (cf. for instance Martin and Yohai (1986) and de Luna and Genton (2001)).



inference on the probability Py := QoX~! based on a structural model P = {Pp pERCR e N}
that defines for any structural parameter p € R a probability measure P, on the measurable space
(Rv>® := x22, R, B(R*)). In classical EMM estimation P is assumed to be correctly specified

for P().

Assumption 1 There exists po € R such that Py = P,,.

We denote by 2™ := (x,x},...,2")" the observed finite history of X™ := (X!, X},...,X!)" and
by X ,..1 the subvector consisting of the last m components of X", 0 < m < n, and assume
all finite dimensional distributions induced by P, to be absolutely continuous with respect to

Lebesgue measure.

Assumption 2 For every p € R and n € N, the restriction P} of P, on the measurable space
(R*™ := x;R”, B(R"™)) that is induced by the first n coordinates of the process X has a density
function p™(x1, ...,2n; p) with respect to \'", the Lebesgue measure on R*™.

We further denote by an upper index n the unconditional density function of X™, and by a lower

index n the conditional density function of X,,, given the observed history X1, i.e.

Pn(z™;

In EMM estimation the focus is on model settings where the conditional density p,(z™; p) cannot
be expressed analytically, so that direct estimation of P,, is not feasible. Instead, an auxiliary
parametric model and an auxiliary parameter § € ® C R?, ¢ > [ are introduced, which can be
estimated for instance by pseudo maximum likelihood. This defines an auxiliary estimation pro-
cedure that estimates in a first step of the EMM the underlying probability P,, in an approximate
way.

Often the auxiliary model is defined using a parametric family of pseudo likelihood functions
that induce a corresponding set of estimating equations, and we could do the same to develop
our robust EMM (REMM) methodology. However, it is convenient for our robust analysis and

straightforward from a statistical perspective to work with a larger class of auxiliary models, which



can be estimated by some M-estimator (Huber (1964)) defined by a general score function
v RExO —R,g>1L>1 . 1)

This enables us to unify later under the REMM methodology several robust estimation methods
for time series that typically require a Monte Carlo simulation of a given structural model.

A first straightforward example of an auxiliary score function associated with the corresponding
structural model is the one that is implied by a pseudo maximum likelihood estimation of the

auxiliary model in the standard EMM setting.
Example 3 In the classical EMM the auziliary model is chosen so that the proposed parametric

stochastic specification S¢, := {fL(-; f): R S RF, §cOCRI, geN, ¢g> l} carefully approz-
imate the true (L)—dimensional conditional density pr(-; po). In that case we have

W(w;0) = 8ln];140(x;9)

Similarly, we can also embed standard GMM estimation into an EMM setting, which is based on a

score function (1) computed as the GMM score implied by a given GMM orthogonality function.

Example 4 In a GMM setting the function ¢ defining the auziliary model is given by

¥(x;0) == Epr (a%h’(XL;O)) Wo h(z;6),

where h(-;0) : R"Y — RE | H > q, is a function defining the orthogonality conditions in a GMM
model and Wy is a corresponding deterministic weighting matriz. Remark, that in this case

dim (¢) = dim(f) = ¢ < dim(h) = H . (2)

We will discuss the implications of (2) for the case where inequality is strict later on, when we
discuss the robustness properties of EMM based inference procedures.

Notice that within the classical estimation framework embedding GMM into REMM in Example
4 can appear to be unnatural, because classical GMM does not assume any particular parametric
structural model for the underlying distributions. However, in robust GMM estimation and testing
the opposite happens. Indeed, RGMM is based on the existence of a structural model which defines
an approximate reference distribution for RGMM inference, leading to GMM estimation and

testing procedures that are robust to local misspecifications of the given structural distribution;



see Ronchetti and Trojani (2001). In fact, we will see later on that RGMM can be interpreted as
a special case of REMM.

To characterize the robustness of EMM statistics we need to write EMM estimators and tests as
functionals of a suitable space of distributions. For our purposes, focusing on the finite dimensional
distributions induced by the strictly stationary distributions on (R, B(R"*°)), as in Kiinsch

(1984), will be enough. Thus, define for L > 1 the following set of finite dimensional distributions

ME . = {(L) — finite dimensional marginals of strictly stationary processes}.

Moreover, let for L < n the empirical (L) — dimensional marginal distribution of ™ be defined by

n
L - .
Pk =p~! E 5($2,"',EQ+L_1)’ 3 X = Xi_p for i >n, 3)

i=1

where &,z is the Dirac mass at z” € R*F. By construction PX € ML, ..

To analyze the local robustness of statistical functionals derived from an EMM estimator, the
first step is to define a statistical functional (+) for the estimator of the auxiliary parameter 6.
By definition, ) () is the functional solution of the asymptotic estimating equations implied by

the score function (1), that is
8 : dom@) c ML,, - ©, PL — §(PL) :=0pr ,
is the functional solution of the implicit equation
Ept ($(X*:0)) =0 (4)

in 8. Notice, that when restricting the auxiliary functional 8 () on the set PL := {Pf:peRCRY}
it follows

By (v (X%0p2)) =0 (5)
so that to any p € R a unique eppL can be associated, provided that (4) can be uniquely solved

for any PPL € dom(). Thus, in this case a well defined binding function (see Gourieroux, Monfort

and Renault (1993)) mapping p to 67PPL is obtained.



Assumption 5 There exists a smooth injective binding function

-~

by : R — 0O pl—)bw(p)::é\(p):zeln

P

In the new notation we thus have 6, = 8 (po) = by (po). Furthermore, notice that different

auxiliary score functions ¢, ¢, of the form (1) inducing possibly different functionals 9, 0 will

produce different binding functions by, by, if and only if 7 ‘ pr #* o' - Later when we develop the
REMM, two different alternative binding functions will be proposed to define a REMM estimator.
While the second of the two REMM estimators proposed produces a higher efficiency at the model,
the first one is preferable from the perspective of computational simplicity.

Some further points related to the smoothness of b, and 8 and to their well definiteness when

Assumption 1 does not hold are collected in the next remark.

