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1 Introduction

A persistent question arising in the development of models for the analysis
of macroeconomic policy has been the relative role of economic theory and
evidence (data) in their construction. Although this question is present in
academic work as well, it is particularly pressing in a policy environment
where there is a natural tendency to emphasize the ability of the selected
model to match the data. At the same time, after five decades of such
modelling it has become clear that this should not be done at the expense
of failing to have a clear conceptual foundation for any decisions that are
informed by the model. For this reason a strategy has generally emerged
that identifies three different stages to the construction of a policy-relevant
model. At each stage one has a model type that aims to perform a certain
task and later model types build on the earlier ones.
The three model types are:

1. The conceptual model (CM). In this a framework is set out to explicate
the preferred conceptual view of the economy that policy makers or ad-
visers think is appropriate. This model needs to be much larger than
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the miniature models that often guide academic research e.g. models
such as IS-LM, New Keynesian models, Real Business Cycle (RBC)
models etc. Such miniature models are rarely able to capture the com-
plexities of any given situation e.g. referring to aggregate demand, as in
an IS curve, rather than the components, is unlikely to produce a very
convincing analysis for any policy discussion. Moreover, policy makers
have increasingly been required to be precise about the arguments in
support of a particular policy action (and sometimes the information
that is an input into it, such as forecasts), and this points to the need
to expand the size of the model while retaining the clarity that a strong
theoretical perspective brings to analysis.

2. The Data Adjusted Model (DAM). The conceptual model is unlikely
to be able to match an existing data set without becoming impossibly
complex and thereby losing its main attraction of having a readily
comprehendible structure. Hence it will generally need to be adjusted
in order to match the evidence. We choose the word “ match” very
carefully here. Replicating the data is rarely the objective. There are
many reasons for this. Data is often subject to substantial revisions for
long periods of time, so one may be replicating a chimera; it can also
be influenced by many special factors that are hard to specify; and,
finally, it is rarely the case that there is a precise mapping between the
variables in the conceptual model and their measurable counterparts.

3. The operational model (OM). Policy discussion generally involves fore-
casts. Given that the opinions of decisions makers and any relevant
current information must be incorporated into such forecasts it may be
necessary to adjust the DAM during a forecasting "round" i.e. rather
than just achieving a match to past data as in the DAM, it may be de-
sirable to further adjust the model to reflect perceptions about future
data patterns. In many instances it can be difficult to incorporate
information about the near-term future into a conceptual model e.g.
often surveys of the opinions of stock analysts about expected earnings
growth are a better guide to actual equity price outcomes than the pre-
dictions from a DAM. It is also true that there is a great deal of useful
information about current and future shocks to the economy in data
on the future anticipations of households and firms, but this data is vo-
luminous, and generally needs to be summarized in some way, possibly
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via a preliminary factor analysis. Thus much information may need to
be used in addition to that present in the DAM in order to convert it
to the model that will actually be used to produce the forecasts that
will be the foundation of the policy discussion.

The information used to transform the DAM to the OM is very context
specific so that there is little one can generally say about the transformation.
One possibility is to conceive of all of the different sources of information as
being represented by a small number of factors which might then be added
to the DAM in a fairly mechanical way to produce the operational model
that is the source of the forecast. Methods for such compression have been
recounted in a voluminous literature in the past decade, but often these
factor models have been viewed as supplemental to the forecasts from the
primary CM or DAM used by a policy making institution, rather than as
providing additional information to be incorporated into these models. We
will not review this factor literature. Moreover, because of the specificity of
the conversion process of a DAM to an OM we will concentrate upon the
first two stages in this paper.
The following two sections discusses issues relating to conceptual mod-

els. What needs to be put into them, what structure might be expected from
them, what one wishes to achieve with them and how they might be modified
for particular tasks. We distinguish between the economic and econometric
structure of such models. In order to discuss the economic structure it proves
useful to build a conceptual model that incorporates many of the approaches
used in existing work. The process of construction resembles that increas-
ingly used in central bank policy modeling, and so it might be regarded as
representative of the ways that policy models are constructed so as to reflect
evidence. The CM we use is smaller than those used in practice, out of a
desire to succinctly describe it within a journal article. But it is much larger
than academic models. We will refer to it as the C-model.
Section 4 then asks whether the C-model does produce a good match to

the data. Although one does not expect a perfect match the model incor-
porates many of the features that academic quantitative research has found
to be important to describing macro-economic outcomes. Despite this, there
are still notable deficiencies in the match. To improve the match one needs
to perform some adjustments along the line of the DAM. One possibility is
to allow quite general patterns of serial correlation in the shocks that drive
the model. A more traditional one is to add "tracking shocks" to the model.
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We perform such adjustments in section 5 so as to formalize the degree to
which the C-model fails to capture the data. In doing this analysis we wish
to highlight the tools that might be used in exploring the match of the CM
to data and some general methods for producing a match. Thus our C-model
is a vehicle for exposition and is not necessarily meant to be a model that
would be used in an actual policy environment.
Finally, section 6 turns to considering why the strategy of working with

a CM has become so popular. We address this question by examining an
alternative modelling strategy that dominates in some academic work. In
this one starts with a very general model that is designed to fit the data
closely and then an attempt is made to impose some theoretical structure
upon it. In practice this has meant beginning with a Vector Autoregressive
(VAR) process and then imposing structure upon it to produce a structural
VAR (SVAR). We investigate how successful this strategy would be if the
economy for which data is available was our C-model. Even though we
proceed by working with an SVAR that correctly identifies the shocks we find
that the SVAR is not capable of extracting the impulse responses for some of
the C-model shocks, even if presented with 30000 observations. The reason is
simple: the C-model economy involves many more variables than the typical
VAR does and so the reduction to a smaller dimensional system means that
an extremely high order VAR is needed to reproduce the impulses. Indeed,
this is of such an order that it would be much larger than that used in many
empirical papers which utilize statistical selection methods such as AIC or
BIC. The problem can be ameliorated with a judicious choice of variables
to appear in the VAR system but the example suggests that, since one will
never be sure that the choice of variables is appropriate, it is better to start
with a CM and work towards making it match the data than attempting the
converse. One might say that this is a point that has always been recognized
by those performing macroeconometric modelling for policy purposes. Thus,
in the Cowles Commission approach, the emphasis was always upon deriving
the restrictions that a structure placed upon a reduced form, rather than
beginning with a reduced form and then deriving a structure. Section 7 then
concludes.
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2 The Economic Structure of Conceptual Mod-
els

2.1 Evolution of CMs

Initially models like IS-LM and AS-AD were the miniature models that
formed the basis of CMs, but only in a very loose way. Moreover, there
was generally no distinction between the CM and the OM. Inevitably, the
model selected was effectively data- rather than theory-driven. Increasingly
however we have seen CMs that are much more tightly linked with theory
and whose structure is less driven by the idea that they should be capable of
producing a tight fit to the data e.g. the builders of the influential Quarterly
Projection Model (QPM) of the Bank of Canada commented on this thus:

"There had been a systematic tendency towards over-fitting equa-
tions and too little attention to capturing the underlying eco-
nomics. It was concluded that the model should focus on cap-
turing the fundamental economics necessary to describe how the
macro economy functions and, in particular, how policy works,
and that it be calibrated to reflect staff judgement of appropri-
ate properties rather than estimated by econometric techniques"
(Coletti et al (1996,p14)).

Today many models are either present or are being built in central banks
that reflect this philosophy. Since these models must represent the data to
some degree it is natural that their features reflect those that have proved
helpful in making miniature models produce a closer match to the data. In
recent years a large number of these features have been experimented with
and have become a standard part of CMs. Some limit has to be placed on the
number and nature of these, otherwise one could lose the economic story that
is being told in the CM. The objective is to try to focus the discussion in the
policy context around some stories rather than degenerating into a discussion
of many special events, as can easily happen with data driven models.

2.2 Overview of the C-Model

In this section we present a model that is representative of a typical CM. The
key objective in constructing a CM is the provision of an acceptable theo-
retical shell. Although this shell might be added to in particular contexts, it
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primarily aims to set out a picture of the economy that has a sound theoret-
ical base and is in accord with the conceptions of policy makers and advisers
about how that specific economy functions. Some of the latter views are given
expression through the choice of values to be assigned to model parameters.
The model we construct reflects what might be regarded as a consensus view
of the structure of CMs. Of course there may be a number of ways of in-
corporating these effects and we have had to choose a particular strategy,
but it can be argued that most of the elements built into our CM e.g. habit
persistence in consumption, inertia in price levels and inflation, are common
to a large number of the CMs that appear in policy institutions and in the
academic literature. It needs to be said that the CM used for policy work
is very unlikely to be at the frontiers of academic work. The latter models
are often highly experimental and many turn out to be ephemeral. Some
however survive and the ideas expressed in them become widely accepted.
Consequently, it is almost inevitable that the CMs used by a policy institu-
tion will incorporate only those ideas that have survived scrutiny, and have
proven their worth over a longer period of time, rather than being focussed
upon a set of novel ideas that are still untested.
The C-model described here centers upon the interactions of key agents

— households, firms, and policy-makers — in an open economy. The equa-
tions for the behavior of households and firms arise from utility- and profit-
maximising specifications, respectively, while policy is described by simple
assumptions about targets and instruments. We assume that households
attempt to maximize utility, defined over the consumption of domestically-
produced and imported nondurable goods, holdings of real money balances,
and time spent in leisure. They receive wage income from their labour,
rental income from capital, and supernormal profits from goods markets.
They own the domestic capital stock, and can reach a higher or lower desired
asset position by saving in one-period consumption bonds that are issued by
the government and foreigners. Firms are assumed to maximize profits by
the sale of goods in domestic and foreign markets, for which they utilize a
Cobb-Douglas technology and pay rents on labour and capital. They price at
a mark-up over real marginal cost on each unit of output. The government
raises taxes and debt and purchases output and services existing debt. A
monetary authority anchors the nominal side via a simple inflation-targeting
rule. The model has full stock-flow consistency and a well defined steady-
state. Standard no-arbitrage conditions are assumed to hold, although in the
uncovered interest parity condition there is a twist — a penalty on deviations
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away from an exogenous level of net foreign assets, rationalized as a time-
varying sovereign risk premium — that is used to render the consumption and
financial asset paths stationary in the face of transitory shocks.1 ,2

