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Abstract
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1. Introduction

The search-and-matching model is the canonical framework for the analysis of labor mar-

kets, both in micro-labor economics and in macroeconomics. Despite their common roots

and many similarities, the micro and macroeconomic approaches to matching in labor mar-

kets have evolved in parallel, and have addressed different issues. In this paper, we bring

together these two views of the labor market, and we extend their scope. In particular,

we show that the matching model can reconcile the observed patterns of worker flows and

individual wage dynamics with classic stylized facts concerning wage inequality.

The job matching theory originating with Jovanovic (1979) [J79] provided the bench-

mark model of worker turnover in labor economics and the inspiration for a vast body

of applied microeconomic research. The worker-firm match is modelled as an experience

good, whose characteristics are initially uncertain and gradually revealed over time by

output performance. Optimal inference and the resulting selection of matches account for

a wide range of robust empirical correlations: positive between worker tenure and wage

(Topel 1991), initially positive and soon negative between tenure and the hazard rate of

separation (Farber 1994), negative between tenure or wage and the worker propensity to

search on the job (Pissarides and Wadsworth 1994).

The macroeconomic-equilibrium approach to matching in labor markets has focused

instead on unemployment and on the wage distribution, in two separate and influential

research programs. Equilibrium unemployment theory, originating from the work of Dia-

mond (1982), Mortensen (1982) and Pissarides (1985), has become the standard framework

of analysis for aggregate labor markets. A defining feature is the lack of commitment power

by firms and workers, so that wages are set by continuous bilateral renegotiation, typically

Nash bargaining. Conversely, in the “wage posting” literature firms have all the bargain-

ing power but, to avoid the Diamond (1971) paradox, they are able to commit to their

offers, thus effectively they post wages. Wage dispersion among identically productive

matches may result from either asymmetric equilibrium wage-posting strategies (Burdett

and Mortensen 1998) or imperfectly assortative matching between ex ante heterogeneous

workers and firms, due to a lack of coordination in job applications (Postel-Vinay and

Robin 2002a, Shi 2002).

The current state of the literature shows that micro and macroeconomists have re-

tooled the search-and-matching model of the labor market to answer their own, different

questions. The wage-posting literature abstracts, by construction, from the on-the-job

wage dynamics and quits to unemployment that motivated J79’s job matching model.

Conversely, the implications of the latter for wage inequality and for the magnitude of
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worker flows are unknown, and may well be counterfactual. An exception is equilibrium

unemployment theory. Its main incarnation, Mortensen and Pissarides (1994) [MP94], is

rooted in the job matching tradition: evolving idiosyncratic uncertainty in match produc-

tivities is the engine of turnover. In light of its empirical success at the micro level, the

J79 job matching model would be the natural way to formalize this type of uncertainty.1

Unfortunately, it lacks the tractable aggregation properties that are required for MP94’s

general equilibrium analysis. Therefore, for reasons of tractability and different focus,

MP94 and their numerous extensions have modelled this uncertainty in reduced forms,

which have counterfactual implications for the evolution of wages and separation rates

within a job. But the gap appears technical, more than conceptual.

In this paper, we introduce a synthesis of the theories of job matching and equilibrium

unemployment. We propose a unified explanation for labor market turnover and wage

inequality based on ex post sorting and wage determination. In this sense, our “unified

ex post selection model” is a clear alternative to wage-posting models with sequential

search, where wage dispersion among ex ante identical matches originates only from search

frictions, in particular on-the-job search (Burdett and Mortensen 1998, Postel-Vinay and

Robin 2002b, Burdett and Coles 2003). Therefore, an informative comparison requires

on-the-job search also in our synthesis. We then build on Jovanovic (1984) [J84], who

extended J79 to allow for infrequent and random arrival of offers to the worker both when

jobless, in the spirit and with the same objectives of equilibrium unemployment theory,

and when employed.

When bridging the remaining gap from J84 to MP94, we are presented with three

challenges. The first, as mentioned, is of technical nature, and concerns aggregation.

In J84’s well-known Gaussian setup, posterior beliefs about match productivity are two-

dimensional, mean and variance, and evolve according to a classical linear filter. In equi-

librium, the mean equals the wage and the variance is inversely proportional to job tenure.

These features make the model so elegant and empirically appealing, but also not amenable

to aggregation. The cross-sectional belief distribution is bivariate and cannot be charac-

terized analytically. Thus, the univariate wage distribution and the aggregate worker flows

implied by the model are unknown. This is the likely reason why job matching theory has

failed to make progress beyond partial equilibrium analysis.

We introduce a key simplification of this setup, which makes its aggregation tractable

while preserving its desirable equilibrium implications. We assume that the unknown

1See for example Flinn (1986), Lane and Parkin (1998). This empirical literature typically focuses on
younger workers, as suggested by the theory, because older workers are much more likely to have found
their good match. This does not imply that job matching is not relevant for older workers: while their
separations are less frequent, the consequences are often more dire.
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match quality may take one of only two values. In effect, each worker-firm match runs a

sequential probability ratio test, based on the data provided by cumulative output, of two

simple hypotheses: the match is either successful or not. From an economic viewpoint, this

simplification is painless: the economic trade-offs, implications and insights uncovered by

job matching theory are preserved in our model. Two values of match quality are sufficient

to capture the intuition on the general effects of job matching uncertainty. The payoff from

our simplification is a uni-dimensional posterior belief about match quality−the chance
that the match is successful, following a simple non-linear filter−which delivers an analytic
solution of the ergodic and stationary distribution of posterior beliefs and (expected) match

productivities.

When we map posterior beliefs about match quality into wages, we discover a second,

conceptual inconsistency between J84 and equilibrium search. In J84, the equilibrium

wage is “competitive” and equals expected productivity conditional on output history;

hence, active firms make zero expected profits, and idle firms lack the rents required

to cover the entry cost of creating a vacancy. Costless vacancies, far from solving the

problem, would generate frictionless firm-worker contacts and fail to explain frictional

unemployment. Recruiting costs and free entry require that firms have some bargaining

power and earn quasi-rents ex post. At the other extreme, if firms had all the bargaining

power, then wages could end up reflecting just the value of leisure rather than the evolution

of expected match productivity. To reconcile costly job creation, frictional matching and

the returns to tenure we allow for rent-sharing. Following the tradition in equilibrium

unemployment theory, we assume that wages are set by generalized Nash bargaining,

which subsumes J84’s competitive wages as a special (but problematic) case.

In turn, rent-sharing and employed job search raise a third and final conceptual issue.

A worker earns and generates rents both for his employer and potentially for alternative

employers that he comes in contact with. Therefore, an outside offer made to an employed

worker triggers a tri-lateral renegotiation problem. Competitive wage-setting in J84 re-

solved the issue totally in favor of the worker. We assume instead that the two firms play

an English auction to win the worker, and we compare this outcome to other solutions to

the poaching game proposed so far in the literature. We reiterate that both rent-sharing

and an explicit analysis of renegotiation after an outside offer−two clear departures from
J84−are indispensable to a consistent and unified explanation in terms of selection of in-
voluntary unemployment, worker and job turnover, the dynamics and the distribution of

wages.

In this environment, the equilibrium wage is linear in the expected productivity of a

match, just like in J84. But our simpler framework allows for a simple analytic character-
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ization of the wage distribution, which in turn reveals our two substantive results.

The first result is an equilibrium wage density that generically exhibits the three main

features of empirical wage distributions: a unique interior mode, skewness like a log-

normal, and a long and “fat” right tail of Pareto functional form. The selection of good

matches, through optimal quits to unemployment and to other jobs, redistributes mass

of workers from the lower to the upper part of the distribution of beliefs about match

quality, which determine wages. This explains the skewness and the fat Pareto tail, in

spite of symmetric and Gaussian (thin-tailed) noise in output. Therefore, as an explanation

for the typical shape of an empirical wage distribution, our unified job matching model

is a plausible alternative both to wage-posting models with sequential search2 and to

the frictionless competitive markets tradition dating back to Roy (1951). The latter is

based on ex ante self-selection by workers who know their comparative advantages before

matching with firms. As shown by Heckman and Sedlacek (1985), this mechanism maps

a Gaussian distribution of productivities into a Pareto wage distribution. Strikingly, the

same equilibrium mapping arises in our model, where sorting occurs entirely ex post and

is impeded by both search and learning frictions.

The second result is a novel equilibrium implication, which is unique to an environment

of imperfect information about match productivity. We find that the larger the idiosyn-

cratic productivity risk that clouds the underlying match quality, the higher the (Pareto)

rate of decay of the upper tail of the wage distribution. Intuitively, the harder the inference

problem faced by firms and workers, the less effective the sorting process, the fewer workers

have time to identify a good match, before being exogenously separated from their jobs.

The upper tail of the wage distribution contains precisely those matches that have been

almost ascertained to be successful. This implication is reversed in search models that as-

sume evolving but observable idiosyncratic productivity or demand shocks, such as MP94.