Remark 6 Notice that if the parameterization p — PpL for the structural model is a smooth

one, smoothness of by is equivalent to smoothness of 0 Moreover, when inverting by in

!
order to recover the structural parameter p from 6 (P*) in a neighborhood U (PL) of PL and by

means of the inverse b&,_)1 : Im(by) = R, it is necessary to have smoothness of 5() in order
to ensure smoothness of b;l o8 (-). Only in this case, small misspecifications of the reference
model PPL will induce stable asymptotic parameter estimates b;l of (PL ) on a full neighborhood
U (P) 1= Uperl (PPL) of the given parametric model P. Therefore, the local robustness properties

of 8 are crucial, in order to obtain a well defined EMM estimation procedure in the case when
Assumption 1 is locally falsified, that is when Py € U (P)\P.

The pseudo-true value 6 is estimated by 8, := 8 (PL) which solves (4) with respect to the

empirical measure PnL :

Epg ($(X"8(PF))) =0
Under regularity conditions (see among others White (1994)) the auxiliary estimator is consistent

and asymptotically normal at the model.

Property 7 Under regularity conditions on (5n) N it follows
ne

lim || 6, =60 |=0 , a.s.—Py
n—ro0

VB = 60) = N (0, V)



where

Vo = Ay ' BoAy* (7
and
do = Epp (mb(xE0) ®)
0 = pPE 90’ ) 0=0o )

oo o0 !

Bo = Boo+ Y Bor+ (Z Bo,r> . 9)
T=1 T=1

Bos = Bp (W(X5T:BPE) (X B(PE)), (10)

The statistical functional p(-) for the EMM estimator of the structural model is defined as the
minimizer of a quadratic form in (5), given the value 5PL of the auxiliary estimator. Thus, when

denoting by m : R x © — R? the function given by

m (p,0) = Epx ($(X%0))

the functional

-~

p:dom(p) Cdom(@) >R , PY+—p(PY):=ppr ,

is the functional solution of the implicit equation

~ 9 ~
m(p,0pr)' S 6_p’m(p’ Opr) =0 , (11)

in p, for some positive definite deterministic matrix §. Under the given assumptions, we have
p(Fs) = po.

Remind that we focus on structural models where P,f is not expressible in an analytical form;
therefore the expectation in (11) will have to be computed by Monte Carlo simulation, using some
simulated series z*(p), for k sufficiently large.

The structural parameter is estimated by p, := p(PL), which solves (11) with respect to
the empirical measure P and for some positive definite sequence S,, converging a.s. — Py to S.

Specifically, p, is such that

-~

~ 7 0 .
m(pnaen)lsn B_p'm(p”’e") =0



Weak convergence a.s. — Py of PL to PL implies with Assumption 7 and some further regularity
conditions on m (see Gallant and Tauchen (1996) and Gourieroux, Monfort and Renault (1993)),
that also the sequence (P, )nen is consistent and asymptotically normal at the model P.
Property 8 Under regularity conditions on (pp)nen it follows

Jim {|pn —po [|=0 , as.—F

V(P = po) = N (0,Zs) ’
n—oo

where
Ss = (MISM,) ™" M\SMgVoMySM, (M!SM,) ™", (12)
with
M, = im( 6)] My = im( 6)| (13)
(qx’l)) T ap' P 9)p=po,6=60 > (qu) YT P Y) p=po,6=60 -

Standard regularity conditions allowing the interchange of integration and differentiation in (13)
imply My = Aq (see 8), so that finally (12) reads

Ss = (M\SM,) " M.SBoSM, (M.SM,) ™" . (14)

Moreover, for the same reason M, is the covariance between 1)° := /(X ;) and the unconditional

score function sgL = a% Inp (X%;p) |p=pos i-€.
M, =Cov <¢0,32L) . (15)

Finally, if E ((X";60)| X" ') = 0 the unconditional score 9, in (15) may be replaced by the

2L = (%IHPL (XLQP) lo=po-

conditional score s
The next section analyzes the local robustness properties of EMM estimators and statistics

derived from EMM estimators.
3 Local Robustness Properties of EMM Estimators

In this section we derive the IF of the EMM estimator. The EMM methodology is mainly applied
to estimate dependent stochastic processes. Therefore, based on previous works of Kiinsch (1984),
Martin and Yohai (1986) and Ronchetti and Trojani (2001), we also discuss the peculiarities arising

from approximating the asymptotic bias in an EMM framework when observations are not iid.

10



3.1 The Influence Function of the EMM Estimator

We analyze the local behaviour of the EMM functional p in a nonparametric neighborhood
U, (PE) = {POL@GL =(1—-¢)Pk +eG* | 0<e<n<1;G"e Mfmt} (16)

of a parametric reference model PX € P by means of the IF; see Hampel (1974) for basic definitions

and properties and Kiinsch (1984) for the time series context. In the sequel we denote by dom (T')

4

the domain® of a statistical functional T'.

Definition 9 The influence function IF (-;T, POL) of a statistical functional T : dom (T) C
ME . — R™ at P} is defined by

T(P., )-T (R
IF («%; T, PF) = lim (Ples.) =T ()
el0 )

for all ¥ € RYL such that this limit exists.

For an M-estimator defined by a score function ¢ the IF is given by the standard expression (see

also Hampel et al. (1986) pp. 230)
IF(a";0, PY) = =M, 4 (z"; 60). (17)

The IF of the EMM functional p is obtained by implicitly differentiating the first order condition

m (3(P"),8P"))’ sa%,m (3ph).8h) =0 (18)

in direction ,z. We then have
IF(a%;5,PF) = — (MSM,) " M!SMyIF(z";6,Pf) . (19)

Thus, the IF of the EMM estimator depends linearly on the IF of the estimator of the auxiliary
parameters, implying that the IF of the EMM estimator is bounded if and only if the estimator

of the auxiliary parameter has a bounded IF. Furthermore, remark that a model deviation G

4 dom (T') does not generally contain pL for arbitrary directions of contamination z”. However, it is

0,041
possible to extend the domain of 7" to all measures P such that Egr (9(X%;60)) is well defined. The same
0,e,GL G

G
applies to the EMM functionals 9 and p-

11



having a large influence on the estimated auxiliary parameters does not have necessarily the same
large influence on the estimates of the structural parameters. Specifically, the final effect depends
on some scalar products between the score of the auxiliary model and the columns of M,. Indeed,

replacing (17) in (19) it follows
[F(z%;p, PL) = (M\SM,) ™ M\S¢(2¥;60) (20)

Hence, for a & € R'C such that (¢;6p) is large, & may have no influence on the structural
parameters if the vector 1(£;6p) belongs to the kernel® of M »S-
Two examples of non robust auxiliary score functions are presented in the sequel. The first

example considers seminonparametric auxiliary score functions.