The C-model has many of the key elements of the current macroeconomic
paradigm. Specifically, goods and labour markets are assumed to be mo-
nopolistically competitive, in this case as per Blanchard and Kiyotaki (1987).
This provides a rationale for the introduction of nominal rigidities (that is,
the suppliers have market power). In the case of the goods market, a con-
tinuum of intermediate goods producers provides differentiated goods to a
final goods supplier (a "retailer" ), which is assumed to be perfectly compet-
itive. Intermediate goods firms are able to each extract a rent from the sale
of their good to domestic and foreign markets. We assume that firms face
intangible nominal price adjustment costs, as per Rotemberg (1982). This
captures the idea that individual firms dislike changing prices because they
fear losing market share. In the flexible price equilibrium, the mark-up over
real marginal costs would be a constant, but, with price adjustment costs, it
is time varying.
In the case of the labour market, a continuum of households provides

differentiated labour services to a final labour supplier (an “employment
agency" ), which is assumed to be perfectly competitive. Households are
therefore able to extract a rent from the sale of their labour services, and
this will be based on a mark-up over the real marginal disutility of working.
This implies that the labour market equilibrium is non-competitive. Such a
mechanism allows us to introduce nominal wage rigidity in the same way as
with firms. For simplicity, we make the assumption that there is a mapping
between fluctuations in hours worked and unemployment (see Gali, 1996).
It is these rigidities that provide a link between nominal conditions and

real activity. On the real side, we also impose capital and labour adjustment

1An implication of the representative agent paradigm in the open economy with free
flow of capital is that consumption and asset accumulation are a random walk (see, for
example, Barro and Sala-i-Martin, 1995, chapter 3). In a typical open-economy RBC
model, the domestic economy produces the same good as the rest of the world and net
trade is equivalent to exchanges of consumption bonds. The real exchange rate is then
constant at unity. In our case, we want a model in which the current account and the real
exchange rate are able to respond to shocks, but are stationary if the shocks are transitory.
There are several methods for rendering consumption stationary; see Schmidt-Grohe and
Uribe (2003) for a comparison.

2Note that, because the model is perfect foresight and simulated under an assumption
of certainty equivalence, the term "risk premium" is a loose one.

8



costs. These are tangible quadratic costs that come out of the cashflow
streams of firms and affect marginal returns, but are assumed to be zero
in steady state.3 Together, these nominal and real rigidities imply that
monetary policy has an effect on real activity in the short run, and that the
adjustment to the steady state is not instantaneous.
We add some more features designed to introduce richer propagation of

shocks than would be standard. Inflation inertia is introduced by an indexa-
tion assumption, with a proportion of firms raising prices according to a rule
of thumb that is based on lagged and steady-state inflation.4 Persistence in
consumption is introduced by the assumption of so-called external habits in
utility.
The model is quite stark in its assumptions. There are no market frictions

and no locational specificity. For example, there is no banking sector and no
specific role for money and credit in the monetary transmission mechanism.
There are no market frictions and distortions, no fixed costs or discontinuities.
The model assumes a representative household and a symmetric equilibrium
for firms. Above all, markets are assumed to clear at all times, as all agents
have complete knowledge of the economy and complete understanding of
shocks when they hit. In sum, the model contains assumptions that are
almost guaranteed to be violated by the data, especially in the short run.

2.3 Decision Rules of Agents

There is a continuum of households that are differentiated by the labour they
can provide. The maximization problem for an individual jcan be expressed
as follows:

max
∞X
i=0

βi


1

1− 1
σc
(ct+i (j)− ρ · c̄t+i)1−

1
σc + θM

1− 1

σM

³
Mt+i(j)
P c
t+i

´1− 1

σM

+ θh

1− 1

σh

(1− ht+i (j))
1− 1

σh − χW

2

³
Wt+i(j)/Wt+i−1(j)

1+wdott−1
− 1
´2

ht+i

 ,

where c denotes real consumption, c̄ is a reference habit level of consumption,
M is nominal money, P c is the consumption basket price level, h is hours
worked, W is nominal wages, and nominal wage inflation is wdott ≡ Wt

Wt−1
−

3This has the implication that there is a difference between gross output, F (K,L), and
net output y = F (K,L) − ¡χ̃K + χ̃L

¢
, where χ̃ represents the costs of capital or labour

adjustment.
4See, for example, Smets and Wouters (2003).
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1. β represents the household discount rate; σc, σM and σh represent the
elasticities of inter-temporal substitution for consumption, money and hours,
respectively; θM and θh are preference weights on money balances and hours,
respectively; ρ is the weight on the habit level; and χW is the weight on costs
of adjusting nominal wages.
This maximand is subject to a labour market clearing condition,

ht+i (j) =

·
Wt+i (j)

Wt+i

¸−ηW
ht+i,

and a (real) period-by-period budget constraint,5

bft+i (j)

qt+i
+ bgt+i (j) + kt+i (j) + pct+i

µ
Mt+i (j)

P c
t+i

¶
=

µ
1 + rf +

φ

2

³
2bfTARt+i−1 − bft+i−1 (j)

´¶ bft+i−1 (j)
qt+i

+
1 +Rt+i−1
1 + pdott+1

bgt+i−1 (j)

+

µ
1 + rkt+i−1 − δ − (1 + rf) (rf + δ)

1 + ω

¡
(ut+i−1)

1+ω − 1¢¶ kt+i−1 (j)

+
pct+i−1

1 + pdott+i

µ
Mt+i−1 (j)
P c
t+i−1

¶
+
Wt+i (j)

Pt+i
ht+i (j)− pct+ict+i (j) + πt+i − τ t+i.

where bf and bg are the levels, respectively, of (net) foreign bonds and gov-
ernment bonds held by an individual; k is the capital stock; pc is the relative
price of the consumption bundle (to the domestic good); rf is the real foreign
interest rate; bfTAR is an exogenous “target" level of foreign debt (assumed
to be set by world capital markets); R is the nominal one-period interest
rate; pdot is the inflation rate in the numeraire price of domestic goods:
pdott ≡ Pt

Pt−1
−1; u is a rate of capital utilization; π is a lump-sum transfer of

5There is a cost to being away from a target level of foreign debt and this produces
a linear term for a risk premium in the UIP condition. One wants a risk premium that
is asymmetric in the deviations of the debt target from the level of debt and this is the
simplest penalty function one could use.
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supernormal profits; and τ is a lump-sum tax payment.6 The real exchange
rate is denoted by q; the convention here is that a rise in q is an appreciation.
The maximization problem describes the motivations of an individual

agent who wants to maximize the benefits from consuming (non-durable)
goods, holding real money balances, spending time at leisure, while min-
imizing the disutility from changing nominal wages. The individual has
income from capital and labour rents, as well as a profit transfer, and pays
for consumption and taxes. The individual can use foreign and domestic
bonds to smooth consumption over time. The choice variables for individ-
ual householders are therefore consumption, c (j); labour supply, h (j); real
money balances, Mt+i(j)

P c
t+i

; and portfolio demands for capital, k (j), government

bonds, bg (j), and foreign bonds, bf (j).
There is a continuum of firms that are differentiated by the goods they can

provide. An individual firm j maximizes UK
t (j) =

P∞
i=0 β

iϕK
t+iξt+i where

ξt+i =



Pt+i (j)
h
Pt+i(j)
Pt+i

i−η
yht + P x

t+i (j)
h
Px
t+i(j)

Px
t+i

i−ηx
xt+i

−Wt+i · ht+i (j)
−
Ã

1+Rt+i−1
1+pdott+i

− 1 + δ

+ (1+rf)(rf+δ)
1+ω

¡
(ut+i−1 (j))

1+ω − 1¢
!
· Pt+i · kt+i−1 (j)

−LMt+i (j)



h
Pt+i(j)
Pt+i

i−η
yht+i +

h
Px
t+i(j)

Px
t+i

i−ηx
xt+i

−z1−αt+i (ut+i (j) kt+i−1 (j))
α h1−αt+i (j)

+χk

2

³
kt+i(j)

kt+i−1(j)
− 1
´2

kt+i

+χh

2

³
ht+i(j)

ht+i−1(j)
− 1
´2

ht+i


−χp

2

³
Pt+i(j)/Pt+i−1(j)

ρP ·(1+pdott+i−1)+(1−ρP )·(1+pdottart+i−1) − 1
´2
· Pt+i · yht+i

−χpx

2

³
Px
t (j)/P

x
t−1(j)

ρP ·(1+pdott+i−1)+(1−ρP )·(1+pdottart+i−1) − 1
´2
· P x

t+i · xt+i



.

Denoting domestic demand for output by yht = cht+it+gt, where c
h denotes

6Note that the value of money-in-utility is in terms of its consumption-bundle pur-
chasing power, so mont =

Mt

P c
t
. In terms of a real-valued budget constraint denominated

in units of the domestic good (i.e. where "real" money would be Mt

Pt
), we need to re-

flate by the relative price to get P c
t

Pt
· Mt

P c
t
. When detrending for inflation, lagged money

in terms of domestic goods is correspondingly lagged notional stock in current nominal
prices: Mt−1

P c
t
= Mt−1

P c
t−1

· P
c
t−1
Pt

= Mt−1
P c
t−1

· Pt−1P c
t
· P

c
t−1

Pt−1
= Mt−1

P c
t−1

· 1
1+pdott

· pct−1.