This is important, because all the predictions of J79 that have found empirical support in

a vast labor literature−in part mentioned earlier, as well as a recent revival of interest in
learning of workers’s productivities (Altonji and Pierret 2001, Nagypal 2000)−are indeed
predictions common to any stochastic selection model, with or without learning. Our (po-

tentially testable) implication may provide a definite test of the importance of learning in

the selection process.

In addition to these two results, we contribute to the ongoing effort to render equilib-

2Mortensen (1998) shows that a typical wage-posting search equilibrium implies an increasing or U-
shaped wage distribution. Upfront firm-specific investments may restore unimodality and long, fat upper
tail. Postel-Vinay and Robin (2002b) introduce employed search and ex post competition for employed
workers, but no ex post productivity risk. The implied equilibrium wage distribution is hump-shaped, but
lacks the strong skewness and especially the Pareto tail that we observe in the data.
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rium models of wage dispersion empirically operational. Recent attempts in this direction

rely exclusively on wage-posting models, which allow for wage growth only through outside

offers (Christensen et alii 2002) and treat the distribution of worker and firm productivities

as unobservables, to be estimated necessarily by non-parametric methods (Postel-Vinay

and Robin 2002a). The analytic solution of our equilibrium model of job matching and

unemployment allows for structural estimation of the model parameters by maximum like-

lihood. The likelihood is the equilibrium wage distribution, whose empirically accurate

shape suggests an excellent fit of the model to the data. An econometrician estimating a

Mincerian wage equation without knowing match output histories would dump into the

“error” Gaussian (symmetric) term the wage dispersion created by evolving beliefs about

match quality. If our structural model is correct, this “error” has a skewed distribution,

due to job shopping, and therefore the linear estimates are biased.

The paper is organized as follows. Section 2 illustrates the model, Section 3 equilibrium

wages and separation policies, Section 4 equilibrium turnover, Section 5 the stationary

and ergodic wage distribution, Section 6 closes the general equilibrium of the model with

a matching function, Section 7 concludes, an Appendix collects proofs of the propositions.

2. The Economy

A consumption good is produced in continuous time by pairwise firm-worker matches

(jobs). The average productivity or “quality” of each match, µ, is specific and ex ante

uncertain: upon matching, the firm and the worker share a common prior belief on µ,

independent of their past histories and concentrated on two points, p0 = Pr (µ = µH) =

1−Pr (µ = µL) ∈ (0, 1), where µL denotes a “bad” match and µH(> µL) a “good” match.
The performance of the match is also subject to two additional and orthogonal sources

of idiosyncratic noise. First, cumulative output in the time interval [0, t] is a normal

random variable, a Brownian Motion with drift µ and known variance σ2:

Xt = µt+ σZt ∼ N µt,σ2t .

Here Zt is a Wiener process, a continuous additive noise that keeps µ hidden and creates

an inference problem. Over time, parties observe output realizations kXtl, generating a
filtration {FXt }, and update in a Bayesian fashion their belief from the prior p0 to the

posterior pt ≡ Pr(µ = µH | FXt ). The second, more drastic source of idiosyncratic produc-
tivity shocks forces jobs out of business at Poisson rate δ > 0. This process captures many

important idiosyncratic sources of match dissolution; a few examples are, on the labor

demand side, technological obsolence, natural disasters, changes in specific tax code pro-
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visions, idiosyncratic product demand shocks; on the labor supply side, spousal relocation

and human capital shocks, such as worker disability, retirement, and death.

The economy is populated by a large mass of ex ante homogeneous firms, ensuring

free entry, and by a unit measure of ex ante homogeneous workers. If δ contains a worker

attrition component, the population is replenished by new workers. A jobless worker

enjoys a flow value of leisure b, while idle firms get zero flow returns. Workers and firms

are risk-neutral optimizers and discount future payoffs at rate r > 0. Utility is perfectly

transferable. We assume b ∈ [µL, (1− p0)µL+ p0µH ], so the matching choice is non trivial:
a new match should always be accepted, because it produces more than the joint value

of inactivity b, and should be dissolved if µ = µL ≤ b. In practice, parties perform a

sequential probability ratio test of simple hypotheses on the viability of the match.

A worker contacts open vacancies at finite Poisson rate λ when unemployed, and at

rate ψλ when searching on the job. Here ψ is the chance at every point in time that an

employed worker who wants a new job has the opportunity to actively search for one. We

defer to Section 6 the description of the matching process generating λ. In both cases job

search is costless, except for its time-consuming aspect and for discounting. There is no

recall of past offers. The firm must pay a flow sunk cost κ to keep a vacancy open to

applications from workers, unemployed and employed alike. Every new match, whether

the worker joins it from unemployment or from another job, restarts from a common prior

chance p0 of success. Unlike in J84, there is no initial “screening” phase.

On-the-job search effort is not observable by the firm, so wages cannot be conditioned

on it. Firms and workers cannot commit to a wage contract. Search frictions create

rents that the firm and the worker split according to a generalized Nash bargaining rule,

assigning a geometric weight β to the worker’s surplus.

When an employed worker engages in on-the-job search, any new firm he comes in

contact with perfectly observes the wage and the expected productivity (the posterior

belief p) of his current match. The incumbent firm knows that the competitor’s match

with its employee would be successful with chance p0. The two firms then play an English

first-price auction: the poaching firm makes an offer, and then the two firms take turns

bidding at time intervals of length ∆ > 0, while the existing match remains active. The

auction ends after a firm fails to raise the last bid. The worker then receives the highest bid,

in exchange for giving up the contact with the losing firm and restarting Nash bargaining

with the winner. If indifferent between final bids, the worker stays with the old employer.

Since firms cannot commit to wage profiles, in the auction they can only bid a lump-sum

transfer, followed by ex post bilateral bargaining once alone with the worker. The worker

cannot commit to kick back to his employer any part of his gains from quitting to another
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firm. All other firms in the economy not involved in the auction observe neither expected

match values nor bids.

3. Wages and Job Separation

We analyze the steady state equilibrium of this economy. Policy functions and aggregate

variables (including the wage distribution) do not change over time, while worker turnover

and job churning are continuously driven by purely idiosyncratic uncertainty.

3.1. Filtering

A sufficient statistic for output history, which determines the future prospects of a match,

thus also the natural state variable of the bargaining game, is the posterior belief pt that

the match was a success (µ = µH). Using the expression for the Gaussian density of total

output y = yt, Bayes rule defines the posterior pt as a C2 function of the diffusion y, so we
can apply Ito’s Lemma to obtain the stochastic differential equation for p. This is done by

Theorem 9.1 in Liptser and Shyryaev (1977). Conditional on the output process X, the

posterior probability of a good match evolves from any prior p0 ∈ (0, 1) as a martingale
diffusion solving:

dpt = pt(1− pt)sdZ̄t (3.1)

where

s ≡ µH − µL
σ

is the signal/noise ratio of output, and

dZt ≡
1

σ
[dXt − ptµHdt− (1− pt)µLdt]

is the innovation process, the normalized difference between realized and unconditionally

expected flow output. This is a standard Wiener process w.r. to the filtration {FXt }.
Intuitively, beliefs move faster the more uncertain match quality (the term p(1− p) peaks
at p = 1/2), and the more informative production, as measured by s.3

3In this binary structure, unlike in the Gaussian model of J79, J84, posterior belief precision
[pt(1 − pt)]−1 does not necessarily increase over time as evidence accumulates. However, the qualitative
implications of Jovanovic’s model depend on the martingale property of beliefs and on optimal selection,
not on the specific match distribution assumed. In fact, these properties survive essentially intact in this
binary framework (see Proposition 4). In contrast, aggregation is tractable in the binary structure, not in
the Gaussian model.
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3.2. On-the-Job Search and the “Poaching Auction”

Let W (p) denote the discounted total payoffs that a worker receives in the equilibrium

of the bargaining-and-search game, when employed in a match that is successful with

current posterior chance p. Similarly, let U denote the worker’s value of unemployment,

independent of p because of the match-specific nature of µ, J(p) the rents of the firms, V

the value to the firm of holding an open vacancy, and S(p) =W (p)+J(p)−U−V the total
surplus of this match. By free entry in vacancy creation, V = 0, so S(p) =W (p)+J(p)−U.
We seek to construct an equilibrium where S,W and J are strictly increasing in p.

The surplus S(p) of a p−match is clearly the maximum valuation that the worker and
the firm can hold for it. When the employed worker successfully contacts a new firm, the

two firms immediately play the auction. Their valuations for the worker, respectively S(p)

and S(p0), are common knowledge. Let τ(p|p�) denote the final bid of firm p against firm

p�. Necessarily, τ(p|p�) ∈ [W (p), S(p)] for the bid to be acceptable to both the bidding
firm and the worker. The bid is the sum of a lump-sum transfer τ̄(p|p�) = τ(p|p�)−W (p)
and of the promise (worth W (p) to the worker) to match, produce output and bargain

bilaterally from then on. The lump-sum transfer τ(p|p0) offered by a p−employer to its
worker can be interpreted as a retention bonus, while the transfer τ(p0|p) offered by the
new firm to poach the worker is a sign-up bonus.