Example 10 The seminonparametric (SNP) class of conditional densities presented in Gallant
and Nychka (1987) has become the standard auziliary model used in EMM estimation. For ex-
ample, Gallant and Tauchen (1998) estimate the parameters of a dynamic nonlinear system with
partially observed variables by means of an auziliary score obtained from a SNP-AR(1)-ARCH(4)
model with conditional density

[Pz, 71-1;0)]7 $(2)
f[P(Uaxt—ﬁe)]Z #(u)du

[z | 2i28;0) = (21)

where

$(z) = (2m) " exp (=27/2)

e; denotes the non standardized innovation, i.e. e, = Ty — g — U1 T—1

z¢ denotes the standardized innovation, i.e. zz = R ley |

R;! denotes the conditional scale function
Ry =0 +71lei—1] +12lei—2| + v3les—3| + vales—a|
o P(z,14-1;0) = E?:o (aoi + a1ime—1) 2} , ago = 1.

Clearly, the score implied by (21) is unbounded since it is the one of an AR-ARCH model.

The next example considers auxiliary score functions induced by a GMM auxiliary model, as in

RGMM estimation.

5 The | X ¢ matrix M;, has full row rank [ so that the dimension of its kernel is equal to g — .

12



Example 11 Consider the case where dim (p) < dim (6). If the auziliary parameters are esti-
mated by GMM as in Example 4 and if dim (6) < dim (h), then the influence function of 0 is given
by

IF(z":8,P)) = — (C4WoCo) ' CyWoh(x";60) ,

where 5
L.
Co=Epz (%h(X ,0)|9:90) .
Note the similarities with formula (20) when h, Wy and Co replace ¢, S and M,, respectively.
Furthermore, using the notation Ko = Cov (h(X*;60),s,. (X%5p0)), M, can be written as
Mp == C(I) W() KO .
Consequently, the influence function of p reads

(KyWoCoSCyWoKo) " Ky Wo Co S Ch Wo h(z¥;6)
= (K§QoKo)™ ' KjQoh(z2;0), (22)

IF(z";p, Py)

where
QO = W()COSC(I)WO .

Formula (22) preserves the same structure of formula (20) but expresses the sensitivity of the
estimator p in terms of the orthogonality function h and its covariance with the score function
spe. Finally, note that by contrast with S the weighting matriz Qo is not invertible.

Finally, notice that the standard result of the IF of an M-estimator can be recovered in the EMM
setting when assuming a correctly specified auxiliary model identical to the structural one. In
fact, for this case one obtains from (20) when the structural and the auxiliary models are identical

and the auxiliary estimator 9 is Fisher consistent® , the expression
~ —1
IF(z";p,P)) = — [BE (Vo (X5 0)lp=po)]  ¢(z";p0)
which is Huber’s IF formula for M-estimators; see also Huber (1981).

3.2 Asymptotic Bias approximation in the EMM Framework

When observations are iid, given a local deviation Py _ . (see (16)) the asymptotic bias of the

estimator p

B(e) = p(P;) = p(Fy) (23)

6 We refer to Hampel et al. (1986), p. 83, and the references therein for the notion of Fisher consistency of a
statistical functional.

13



can be approximated by an integral of the IF of p with respect to G (Hampel et. al., 1986), i.e.
B(e) = e Egr [IF(X1;p, Py)] + o(e) . (24)

We remarked at the beginning of this section that EMM estimation is mainly concerned with
dependent processes. By contrast with the iid setting, in the time series context it is not always
possible to approximate a contaminated measure as a mixture of P{ and a further probability
measure G € MY, even for & | 0. However, Kiinsch (1984) shows that if the curve ¢ = Py, €
M, is sufficiently smooth for e~ (Pf, — PJ') to converge weakly as ¢ | 0 to a finite signed
measure P, then

BO) = [ 1F@!5,p) dPL ),
and the asymptotic bias of p can be approximated similarly to (24) as
p(Py.) —p(Fy) = /IF(:CL; p, Py) dP" (z*) + ofe). (25)

For specific models of contamination such that v := lime~'P [at least one outlier in X*] exists,
it is possible to approximate the contaminated measure POIjE by a suitable linear combination of
the form

Py.=(1—~e) Py +vep” +o(e) (26)

where p” is a finite signed measure that depends on the distribution of the outliers and on PL.
Therefore, in (25) and (26) the lag length L also has an impact on the asymptotic bias and on
the robustness properties of the given EMM estimator. We further illustrate this last point by
an example that helps us to discuss in more detail these robustness aspects related to the EMM

methodology.

Example 12 We assume that the observed process X is generated according to the following pure
replacement model
X, = (1— H)Y; + He. (27)

where the clean process Y is given by the Gaussian ARMA(1,1) process

Yi=p1 +p2Yi1 + €+ psei—1, € did ~ N(0,p4). (28)

14



For simplicity we take & to be a constant. HF represents an iid 0-1 process independent of Y with
the property that P (H = 1) = ¢, i.e. at every date t the clean observation Yy is replaced by & with
probability . In order to estimate the structural ARMA(1,1) model (28) we specify an auziliary
Gaussian AR(3) process, i.e.

Xi=01+0:X4 1 +03X; o+04X; 3+¢e;, & iidN (0,65) . (29)

In this model, the number L of coordinates used to define the functional estimator 0 is equal to 4.
Therefore, let us define H** := (Hf, H5, HS, HS) and denote by h; € {0, 1}4, 1=1,...,16, the
possible realizations of H**, where hy = 0. For every B € B (]R4) and £ > 0 we have

16
Py (B):=P(X*€B)=) P(X'€B|H" =h;) P(H" =h;).
i=1
We denote by P’ (H4’0 = h,-) the derivative of P (H‘i’E = h,-) in 0. Because conditional probabilities
pi(B) := P (X* € B | H** = h;) depend on the joint distribution of Y* and & but not on e

Py (B) — By (B)

P*(B) := lim exists
10 €
and is equal to
16
P'(B) =) (u(B) - B (B)) P' (H"® = hi) = (u'(B) - P (B))
i=2

where Py (B) == P (Y* € B), v := Y10, P (HY = h;), p; ==y ' P (H*® = h;) > 0 fori =
2,...16 and p*(B) = 2;22 wi(B) p; is a probability measure. In this example the value of the
constant v in (26) is equal to 4, i.e. the number of coordinates on which the score function 1 is
defined, and p; = 0 for all i such that h; has two or more components equal 1. Thus, formula (26)

reads
P(is =(1-4e) P(;1 + 4dept + o(e).