11



home-produced consumption, i is capital investment, and g is government
spending, the first set of terms in the maximand is a cashflow expression that
expresses the profit of the firm as the rent for its good sold in domestic and
foreign markets over factor payments represented by nominal wage payments
and capital costs. This is subject to a market-clearing condition that demand
meets final output, with a Lagrange multiplier denoted by LM . Here η
and ηx are the elasticities of demand for domestically-sold and exported
goods, respectively; δ is the depreciation rate on capital; ω is the order
of the capacity adjustment costs; z is a factor productivity scalar; α is the
exponent on capital intensity in production; χk, χh, χPand χPx are weights
on the adjustment costs for capital, hours, domestic prices and export prices,
respectively; and ρ and ρPare the geometric weights on the lagged inflation
rate and inflation target in the price indexation scheme. Each firm therefore
makes choices about capital, k (j), the capital utilization rate, u (j), labour
input, h (j), its price in domestic markets, P (j), and its price in foreign
markets, P x (j).
Policy is assumed to follow simple instrument rules, given targets. There

is a consolidated fiscal agency that redistributes resources. Government
spending and debt are simply assumed to be maintained as targets to real
output:

bgt = bgTARt · yt
gt = (1− ρg) · ¡gTARt · yt

¢
+ ρg · gt−1,

(with the equation for gt allowing for the possibility that government spend-
ing is persistent). Government expenditures include spending and servicing
debt. Revenue includes new debt flotation, seigniorage, and taxation. Given
money demand and debt targeting, the government budget constraint can be
used to define the lump-sum household tax as the fiscal instrument:

τ t = gt − bgt +
1 +Rt−1
1 + pdott

bgt−1 − pct ·mont +
pct−1

1 + pdott
·mont−1.

The role of the monetary authority is to anchor the nominal side of the
economy. We specify a simple monetary rule in which the nominal interest
rate is moved away from its steady-state level in response to deviations of
inflation from its target, with some smoothing on it:

Rt =
¡
1− ρR

¢ · £RSS
t + µ1 ·

¡
pcdott − pcdotTARt

¢¤
+ ρR ·Rt−1.
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It has been pointed out that the assumption of smoothing is not well
founded in theory but it is widely used in policy-oriented CMs and we there-
fore retain it here. The inflation targeting rule might be replaced by a more
conventional "Taylor rule", but then we would need to decide on exactly
what variable should enter the relation - marginal costs, "output gap" etc.
Although the model features a production function, and so can yield an out-
put gap, in practice this is unlikely to be what policy makers would use.
Bearing these issues in mind, and the emphasis upon inflation targeting in
the U.K., it seemed simpler to specify a rule based on an observable.
The maximization problems for households and firms and the assump-

tions about policy formation, when supplemented with assumptions for ex-
port demand and price pass-through, lead to a core set of 26 "behavioral"
relations, although identities mean that there are more than 26 variables in
our C-model. The aggregate behavior of households is described by an aggre-
gate consumption Euler equation, equations that disaggregate the consump-
tion choice into demands for imported- and home-produced consumption, a
demand for money equation, a labour supply equation, and the household
budget constraint (which can be thought of as an equation for the demand
for foreign bonds). The aggregate behavior of firms is described by a pro-
duction function, a labour demand curve, a desired capital equation, a first
order condition for capacity utilization, the mark-up equation, and a profit
definition. Policy is summarized by the monetary reaction function, govern-
ment spending path, government debt supply, and the government budget
constraint (which can be thought of as a fiscal reaction function). Financial
markets are effectively reduced to a UIP equation and an expression for the
competitive rental rate on capital. Equations for export demand, relative
prices, and a market clearing condition for domestic production complete the
system.

2.4 Parameterization

The model is parameterized by imposing parameters to observe theoretical
constraints and to loosely match some desired features of the data, mainly
first and second moment conditions. The data are from the UK national
accounts, at current prices. Each period is assumed to be a quarter, which
is reflected in the parameterization of rates.
First, to achieve a steady-state equilibrium, the household discount rate

(0 < β < 1) has to be restricted to 0.99 to be the inverse of the gross foreign
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real rate, 1 + rf = 1.01. The elasticity of inter-temporal substitution for
consumption (0 ≤ σc <∞) is imposed at 0.5, which is a “reasonable" value
for macro models (and creates a role for opposing income and substitution
effects). The elasticity of intertemporal substitution for hours (0 ≤ σh <
∞), however, is imposed at 1 in order to be neutral to the real interest
rate (see Burnside and Eichenbaum, 1996). The elasticity of intertemporal
substitution for real money balances (0 ≤ σM <∞) is then imposed at 0.5,
so that the income elasticity of demand for real money balances relative to
consumption is the same. The preference weight on money (0 ≤ θM <
∞) is chosen at 0.0001 to achieve a ratio of real money balances to output
close to the observed recent average of approximately 0.005. This implies
a definition of money that is very narrow. Since the interest rate rule is
the nominal anchor this choice is not an issue. The preference weight on
leisure (0 ≤ θh < ∞) is set to 55 to achieve a value for hours worked close
to the observed recent average of 0.24. The weight on imports in the Cobb-
Douglas consumption aggregator (0 < ψ < 1) is imposed at 0.1 to achieve a
good compromise for the ratio of aggregate imports to output.7 Finally, the
habit weight (0 ≤ ρ < 1) is imposed at a value of 0.90, in line with recent
empirical evidence.
We parameterize the exponent on capital in production (0 ≤ α ≤ 1) to

match observed averages for the return to capital from the national income
accounts, and to calibrate a steady-state capital-output ratio of just over 2
(for an annual flow). The depreciation rate on capital (0 < δ ≤ 1) is chosen
at a reasonable value of 0.025, which will also affect the capital:output ratio
via the rental rate of capital. The order of utilizations adjustment costs
(0 ≤ ω <∞) is imposed at 0.4. This parameter has no effect on the steady
state, but is a key parameter in determining the balance between output
and inflation responses to demand shocks. Lowering ω will allow demand
fluctuations to be met more by output than by changing prices.
Similarly, adjustment cost parameters (0 < χk, χh, χP , χPx, χW < ∞)

have no effect on the steady state but are chosen judgementally to match
priors about the time taken to re-equilibrate following permanent shocks.
Values of 2.5 are chosen for both capital and employment adjustment costs.

7Note that the theoretical structure of this model is not rich enough to account properly
for observed quantities of imports — we should be adding structure for the demand for
imports by firms and government, as well as a demand for imported intermediates. The
parameterisation chosen is too much for the ratio cm to c, but chosen so that net trade
and current account flows are more realistic.
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The nominal adjustment parameters χP ,χPx and χWare used to parameterize
the inflation responses to a demand shock and have values of, respectively,
10, 10 and 50. As in Christiano, Eichenbaum and Evans (2003), we find that
nominal wage rigidity is important for matching priors about the responses
to demand shocks).
Demand elasticities have important effects for both the steady state and

dynamic properties. As the elasticities go to infinity, we approach perfect
competition and zero returns to entrepreneurship. As they approach 1 (the
minimum value) the mark-up increases. The elasticity of demand for do-
mestic goods sold in domestic markets, η, is imposed at 5, which implies a
20 per cent profit per unit sold in domestic markets. Demand conditions for
domestic goods sold in export markets are assumed to be more competitive,
such that ηx is imposed at 20. The labour demand parameter, ηW , is im-
posed at 50 to achieve a value close to the observed recent average for the
labour share of income of around 0.67.
The exponent in the export demand condition, ε, is chosen to be 0.9 in

order to ensure that the Marshall-Lerner conditions hold. The weight on the
“UIP premium" (0 < φ <∞) is kept at quite a low value of 0.25 in order to
keep the real exchange rate path reasonably close to the “pure" UIP path.
This parameter also works in conjunction with ε to determine the volatil-
ity of current account flows, which also influenced the choice of the value.
The value of the debt target, bfTAR, is set at 0.01, which, given the import
penetration values for domestic consumption, investment and government
expenditures, and relative prices of exports and imports, helps us to achieve
a small trade deficit in steady state, in line with recent observations.8

Fiscal targets are chosen to match typical ratios of (annual) debt and
spending to output, at 0.4 and 0.2 respectively. The inflation target is
2.5 annually (though the model is superneutral, so this is not an important
choice). The parameter governing smoothness in the government spending
rule (0 ≤ ρg < 1) is arbitrarily set at 0.75. The equivalent parameter
describing smoothness of the monetary reaction function (0 ≤ ρR < 1) is
set at 0.65, which is consistent with estimates of instrument rules for the
UK using recent data. Based on the same evidence, the weight on inflation
(0 < µpdot <∞) is set at 1.8.

8However, we pay a price in terms of the steady-state value for the consumption-
income ratio. In short, there is just not enough saving in the economy to support a higher
equilibrium level of consumption, and so the outcome is considerably lower than observed
values.
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The resulting steady state can be summarized (in annual units) as follows:

Table 1: Steady State Ratios for the C-Model

aggregate consumption:output ratio 0.43
domestic good consumption:output ratio 0.53
imported good consumption:output ratio 0.06
investment:output ratio 0.20
government expenditure:output ratio 0.20
export:output ratio 0.07
trade balance:output ratio -0.00012
capital:output ratio 2.00
government debt:output ratio 0.40
foreign bond:output ratio 0.01
labour share of income 0.66
hours 0.21
real interest rate 0.04
rental rate of capital 0.15
real money balances 0.0043
inflation rate 0.025
relative price of output 0.98
relative price of aggregate consumption 1.38
relative price of imported consumption 1.00
relative price of exports 0.84

3 The Econometric Structure of Conceptual
Models

3.1 Dynamic Structure

Conceptual models derive very heavily from the Dynamic Stochastic General
Equilibrium (DSGE) approach to modelling, albeit there are some differences
that will be elaborated on later. For this reason the discussion of dynamics
will be couched as if we were analyzing a relatively small DSGE model.
After linearization such models can be thought of as a set of equations

with the stylized structure

yt = BEt(yt+1) +Ayt−1 + Fut, (1)
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where ut are the exogenous stochastic variables ( shocks) that drive the sys-
tem.9 Some of these equations may be identities but the key ones are the
Euler equations representing optimal choices in the face of uncertainty. All
variables in yt above should be thought of as being deviations from some
deterministic steady state values - in the case of variables such as output
these are mostly log deviations from a steady state path while, for variables
such as interest rates and inflation, they are levels deviations from a constant
steady state rate. The model is quantified by setting B,F to some values
that have emerged as part of the exercise producing the model. Exactly how
this is done varies a great deal from institution to institution, but the para-
meterization of the C-model in the previous section provides the flavour of
the process.
The solution to this model has the general form - see Binder and Pesaran

(1995)-

yt = Pyt−1 +D
∞X
j=0

SjEtut+j (2)

where P satisfies P−BP 2−A = 0, D = (I−BP )−1F, and S = (I−BP )−1B.
It is clear then that the ultimate dynamic structure for yt will come from two
sources. One of these derives from the theoretical structure - that is the
Euler equations and constraints - and is represented by P. The second source
of dynamics stems from the nature of the ut. To analyze the latter, we adopt
the assumption, common to many DSGE models, that

ut = Φut−1 + ηt, (3)

and so the solution for yt will be

yt = Pyt−1 +Gut

= Pyt−1 +GΦut−1 +Gηt,

where G = D
P∞

j=0 S
jΦj.