The highest bidder pays the lump-sum transfer to the worker and (re-)starts with

him production and bilateral bargaining. Which firm wins, and how much does it pay?

The auction is a symmetric information game in extensive form. It is easy to see that

the following strategy is a subgame perfect equilibrium of this game: each firm bids just

the bargaining value τ(p|p�) = W (p) and no lump-sum transfer τ̄(p|p�) = 0. This “non-
competitive” equilibrium is supported by the threat of the more productive of the two

firms to outbid the competitor at the next round. For example, if p < p0, the new firm

wins. Since S(·) is strictly increasing, S(p) < S(p0), so the incumbent employer gives up
fighting right away, knowing that its highest possible bid τ(p|p0) = S(p) can always be

beaten by the new firm with a bid in (S(p), S(p0)). Similarly, if p ≥ p0, the new firm does
not even try to poach the worker, knowing that the current employer could always retain

the worker. Given our assumption that the values of a viable relationship are strictly

increasing in beliefs, a worker quits to a new firm if and only if p < p0.

Although the auction has other equilibria, and not bidding is a weakly dominated strat-

egy for the less productive firm, the loser, we assume that the two firms play this particular

equilibrium, for three reasons. First, if firms faced an arbitrarily small cost of bidding, ours

would be the unique subgame perfect equilibrium of the auction, as the winner is known in

advance and competing would only be wasteful for the losing firm. Therefore, ours is the

8



unique subgame perfect equilibrium of the costless-bidding auction which is robust to this

natural payoff-perturbation refinement. Second, if the less productive firm “trembles” and

bids a positive lump-sum transfer with probability ε, the opponent can always successfully

respond to the bid. As ε vanishes, all equilibrium payoffs of this perturbed game converge

to those of our no-bidding equilibrium, which then survives this perfection refinement too.

Third, although competition has no allocative implications, because the more productive

firm wins anyway, each employer strictly prefers ex ante not to have to compete ex post.

Ex post competition by firms raises the returns to OJS to the worker, thus his propensity

to search on the job, and finally the rate at which employers lose valuable workers.4

Notice that our equilibrium outcome is the opposite of one-shot Bertrand competition,

where the more productive firm, constrained to bid only once and not to respond to hostile

bids, must pay the valuation of the competitor to win the auction (Postel-Vinay and Robin,

2002b). This extreme competition does not change turnover outcomes, but transfers rents

to the worker and raises his ex ante incentives to search on the job. This well-known and

unpleasant Bertrand paradox with asymmetric but commonly known valuations is here

resolved by allowing players to bid repeatedly. Notice that when a worker quits, his old

employer loses positive profits J(p) > 0, but there is nothing it can do to avoid it, because

the surplus of the new match is larger than the existing one.5

We summarize our conclusions in:

Proposition 1. (Equilibrium of the Poaching Auction)Assume that the equilibrium

values of the firm J(p), workerW (p) and match S(p) in the bargaining game are all strictly

increasing in p. When a worker matched with a firm at posterior belief p contacts another

4Burdett et alii (2003) analyze a two-sided matching model with search frictions, non-transferable
utility, and both parties allowed to search while matched. They show that the externality caused by the
propensity to search for alternative partners while matched can be so powerful to generate a continuum
of steady state equilibria.

5This reasoning points to asymmetric information as the key engine of competition for employed work-
ers. A standard private value second price auction yields the same outcome as one-shot Bertrand compe-
tition, without dominated strategies, as a firm always hopes to win. In Burdett and Mortensen (1998), a
poaching firm makes a unilateral offer to an employed applicant, independently of the wage he is earning;
as emphasized by Postel-Vinay and Robin (2002b), this implies that this firm ignores the current wage,
and that the worker’s current employer does not respond to the outside offer by assumption. In our auction
under symmetric information, no response to outside offers is a sequential equilibrium strategy for the less
productive firm. In Pissarides (1994), employed search takes place as long as it creates a positive surplus
for the current match, to be abandoned, while the costs and returns of the new employer do not play
any role. Felli and Harris (1996) characterize the unique sequential equilibrium of the repeated poaching
game without any commitment but with perfect recall, or equivalently without search frictions, as in J79.
Dey and Flinn (2002) assume that the new offer by the poacher is the result of Nash bargaining, with the
total surplus from the old match S(p) as the outside option of the worker. This solution further raises the
returns to the worker from searching on the job, but seems to require some recall, that we rule out, and
does not survive our backward induction logic.
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firm to re-match at belief p0, the two firms play the following subgame perfect equilibrium

of the poaching auction. Each firm bids the worker’s bargaining value in its own match

and a zero lump-sum transfer; if the less productive firm p� = min {p, p0} bids more than
W (p�), the competitor responds accordingly and bids more. Therefore, if W (p) < W (p0),

namely p < p0, the worker quits and restarts bi-lateral renegotiation with the new firm,

earning rents W (p0) and a capital gain W (p0)−W (p); otherwise the worker stays at the
old wage and the contact with the new firm is irrelevant.

3.3. Nash Bargaining during Employment

When a worker is facing his employer alone, without contacts with other firms, he plays a

cooperative asymmetric Nash bargaining game. So the wage solves

w(p) ∈ argmax
w
[W (p)− U ]β[J(p)]1−β (3.2)

for some β ∈ (0, 1) exogenously given. As customary in the search literature, this maxi-
mization yields as a necessary and sufficient first-order condition

βJ(p) = (1− β)[W (p)− U ] (3.3)

i.e., the worker gets a fraction β of total match surplus: W (p) − U = βS(p), J(p) =

(1−β)S(p). The equivalence between the linear sharing rule (3.3) and the Nash bargaining
solution (3.2) must be qualified in the presence of OJS and match heterogeneity. As pointed

out by Shimer (2003), the employer may offer to the worker an “efficiency” wage, higher

than the one solving (3.3), to make the worker indifferent between searching on the job

or not, i.e. to set his value equal to W (p0). The worker would obviously strictly gain.

If p is smaller than but close enough to p0, the required efficiency wage raise may be

small, and the reduction in firm’s profits that it entails may be more than offset by the

discrete reduction in the worker’s quit rate, making also the firm better off. Therefore,

the efficiency wage would be strictly Pareto improving for the match and the true solution

to (3.2), while the wage solving the linear sharing rule (3.3) would violate Nash efficiency

axiom.6 With OJS, the wage not only subtracts from the firm’s profits directly, but also

affects them through the worker’s incentives to OJS, which cannot be contracted upon.

This argument, however, does not apply when firms can make lump-sum transfers in

the poaching auction and OJS is costless to the worker, as we assume here (unlike in

Shimer 2003). Suppose in fact that an employer with p < p0 did offer such an efficiency

wage (an employer with p ≥ p0 would have no reason to do so, because its worker would
6I thank a referee for first pointing out this possibility to me.
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not quit anyway in equilibrium; see Prop. 1). The worker would then accept the higher

efficiency wage, and nonetheless he would keep searching on the job, knowing that any

new firm with belief p0 > p (thus S(p0) > S(p)) would be able to observe the efficiency

wage and to outbid it with a lump-sum sign-up bonus, followed again by bilateral Nash

bargaining. We conclude that lump-sum transfers with costless OJS neutralize efficiency

wages, just like severance payments (Lazear 1990). Therefore (3.2)⇔(3.3), and we proceed
to solve for the wage from (3.3). Notice that, if OJS were costly, then the sign-up bonus

by the new firm could never cover the effort costs sunk by the worker in past OJS, by

the usual Diamond (1971)’s effect. In this case there is room for an efficiency wage, to an

extent that depends directly on the cost of OJS and that vanishes with it. Henceforth,

our model is a valid approximation to the case of small OJS costs.

The linear sharing rule aligns the interests of the worker and the match. The worker

quits iff W (p) < W (p0)⇔ S(p) < S(p0). Ignoring issues of matching congestion, quits are

always socially efficient: they occur just when they should to raise aggregate productivity.