While the asymptotic bias approximation’s formulae (24), (25) in the iid case and in a time series
context, respectively, are at least formally identical, for the latter the smoothness of P(fs can be
not generally granted in the case where a time series functional depends on distributions defined
on an infinite dimensional space, i.e. when L — oco. This causes serious problems in obtaining
robust estimation procedures for non Markovian processes” . However, using the EMM a non
Markovian process can be also quite efficiently estimated by means of an auxiliary model where

the auxiliary functional estimator 0 (and consequently p) depends on distributions defined on a

finite number L of coordinates of the process® X. Thus, using REMM one can avoid in a natural

7 Martin and Yohai (1986) propose a definition of IF for time series functionals defined on the entire distribution
of the process.

8 Gallant and Long (1997) show that the efficiency of the EMM estimator can approach that of maximum
likelihood as both dim and L increase. However, in this paper both dim) and L have to be considered fixed.
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way the problems arising in the robust estimation of non Markovian time series processes® . This
feature makes EMM a particularly suitable methodology for the robust estimation of time series
models that include the non Markovian case. This last assertion has however to be specified
further. Indeed, recall that the IF of p was derived under the implicit assumption that the
weighting matrix S in (18) was known. In applications S is unknown and is replaced by a suitable
estimator §m whose asymptotic limit depends on 9 and on a probability distribution defined on
given (possibly infinite) number of coordinates of the process. For instance, in Example 12 for
€ = 0, the dynamic misspecification of the auxiliary model implies an optimal weighting matrix
given by

Sopt (P, 8P)) = (Bo) ™ (30)
so that the best EMM functional p actually depends through S on the whole distribution of
the process X (at least theoretically). The opposite situation where the functional p depends on
the same marginal distribution Pl as g is given in Gallant and Tauchen (1996) who propose a
weighting matrix

S (PEOPY)) = Epp (w(X 0P 9 (X5 8(R)))

whenever the auxiliary model is a good statistical approximation of the data generation process

(DGP). Indeed, under the assumption that the derivative D = %S |e=0 exists, from the chain rule

it follows that D has no impact on the IF of p because, at the model Py, m (ﬁ(Pg), A(POL)) =0.
The problem of a non differentiability of S can be avoided in at least two related ways in practice.

Both are based on the fact that the choice of the weighting matrix S is important from an efficiency

perspective, but is not necessary to ensure consistency of the corresponding EMM estimator:

1. A first solution is to use an approximate optimal matrix S that depends on a finite dimen-

sional marginal distribution of X and for which the derivative D exists'® .

9 See also Martin and Yohai (1986) for a discussion related to this point within the setting of a linear MA model.

10 The existence of the derivative %Sopt\,E:o is also necessary for the existence of the change of variance function

(cf. Hampel et. al., 1986, Chapter 2) of the auxiliary estimator 8. A sufficient condition for this is the boundedness
of the auxiliary score .
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2. A second straightforward way to solve the problem is to use the same deterministic matrix

for all n, as for example the identity matrix.

Besides the choice of the lag length L for the auxiliary model, the above one is a second trade-off

between efficiency and robustness in robust EMM estimation.
4 Robust EMM estimators

In this section we first define two robust EMM estimators with bounded IF. Both of them are
defined by a truncation algorithm that makes use of the Huber function (see for instance Huber
(1981)). However, they differ in the metric used to measure the length of the score function
1 and consequently in the way how the corresponding robust weights are constructed. It is a
remarkable feature of the REMM estimators presented below that they correct simultaneously for
two sources of asymptotic bias arising in the REMM setting: (i) the standard bias arising in the
EMM estimation of an auxiliary model and (ii) the usual bias induced by a robust M-estimation
of the auxiliary model via the truncation of an unbounded auxiliary score function. In a second
step we present the estimation algorithms and discuss some final points on the trade-off between

efficiency and robustness in REMM estimation.

4.1 Bounding the IF

Following Ronchetti and Trojani (2001), the construction of a REMM estimator is performed
by bounding the IF of p with respect to the metric induced by its variance-covariance matrix.

Formally, we want the IF of p to satisfy
~ —-1/2 ~
| IF (%35, Pf) lgzr =1 55" 2 IF ("5, PY) || < e, (31)

where ¢ is an a priori positive bound on the self-standardized sensitivity of p (see also Hampel et

al. (1986), Chapter 4). By (31) this gives
| TF (@25, PE) (= w(a®;60)'SM, (M}SM,) ™ S5 (MySM,) ™" M;S(ats60)
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and, using (14),
| IF(z"; p, PF) ||22g1= (z";80)' SM, (M;,‘S‘BOSM,,)*1 M}S ¢(z"; ). (32)

In this case, the matrix M, must be calculated numerically even when interchange of integration
and differentiation in (13) is permitted because both the structural density and the structural
score functions cannot be generally expressed in closed form.

As a simple alternative, the properties of orthogonal projections for the matrix
K := By/*SM, (M!SBySM,) ™ M.SB;/?
imply

| IF(z"; 5, Pt) ¥(z";60) By '/* K By y(a;60)

||2E§1

IN

w(z";60)' By v(z";60)

= (19" 60) 17

= 4z 00) My (M, ' BoMy )™ My p(x; 60)
= || IF(z;6,P)) II§MB_IBOM9—1)—1

= | TR0, PE) 1

Hence:

I TF (%55, Fy) llgzr < | TF (238, Py) lly=2= |1 (23 60) |l - (33)

The implications of this last result are very useful. Firstly, bounding the self-standardized norm
of the score of the auxiliary model by a positive constant ¢ is sufficient in order to bound the self-
standardized IF of the EMM estimator of the structural parameters. Secondly, this bound does
not depend on the weighting matriz S used in the second step of the EMM. Finally, by contrast
with || IF(z%;p, PL) ”2;1 in order to bound ¢ in the metric defined by B, it is not necessary

to compute numerically the matrix M,.
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4.2 Definition of Robust EMM estimators

Construction of robust EMM estimators having a self-standardized IF bounded by ¢ can be per-
formed by truncating the function 1 (z¥;6y) with an appropriate algorithm; see also Hampel et
al. (1986), pp. 238 f. We now present two procedures by which this can be achieved. In both
procedures we replace the (unbounded) function 9 of a classical (nonrobust) EMM estimator by
a new bounded one, denoted by ¢j§ and 92, respectively. Computation of M, » is required for ¢§
but not for 12 as the latter makes use of inequality (33). Because of its simplicity, we start with
the construction of ¢2.