Now, if the rank of G equals dim(ut) ≤ dim(yt) then G+ = (G0G)−1G0

is the generalized inverse of G, and so ut = G+(yt−Pyt−1) and this relation
can be used to get

yt = Pyt−1 +GΦG+(yt−1 − Pyt−2) +Gηt
= (P +GΦG+)yt−1 −GΦG+Pyt−2 +Gηt. (4)

9In practice systems will have longer backward and, possibly, forward lags.
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This expression makes clear that the intrinsic dynamics described by the
theoretical model (represented by P ), is augmented by extrinsic dynamics
captured by Φ, with the consequence that the evolutionary process for yt
changes from a VAR(1) to a VAR(2). This raises the possibility that, by
choosing a general enough serial correlation structure for ut, it may be possi-
ble to reproduce the dynamic structure for yt i.e. it might appear that there
is a good match of model to data but it is due to the exogenous specifica-
tion of the shock processes ut rather than the economics, as represented by
P . Consequently, it should always be the case that evidence is presented on
which component is responsible for the match, so that any user of such a
model fully understands how the match to evidence is being made. To date
few DSGE models provide this information although an early analysis along
these lines is Cogley and Nason (1993).
It is worth examining the solution above in more detail. By definition P

must satisfy
P = (I −BP )−1A

so that
rank(P ) = min{rank(I −BP ), rank(A)}

Thus the rank(A) will be a key determinant of the possibility of rank re-
duction in P. To be more precise, if a lagged value of one of the yt does
not appear in any of the equations, then A (and hence P ) will have reduced
rank. This seems a likely occurrence. For example, in standard open econ-
omy models there will be no lagged value of the exchange rate in the UIP
condition. Therefore, unless there is delayed pass through of the exchange
rate to inflation, or some lagged effects of exchange rates in the IS curve, it
will not appear anywhere in the system. Thus, in that case, the rank of P
must be one less than the number of variables in yt. This may provide a simple
explanation for the reduced rank in P noted by Nason and Rodgers (2005)
for small open economy models. As we will see later, it is a characteristic of
our C-model.
The reduced dynamic rank just discussed is different to that which has

been commented upon when the number of shocks is less than dim(yt), which
we might call "covariance reduction". Such rank reduction occurs in (say)
the basic RBC model, where there is a single technology shock- see Giannone
et al.(2003). The rank reduction that we have just identified is closer to that
seem in the common-trend/common-cycle representation of Vahid and Engle
(1993) and the common features work of Engle and Kozicki (1993). If there
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is rank reduction in P then it can be written as P = γδ0, and there will
exist γ⊥ such that γ

0
⊥γ = 0. Consequently, the combination γ0⊥yt = γ0⊥ut

will be white noise if ut is white noise i.e. there would be a serial correlation
common feature in that there exists a combination of the yt which will be
white noise. The contrast between dynamic rank reduction and covariance
reduction is very clear if one had a basic RBC model in which there were at
least as many shocks as variables in yt. Then we would see rank reduction in
P simply because such models feature only one lagged value, capital stock,
( as the basic model abstracts from items such as habit persistence, time to
build, adjustment costs etc.), but there would be no rank reduction coming
from the number of shocks.

3.2 The “Long-run” Econometric Structure of CMMod-
els

A special case of interest is when some of the eigenvalues of Φ are unity i.e.
some of the shocks are permanent. It is possible to find the moving average
representation for yt from a model such as (1):

yt = D(L)ηt, (5)

where the elements Dj in the polynomial D(L) = D0 +D1L + ... are the j
period impulse responses. In CMs theDj can generally be found analytically,
while simulations of the larger models provide numerical solutions. There will
be different values for the Dj depending on the value of Φ. We will describe
the shocks as purely permanent or purely transitory when Φ = I and Φ = 0
respectively.
When there are permanent shocks the value of D∞ will indicate the long

run responses. Any variable whose associated column in D∞ has non-zero
elements will be an I(1) variable and the rank of D∞ will indicate how
many co-integrating vectors there are among the I(1) variables. Rather than
examining D∞ it is sometimes simpler to work with the representation

∆yt = C(L)ηt, (6)

where
C(L) = C0L+ C1L+ ....,

since this is closer to that employed in the co-integration literature. It is
then easily seen that C(1) = D∞ and the co-integrating vectors are the β
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that set β0C(1) = 0. Of course the β are not unique and some identifying
assumptions need to be placed upon them.

Now, let yt be partitioned as
·
y1t
y2t

¸
, where y1t and y2t are I(1) and

I(0) variables respectively. Then, once the β have been decided upon, it is
possible to construct the co-integrating errors ψt = β0y1t and to re-write the
system as a Vector Error Correction Model (VECM) (assuming that it is
reasonable to propose that yt follows a VAR(1))10·

∆y1t
y2t

¸
=

·
α0

γ0

¸
ψt−1 +My2t−1 + vt. (7)

As is well known the common permanent components of y1t may be con-
structed as yP1t = Jτ t where

J = β⊥(α
0
⊥β⊥)

−1, (8)

τ t = α⊥
TX
t=1

vt−j, (9)

and α0⊥α = 0, β
0
⊥β = 0. Studying the ability of y

P
1t to track the data on y1t

will be important since the VECM forces any forecasts made with the CM to
revert to yP1t, and so forecast errors are inevitable if this permanent component
does not track the data properly -see Clements and Hendry (1999). Basically
this is an issue of whether there is co-integration in the sample period and in
the forecast period. Indeed it may well be that the operational model may
need to change the parameters embodied in a CM, given views about what
will happen over a forecast horizon.
There are a number of implications of the above point. First, changing

the model parameters so as to produce values for α and β such that one
gets co-integration (if it exists in the data), is an important part of any
exercise, and it will not be sufficient to tie model parameters down by the
matching of impulse responses, as has often been done e.g. by Christiano
et al. (2003) and Murchison et al. (2004). An extra difficulty with this

10This two-step strategy is advocated by Garratt et al. (2003). A small CM is specified
and some parts of the co-integrating vectors follow from the nature of that model, while
the remaining elements are found by standard estimation methods with I(1) processes.
Our C-model is a larger version of their CM but, as outlined earlier, it was quantified by
a variety of calibration methods rather then purely econometric approaches.
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latter modeling approach is that one needs to be careful that the SVAR
used to generate the impulse responses that are to be matched does not use
identification conditions that are incompatible with the CM. Thus SVARs
identified by recursive (ordering) assumptions will rarely be appropriate as
they would be incompatible with the simultaneity existing between exchange
rates and interest rates. Secondly, it will generally not be a good idea to
filter any data so as to remove the permanent component as this will not
ensure that the re-constituted model will satisfactorily track the levels of the
data, and it is these that will be important in the forecast. Consequently,
the error correction term will be of an incorrect magnitude and this will lead
to incorrect forecasts of ∆yt. We will illustrate this point later.

3.3 Differences between DSGE and CM

As is standard in this area, the equations of policy-oriented CMs are solved
under the assumption of perfect foresight and simulated under the assump-
tion of certainty equivalence. Examples of policy related CMs that adopt this
approach are the QPS model at the Bank of Canada - Coletti et al (1996)-
the FPS model at the Reserve Bank of New Zealand-Black et al (1997) - and
the BEQM model at the Bank of England - Harrison et al. (2005). Cast in
terms of the DSGE model we can see two cases that correspond to perfect
foresight viz. when Φ = 0 or I. In the first case agents know the current
value of the shock and set it to zero in future periods. In the second, the
value used for the shock remains the same in all periods. Because these types
of shocks are very common in policy-oriented CMs, Pagan (2003) refers to
the latter as incomplete DSGE (IDSGE) models. It is rare to see the familiar
approach in DSGE modelling where time-series processes are assumed for the
shocks and projections are effectively made of future values based on such
assumptions e.g. Φ is set to an intermediate value between 0 and I, as in
Smets and Wouters (2003).
There are both advantages and disadvantages to working with IDSGE

models. The disadvantage is that one gives up some generality. The main
advantage arises in a forecasting context where often paths for shocks are
to be specified based on the priors of the policy makers, and these rarely fit
a simple structure like (3). Moreover not having to specify a path for the
shocks simplifies computation of optimal solutions a good deal and produces a
neat separation between what the theory can provide in the way of dynamics
and what is being imposed as an auxiliary assumption, something we will
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illustrate later.