3.4. Bellman Equations and Equilibrium Wage Function

Given the continuation values guaranteed by subgame perfect equilibrium play in the

poaching auction (see Proposition 1), the worker’s values of being (respectively) unem-

ployed and matched well with probability p solve the Hamilton-Jacobi-Bellman (HJB)

equations:7

rU = b+ λ[W (p0)− U ]
rW (p) = w(p) + Σ(p)W ��(p)− δ[W (p)− U ] + ψλmax kW (p0)−W (p), 0l (3.4)

where

Σ(p) ≡ 1
2
s2p2(1− p)2

is half the ex ante variance of the change in posterior beliefs. Roughly speaking, this term

measures the “speed of learning” about match quality: if posterior beliefs are not expected

to change in the next instant, the variance is zero and nothing is learned. The opportunity

cost of unemployment, rU , equals its flow benefit b plus the capital gain W (p0)− U from
a new match, which has prior belief p0 of being successful, accruing at rate λ. Similarly,

the opportunity cost rW (p) of working in a job that is successful with posterior chance

p equals the flow wage w(p), plus a diffusion-learning term Σ(p)W ��(p), minus the capital

loss following exogenous separation at rate δ, plus the capital gain following a profitable

7Unless otherwise noted, Karlin and Taylor (1981) is the main reference for the standard technical
results in diffusion theory exploited in this paper.
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quit to another job, which resets the prior to p0 (see Proposition 1.) The learning speed

Σ(p) is converted into payoff units by the convexity of the Bellman value W ��(p), because

information (here in the form of output) spreads posterior beliefs and empowers more

informed decisions by the worker. In fact, if W was locally affine, say W (p) = c0 + c1p

for some scalars c0 and c1, then the martingale property of beliefs E [pt+dt] = E [pt] would
imply an expected value E [W (pt+dt)] equal to the current value E [W (pt)], so nothing
valuable would be learned.

The worker optimally quits to unemployment at every belief pW ∈ [0, 1] such that
W (p

W
) = U (value matching) and W �(p

W
) = 0 (smooth pasting), and keeps searching on

the job whenever W (p) falls short of the valueW (p0) that he can obtain from a fresh start

at a new firm. In this case he gains exactly W (p0)−W (p) (see again Proposition 1.)
The problem of the firm is similar. The free entry condition V = 0 will be used later

to close the general equilibrium. The value to the employer J(p) of an active match that

is successful with posterior chance p solves the HJB equation

rJ(p) = µ̄(p)− w(p) + Σ(p)J ��(p)− δJ(p)− ψλJ(p)I {W (p) < W (p0)} (3.5)

with I {·} an indicator function, so I {W (p) < W (p0)} = 1 if and only if the worker seeks
outside offers. The opportunity cost of production rJ(p) equals expected flow output

µ̄(p) ≡ pµH + (1− p)µL

minus the wage w(p), plus the return from learning the quality of the match Σ(p)J ��(p),

minus expected capital losses due to exogenous separation (δJ(p)) and to a quit by the

worker to another job (ψλJ(p) whenW (p) < W (p0) and the worker keeps searching). The

firm optimally fires the worker at every pJ ∈ [0, 1] such that J(pJ) = 0 and J
�(p

J
) = 0.

By (3.3), worker and firm agree to separate and to become idle when the posterior

belief hits the same threshold(s) p= p
W
=pJ . When the worker quits to another job, he

forfeits positive rents W (p) − U > 0 for even larger ones W (p0) − U in the new match,

while his employer suffers an unrecoverable loss J(p) ∝W (p)−U > 0. Observe that (3.3)
implies I {W (p) < W (p0)} = I {J(p) < J(p0)} and βJ ��(p) = (1 − β)W ��(p). We prove in

the Appendix that, using these facts and (3.3) into the HJB equations (3.4) and (3.5),

combined with some algebra, yield a simple and intuitive expression for the equilibrium

wage.

Proposition 2. The Nash bargaining maximization (3.2) is equivalent to (3.3) and both

are solved by the wage function

w(p) = b+ β [µ̄(p)− b+ λJ(p0)(1− ψI{J(p) < J(p0))}] . (3.6)
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The worker receives a wage that exceeds his opportunity cost of time b by an amount

equal to his bargaining share β of flow expected output µ̄(p) in excess of b, plus the

endogenous outside option from unemployed job search λJ(p0), reduced by a fraction ψ

when the match looks unpromising and the worker searches on the job, W (p) < W (p0)

or J(p) < J(p0), in order to compensate the firm for the potential loss of a valuable

employee. The wage is affine and increasing in the posterior belief, and jumps up at p0 as

the worker ceases on-the-job search and the firm no longer faces the potential quit of its

employee. Employed search improves the worker’s outside option, at the expense of joint

match surplus. Notice that the discontinuity in the wage w at p0 guarantees continuity in

the value functions W and J, so there is no incentive to renegotiate further on lump-sum

transfers when pt = p0.

Now consider two extreme cases for the bargaining share. First, observe that S(p) ≤
µH/(r + δ) <∞ for every p, as no match can produce more than this amount in PDV. If

β = 1, we deduce J(p) = (1−β)S(p) = 0 fir every p. Then, the wage equation (3.6) reduces
to w(pt) = µ̄(pt) = E[µ | FXt ], namely J84’s “competitive” wage equal to expected match
productivity. In this case the firm lacks the positive rents J(p0) > 0 that are necessary to

cover the cost κ of posting a vacancy and to enter the market. Conversely, if β = 0, then

again from (3.3) the worker gets paid his opportunity cost of time w(p) = b, independently

of past performance, tenure, etc. In either extreme case the wage is disconnected from

labor market tightness (λ.)

3.5. Value Functions and Equilibrium Separation Policy

Replacing the wage function (3.6) into the worker’s and the firm’s HJB equations trans-

forms their bargaining-separation game into two separate optimal stopping problems. Us-

ing (3.3), (3.6) and boundaries, turns the firm’s HJB equation (3.5) into a differential

equation in rents J(p) only:

J(p) =
(1− β)[µ̄(p)− b] + Σ(p)J ��(p)− βλJ(p0)(1− ψI {J(p) < J(p0)})

r + δ + ψλI {J(p) < J(p0)}
(3.7)

subject to value matching and smooth pasting at p. An additional boundary condition

is the boundedness of the firm’s rents, J(p) ≤ S(p) < ∞. We can solve for the value
function, which equals the sum of the present discounted value of flow returns and of the

option value of separating should things go wrong, including a direct quit for p < p0. We

also verify our initial guess that J , thus by (3.3) W and S, are increasing in p.

Proposition 3. (Bargaining and Separation Equilibrium) A firm and a worker

match sharing a common prior belief p0 of a good outcome, continuously observe out-

put in [0, t], update the posterior belief pt according to (3.1), renegotiate the wage w(p)
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according to (3.6), and separate when the posterior declines to a low cutoff p ∈ (0, p0)
(when the wage falls to a reservation value w(p)). The worker searches on the job for a

new match at prior p0 (again) if and only if pt < p0, and always accepts outside offers, to

which his employer never responds. The value function of the firm is the increasing and

convex function of beliefs p ∈ [p, 1]:

J(p) = c0Jp
1−α0(1− p)α0 + k0Jpα0(1− p)1−α0 I{p ≤ p < p0}+ c1Jp1−α1(1− p)α1I{p0 ≤ p ≤ 1},

+
(1− β)[µ̄(p)− b]− βλJ(p0)(1− ψI{p ≤ p < p0})

r + δ + ψλI{p ≤ p < p0}
(3.8)

where

α0 ≡
1

2
+

1

4
+
2(r + δ + ψλ)

s2
; α1 ≡

1

2
+

1

4
+
2(r + δ)

s2
,

the coefficients c0J , k0J , c1J and the optimal stopping point p ∈ (0, p0) uniquely solve the
system of four algebraic equations:

J(p) = 0, J �(p+) = 0, J(p0−) = J(p0+), J �(p0−) = J �(p0+). (3.9)

4. Turnover

The equilibrium play described in Proposition 3 implies a stochastic process for the work-

er’s employment status and, conditional on employment, for the posterior belief of a good

match pt. This starts from p0 and evolves according to (3.1) following output realizations.

It is “killed” at rate δ by exogenous separations and it is stopped when it falls to p, where

parties separate endogenously to restart searching on their own: either way, the worker

is absorbed into unemployment for a random duration of mean 1/λ. When pt < p0 the

worker also seeks outside job offers, and finds one at rate ψλ, resetting the belief to p0.

Before illustrating our new results, we verify that our model preserves the qualitative

correlations between tenure, wages, separation rate and employed search that are observed

in the data and that are central to extant theories of worker turnover, as summarized in

the Introduction. We also find an analytic expression for the expected residual duration

T (p) of a p−match. In the absence of endogenous separations at p, this should equal 1/δ
for p > p0 when outside offers are rejected, and 1/(δ + ψλ) for p < p0 when they are

accepted. Allowing also for endogenous separations to unemployment:

Σ(p)T ��(p)− (δ + ψλI{p ≤ p < p0})T (p) = −1
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Lemma 1. (Expected Tenure) The expected future duration of a match is the increas-

ing and convex function of the current belief that the match is productive:

T (p) = I{p0 ≤ p ≤ 1}
1

δ
1 + c1T p

1−α1(1− p)α1

+I{p ≤ p < p0}
1

δ + ψλ
1 + c0T p

1−α0(1− p)α0 + k0T pα0(1− p)1−α0

where {c0T , k0T , c1T } solve T (p) = 0, T (p0−) = T (p0+), T �(p0−) = T �(p0+).