For a non-singular matrix A € Rl* x Rl¢ we define a new function ¢* : R’ x © — R® as the
scale transformation of 9, i.e.

A ("6) = Ay (a";0).

Further, using the Huber function

He R 5 R 22— zw(2)

where
min (L ¢/ [[z[]) = #0
we(x) = ,
1 z=0
and || - || denotes the Euclidean norm, we introduce the truncated auxiliary score function
YA (zL;6) : RY x © — R defined as
Y (a";0) = He (v (a";0)) = Ap(a";0) wo(Ap(";9)) (34)
so that the new binding function
bd)? R —)@, p = 0= btﬁé“ (p) (35)

and the functional estimator 8 are now implicitly defined as the solution of the nonlinear system

of equations

Epr [v2(X*;6)] =0 (36)
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Epw [p(X%;6)] =0,

respectively. The binding function by 4 is generally different from that implied by the score function
7). However, Fisher consistency of the structural parameters is naturally maintained in the EMM
framework because of the second step!! . The non-singular matrix A € R'* x R is determined

by solving

I = By=Ep ($2(X";00)08(X";60)')

+ZEP0 b2 (XE; 00)p (XT3 60)")

T=1

+ 37 Bry (A (XHT 3 00)0 2 (X" 60)). (37)

=1
The system of equations (37) ensures By = I for the robust EMM estimator implied by the score
¥ so that, because of (33), the self standardized IF of 5 is automatically bounded by c.

Remark 13 In applications, By is replaced by a consistent estimator En (c.f. Andrews, 1991;
Gallant, 1987; Newey and West, 1987).

Construction of the second version of a robust EMM estimator is similar to the first one. Let us
define the non-singular matrix A € R xRls and the truncated auxiliary score function ¢4 (z%;6) :
Rl x @ = R as

VA (2%;0) = Y(a¥;0) w(AMLS p(z";6)) . (38)

The interpretation of (38) is straightforward: observations z” which cause the score function to be
very large and hence have a large influence on the estimates of 8y and py must be downweighted.
However, the length of ¢ is measured with respect to the semi-metric induced by the matrix
SM, pﬁ' AM ,S which takes into account the fact that we are interested in the robustness of the
structural estimator and not necessarily in the one of the auxiliary estimator. Indeed, the IF of p
depends on the matrix product M;S (see formula (20)). Because rank (M,) =1, < lg = rank (S),

observations with large influence on the auxiliary parameters may have small or even zero influence

11 We will return to this point later when we discuss REMM in the context of robust ML estimation.
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on the structural parameters and, therefore, do not have to be downweighted. Furthermore, (31)
is true whenever
AA= (M\SBySM,) ™ (39)

is satisfied. In fact, substituting (39) in (32) we obtain

1 TF(2%; 5, PE) I3-0= v (55 60)' SM, A AMS Y (53 60) < ¢
S
Remark 14 Note that because both matrices M, and By depend on ng, matriz A enters also in

the right hand side of equation (39). However, we prefer not to show explicitly this dependence for
convenience of notation. In applications, the matrices Bo, S and M, are replaced by consistent

estimators én, 3" and M\p,", respectively.

4.3 The Estimation Algorithms

Before explaining the algorithms in detail, we summarize for easy reference the sets of implicit
equations that have to be solved to compute a REMM estimator. The empirical (L) — dimensional
marginal distribution of a sample z*(p) := (! (p), 25 (p), .. .,z}(p))" simulated according to P, is
denoted by P,

a. Equation for the (Ig)— dimensional vector of auxiliary parameters
Epr ($2(X*;6)) =0, or (40)

Epy (v8(X":0)) =0, (41)

respectively.

b. Equation for the (I,)— dimensional vector of structural parameters

0

5, Prs, (V2 (X550)) Bpy, (s (X%36)) =0, or (42)
d i , i
2 bug, (v 000)) Buy, (v (049)) =0. a

respectively.
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c. Equation for the (lg X ly)— dimensional matrix A defined in (37). By is replaced by a suitable

consistent estimator §n, i.e. the Newey and West estimator (see Newey and West, 1987)

I = Ep: (9(X"50)90(X5:9)")

q
+ Y 1= | B B xti)
T=1
q
+Y0 [1- T| Bpe (A KT O (X500 (14)

T=1

or equivalently

(A4~ = Ep (9(X550)p(X";0)w] (7 (XE;0))) (45)

q
30 (17 07 ) Baper (OXT50) DOXET36) e (04 (X50)) e (04 (XEE750))) +
T7=1

q
#32 (1- ) Bape (OCET 000X 0 we (9 (KT 3) e (0407150).

The (I, x l,)— dimensional matrix A defined in (39) is computed by solving
SO R
(24)  =1),85,B.8. M. (46)

It is not possible to simultaneously solve all sets of equations. Therefore, we solve the systems of
equations a-c recursively, by updating the parameters at the end of each iteration. The econo-
metrician fixes the degree of robustness by means of the bound ¢ > /I for the first version of a
REMM estimator or ¢ > \/l_,, for the second one. Once a value has been assigned to ¢, it is held
fixed until the end of the procedure. Index j denotes the j-th iteration. We first describe the
updating steps of the first version of a REMM estimator.

Let us denote the starting values of the auxiliary and structural parameters by é\n,O; Pno- A

starting value Ay for the matrix A is determined by solving

(A4 = Bpp (w(X50,) p(X%;6,))

q
D> 1= | B (w58 wix0,))
q
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Since Ag solves the set of equations (45) for ¢ = oo we can expect Ag to be a reasonable starting
point (see for instance Hampel et al., 1986, pp. 251). The REMM estimation is performed by

iteration of the following four steps.

1. Update step. Formula (45) is particularly appropriate for a recursive update of A. In fact,
once the right hand side of (45), denoted by D;_;, has been computed by means of A;_; and
8,..j—1, the new value A; is obtained by solving (A;Aj)_l = D;_. Specifically, since D;_;
is positive-definite we can apply the Cholesky decomposition of D;_y, e.g. LL' = D;_q, to

get A; =L 1.

2. Estimation of 6. With the new matrix A; perform the first step of the EMM as in (40)
using the truncated score function 1/)24 7. The starting value of this minimization problem is

§n7j_1 and its solution is denoted by 5,”

3. Estimation of po. Solve the minimization problem (c.f. equation (42)):
~ : A; L.py ! Aj L.y
oy = argminBpy (v (X45805)) Fry, (92 (X%005)).

using pp j—1 as starting value.