3.4 Can a CM be represented as an SVAR?

If the series yt follows a VECM (or VAR) then, if the CM is to match the
data, the error terms in it, vt, must have the form C0ηt. The consequences of
this equivalence are that cov(vt) = C0cov(ηt)C

0
0 and, once the CM model has

been quantified by some method, C0 is fixed and, therefore, it may not be
possible to find a diagonal form for cov(ηt) that replicates the cov(vt) that can
be estimated from the residuals of a VECM ( or VAR) fitted to data. If one
wishes to make the cov(ηt) diagonal it will be necessary to make some of the
elements in C0 free parameters. This contrasts with standard just-identified
SVAR studies where the parameters of such models are estimated by imposing
such a restriction. For most CM models such a restriction is not needed as it
is the cross equation restrictions coming from the dynamic structure which
should provide the requisite identifying information. If the shocks in the
SVAR were in fact not uncorrelated then this mis-specification would bias
the SVAR coefficient estimators -an example of such an effect being Giordani
(2004). There is not much work done on this issue although Cho and Moreno
(2004) look at the covariance matrix of shocks in a New Keynesian model
and report that there is a correlation. Thus most DSGE models seem to
assume it even though the restriction is not actually needed in estimation
and can be tested. This issue represents a major problem in matching CM
models to the data and one where there is no clear answer. A priori there
seems no reason to think that shocks should be made uncorrelated, although
it certainly helps in interpretations if they are.
A further problem in making a match is when the number of shocks in the

CM exceeds the number of variables in yt. If this situation arises one has to
distinguish between the cases where there are observable and unobservable
shocks in ut. The former could be things like terms of trade, foreign output,
tax rates etc., which are observable quantities, and so the shocks into them
can be isolated, in contrast to unobservable items like demand shocks. One
can absorb the variables associated with observable shocks into yt and then
the issue becomes whether the number of unobservable shocks exceeds the
number of pre-augmentation variables in yt. If it does then the final represen-
tation for yt will not be a VAR but will most likely be a VARMA process (an
exception would be when each of the unobservable shocks follows the same
univariate autoregressive process). Thus fitting a VAR to data generated
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from such a CM would produce mis-specified estimates of impulse responses.
If the number of unobserved shocks is less than dim(yt) then the implied

VAR would have a singular covariance matrix for its errors, but this does not
produce any mis-specification. In practice however it has sometimes been
the case that a selection is made of y1t from yt such that dim(y1t) = dim(ut)
and then the VAR is fitted to y1t and not yt. Then, even if yt followed a VAR,
y1t will not. The classic analyses are in Zellner and Palm (1974) and Wallis
(1977), who showed that a VAR in yt would generally become a VARMA
process in y1t. An exception to this is when the extra variables in yt are
related to those in y1t via identities, as that would leave the order of the
VAR unchanged. Some of the debate over the utility of SVARs in recent
years e.g. Giannone et al, (2002), Chari et al. (2004) are simply instances
of the effects of variable reduction. In section 6 we look at this issue in the
context of our C-model.11

3.5 Moving towards the DAM

Assuming that the CM cannot match the data as closely as desired one has
to ask how it might be augmented so as to produce a better match. In
many DSGE models a standard approach has been to relate the values of
the CM model variables y∗t to the data, yt, with "errors in variables" or
"tracking shocks" εt i.e. yt = y∗t + εt - see Altug (1989) and Ireland (2004).
Assuming that we can represent the model as a VAR (1), and there is no
serial correlation in ut, we can represent the situation as

yt = y∗t + εt (10)

y∗t = Py∗t−1 +Gut. (11)

Then, as Ireland (2004) has noted, when it is assumed that cov(εt, ut) = 0
this is a state space system and one can estimate the parameters underlying
it using the innovations representation of the log likelihood due to Schweppe
(1965). This representation exploits the Kalman filter. In Altug’s version εt
were white noise while Ireland allows them to follow a VAR process.
Suppose then that one makes the εt a VAR(1)

εt = Ψεt−1 + et, (12)

11The biases that come from variable reduction were explored by one of the authors
and John McDermott originally for the FPS model of the New Zealand economy. These
results were reported in Pagan(2002).

23



where et is white noise. Then, it is easily seen that the two equations (10)
and (12) imply

∆yt = ∆y∗t + (I −Ψ)(y∗t−1 − yt−1) + et. (13)

If some "levels" adjustments needed to be made to the CM i.e. yt = Γy∗t +εt,
(13) would become

∆yt = Γ∆y∗t + (I −Ψ)(Γy∗t−1 − yt−1) + et, (14)

which is a VECM linking yt and y∗t . Thus this mechanism provides an "av-
erage" reconciliation of the data and the CM outcomes y∗t . How good the
tracking performance is will depend upon the magnitude and nature of et.
Of course y∗t is unobservable but, since the equations constitute a state space
form, it is possible to form estimates of y∗t using the Kalman filter once model
parameters and Ψ have been specified or estimated.
The analysis above suggests that, if y∗t can be estimated by specifying

some history for the model shocks, one might actually treat (14) as a way of
moving from the CM to the DAM. Indeed, since (14) is a VECM, one might
consider adding other non-model variables to it in order to reduce the size
of et. That is effectively what was done in the Bank of England’s core/non-
core strategy for building and using the BEQM model described in Harrison
et al. (2005). The data and the core model output (y∗t ) were essentially
connected by an ECM, augmented with variables that had been difficult
to incorporate into the core model but which were felt to be important to
accurate tracking of the data. A necessary restriction in such an approach is
that these variables needed to be added in such a way that, in steady state,
they had a zero effect, so that yt = y∗t . Of course this latter restriction implies
the necessity of checking that the core model is tracking the level of the data
accurately, a theme we return to in the next section.

4 Some Analysis of the C-Model

It is important that one know the extent to which a CM can replicate data.
There are two dimensions to this. One is to ask how well it tracks the
longer-run movements in the data while the other relates to how it accounts
for dynamic adjustments around this path. It is particularly important that
the CM track the longer -run movements since the way in which these models
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have been used generally means that this is the path towards which the econ-
omy is seen to be adjusting. The implied long-run path can be determined
relatively easily from the output of impulse responses to selected shocks. We
give an example of this strategy in the next sub-section using our C-model
as a representative of CMs. In contrast, succinct expressions for the dynamic
adjustments around the path implied by the CM, and the extent to which
outcomes are influenced by considerations about the future, are much harder
to derive. For this reason we describe a method for generating data from the
CM - termed the pseudo data- which can then be used to fit a variety of sta-
tistical and economic models, so as to provide information on such questions.
Using these tools we provide an analysis of our C-Model. Our comparisons
are with a U.K. data set since the C-model was calibrated to reflect beliefs
about the U.K. economy.

4.1 The Match of the Long-run Path of the C-Model

The C-model can output many variables. In looking at the long-run path we
need to focus upon the variables that have permanent components i.e. are
I(1). This decision is determined by the nature of the data. In this section
we look at four variables - the log of domestic output (yt), the log of foreign
output (yft ), the log of investment (it) and the log of the real exchange rate
(et). All variables were detrended using a first order polynomial in time.
The resulting series seem to be clearly I(1) when constructed from U.K.
data over 1977/2-2003/2. Some care had to be taken in constructing the
data so as to match model quantities. The most difficult correspondence to
effect related to what we have called domestic output, since the CM we are
using has been simplified a good deal from what it would be like in a policy
context In particular, it does not include inventories, housing investment,
other investment, and imputed rents. These are therefore removed from the
UK data on GDP.
Using data on the four variables above there is mixed evidence on the

number of co-integrating vectors. With a VAR(1) there is strong evidence of
two co-integrating vectors but, with a VAR(2) (and higher), Johansen’s max
test suggests there is a single vector, while the trace test indicates either two
or (less clearly) three. To illustrate the methods it was decided to assume that
there are two such vectors. Once this decision was made, the two permanent
shocks implied by the system needed to be named, and we took these to be
foreign demand and TFP. Thus one of the shocks is potentially observable but
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the other isn’t. The two-step procedure just described needs to be applied
to all CMs. In the first step the number of permanent shocks needs to be
determined from some data analysis. The second step involves a choice of
the types of permanent shocks and this decision should reflect what policy
makers and their advisers feel have been the main factors with a lasting
impact over the historical data period.
To derive the cointegrating vectors we need the matrix C(1) in (6) (D0

in (5)). As mentioned above two permanent shocks were imposed on the
C-model. These were a permanent 1% rise in foreign demand and the level
of TFP respectively. Table 2 gives the values of C(1) coming from these two
shocks.

Table 2 C(1) for Various Variables for the Permanent TFP
and Foreign Demand Shocks

TFP For Demand

Dom Out (y) .8406 -.0198
Log Real ER (r) -.9243 1.3167
For Demand (yf) 0 1
Investment(i) .8443 -.0205

The two permanent components among the four variables imply that
there must be two co-integrating vectors. To find the 4 × 2 vector β such
that β0C(1) = 0 we need identifying information. We decided to exclude
investment from the first vector, and foreign demand from the second, so
that the co-integrating relations were found to be (to two decimal places)

y = −.91r + yf (15)

i = y (16)

It is interesting to look into whether the co-integrating vectors found
for the C-model agree with those found by applying an estimator to data
over 1977/1-2003/2. Using the same identification scheme and Johansen’s
estimator one would get12

y = −.03r + 1.53yf (17)

i = 4.28y + .51r (18)

12The calculations were done with Microfit 5.
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Clearly there are substantial differences between the two sets of vectors.
Qualitatively those of the C-model seem more reasonable. Indeed, one feels
that most analysts might well be happier with those from the C-model. This
emphasizes the fact that, simply relying upon data to re-produce long-run
relations, rather than adopting a theoretical perspective, may not yield out-
comes that are attractive. Nevertheless, such comparisons are often very use-
ful as they do direct attention to possible difficulties in the long-run match
to data of a calibrated CM. This may well be the case for the C-model,
where it would seem that the exchange rate effects on output implied by it
might be too strong. Consequently, the parameters of the C-model might be
manipulated to improve on this aspect.
Another view of the correspondence of the C-model with the "levels" of

the data is found by constructing the implied permanent components. Given
the values for β in (15) and (16), ECM terms were formed and used in a
VECM(2) fitted to the data on the four variables. These provide estimates
of the matrix α in (7). β and α are then used to construct J and α⊥ in
(8) and the permanent components of each of the series can be extracted
using (9). Figure 1 then plots the permanent components of domestic output
implied by the C-model. Also present are the same quantities formed from
the Johansen parameter estimates in (17) and (18), along with the data. It
is clear that the ability of the C-Model to track the levels of the data suffered
a good deal after the beginning of 1997. This is a period in which a very
strong appreciation in the real exchange rate occurred. The C-Model would
have predicted a strong decline in the level of output but this did not occur.
Because the Johansen estimates have a very weak exchange rate effect it does
not have the same feature. However, it tends to err in the other direction,
over-estimating the level of output. It is also noticeable that the Johansen
estimates produced much poorer tracking ability in the 1980s. In general
this experiment suggests that the impact of the exchange rate needs to be
closely investigated as it is likely that this can make the level of forecasts go
significantly off track.