Standard in Bayesian learning, in expectation with respect to current beliefs pt, poste-

rior beliefs pt+∆t are a martingale: E[pt+∆t|0 ≤ pt+∆t ≤ 1, pt] = pt for all ∆t ≥ 0. But, if we
condition on match continuation from t to t+∆t > t, the belief is a strict submartingale,

because it is bounded below by p > 0 and reflects only good output outcomes. In fact:

E[pt+∆t|producing in [t, t+∆t], pt] > E[pt+∆t|p ≤ pt+∆t ≤ 1, pt] > E[pt+∆t|0 ≤ pt+∆t ≤ 1, pt] = pt

where the first inequality holds because quits occur only for low beliefs, namely ps < p0

for s ∈ [t, t + ∆t], and the chance of exogenous match dissolution is independent of ps,

so match continuation is more likely for high beliefs in [t, t + ∆t]; the second inequality

follows from p > 0 and the full support of pt+∆t in (0, 1) if not stopped; and the equality

is the martingale property. Hence the confidence in a good match rises with tenure on

average, although not with probability one as in J84. Also standard in Bayesian learning,

the value function is convex in beliefs p, hence a submartingale too. The flow wage (3.6)

is almost everywhere affine in beliefs (except for the jump at p0), due to the combined

assumptions of expected utility and linear sharing rule, hence it is also a submartingale

for continuing matches.

Unconditionally on match quality, starting from a current belief pt, the probability

of separating endogenously at some future date T > t (pT = p) before finding out that

the match is good for sure (pT = 1) equals (pt − p)/(1 − p); therefore, the probability
of endogenous separation to unemployment is decreasing in pt. The hazard rate of a quit

ψλI{p ≤ pt < p0} is also decreasing in pt. The hazard rate of exogenous separation, δ, is
independent of pt. Overall, separation is less likely the larger the expected productivity of

the match, and thus (on average, by Proposition 1) the longer the worker’s tenure. The only

exception occurs at the beginning of a match. The continuous sample paths of the diffusion

kptl cannot jump from p0 down to p, therefore endogenous separation to unemployment

cannot be instantaneous but “kicks in” only after some time. Thus, on average, the

hazard rate of separation initially increases with tenure in the early, “discovery” phase of

an employment relationship, and eventually decreases when selection comes to dominate.
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We cannot prove in general that this relationship is single-peaked, as in J79’s model and

in the empirical evidence in Farber (1994). We summarize these findings in the following:

Proposition 4. (Tenure, Wages, and Search Behavior) Unconditionally on true

match quality, but conditional on match continuation, the human wealth of the employed

worker W (·), his flow wage w (·), and the rents of his employer J (·) rise on average with
tenure. On-the-job search is more common among low-tenured workers. The hazard rate

of match separation rate initially increases and eventually decreases with tenure. Expected

future tenure is increasing in the current wage.

5. The Ergodic Wage Distribution

The stochastic process describing the equilibrium evolution of the posterior belief of a good

match is clearly Markovian and strongly recurrent. Therefore, the stationary density is

also ergodic: from any non-degenerate prior p0 ∈ (0, 1), the posterior belief converges a.s.
to a random variable p∞, whose unit probability mass is split between total employment

on the support [p, 1] and an atom of unemployment. If p∞ has a density on [p, 1], say

f , then in a large population of workers f can be interpreted also as the ergodic and

stationary cross-sectional distribution of employed workers (matches, posterior beliefs).

For the following results we refer to Feller (1954)’s classic treatment of diffusions on an

interval and to his physical interpretation of the dynamic equations.

The Fokker-Planck (Kolmogorov forward) equation of the process describes the dy-

namics of the transition density. Imposing stationarity, we obtain a differential equation

solved by the stationary and ergodic density f of the belief process:

0 =
df(p)

dt
=
d2

dp2
[Σ(p)f(p)]− (δ + ψλI{p ≤ p < p0})f(p). (5.1)

Intuitively, the distribution at p is reduced by learning occurring in those matches that

start at p and move away from there, and is increased by learning in matches that start

from other beliefs p� 9= p and end up at p, following either a poor performance of matches
with p� > p or a surprisingly good outcome in matches with p� < p. The second order

term in (5.1) nets out all these three learning flows. At the same time, the distribution

at p loses mass at rate δ, because of exogenous job destruction, and at rate ψλ when the

worker is unhappy and searching on the job (I{p ≤ p < p0} = 1). In steady state, all of
these flows balance exactly at every belief p in the support [p, 1].

The forward equation is subject to the following three boundary conditions. First, once

the match appears sufficiently unpromising and the posterior belief reaches p, no time is
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spent pondering the next step, which is separation to unemployment. Since p spends no

time at p, we require Σ(p)f(p+) = 0, the standard condition for “attainable” bound-

aries, which can be hit in finite time with positive probability and are either absorbing or

reflecting. But p > 0 implies Σ(p) > 0 and therefore

f(p+) = 0. (5.2)

Second, total flows (respectively) in and out of employment must balance:

Σ(p0)[f
�(p0−)− f �(p0+)] = ψλ

p0

p

f(p)dp+ δ
1

p

f(p)dp+ Σ(p)f �(p+). (5.3)

The LHS is the total inflow into employment. The density f has a kink, corresponding

to the inflow of workers, at p0. Intuitively, the rate of change in the c.d.f. as p crosses

p0 from below changes direction at p0, because new matches start at p0 and thus add to

the cumulative distribution only at or below p0. The RHS of (5.3) sums the total flows

out of employment, due (resp.) to quits to other jobs at rate ψλ by the mass
p0
p
f(p)dp

of unhappy workers searching on the job, to exogenous job destructions hitting at rate δ

the entire mass of employment
1

p
f(p)dp, and to quits to unemployment at p. To gain

intuition on this last term Σ(p)f �(p+), notice that for p = p + ε and ε > 0 small, from a

Taylor expansion and (5.2) we get f(p) * f �(p+)ε. It follows that, if the ergodic density
is initially very flat (f �(p+) is small) then f(p) is small and its c.d.f. F (p) is small too. In

words, few workers are close to p on average, and by continuity of the sample paths of p

the outflow from employment through p is small. Once again, Σ(p) measures the speed at

which learning pushes beliefs over the separation threshold p.

Third, total flows (respectively) out of and into unemployment must balance:

λ 1−
1

p

f(p)dp = δ
1

p

f(p)dp+ Σ(p)f �(p+) (5.4)

This is a standard restriction in search models, which gives rise to a Beveridge curve. The

LHS, the outflow, equals the exit rate λ times the stock of unemployment, given by the unit

mass of workers minus the mass of employed. The RHS is the inflow into unemployment,

which is the outflow from employment in (5.3), excluding job-to-job quits, because they

do not entail an unemployment spell.8

8Although (5.3) may appear equivalent to (5.4), if the former is violated then the distribution f
will generate different flows of quits ψλ

p0
p
f(p)dp and new hires from employment, namely total hires

Σ(p0)[f
3(p0−)− f 3(p0+)] minus exits from unemployment λ[1− 1

p
f(p)dp].
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Proposition 5. (The Ergodic Distribution of Posterior Beliefs about Match

Quality) For p ∈ [p, 1], the ergodic and stationary density of posterior beliefs in equi-
librium is

f(p) = c0fp
−1−γ0(1−p)γ0−2

1− p
p

p

1− p

2γ0−1
− 1 I{p ≤ p < p0}+c1fp−1−γ1(1−p)γ1−2I{p0 ≤ p ≤ 1}

(5.5)

where

γ0 ≡
1

2
+

1

4
+
2(δ + ψλ)

s2
; γ1 ≡

1

2
+

1

4
+
2δ

s2
,

the coefficients c0f and c1f are the unique and positive solution of the linear algebraic

system Ξ(c0f , c1f)
� = (λ, 0)� summarizing the three boundary conditions (5.2)-(5.4). The

matrix Ξ is appendicized in Equation (A.3). f is globally continuous, with a kink at

p0. In [p, p0], f is always increasing; in [p0, 1], f is decreasing if γ1 ≥ 2, namely if the

rate of attrition exceeds the squared signal/noise ratio of output δ ≥ s2, U-shaped if

min {3p0 − 1, 1} < γ1 < 2, and increasing if 1 < γ1 ≤ min {3p0 − 1, 1}.

The EquilibriumWage Density and its Economic Implications. Rational (Bayesian)

learning and optimal match selection map Gaussian outputXt into a piece-wise Lévy-stable

distribution f of posterior beliefs, which belongs to the Lévy-Pareto type. The interpreta-

tion of f is empirically more meaningful in wage space. Without loss in generality, we can

normalize the scale of output so that βσs = β(µH − µL) = 1. Then, the equilibrium wage
function (3.6) becomes a pure location transformation w(p) = wI{p≤p<p0} + p where:

wI{p≤p<p0} ≡ b+ β µL − b+ λJ(p0)(1− ψI{p ≤ p < p0} .

For w ≥ w ≡ w1+p, and given w0 ≡ w0 + p0, the wage density is:

φ (w) = f w −wI{w<w0} . (5.6)

Therefore, φ also belongs to the Pareto type. In fact, both f and φ have a fat right tail,

which is decaying generically (for δ ≥ s2) but always at slower rate than a Gaussian.
Proposition 5 has three important implications, the three new results of our analysis.