~

4. If 5n,j —0n,j—1, Pn,j — Pn,j—1 and A; — A;_; are small enough stop, otherwise go back to

step 1.

The second version of the robust EMM estimator is similar to the first one with two additional
updating steps regarding the matrices S and M,. Given starting values é\n,O; Pn,0, We compute
some starting values S, 0, J/\/[\,,,mo = Zm(p, O ,—p. o097, , and Ay setting ¢ = oco. Specifically,

Op
M, om0 generally has to be calculated numerically while Ay solves
N T T P P
(24) = S0 Brso 8no Mo - (47)

- “pyn,0

The REMM estimation is performed by iteration of the following four steps.
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— ~

1. Update step. By means of 9\",1-,1, Prj-1, Mpn 1,451, gn,j,l or their just updated values,

update S, B, M, and A.

2. Estimation of 6y. Perform the first step of the EMM as in (41) using the truncated score

. A
function ..

3. Estimation of pg. Solve the minimization problem

Pnj = argef;lzinEp;k (¢§j (XL;an,j))lEpik (be" (XL;@W.)) :

~

4. If 5,” —Onj—1, Pnj — Pnj—1 and A; — A;_; are small enough stop, otherwise go back to

step 1.

It is important to remark that both algorithms proposed above correct simultaneously for the
standard bias arising in the EMM estimation of an auxiliary model and the usual bias induced by
a robust M-estimation via the truncation of an unbounded auxiliary score function. This avoids
an extra simulation based bias correction of the auxiliary model estimator 0 (as necessary for
instance in some RGMM estimation procedures for time series) and renders the above algorithms
for computing REMM estimators computationally only slightly more demanding than the ones

used in standard (non-robust) EMM estimation.

4.4 Robustness vs Efficiency

The main advantage of the EMM estimation method consists in its relative efficiency compared to
other estimation methods for time series, see Gallant and Tauchen (1999), Andersen et al. (1999).
Therefore, we discuss the different aspects underlying the trade-off between local robustness and
asymptotic efficiency in the EMM framework. An important element for the whole discussion is
the robustness tuning constant ¢. So far we have argued with a fixed but not specified value for
c. In applications the econometrician has to select ¢ on the basis of some prior information (or

degree of confidence) about the kind and/or the extent of the deviation from the reference model'?
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. Although there is no a priori upper bound for the choice of ¢, Hampel et al. (1986), Section
4.3 showed that equations (37) and (39) have no solution if ¢ < /Iy or ¢ < \/1,, respectively.
A similar feature applies to our REMM setting. Indeed, within the REMM framework we are

interested in the computation of
Boy 11 6(X%360) [P+ and i, | TF (a3, P) [ (18)
If {p(XLHT;6 )}720 is a sequence of uncorrelated random variables then
By =By,

see (9) and (10), and we are essentially as in the iid. case so that we can use the same results of
Hampel et al. (1986). However, because of a possible misspecification of the auxiliary model or
because of the truncation in our REMM algorithm we cannot generally expect equality between
the variance By of ¢(X L.8y) and By. Therefore, let us assume for illustration purposes that the
following inequality holds

By < By ,

so that

Er, (Il (Bo) ™/ w(a*360) I] > Er, [l (Boo) ™/ t(a*;60) 2] = ls. (49)
From (49) we obtain a lower bound for ¢. In fact, assuming
1 (Bo)™"* (a®;60) IP<ls a.s.— Py

then

Er, [l (Bo) V% wi(":60) IP] < ls-

But this contradicts (49) so that we obtain the necessary condition ¢ > /5. Notice that this lower

bound depends on the number of auxiliary parameters and not on that of the structural ones.

12 For a more objective way of selecting c in the context of RGMM testing see Ronchetti and Trojani (2001), p
53-54.
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Applying the same arguments to the second expectation in (49) we obtain a similar inequality, i.e.

Er, || IF(@": 5, ) a2 1,

so that ¢ > /1,

In a related iid context Maronna (1976) proved existence and uniqueness of a solution to
systems of equations similar to those defined by (36) and (37) when By = By . However, the case
where By # By has still to be solved. If one is not willing to accept existence of a solution in

that case, she can modify the norm used in (31). In fact, recall that'® (see formula (12))
Ss = (M)SM,) ™ M\SMpVoMSM, (M\SM,) ™" .
Now, if we replace the correct asymptotic covariance matrix Vo = M, 'BoM ) ! py
Voo := My 'BooM; ", (50)
by the same arguments used to derive (33) we obtain similarly to (33) the expression
| TP T, PY) g < | TF@S T, PE) iy mr= 100" 00) [y (51)

where

Ss = (MISM,) ™" MISMpVooMySM, (M.SM,) ™" . (52)

The advantage of such replacement is twofold. Firstly, the same lower bounds /7y and \/l_p apply
to ¢ independently of By. Secondly, the estimating equations (37) and (39) become identical to the
case when {¢(XXH; 60)}:10 is a martingale difference sequence, i.e. By = By . If the auxiliary
score 1) is a good statistical approximation of the DGP then for moderate truncations implied by
a constant ¢ one would expect By =~ By. Consequently ¥s and f]g should be also very similar

in this case.

13 We prefer formula (12) to its simplified version (cf. (14))
Ts = (M,SM,) ' M,SB°SM, (M},SM,) !

because (12) contains the asymptotic variance-covariance matrix V0 of 9.
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Similarly to robust ML estimation, a low level of ¢ reduces the effect that a local misspecification
may have on the bias but it also decreases the estimator’s efficiency at the model because some
information is ”discarded”. Furthermore, the resulting efficiency loss depends on the metric used
to truncate the score function ¢ and hence on which version of a REMM estimator is used for
estimation. Although the versions are identical with respect to the nature of the constant c,
there is an important point which clearly favourises the second one in some model settings. In
fact, suppose that a low level of ¢ is required and that the number of auxiliary parameters lg is
significantly larger than [,. Because for the first version of a REMM estimator /g is a lower
bound for ¢, we have to relinquish in this case the possibility of dealing with robust estimates for
large parameterized auxiliary models. For instance, this is typically the case with a SNP auxiliary
model where with a growing number of observations the degree of the SNP-polynomial and hence
the number of auxiliary parameters may also be increased to improve the accuracy of the density
approximation. Similar considerations apply to the auxiliary models of a RGMM estimation if the
number of orthogonality conditions is significantly larger than ly. In that case the lower bound for
c is given by \/dlm—(h) ; see again Example 11 above. By contrast with the previous considerations,
the dimension [, of the structural model is fix, so that the second version of a REMM estimator
does not suffer from this dimensionality problem®* .