4.2 Generating the Pseudo Data for CMs

We have observed a number of times that it will be important to be able to
generate pseudo-data from CMs. In doing this we have to recognize some
constraints that govern the method to be used. First, for most purposes it is
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Fig 1 Permanent Components of UK GDP from C-Model and Johansen Estimates
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Figure 1:

not necessary to find the responses of all variables to a given set of shocks. It
is likely that a relatively small set of variables will be those of most interest.
Second, most CMs are known from the properties of their impulse responses
rather than from any statistical model such as a VAR i.e. the Dj are what is
most easily obtained and analyzed. For this reason we find pseudo-data not
by generating data from a VAR, as most of the DSGE literature does, but
from the impulse responses themselves. The method seems to work quite well
and is essentially a version of that in Masson (1988), where the exogenous
variables are the shocks being applied.
The method proceeds by first extracting the impulse responses corre-

sponding to the variables of interest, yt (a much smaller set of variables than
are in the CM ), and then generating data on yt using

yt = D(L)ηt, (19)

where ηt are i.i.d.(0, V ). It is necessary to determine a suitable V . The
central problem here is that, if one is interested in whether the CM can
generate the correct dynamics, one doesn’t want to use information that is
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based on dynamics when determining a value for V. Thus, if one chose V
to replicate the variance of yt (or ∆yt if yt was I(1)), then there would be
an implicit comparison of the model value of D(L) with that of the data,
since the latter shows up in the sample variance of yt. For this reason it
seems best to vary the method of selection of V depending on what we are
trying to discover about the CM . Thus, suppose we wanted to see if a V AR
fitted to the data matched the V AR implied by the CM . Let the estimated
covariance matrix from the VAR errors (when fitted to data on yt) be Ω̂.
Then we could choose V as the solution to

Ω̂ = D0V D
0
0,

where D0 is a known quantity from the CM. This means that we are treating
the CM as having an SVARmodel representation whose implied VAR shocks
have a covariance matrix equal to that from the data. This separates out the
issue of how closely the dynamics can be replicated from the identification
of the shocks. We use this same technique in a different context in section
6. It is important to note that there is no guarantee that V will be diagonal
and so the shocks may not be uncorrelated.

4.3 The Match of the Univariate Properties of Vari-
ables in the C-Model

We use the method just described to investigate a number of issues that arise
in policy-oriented macroeconomic modeling. Our first experiment involves
simulating data on four variables from the C−model - domestic output, a
real exchange rate, inflation and a real interest rate .13 There are five shocks
corresponding to these variables- to foreign demand, to total domestic factor
productivity (TFP), to government expenditure, to the inflation target and
to the sovereign risk premium. The foreign debt constraint was raised by
.001 to produce a risk premium shock, the inflation target was increased to
3.5% p.a. and all other items were raised by 1%. In the first experiment all
shocks are pure impulse. In the second, TFP and foreign demand shocks are
both permanent.
In order to complete the experiment we need to select the covariance

matrix of the shocks. In the case of purely transitory shocks we fitted a

13There are actually five variables but because the foreign demand process is exogenous
it is simulated separately from the C-model.
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V AR(2) to data on the five variables and then found a value of V for the
five shocks that matched the covariance matrix of the V AR(2) errors. V
was far from diagonal, as seen from the fact that the correlations of TFP
shocks with government expenditure ( -.95), the inflation target (.73) and
the risk premium (.76). There were also some significant correlations with
the foreign shock, although none above .5, and this would imply an equivalent
rank reduction in V . Some evidence of a rank reduction in Ω was available
as the minimum eigenvalue of the correlation matrix formed from Ω was .05.
Once V was determined, pseudo-data was generated from the C-model with
it. Finally, to encapsulate the differences between the data and the C-model
we fit AR(2) models to both actual and pseudo data for the four variables of
interest. Table 3 shows these AR(2) coefficients; they are designated as γ1
and γ2.

Table 3 AR(2) models fitted to Data
and Pseudo-Data with Transitory Shocks

Data C-Model
γ1 γ2 γ1 γ2

Dom Out (ly) .58 .36 .77 -.35
Log Real ER (lrer) 1.13 -.24 .71 -.25
Inflation (inf) .40 .36 .86 .05
Real Int Rate (rr) .29 .23 .38 -.30

It is clear that, while the C-model generates substantial persistence in
output and real exchange rate movements, it falls short of the near-I(1)
processes that are a feature of the data on these variables. In terms of
inflation and the real interest rate it shows a pattern that is very different
from the data. Tests that the two sets of parameters are the same lead to
strong rejections, with χ2(2) tests of over 25.
To generate more persistence we assume that there are two permanent

shocks. Now a VECM(2) rather than a VAR(2) is fitted to the data. Since
there are three I(1) variables and two permanent shocks the first of the
co-integrating variables given in (15) produces the requisite error correction
term. The covariance matrix for the shocks V is then derived from the VECM
errors in the same way as before. Once again these are correlated, although
more weakly than before.
Table 4 presents the same information as in Table 3, except that, because

there is now a unit root in output and the real exchange rate, the AR(2)
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is fitted to the first differences of those series. It is clear that the model
still fails to reproduce the univariate data characteristics, although the test
statistics indicating a formal rejection of the coefficients being the same are
much lower than they were when shocks were purely transitory. In summary,
it is clear that, to produce a match to the data, it will be necessary to allow
the shocks into the C-model to be more than just purely transitory or purely
permanent.

Table 4 AR(2) models fitted to Data
and Pseudo-Data with Permanent Shocks

Data C-Model
γ1 γ2 γ1 γ2

Log Dom Out (ly) -.37 .07 .09 .03
Log Real ER (lrer) .22 -.10 -.16 -.08
Inflation (inf) .49 .39 .45 -.08
Real Int Rate (rr) .31 .24 .78 -.01

4.4 Some Other Features and Uses of the C-Model

4.4.1 Dynamic Rank Reduction

We noted earlier that one might expect some dynamic rank reduction in
CMs. We investigated this in the context of the C-model in the following
way. Throughout this analysis we are concentrating upon the case where
there are just transitory shocks
If there is dynamic rank reduction then a VAR(p) in n variables can be

represented as a reduced rank VAR (RVAR) model of the form, see Velu et
al. (1986)

yt = γ[

pX
i=1

δ0iyt−i] + vt (20)

= γδ0zt + vt, (21)

where γ and δi, i = 1, ..., p, are (n, r∗) matrices, r∗ ≤ n, δ =
¡
δ01 . . δ0p

¢0
and zt =

¡
y0t−1 . . y0t−p

¢0
, t = 1, ..., T . In (21) it is assumed that the

true rank of the matrices γ and δ are identical and equal to r∗, which is thus
referred to as the rank of the system (21). However, note that the ranks of δi,
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i = 1, ..., p, need not equal r∗; in particular, rank(δi) ≤ r∗, i = 1, ..., p. Note
that the number of free parameters in this model is equal to r∗(n+ np− r)
as opposed to n2p for a standard VAR model.
Given the system rank r∗, Velu et al. suggested an estimation method for

the parameters γ and δ which may be shown to be quasi-maximum likelihood.
Denote the sample second moment matrices by SY Y = T−1Y 0Y , SY Z =
T−1Y Z 0, S0ZY = SY Z and SZZ = T−1ZZ 0, where Y and Z are matrices
containing {yt} and {zt}. Hence, the covariance matrix of the unrestricted
OLS residuals, SY Y.Z = SY Y − SY ZS

−1
ZZSZY , is the unrestricted quasi-ML

estimator of the error process variance matrix Σvv. Additionally, let {λ̂2i }ni=1,
λ̂
2

1 ≥ ... ≥ λ̂
2

n ≥ 0, denote the ordered squared eigenvalues of the n×n matrix
S
−1/2
Y Y.ZSY ZS

−1
ZZSZY S

−1/2
Y Y.Z with associated eigenvectors {ν̂i}ni=1 subject to the

normalization ν̂ 0iν̂j = 1if i = j and 0 otherwise. Therefore, the quasi-ML
estimators for γ and δ in (21), with system rank r∗ minimize

tr{S−1/2Y Y.Z(Y − γδ0Z)(Y − γδ0X)0S−1/2Y Y.Z},

and are given by

bγ = S
1/2
Y Y.Z

bV , δ̂ = S−1ZZSZY S
−1/2
Y Y.Z

bV
where bV = (ν̂1, ..., ν̂r∗). Here γ̂ and δ̂ = (δ̂

0
1, ...., δ̂

0
r∗)

0 satisfy the induced
normalization γ̂0S−1Y Y.Z γ̂ = Ir∗ and δ̂

0
iS
−1
ZZ δ̂j = λ̂

2

i if i = j, and 0 otherwise -
see Velu et al. (1986) for more details.
In order to determine the rank of the system we use a standard test

of rank. The test of rank of a matrix suggested by Bartlett (1947) which
examines whether the n − r∗ smallest canonical correlations ρi, i = r∗ +
1, . . . , n, between {yt} and {zt} are zero i.e. it looks at the matrix Υ =
SY ZS

−1
ZZ. Under Hr∗ : rk(Υ) = r∗, ρr∗+1 = . . . = ρn = 0. The test statistic of

Bartlett(1947) is given by T
Pn

i=r∗+1 ln(1+λ̂
2

i ), where λ̂i = ρ̂i/(1−ρ̂2i )1/2, and
1 ≥ ρ̂21 ≥ ... ≥ ρ̂2n ≥ 0 are the ordered squared sample canonical correlations
between {yt} and {zt}, which is identical to the (log-) likelihood ratio (LR)
test for Hr∗ : rank(Υ) = r∗ against H 0

r∗ : rank(Υ) > r∗; see Reinsel and Velu
(1998, Section 2.6). UnderHr∗, T

Pn
i=r∗+1 ln(1+λ̂

2

i ) has a limiting chi-square
distribution with (n− r∗)(np− r∗)degrees of freedom. Note that the test is
obtained via a singular value decomposition of the unrestricted or full rank
LS (quasi-ML) estimator bΥ = SY ZS

−1
ZZ.