First, the theoretical equilibrium wage distribution φ(w) may potentially replicate the

typical shape of an empirical wage distribution, including its well-known Paretian right tail.

Quits to other jobs and to unemployment weed out disproportionately bad matches, censor

the left tail, and skew the distribution. The distribution has in fact a globally declining

right tail, which gives it overall an empirically accurate shape, if δ ≥ s2. Moscarini (2002)
presents a detailed quantitative evaluation of this model and shows that the restriction
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δ * s2 = 0.011 is required for the model to accurately replicate average worker flows and
stocks, measures of wage dynamics and inequality, and separation rates in the US economy

over the last two decades. To the best of our knowledge, this is the first explanation of

this stylized fact based on self-selection in terms of ex post productivity heterogeneity.9

The second result follows from the definition of γ1: the right tail of the wage distribution

φ(w) decays faster the larger the ratio δ/s2 between the exogenous match dissolution rate

δ and the (squared) informativeness of output s2. The values of δ and s2 also affect the

scale of φ(w) through the constants of integration c0f , c1f , but the rate of decay of φ(w)

in w equals γ1 − 2 and depends on δ and s2 only directly, through their ratio. Intuitively,

when jobs are at high risk of exogenous destruction (δ is large), or when the output process

is very noisy and uninformative, so beliefs move slowly (σ is large and, given the earlier

normalization µH−µL = β−1, the signal/noise ratio s is low), the learning-selection process

has no time to produce its effects.

This prediction is unique to an incomplete information environment. A “noisy” econ-

omy is “sclerotic”: high idiosyncratic output uncertainty unrelated to firm and worker

characteristics (high δ and σ) clouds the intrinsic inequality in productivities (µ) and pre-

vents it from being reflected by equilibrium prices. Wages remain concentrated around

their starting value w0; income inequality tends to be dampened, rather than enhanced,

by high idiosyncratic risk. In contrast, this prediction is reversed in search models with

perfectly observable match-specific productivity, such as MP94. In that kind of environ-

ment, a larger variance of idiosyncratic output shocks raises the incentives to maintain the

job active, in order to save on new search costs; in turn, this standard option value effect

leads to a reduction in the optimal destruction cutoff, a widening of the range of wages,

thus of their inequality.10

Indeed, the implications of job matching exploited by the empirical turnover literature,

e.g. Flinn (1986), depend only on the existence of a stochastic state variable describing the

viability of the match and affecting the wage. But this is consistent also with observable ex

post idiosyncratic randomness in either productivity or opportunity cost of working.11 We

9Roy (1951) explains the skewness of the empirical wage distribution as the result of the self-selection
of workers in terms of their ex ante known comparative advantages to work in different sectors. Under the
assumption of log-normal bi-variate skills, Roy produced a wage distribution that lacks the Pareto-like
tail and fails to fit the US wage distribution. Heckman and Sedlacek (1985) amend this shortcoming of
the Roy model by introducing unobserved worker heterogeneity.
10A recent working paper by Prat (2003) analyzes precisely the MP94 model with Brownian Motion

idiosyncratic job productivity, as in this paper, but without learning and on-the-job search. This analysis
shows that the equilibrium job destruction cutoff declines in the variance of output innovation.
11In support of job-matching, Nagypal (2000) finds that the correlation between tenure and probability

of being fired is far from perfect, as it should be (e.g.) in a deterministic training or learning-by-doing
model. Similarly, Altonji and Pierret (2001) find that employers practice statistical discrimination and
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could always re-define the belief process in J79 to be an observable, exogenous productivity

process, and the empirical methodologies applied to test the job matching model would

not detect this difference. In other words, the empirical literature has tested the selection,

not really the learning implications of the job-matching model. Our prediction, instead,

crucially depends on imperfect information. It is interesting to consider how it may be

tested empirically, to conclusively accept or reject learning about match quality as a rel-

evant source of wage dynamics and turnover. For example, we may compare industries,

occupations, or economies that differ in their technologies or institutions for individual

performance evaluation. This is a challenging project, that we leave for future research.

The third important feature of our equilibrium solution (5.6) is its simple economet-

ric implementation. The matching rate λ, endogenous to the model as illustrated in the

next section, for the sake of estimation can be pinned down by measured unemployment

duration. Then, after choosing µL and µH to normalize scale and location of output, the

remaining parameters of the model (b,σ,β, p0, δ,ψ) can be estimated from wage data, by

maximizing the likelihood function φ(w). The lower bound of its support, w, is also a

function of parameters, through the nested bargaining-separation game solved in Proposi-

tion 3. The analytic solution of the equilibrium allocation makes the structural estimation

of the model parametric, thus simple and transparent, particularly in the accuracy of the

estimates, a nontrivial and often unresolved issue in the non-parametric case.

6. The Matching Function and General Equilibrium

The description of the economy is completed by a frictional matching process, and the

equilibrium is closed by a free entry condition that determines the job-finding rate λ, so

far taken as given. An increasing, concave and CRS matching function m(a, v), satisfying

Inada conditions, yields the flow of new matches as a function of the stocks of open

vacancies v and of job applicants a, both unemployed and employed:

a = 1−
1

p

f(p)dp+ ψ
p0

p

f(p)dp. (6.1)

For concreteness, albeit this is inessential to the main results, let m(a, v) = aηv1−η for

η ∈ (0, 1). As all workers are ex ante identical, we assume random matching. Due to CRS
in matching, only labor market tightness θ ≡ v/a matters for equilibrium,

λ =
m (a, v)

a
= m 1,

v

a
= θ1−η. (6.2)

base their hiring decisions on initially observable characteristics of the candidates; however, over time, the
wage becomes increasingly dependent on what the firm learns about the worker.
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The value of a vacancy V solves the standard arbitrage equation

rV = −κ+ m (a, v)
v

[J(p0)− V ]

and therefore the free entry condition V = 0 equates the cost of the vacancy to the expected

rents from filling the job:

κ =
m (a, v)

v
J(p0) = θ−ηJ(p0). (6.3)

Definition 1. A Stationary General Equilibrium (SGE) is a vector of scalars λ∗, θ∗, p∗, a∗, v∗ ,

and a triple of functions {J∗, w∗, f∗} defined on the unit interval, which satisfy (3.6), (3.8),
(3.9), (5.5), (6.1), (6.2), (6.3), and v∗ = a∗θ∗.

By CRS in matching, the firm’s vacancy-filling rate depends only on θ, thus (by 6.2)

on λ. The free-entry condition (6.3) can then be rewritten as:

J(p0) = κλ
η

1−η

which describes a continuous increasing relationship between λ and the starting rents

J(p0), going from 0 to ∞. This relationship is termed the “job creation curve.”
Proposition 3 allows to uniquely solve, given a value of λ, for the value function J(·|λ),

thus for the starting value J(p0|λ), another continuous relationship between λ and J(p0|λ)
that we dub the “profit curve”.

A SGE requires an intersection between the job creation and the wage curves: formally,

we seek λ∗ such that J(p0|λ∗)(λ∗)−
η

1−η = κ. The other variables forming a SGE are found

recursively from the unique λ∗. The proof of the final Proposition shows that an increasing

job-finding rate λ reduces the initial rents of a firm J(p0|λ) from a positive value J(p0|0) > 0
to J(p0|∞) = 0. Intuitively, a higher λ strengthens the worker’s bargaining power at the
expenses of the firm’s profits. Therefore J(p0|λ)λ−

η
1−η decreases from ∞ to 0 as λ rises

from 0 to ∞, and we conclude:

Proposition 6. There exists a unique Stationary General Equilibrium, which features

positive employment.

7. Conclusions

We propose a tractable analytical framework to reconcile the microeconomic-labor and

macroeconomic-equilibrium views of matching in labor markets. The model inherits, from

the former, empirically accurate correlations between wages, tenure, and turnover, and
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from the latter an equilibrium structure that is able to account for involuntary unemploy-

ment, worker flows between jobs and in/out of jobs, and job creation. Our new contribution

is the ability to account also for some empirically robust features of wage inequality, and

to link the wage distribution to aggregate worker flows.

The model provides a natural explanation for additional stylized facts, such as the

sizable and persistent wage loss caused by exogenous displacement. The tractability of

the model makes it also an open-ended, flexible tool, which can be extended in several

directions; for example, it easily accommodates ex ante heterogeneity in worker skills. In

this sense, the empirical wage distribution that our model should and does replicate must

be interpreted as conditional on observable worker and firm characteristics. The emerging

empirical literature exploiting matched employer-employee data (e.g. Abowd et alii 1999,

Postel-Vinay and Robin 2002a) has showed that such residual wage dispersion is pervasive

and sizable. Moscarini (2002) builds on this model to explain, both qualitatively and

quantitatively, a host of additional facts concerning cross-skill inequality in labor markets,

such as the strong inequality across worker groups in entry rates into unemployment and

in within-group unexplained wage dispersion.