We mentioned above that the REMM methodology is well suited to estimate also non Marko-
vian structural models. In order to achieve high efficiency it is then important to consider a
sufficient number L of coordinates in the definition of the auxiliary model, see Gallant and Long
(1997). However, an increase in L generally implies that more auxiliary parameters have to be
estimated or that more ortogonality conditions are used in estimation. As we have just described
this can imply an important robustness problem for the first version of our REMM estimator.

A second point related to the choice of the lag length L concerns both versions of our REMM

14 A similar problem arises in the context of high break down variance-covariance matrix estimators where the
upper bound for the break down point is 1/v/ H, with H the number of rows of the covariance matrix.
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estimators. Indeed, we have seen that for the proposed model of contamination in Example 12
the number of coordinates involved in the definition of the functional estimator p also enters in
the derivative of the contaminated measure. This suggests that for the same amount € of contam-
ination, EMM estimators with estimating equations defined on a large number of coordinates of
the process X may be more unstable than those defined on a smaller set.

A last consideration regards the choice of the weighting matrix S. Because of a functional or
dynamic misspecification of the auxiliary model, an optimal choice usually involves a functional
form of S which depends on an infinite number of coordinates. However, as noted such a functional
matrix § may not be differentiable. The first version of a REMM estimator is independent of S.
Hence, only the second version of robust estimator is effectively affected by the choice of S. This
is at least formally a new trade-of between efficiency and robustness not appearing in standard

ML estimation.

5 Monte Carlo Simulations

The purposes of this section are the following. First, we show that by means of REMM even
highly non linear and non Markovian models for time series can be robustly estimated in a very
efficient way. Second, we demonstrate with a concrete example that when dealing with complex
model dynamics it is very difficult (if not virtually impossible) to identify outliers by means of
simple outliers detection procedures or by a visual inspection. On the other hand, we show that
also for complex time series models REMM yields a very efficient and model consistent outliers
identification using the estimated robust weights. Third, we are interested in quantifying the
trade-off between efficiency and robustness in REMM estimation. Therefore, we compare by
Monte Carlo simulation the performance of EMM and REMM in the presence and in the absence
of model contamination. Specifically, we compare the classical EMM estimator and the first and
second version of a robust EMM estimator defined above, denoted by REMM1 and REMM2,

respectively.
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We extend the simple MA(1) model analyzed in Martin and Yohai (1986) to an ARMA(1,1)-

ARCH(2) process given by

Yi = 09Y;_1+e —056_1, ¢ =+Vhv, v iid N (0, ].) (53)

hy 0.04 + 0.6€2 | +0.3¢7 , .

Notice that standard (non robust) ML estimation of this process is straightforward. However, a
robust ML estimation is not as simple. Indeed, to achieve this goal one would first have to correct
the bias induced by a truncation of the ML score in a robust ML estimation. This is already a
difficult task in time series models where the process unconditional distribution is not given in
closed form and would require numerical procedures, as for instance in many RGMM models for
time series. Furthermore, the ML score of model (53) is a function of all coordinates of the process,
implying an unbounded estimator’s IF even after truncation with a kind of Huber’s weights (see
Martin and Yohai (1986) for a discussion of this point). Therefore, we are forced to estimate the
structural model (53) by means of an auxiliary model whose estimating functions depend only
on a finite number of process coordinates. In this case, a natural choice is an AR(3)-ARCH(2)
auxiliary model. Since we include a constant term in the estimation of the structural and the
auxiliary model the total number of auxiliary parameters ly is equal to 7 while [, is equal to 6.
For both robust estimators REMM1 and REMM2 the robustness tuning constant c is set equal to
10.

For illustration purposes a typical (uncontaminated) path from model (53) is presented in
Figure 1. Note there the infrequent large positive and negative movements which typically occur
in periods of higher volatility. At first sight they may easily be identified as outliers in a naive
model misspecification analysis. Indeed, Figure 2 shows the same path contaminated with the
replacement outlier model defined in Example 12, where we fixed £ = 3 and € = 1%. For this
particular path only 4 observations have been replaced. The two figures show that even when

knowing the form of the outliers generating process, their exact identification in Figure 2 could
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be a very difficult task.

Table 1 summarizes the results obtained from 1000 uncontaminated simulations of model (53)
by presenting corresponding summary statistics and mean squared errors. Figure 4 presents the
densities of the resulting structural parameter estimates p;. For each p; in Table 1 the first row
contains the summary statistics for the parameter estimates under a classical EMM estimation.
The summary statistics for the REMM1 and REMM2 estimators are given, respectively, in the
second and the third row for each p; in Table 1. The sample size behind all simulations is 800.

From Table 1 it is evident that the efficiency loss at the model when using REMM is virtually
negligible. Indeed, the mean squared errors of all parameters estimates are very similar across the
different EMM and REMM estimators. As one could intuitively expect REMM2 does not provide
a clearly higher efficiency than REMMI1 in this example, since the parameter dimension of the
auxiliary and the structural models are almost equal. These impressions are visually confirmed
by the estimated densities given in Figure 4.

Model estimations have been then repeated based on the paths contaminated by outliers ac-
cording to the contaminating model in Example 12. The effects of the contamination on the
resulting parameter estimates are summarized in Table 2 with corresponding summary statistics
and in Figure 5 with the implied estimated densities. Table 2 is organized exactly as the previous
Table 1. The results for the classical EMM estimator in Table 2 highlight some large biases and
mean squared errors of a standard EMM model estimation. Indeed, we observe that the mean
squared error of all EMM parameter estimates in Table 2 is highly inflated by the presence of
contamination (compare for instance the mean squared errors for the estimates of p; and p4 given
in Table 1 and 2) and that some large biases are obtained especially in the parameter estimates of
the conditional variance equation. The REMM procedures, on the other side, are very successful
in controlling both for bias and efficiency in the presence of contamination. Indeed, when com-
pared with EMM, all mean squared errors in Table 2 are much smaller and the estimates in the

conditional variance equation present a quite reasonable bias. Again, both REMM1 and REMM2
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perform in this second experiment similarly. These findings are even more apparent from the
estimated densities in Figure 5.