32



Applying these tests to a VAR fitted to the pseudo-data from the C-model
with purely transitory shocks and a VAR order chosen by AIC - roughly a
VAR(7) - one finds that there is evidence of rank reduction to an RVAR(3).
Thus it seems very likely that many CM models will feature dynamic rank
reduction. Note that the rank reduction here is not that due to co-integration
as all shocks are transitory and so the variables are not I(1). When there
is dynamic rank reduction one can think of yt as being driven by factors
fi = δ0iyt−i, although these factors would be correlated and so are different
to standard factor models. It has often been found that the co-integrating
restrictions can improve forecasts over a longer forecast horizon and the re-
duced dynamic rank indicated here may also have the same effect but at
shorter horizons. Indeed, Vahid and Issler (2002) found that there were sig-
nificant gains in forecast accuracy when the rank restrictions were imposed,
particularly over short-term horizons.

4.4.2 Forward Looking Aspects of the C-Model

The pseudo-data can be used for many purposes e.g. to fit a DSGE model
of some sort that is of much smaller dimension than a policy-oriented CM is.
Sometimes this is useful for interpreting the CM in terms of results that come
from miniature models that have been extensively studied. As an illustration
we fitted a New Keynesian Phillips curve of the form

∆πt = φπet+1 + (1− φ)πt−1 + a1yt + a2yt−1

to the pseudo-data from the C-model obtained in the permanent shock case
earlier, where π is inflation, πet+1 is expected inflation and yt is an output
gap. We used as instruments for πt+1 and yt, the variables πt−1, y

f
t , yt−1 and

yt−2. Two interesting facts emerged from this exercise. One was that φ was
estimated to be .52 i.e. the C-model seems balanced between the present and
future in terms of influences on inflation, and the second was the very strong
evidence that a2 = −a1 i.e. inflation was affected by the growth in output
rather than the output gap per se. The value of a1was .17.

5 Towards the DAM: Matching via Shocks

To progress towards the DAM requires that one determine what information
is available to the modeler. If it is possible to solve the CM then it makes
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sense to proceed in the way done by the Bank of England in its core/non-core
distinction which was discussed earlier. But this does require that one can
measure the shocks that enter the CM and it seems likely that not all of these
will be observable. For this reason we describe an approach that estimates
these shocks and then defines tracking errors that need to be added on to
the CM to replicate the data. The key to our analysis is the recognition that
there are inevitably more variables in the CM than there are shocks to it.
Let the CM have the solved form

yt = G(L)xt +H(L)et (22)

where now we have separated out the observable (xt) from unobservable (et)
shocks. An example of an observable shock might be foreign demand. We
get G(L)and H(L) by computing impulse responses to shocks.
Observable shocks have the property that the process driving them can

be determined from the data so that these cannot be manipulated to produce
a better match of the base model with the data. However, the unobservable
model shocks might be. If we write the observations upon the variables yt
as zt, and let H(L) = H0+H1L+ ...., one might then reverse-engineer these
shocks by estimating them as

êt = H+
0 [zt −G(L)xt − (H1L+ ...)êt]

where H+
0 = (H 0

0H0)
−1H0 and we are recognizing here that dim(et) will

generally be much smaller than dim(yt). This is a recursive relation giving

ê1 = H+
0 [z1 −G0x1]

ê2 = H+
0 [z2 −G0x2 −G1x1 −H1ê1].

etc.14 If dim(et) = dim(yt) this could enable the CM to produce a perfect
match with the data, although the nature of the estimated shock processes
might be unacceptable to policy makers e.g. these might have very complex
serial correlation patterns that would be hard to motivate. When dim(et) <
dim(yt) we will not be able to reproduce yt exactly as there are not enough
shocks. To achieve an exact re-production we define tracking residuals as

ε̂t = zt −B(L)xt − C(L)êt.

14Note that we need to assign a value to e0. This is the same probelm as arises with the
use of the Kalman filter to extract estimates of the shocks in DSGE models. Normally the
Kalman filter initiates the recursion with the expected value of the shock, and that will
be zero in this context.
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Once these have been determined both the model shocks and the tracking
residuals can be examined e.g. by looking for serial correlation in them,
relating them to observed variables etc. We note that, by construction, the
rank of the matrix (E,Ξ), where E = (e1, e2, ..., eT )

0 and Ξ = (ε1, ε2, ..., εT )
0

is n, where n is the dimension of yt. As E is of full column rank, Ξ has
reduced column rank. Hence the number of independent tracking shocks is
m = n− dim(et).
We now present some results of our analysis of the nature of the shocks

- both model and tracking - that would be needed for the C-model to re-
produce the data. Data on four variables - log of output, log of the real
exchange rate, inflation and the real interest rate - constituted zt. For illus-
trative purposes the model shocks were all assumed unobservable i.e. the
foreign demand shock was treated as unknown. We then assumed that the
model was only driven by two shocks - the foreign one and TFP. The recur-
sion above then determines what the history of these shocks would be, after
which four tracking shocks were added on to replicate the four variables (of
course there are only two independent tracking shocks since rank(Ξ) = 2).

Table 5 AR(2) models fitted to Implied Model
and Tracking Shocks

γ1 γ2
TFP -.26 .78
Foreign Demand -.54 .46
1st Tracking Shock -.18 .80
2nd Tracking Shock -.17 .66

There is a reasonable degree of persistence in all shocks but well away
from a unit root. However both the TFP and foreign demand shocks seem
to exhibit somewhat peculiar behavior and have much less persistence than
one might expect. Effectively, this is extra evidence of the inadequate per-
formance of the C-model.

6 An Alternative Modelling Strategy?

A question that naturally arises is why the CMs used in most policy related
work are much larger than those typically used in academic research. One
possible explanation is that one needs models of such a size in order to
adequately capture the responses found in actual economies. That this may

35



be an issue has already been alluded to. Academic modelers tend to work
with a relatively small number of variables whereas most economies have a
much larger number. A standard academic approach is to choose a relatively
small number of variables, zt, to estimate a VAR, and then make a choice
about the order of the VAR using statistical criteria such as AIC and BIC.
Resistance to a large number of variables in the VAR comes from the fact
that, if there are n variables in zt, there are p× n lagged values on the RHS
of each equation of a VAR(1). But the problem with this way of thinking
is in keeping p fixed as one increases n. For a given degree of approximation
to the true impulse responses, it may pay to work with a relatively large
number of variables in zt, as one can thereby keep the VAR order relatively
small. Choice of variables in VARs has been given little attention compared
to choice of lag length, but is at least as important. The consequence of
this variable reduction will generally be to make it very hard to capture the
impulse responses to shocks with smaller models, even when very flexible
dynamics are assumed.
To illustrate this point we take the C-Model as the DGP and simulate

data from it15. We then ask if we can recover the impulse responses to its
shocks if one proceeded in the standard ways used in academic modelling.
Since the shocks we apply to the C-model are "structural" it is necessary
to convert a VAR into an SVAR using identifying information. In practice
this is not an easy task, and it may well be that the restrictions imposed
to do this are incompatible with a CM. But we wish to abstract from this
difficulty in order to concentrate upon the dynamic approximation problem.
Consequently we assume that the investigator knows the impact impulse
response matrix D0 and so can recover the true shocks ηt and, thereby, the
implied impulse responses of yt to ηt from an estimated VAR.16 Let the
SVAR impulse polynomial be Dη,p(L) for a fitted p’th order VAR. Then it is
of interest to ask about the relation between Dη,p(L) and the true impulse
responses constructed from the D(L) of the C−model as p is varied. Since
Dv,p

j = Dv,p
0 ·f(A1, ..., Ap), where Aj are the VAR coefficients, once one knows

D0 any incorrect impulses implied by the SVAR are due to the inability to
estimate the Aj accurately, and this will simply reflect the mis-specification

15The fact that the C-model does not produce a good match to U.K. data is therefore
irrelevant to the comparisons of this section.
16An alternative which we also look at involved estimating D0 by regressing the VAR

shocks against the known C-model shocks. The estimates of D0 found in this way were
quite close to the true value and so the impulse responses were much the same.
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due to the reduction of the C-model in N variables to a VAR in n variables.
We start with the question of what order VAR would be chosen using

standard statistical model selection criteria if we had 200 observations, which
seems an upper limit to the amount of information available with quarterly
macroeconomic data. To get these 200 pseudo-observations we generate 500
samples of 10200 observations and then drop the first 10000 in order to
remove the effect of initial conditions, which were set to zero. We consider
a set of five variables in the VAR: domestic output, the real exchange rate,
inflation, the real interest rate and foreign demand, while the shocks are
the five transitory shocks mentioned earlier. Information criteria are used
to select lag orders for the VAR model. Results are as expected, in that
AIC chooses a relatively high average lag order of 7 for the VAR, while BIC
chooses a much lower order of around 4. Since the C-model features dynamic
rank reduction it is instructive to note Vahid and Issler’s (2002) conclusion
from Monte Carlo experiments that, in such instances, there is a downward
bias in the order selected by AIC.17 We therefore set p to either 4 or 7.
Now we could fit the VAR to the 200 pseudo-data points and compare

the impulse responses to the true values. We do such an exercise for p =
4, 7 calling these the VAR4/200 and VAR7/200 cases. But this confounds
possible approximation errors of the VAR with a small sample size, and it
is useful to separate out the two effects. Accordingly, we also generate 500
samples of 40000 observations, drop the first 10000 in order to remove the
effect of initial conditions, and then fit the VAR for the same values of p as
before. These results then would just show the approximation error and are
labelled V AR4/30K and V AR7/30K.
For productivity, monetary policy and foreign demand shocks, there is a

good correspondence between the VAR implied impulse responses and the
true ones from the C-model. This is not true however of the risk premium and
the aggregate demand (fiscal) shocks. In those cases a very high order VAR
may be needed to reproduce the impulse responses of the C-model. Figures 2
and 3 show the comparison of the impulse responses for the fiscal policy shock
from the C-model. It is clear that the VAR selected with AIC (p = 4) and
just 200 data points can be a long way from the true values. This is true even
with 30000 observations. A VAR(7) does better, but is still inaccurate, even

17We have also looked at the ability of VARMA models to reproduce the impulses but
these did not seem any more successful than a VAR and so the results are not reported
here.