Finally, we briefly discuss some possible further extensions of this model and the

robustness of our conclusions. Both a continuous search effort choice and a screening

phase−whereas the firm and worker draw an informative signal of their match quality,

before starting production−would add some smoothness to the model, and potentially
eliminate the gap in the support of the wage distribution corresponding to the prior be-

lief p0. For example, it is easy to accommodate a finite-valued screening signal, which

would just expand the number of starting “prior beliefs” and the corresponding number

of continuity conditions required to solve for the Bellman value J and the distribution of

beliefs f. However, these extensions do not promise to add any important insights. More

importantly, the search effort-cost function and the distribution of the initial screening

signal would represent unobservable features of the environment affecting the distribution

of wages. We find more parsimonious and instructive to isolate the effects of learning and

selection with a single source of uncertainty.

More interesting are the alternative solutions of the poaching game, such as Bertrand

competition with or without ensuing renegotiation. As argued in the paper, Bertrand

competition for an employed worker makes most sense as an auction under asymmetric

information about match values. This case is a top priority on the research agenda.

Equally interesting are the effects of costly on-the-job search, a moral hazard problem

and an “efficiency wage” element in the Nash bargaining solution. Our solution is a

good approximation only for situations of small costs of on-the-job search, thus of modest
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incentive effects. Under either modification, we would obtain a new separation cutoff p,

but the results illustrated in Section 5 relating to the belief distribution would survive

qualitatively intact. The linearity of the wage function in beliefs, however, would not

survive either modification, due to outside option effects from Bertrand competition or to

efficiency-wage incentive effects. These “strategic” nonlinearities may substantially alter

the shape of the wage distribution, and confound the pure effects of selection.

Another important direction of future research concerns the empirical implementation

of the model. The model parameters can be estimated from labor market price information,

by maximizing the equilibrium wage likelihood function, and then input into a calibration

to predict labor market quantities. The derivation of the wage density also produces

explicit formulae for the flows of workers between employment states, which enter the

boundary conditions of the belief distribution: voluntary quits to unemployment, quits

to other jobs, exogenous displacements, and hires from unemployment. These flows have

been carefully measured in the equilibrium unemployment literature. The cross-restrictions

provided by price and quantity data allow to substantially raise the standards in testing

the empirical accuracy of the model, and therefore potentially enhance its reliability for

policy analysis.

A. Appendix: Proofs of the Propositions

Proof of Proposition 2. To simplify notation let IS ≡ I {W (p) < W (p0)} denote the
indicator function of OJS. Subtract the two equations in (3.4) and multiply through by

(1− β):

(1−β)r[W (p)−U ] = (1−β){w(p)−b+Σ(p)W ��(p)−δ[W (p)−U ]+ψλIS[W (p0)−W (p)]−λ[W (p0)−U ]}.

Multiply both sides of Eq. (3.5) by β

βrJ(p) = β{µ̄(p)− w(p) + Σ(p)J ��(p)− δJ(p)− ψλJ(p)IS}.

Subtract the two equations hereby obtained

r{(1− β)[W (p)− U ]− βJ(p)} = (1− β){w(p)− b+ Σ(p)W ��(p)− δ[W (p)− U ]
+ψλIS[W (p0)−W (p)]− λ[W (p0)− U ]}
−β{µ̄(p)− w(p) + Σ(p)J ��(p)− δJ(p)− ψλISJ(p)}

using (3.3) and its implication βJ ��(p) = (1− β)W ��(p) to simplify terms

0 = w(p) + (1− β){−b− λ[W (p0)− U ] + ψλIS[W (p0)−W (p)]}− β{µ̄(p)− ψλISJ(p)}
= w(p)− b(1− β)− µ̄(p)− λ (1− β) [W (p0)− U ] + ψλIS{(1− β) [W (p0)−W (p)] + βJ(p)}
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Finally, using

(1− β) [W (p0)−W (p)] + βJ(p) = (1− β) [W (p0)− U ]− (1− β) [W (p) + U ] + βJ(p)

= (1− β) [W (p0)− U ] + 0 = βJ(p0)

we conclude

0 = w(p)− b(1− β)− µ̄(p)− λβJ(p0) + ψλISβJ(p0)

which is (3.6).

Proof of Proposition 3. J is the value function of an optimal Bayesian experimentation

problem with flow returns µ̄(p) that are linear in beliefs p by the expected utility hypoth-

esis: ergo J is convex in beliefs by a standard improvement argument. It follows that p

is unique and J is everywhere continuous and almost everywhere twice differentiable. So

standard HJB Verification Theorems for optimal stopping problems apply, including value

matching and smooth pasting at p (Shyryaev (1978), 3.8). Since J is convex, non-negative

(a firm could always separate to obtain zero), and flat at the lower bound p where it is also

zero, it must be globally increasing where strictly positive, so I{J(p) < J(p0)} = I{p < p0}
and it is optimal to stop on-the-job search at and only at p0. Continuity of J and J

� at p0

are value matching and smooth pasting conditions for this stopping choice.

By direct verification and using I{p ≤ p < p0} = I{J(p) < J(p0)}, the general solution
to the HJB Equation (3.7) is:

J(p) =
(1− β)[µ̄(p)− b]− βλJ(p0)(1− ψI{p ≤ p < p0})

r + δ + ψλI{p ≤ p < p0}
+ciJp

1−αi(1− p)αi + kiJpαi(1− p)1−αi .

for i = I{p0 ≤ p ≤ 1} and constants of integration ciJ , kiJ . Imposing the boundary
condition J (1) ≤ µH/(r + δ) <∞, (more precisely

J (1) =
(1− β)(µH − b)− βλJ(p0)

r + δ
<∞)

and continuity J(1) = J(1−) yields k1J = 0, else the term k1Jpα1(1−p)1−α1 would explode
to ±∞ as p ↑ 1 byα1 > 1, violating continuity and monotonicity of J , which imply

J(p) ∈ [0, J (1)].
We have left five unknowns, the three remaining constants {c0J , k0J , c1J}, J(p0) and

the separation point p. To find them we have five equations. The simplest algorithm is as

follows. Fix an arbitrary positive value J(p0) = J̄0 and consider the linear system of three

equations in {c0J , k0J , c1J}:

24



1. Continuity from the left J(p0−) = J̄0:

[r + δ + βλ+ ψλ(1− β)]J̄0 = (1− β)[µ̄(p0)− b]+
+(r + δ + ψλ)[p1−α00 (1− p0)α0c0J + pα00 (1− p0)1−α0k0J ]

2. Continuity from the right, J̄0 = J(p0+), which implies value matching for stopping

on-the-job search at p0:

(r + δ + βλ)J̄0 = (1− β)[µ̄(p0)− b] + (r + δ) p1−α10 (1− p0)α1c1J .

3. Smooth pasting for stopping on-the-job search at p0, J
�(p0+) = J

�(p0−):

pα0−10 (1− p0)−α0(α0 − p0)k0J + p−α00 (1− p0)α0−1(1− α0 − p0)c0J +
(1− β)(µH − µL)
r + δ + ψλ

= p−α10 (1− p0)α1−1(1− α1 − p0)c1J +
1− β

r + δ
(µH − µL)

Solve this system for {c0J , k0J , c1J} given the guess J̄0, and plug both into value match-
ing at separation, J(p) = 0:

−βλ (1− ψ) J̄0+c0Jp
1−α0(1−p)α0(r+δ+ψλ)+k0Jpα0(1−p)1−α0(r+δ+ψλ) = −(1−β)[µ̄(p)−b]

and smooth pasting J �(p) = 0:

(1− β)(µH − µL)
r + δ + ψλ

+ c0Jp
−α0(1− p)α0−1(1− α0 − p) + k0Jpα0−1(1− p)−α0(α0 − p) = 0.

Finally iterate over values of J̄0 and corresponding vector {c0J , k0J , c1J} until the last two
equations yield the same value of p.

Proof of Lemma 1. For the ODE solved by T (p) see Karlin and Taylor (1986, Chapt.
15). The general solution in the claim can be verified directly. The boundary conditions

are those stated in the claim plus T (1) = 1/δ, because a job that is good for sure can

be destroyed only exogenously (p = 1 is an absorbing belief as Σ (1) = 0). By the same

reasoning as in the previous proof this implies k1T = 0. To see why T is increasing, notice
that T (·) ≤ 1/δ because job destruction is always a risk, with strict inequality somewhere,
so from the general solution we get c1T < 0. Next:

T �(p) =
1

δ + ψλ
c0T p

−α0(1− p)α0−1(1− α0 − p) + k0T pα0−1(1− p)−α0(α0 − p) I{p ≤ p < p0}

+
1

δ
c1T p

−α1(1− p)α1−1(1− α1 − p)I{p0 ≤ p ≤ 1}
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so T �(p) > 0 for p > p0 by 1− α1 − p < 1− α1 < 0. By contradiction, suppose 0 ≥ T � (p)
for some p ∈ (p, p0). Since T �(p) ≥ 0 and T �(p0−) = T �(p0+) > 0, by continuity of T �

in [p, p0] and the Mean Value Theorem either there is only one such p, with T �(p) = 0,

equivalent to:

c0T = −k0T
p

1− p

2α0−1 α0 − p
α0 + p− 1

, (A.1)

in which case the claim obtains, or there are two roots of (A.1). But tedious algebra shows

that the RHS of (A.1) is either globally increasing or decreasing in p, according to the sign

of k0T , hence (A.1) may have at most one root.