Finally, it is important to stress the ability of REMM in identifying possible model deviations
present in the data. In all our simulations we have observed REMM to identify correctly outliers
when they were generated by the contaminating model used. To illustrate this point Figure 3
presents again the contaminated path of Figure 2 (in the top panel) with the estimated REMM
weights (in the bottom panel). Weights clearly below one indicate an influential observation and
can be used to identify outlying observations or more general model misspecifications. In this
series, outliers were generated at the observations 180, 548, 660 and 797. As shown in the bottom
panel of Figure 3 all these influential observations were clearly indicated with the lowest REMM
weights. On the other hand, even some model generated very erratic movements, as for instance
the ones at the observation 294, 480 and 614, were correctly identified as observations generated

by the underlying structural model.

6 Conclusions

We characterized the local robustness properties of EMM estimators for time series and proposed
two versions of a REMM estimator with bounded IF. We then presented some algorithms by
which REMM estimators can be implemented, essentially with only a minor further computational
effort when compared with the standard EMM. We finally verified in a Monte Carlo simulation
study that REMM estimators are successful in controlling for the asymptotic bias under model
misspecification while maintaining a high efficiency under the ideal structural model. REMM
extends the application field of robust statistics to very general times series models and permits
in a natural way a robust estimation of non Markovian processes. Further research on REMM
requires applications to models with complex nonlinear dynamics, possible latent factors and

switching regimes.
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Figure 1: Uncontaminated simulation of model (53).
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Figure 2: Contaminated simulation of model (53) using the replacement model in Example 12.

| True | Mean Median q25 qrs | Stdv | qrs — Q25 MSE

0.0005 0.0005 | -0.0025 | 0.0036 | 0.0048 0.0061 2.33E-5
0 0.0008 0.0010 | -0.0022 | 0.0039 | 0.0049 0.0061 2.43E-5
0.0008 0.0009 | -0.0023 | 0.0037 | 0.0048 0.0060 2.38E-5

0.8963 0.8978 0.8842 0.9098 | 0.0199 0.0255 4.10E-4
0.9 0.8954 0.8974 0.8837 0.9083 | 0.0196 0.0246 4.06E-4
0.8964 0.8985 0.8847 0.9088 | 0.0197 0.0241 4.02E-4

-0.5036 | -0.5033 | -0.5408 | -0.4653 | 0.0563 0.0755 3.19E-3
-0.5 | -0.5014 | -0.5000 | -0.5360 | -0.4644 | 0.0556 0.0716 3.09E-3
-0.5054 | -0.5034 | -0.5401 | -0.4697 | 0.0556 0.0704 3.11E-3

0.0397 0.0393 0.0363 0.0429 | 0.0048 0.0066 2.33E-5
0.04 0.0400 0.0396 0.0365 0.0431 | 0.0048 0.0066 2.30E-5
0.0403 0.0399 0.0369 0.0434 | 0.0048 0.0065 2.33E-5

0.5846 0.5844 0.5339 0.6389 | 0.0745 0.1050 5.78E-3
0.6 0.5900 0.5923 0.5379 0.6436 | 0.0761 0.1057 5.90E-3
0.5744 0.5746 0.5256 0.6257 | 0.0730 0.1001 5.98E-3
0.2922 0.2923 0.2513 0.3332 | 0.0607 0.0818 3.75E-3
0.3 0.2959 0.2950 0.2539 0.3375 | 0.0617 0.0836 3.82E-3
0.2986 0.2992 0.2575 0.3414 | 0.0606 0.0839 3.67E-3

Table 1: Summary statistics for EMM, REMM1 and REMM2 under the uncontaminated model
(53). For each parameter p; that has to be estimated the first row in the table gives summary
statistics for the EMM, the second one statistics for the REMM1 and the third one statistics for
the REMM2.
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| True | Mean | Median | g5 grs | Stdv | gr5 —qes | MSE

0.0100 0.0091 0.0018 0.0172 | 0.0127 0.0154 2.59E-4
0 0.0009 0.0010 | -0.0025 | 0.0045 | 0.0056 0.0071 3.17E-5
0.0010 0.0011 | -0.0024 | 0.0046 | 0.0056 0.0070 3.28E-5

0.8793 0.8852 0.8585 0.9096 | 0.0464 0.0511 2.58E-3
0.9 0.8861 0.8889 0.8730 0.9023 | 0.0225 0.0293 7.02E-4
0.8865 0.8895 0.8732 0.9031 | 0.0235 0.0299 7.33E-4

-0.4913 | -0.4877 | -0.5484 | -0.4266 | 0.0979 0.1218 9.65E-3
-0.5 | -0.4854 | -0.4857 | -0.5219 | -0.4488 | 0.0541 0.0731 3.14E-3
-0.4855 | -0.4856 | -0.5216 | -0.4495 | 0.0570 0.0721 3.46E-3

0.1095 0.1023 0.0703 0.1422 | 0.0474 0.0719 7.08E-3
0.04 0.0482 0.0472 0.0424 0.0531 | 0.0088 0.0107 1.45E-4
0.0488 0.0480 0.0430 0.0537 | 0.0082 0.0106 1.44E-4

0.5499 | 0.5473 | 0.4216 | 0.6672 | 0.1722 0.2456 3.21E-2
0.6 | 05996 | 0.5995 | 0.5375 | 0.6671 | 0.0925 0.1296 8.55F-3
0.5795 | 0.5825 | 0.5180 | 0.6490 | 0.0973 0.1310 9.88E-3
0.2415 | 0.2187 | 0.1277 | 0.3254 | 0.1499 0.1977 2.59E-2
0.3 | 0.2554 | 0.2567 | 0.2003 | 0.3053 | 0.0748 0.1050 7.59E-3
0.2651 | 0.2648 | 0.2078 | 0.3174 | 0.0797 0.1096 7.57E-3

Table 2: Summary statistics for EMM, REMM1 and REMM2 under model (53) contaminated by
the replacement model in Example 12. For each parameter p; that has to be estimated the first
row in the table gives summary statistics for the EMM, the second one statistics for the REMM1
and the third one statistics for the REMM?2.
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Figure 3: Contaminated series (top panel) and weights implied by the REMM (bottom panel).
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Figure 4: Estimated densities of p; under non contaminated simulations of (53).
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Figure 5: Estimated densities of p; under contaminated simulations of (53).
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