37



with 30000 observations. It should be said that, using a VAR(50) with 30000
observations does produce estimated impulse responses that are essentially
indistinguishable from the true values, so that there are no "fundamentals"
problems of the sort identified by Lippi and Reichlin (1994). It should be
stressed once again that the close fit for the early lags is simply an artifact
of the fact that C0 is assumed to be known in all cases, and the difficult
problem of how one is to identify the shocks has been sidestepped in order to
focus on approximation issues. In practice, C0 would have to be estimated
as well, and it is not easy to estimate this response given that these models
will rarely be recursive. Imposing long-run restrictions generally results in
many weak instrument problems and there can be substantial biases in the
estimation of the elements in C0 - see Pagan and Robertson (1998), inter
alia.
There seem to be three lessons one can learn from the experiment. First,

the order of a VAR needed to reproduce correct impulse responses for actual
economies is likely to be far higher than has ever been suggested in prac-
tice and quite infeasible given the sample sizes in macroeconomics. Second,
using a VAR with order chosen by some statistical criterion is unlikely to
produce good estimates of the items of ultimate interest viz. the impulse
responses. Finally, it would seem better to begin with a CM and then at-
tempt to modify it rather than to try to recover responses by using very little
prior information. Even a relatively simple CM produces a complex set of
inter-relationships in an economy and these are hard to capture when little
prior information is used.

7 Conclusion

We have discussed the construction of modern policy-oriented macro-economic
models and their relation to evidence. These have a strong theoretic base and
so the issue that arises is one of how to match them up with evidence. Our
paper has looked at some ways in which econometric methods have been, and
are being, used for that task. We illustrate these methods by constructing
a theoretical model that is representative of the type of model increasingly
being used in policy analysis. This model was also used to determine if stan-
dard academic approaches to recovering information on shocks via SVARs
could be an effective substitute. We find that it is very hard to recover such
impulses using the types of VARs that have been popular for some time.
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Fig 2 Impulse Responses of Output to Demand Shocks
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Figure 3 Impulse Responses of Real Exchange Rate to Demand Shocks
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This does not deny a role for miniature models in applied macroeconomics.
Indeed, we have argued that one can learn about some of the characteristics
of larger models by examining data produced by it though the lens of these
smaller models.

8 References

Altug, S. (1989), “Time to Build and Aggregate Fluctuations: Some New
Evidence" , International Economic Review, 30, 889-920.
Binder,M and M.H.. Pesaran (1995), “Multivariate Rational Expecta-

tions Models and Macroeconomic Modelling: A Review and Some New Re-
sult” in M.H. Pesaran and MWickens (eds) Handbook of Applied Economet-
rics: Macroeconomics, Basil Blackwell, Oxford.
Barro, R. J. and X. Sala-i-Martin (1995), Economic Growth, New York:

McGraw-Hill Inc.
Bartlett, M. S. (1947), “Multivariate Analysis" , Journal of the Royal

Statistical Society, Series B, Vol. 9, pp. 176-197.
Black, R., V. Cassino, A. Drew, E. Hansen, B. Hunt, D. Rose and A. Scott

(1997), “The Forecasting and Policy System: The Core Model” Reserve
Bank of New Zealand Research Paper 43.
Blanchard, O. J. and N. Kiyotaki (1987), “Monopolistic Competition and

the Effects of Aggregate Demand." American Economic Review 77(4), 647-
66.
Burnside, C. and M. Eichenbaum (1996), “Factor Hoarding and the Prop-

agation of Business Cycle Shocks." American Economic Review, 86(5), 1154-
1178.
Chari, V.V., P.J. Kehoe and E. R. McGrattan (2004), "A Critique of

Structural VARs Using Real Business Cycle Theory",Working Paper no 631
Federal Reserve Bank of Minneapolis
Cho, S. and A. Moreno (2004), “ A Small-Sample Study of the New

Keynesian Macro Model”, mimeo, Departamento de Economia, Universidad
de Navarra, Spain
Christiano, L.J., M. Eichenbaum, and C.L. Evans (2003), “Nominal rigidi-

ties and the dynamic effects of a shock to monetary policy" mimeo, North-
western University
Cogley, T. and J.M. Nason (1993), "Impulse Dynamics and Propagation

Mechanisms in a Real Business Cycle Model", Economics Letters, 43, 77-81.

40



Coletti, D., B. Hunt, D. Rose and R. Tetlow (1996), “The Bank of
Canada’s New Quarterly Projection Model, Part 3: The dynamic model:
QPM ", Bank of Canada, Technical Report 75.
Clements, M. and D.F. Hendry (1999) Forecasting Non-stationary Eco-

nomic Time Series, M.I.T. Press, Cambridge Mass.
Engle, R.F. and S. Kozicki, (1993) "Testing for Common Features," Jour-

nal of Business and Economic Statistics, 11, p. 369-380.
Forni, M., M.Lippi and L. Reichlin (2003), “Opening the Black Box:

Structural Factor Models versus Structural VARs", ECARES, Universite Li-
bre de Bruxelles, mimeo.
Gali, J (1996), "Unemployment in dynamic general equilibrium economies."

European Economic Review, 40, 839-45.
Garratt, A. K.Lee, H.M. Pesaran and Y. Shin (2003), "A Long-run Struc-

tural Macroeconometric Model for the U.K.", Economic Journal, 113, 412-
455.
Giannone, D., L. Reichlin and L. Sala (2002), "VARs, Common Factors

and the Empirical Validation of Equilibrium Business Cycle Models ", Jour-
nal of Econometrics (forthcoming)
Giordani, P. (2004), “An Alternative Explanation of the Price Puzzle" ,

Journal of Monetary Economics, 51, 1271-1296.
Harrison, R., K. Nikolov, M. Quinn, G.Ramsay, A. Scott and R. Thomas

(2005), The Bank of England Quarterly Model, Bank of England.
Ireland, P. (2004), “A Method for Taking Models to the Data" Journal

of Economic Dynamics and Control, 28, 1205-1226.
Lippi, M. and L. Reichlin (1994), "VAR Analysis, Non Fundamental Rep-

resentations, Blaschke Matrices", Journal of Econometrics, 63, 307-325
Masson, P. (1988), “Deriving Small Models from Large Models, in R.

Bryant (ed) Empirical Macroeconomics for Interdependent Economies, Brook-
ings Institution.
Murchison, S., A. Rennison and Z. Zhu (2004), "A Structural Small Open-

Economy Model for Canada", Bank of Canada Working Paper, 2004-4.
Nason, J.M. and J.H. Rodgers (2005) "The Sparkle in Exchange Rates:

Restricting its Present-Value Model with Common Trends and Common Cy-
cles", mimeo, Federal Reserve Bank of Atlanta
Pagan, A.R. and J. Robertson, “Structural Models of the Liquidity Ef-

fect”, Review of Economics and Statistics, 80, 202-217.
Pagan, A. R.(2002) "What is a Good Macroeconomic Model for a Central

Bank to Use?", Federal Reserve Bank of San Francisco Conference on Macro-

41



economic Models for Monetary Policy,
( available at http://www.frbsf.org.economics/conferences/0203/index.html)
Pagan, A.R. (2003) " Report on Modelling and Forecasting at the Bank

of England" . Bank of England Quarterly Bulletin, Spring, 1-29
Reinsel, G.C. and R.P. Velu (1998),Multivariate Reduced Rank Regression

(Springer-Verlag).
Rotemberg, J. J. (1982), “Sticky prices in the United States.", Journal

of Political Economy, 90(6), 1187-1211.
Schmitt-Grohe, S„ and M. Uribe (2003), “Closing small open economy

models, Journal of International Economics 61, 163-185.
Schweppe, F.C. (1965), "Evaluation of Likelihood for Gaussian Signals",

I.E.E.E. Transactions on Information Theory, 11, 61-70.
Smets, F. and R. Wouters (2003),"An Estimated Dynamic Stochastic

General Equilibirum Model of the Euro Area", Journal of the European Eco-
nomic Association, 1, 1123-1175.
Vahid, F. and J.V. Issler (2002), "The Importance of Common Cyclical

Features in VAR Analysis: A Monte Carlo Study", Journal of Econometrics,
109, 341-363.
Velu, R. P., G. C. Reinsel and D. W. Wichern (1986), “Reduced Rank

Models for Multiple Time Series" , Biometrika, 73, pp. 105-118.
Wallis, K.F. (1977), “Multiple Time Series and the Final Form of Econo-

metric Models" , Econometrica, 45, 1481-1497.
Zellner, A. and F. Palm (1974), “Time Series Analysis and Simultaneous

Equation Econometric Models" , Journal of Econometrics, 2, 17-54.

42