Proof of Proposition 5. Let ν(p) = p2(1 − p)2f(p); we obtain from (5.1) a familiar-

looking ODE:

p2(1− p)2ν ��(p) = 2(δ + ψλI{p < p0})
s2

ν(p).

The general solution is:

ν(p) = νi(p) = c̃ifp
1−γi(1− p)γi + k̃ifpγi(1− p)1−γi

for i = I{p ≥ p0}. Therefore the ergodic density is:

fi(p) = ν(p)p−2(1− p)−2 = c̃ifp−1−γi(1− p)γi−2 + k̃ifpγi−2(1− p)−1−γi

the sum of Inverted-Beta-1 functions. Integrating f1(p) between p0 and 1 yields an ex-

ploding second term in f , because
p

p0
(1− x)−1−γ1 dx = (γ1)−1 (1− x)−γ1 |pp0 →∞ as p ↑ 1

by γ1 > 0. Hence we must have k̃1f = 0 to satisfy the requirement that the density has

finite mass 0 <
1

p
f (z) dz < 1 <∞. In contrast, 1

p0
(1− x)γ1−2 dx <∞ by 2− γ1 < 1, or

γ1 > 1, so c̃1f can be non-zero. Next let:

ξ1 =
1− p
p

2γ0−1

By the change of variable p� = p/(1− p):

ξ2 ≡
p0

p

p−1−γ0(1− p)γ0−2dp =
p0

1−p0

p

1−p

p�

1 + p�

−1−γ0 1

1 + p�

γ0−2 dp�

(1 + p�)2

=

p0
1−p0

p

1−p

(p�)−1−γ0(1 + p�)dp� =

p

1−p

−γ0
− p0

1−p0

−γ0

γ0
+

p

1−p

1−γ0
− p0

1−p0

1−γ0

γ0 − 1
.

Notice that the mean of f can be obtained analogously. Similarly:

ξ3 ≡
p0

p

pγ0−2(1− p)−1−γ0dp =
p0
1−p0

γ0−1
− p

1−p

γ0−1

γ0 − 1
+

p0
1−p0

γ0
− p

1−p

γ0

γ0
.
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ξ4 ≡
1

p0

p−1−γ1(1− p)γ1−2dp = 1

γ1

p0
1− p0

−γ1
+

1

γ1 − 1
p0

1− p0

1−γ1

ξ5 ≡
s2

2
p−γ0(1− p)γ0−1(1− 2γ0)

ξ6 ≡
s2

2
p−γ00 (1− p)γ0−1(3p0 − 1− γ0)− ξ1p

γ0−1
0 (1− p)−γ0(3p0 − 2 + γ0) .

The boundary conditions then read:

1. no time spent at the separation boundary f(p+) = 0:

k̃0f = −ξ1c̃0f . (A.2)

which implies c̃0f k̃0f < 0. Using (A.2) replace k̃0f out. Thus:

1

p

f(p)dp = c̃0f (ξ2 − ξ1ξ3) + c̃1fξ4

Σ(p)f �(p+) = c̃0f
s2p2(1− p)2

2
p−2−γ0(1− p)γ0−3(3p− 1− γ0)

+ k̃0fp
γ0−3(1− p)−2−γ0(3p+ γ0 − 2)

= c̃0f
s2

2
p−γ0(1− p)γ0−1 3p− 1− γ0 − (3p+ γ0 − 2) = c̃0fξ5.

2. Balance of flows in and out of employment:

c̃0fξ6 = ψλc̃0f (ξ2 − ξ1ξ3) + δ[c̃0f (ξ2 − ξ1ξ3) + c̃1fξ4] + c̃0fξ5.

3. Balance of flows in and out of unemployment.

λ[µ− c̃0f (ξ2 − ξ1ξ3)− c̃1fξ4] = δ[c̃0f (ξ2 − ξ1ξ3) + c̃1fξ4] + c̃0fξ5.

To obtain the expression in claim, let c0f = −c̃0f and c1f = c̃1f . So Ξ c0f
c1f

= λ
0
,

where:

Ξ ≡ − (ξ2 − ξ1ξ3) (λ+ δ)− ξ5, (λ+ δ) ξ4
ξ6 − (ψλ+ δ)(ξ2 − ξ1ξ3)− ξ5, δξ4

. (A.3)

The solution is:

c0f =
λδ

(ξ2 − ξ1ξ3) (λ+ δ)ψλ+ λξ5 − (λ+ δ) ξ6

c1f =
λ

ξ4

ξ5 + (ψλ+ δ)(ξ2 − ξ1ξ3)− ξ6
(ξ2 − ξ1ξ3) (λ+ δ)ψλ+ λξ5 − (λ+ δ) ξ6

Finally, a substantial amount of algebra (omitted) shows that the boundary conditions

also imply that the density is continuous at p0: f(p0−) = f(p0+), therefore the inflow at
p0 creates a kink but not a jump in the density. This also implies c0f , c1f > 0 by a simple

contradiction argument using c0fk0f > 0 found earlier.
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Proof of Proposition 6. Since the worker-firm pair cannot produce more than µH

flow expected output, J(p0|λ) is bounded uniformly in λ above by µH(r + δ)−1. Then

limλ→∞ J(p0|λ)λ−
η

1−η = 0.

When λ = 0, the following facts are true: α0 = α1, after manipulation of value matching

and smooth pasting at p0 we have k0J = c1J(α0 − α1) = 0, c0J = c1J , and finally for all

p ≥p

J(p|0) = (1− β)[µ̄(p)− b]
r + δ

+ c1Jp
1−α1(1− p)α1.

We show that this implies J(p0|0) > 0 and therefore limλ→0 J(p0|λ)λ−
η

1−η = ∞. By con-
tradiction suppose

J(p0|0) = 0 =
(1− β)[µ̄(p0)− b]

r + δ
+ c1Jp

1−α1
0 (1− p0)α1 .

The assumption µ̄(p0) ≥ b then implies c1J ≤ 0. By value matching this also implies p= p0,
and then by smooth pasting

J �(p0|0) = 0 =
(1− β)(µH − µL)

r + δ
+ c1Jp

−α1
0 (1− p0)α1−1(1− α0 − p0)

which implies c1J > 0, the desired contradiction, because µH − µL > 0 and α0 > 1.

From these two limits and from continuity, it follows that the required fixed point

λ∗ > 0 always exists.

To establish that it is unique, it suffices to show that the profit curve J(p0|λ) is de-
creasing in λ, because then it cuts exactly once the job creation curve. Consider two values

λ0 and λ1 with λ1 > λ0 > 0. By contradiction, suppose that J(p0|λ1) ≥ J(p0|λ0). Then
λ1J(p0|λ1) > λ0J(p0|λ0). This implies

J (1|λ1) =
(1− β)(µH − b)− βλJ(p0|λ1)

r + δ
<
(1− β)(µH − b)− βλJ(p0|λ0)

r + δ
= J (1|λ0) ,

so by continuity there exists p� ∈ [p0, 1) such that J(p�|λ1) = J(p�|λ0) and J �(p�|λ1) ≤
J �(p�|λ0). Now there are two possibilities.
First, for all p < p�, J �(p|λ1) ≤ J �(p|λ0), which implies J(p|λ1) > J(p|λ0) and p(λ1) <

p(λ0). From the ODE (3.7) solved by J(.|λ) for λ = λ0,λ1:

Σ(p)J ��(p|λ) = [r + δ + ψλI {p < p0}]J(p|λ)−(1−β)[µ̄(p)−b]+βλJ(p0|λ)(1−ψI {p < p0}).

we deduce J ��(p|λ1) > J ��(p|λ0) for all p > p(λ0) and then from J �(p(λ0)|λ1) > 0 =

J �(p(λ0)|λ0) we obtain J �(p|λ1) > J �(p|λ0), a contradiction.
Second, there exists p�� < p� such that J �(p��|λ1) > J �(p��|λ0) and J(p��|λ1) = J(p��|λ0).

But then again from the ODE above we infer J ��(p|λ1) > J ��(p|λ0) at p = p�� and, by

the instability of the ODE, for all larger values of p, implying the same contradiction:

J �(p|λ1) > J �(p|λ0) for all values of p > p��.
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Figure A.1: A numerical example (not intended for publication) of the er-
godic distribution of posterior beliefs about match quality (upper panel)
and frequency distribution of a discrete-time simulated belief process
(lower panel). In both panels, the atom at the lower bound p is the mass
of unemployed workers.
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