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Abstract

We develop a model of stock valuation and optimal IPO timing when investment

opportunities are time-varying. IPO waves in our model are caused by declines

in expected returns, increases in expected pro¯tability, or increases in prior un-

certainty about average pro¯tability. The model predicts that IPO waves are

preceded by high market returns, followed by low market returns, and accom-

panied by high stock prices. These as well as other predictions are supported

empirically. Stock prices at the peak of the recent \bubble", which was associ-

ated with an IPO wave, are consistent with plausible parameter values in our

rational valuation model.
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1. Introduction

The number of initial public o®erings (IPOs) changes dramatically over time, as shown in

Figure 1. For example, 845 ¯rms went public in 1996, but there were only 83 IPOs in 2001

and 87 IPOs in 2002. What are the underlying causes of the wild swings in IPO volume?

How is IPO volume related to market prices? Were the stock prices in March 2000 too high?

These are the questions this paper aims to answer, theoretically as well as empirically.

We argue that IPO volume varies due to time variation in investment opportunities (or

\market conditions"). We develop a model of stock valuation in which investment opportuni-

ties vary in three dimensions: expected market returns, expected aggregate pro¯tability, and

prior uncertainty about the post-IPO average pro¯tability in excess of market pro¯tability.

We then set up a simple model of optimal IPO timing, and show that IPO volume responds

to time variation in market conditions. IPO volume has important implications for stock

prices { for the valuations of IPOs and of the market as a whole.

We consider an economy with a special class of agents, \inventors", who are uniquely

equipped to invent new ideas that can lead to abnormal pro¯ts. New ideas are discovered

at a constant frequency. Inventors patent each idea upon discovery and start a private ¯rm

that owns the patent. Inventors lack the capital necessary to begin production, so they must

turn to capital markets. The decision faced by inventors is when to take their ¯rms public

and begin irreversible production to maximize the value of their patents. When investment

opportunities are constant, it is optimal to go public as soon as the patent is secured. When

investment opportunities vary over time, however, inventors may ¯nd it optimal to postpone

their IPO in anticipation of more favorable economic conditions in the future.

We solve for the optimal time to go public, and show that new ¯rms are attracted to

capital markets especially when the cost of capital is low, when expected future cash °ows

are high, and when the uncertainty surrounding those °ows is high. As a result, clusters

of IPOs, or \IPO waves", occur after expected returns decline, after expected pro¯tability

increases, or after uncertainty about average pro¯tability increases. This perspective seems

novel in the ¯nance literature. When investment opportunities improve, many inventors

exercise their options to take their ¯rms public at about the same time. The resulting IPO

waves typically last several months, as all private ¯rms rarely go public at exactly the same

time because they di®er in the time to expiration on their patents as well as in their ¯rm-

speci¯c pro¯tability. To demonstrate the properties of IPO waves implied by our model, we

calibrate the model to the data and simulate it over long periods of time.

1



Our model is rich in empirical predictions. IPO waves caused by a decline in expected

market return should be preceded by high market returns (because prices rise when expected

return falls) and followed by low market returns (because expected return has declined). IPO

waves caused by an increase in expected pro¯tability should also be preceded by high market

returns (because prices rise as cash °ow expectations go up) and followed by high pro¯tability

(because expected pro¯tability has risen). Finally, IPO waves caused by an increase in prior

uncertainty about average pro¯tability should be preceded by increased disparity between

newly listed ¯rms and seasoned ¯rms in terms of their valuations and return volatilities

(because prior uncertainty a®ects the valuations and volatilities of new ¯rms only).

We test the model's implications using data between 1960 and 2002, and ¯nd considerable

corroborating evidence. We ¯nd support for all three channels (discount rate, cash °ow, and

uncertainty) through which IPO waves are created in our model. IPO volume is positively

related to recent market returns, consistent with a decline in expected returns as well as with

an increase in expected pro¯ts before IPO waves. The discount rate channel is supported by

two additional ¯ndings: IPO volume is negatively related to future market returns as well

as to recent changes in market return volatility, which is itself positively related to expected

market return in our model. The cash °ow channel is also supported by two additional

facts: IPO volume is positively related to changes in aggregate pro¯tability as well as to

revisions in analysts' forecasts of long-term earnings growth. Finally, IPO volume is also

positively related to recent changes in the excess volatility and valuation of newly listed

¯rms, consistent with an increase in prior uncertainty about average pro¯tability.

In addition to optimal IPO timing, we also analyze stock prices, using a closed-form so-

lution for a ¯rm's ratio of market equity to book equity (M/B). We show that IPO waves in

our model tend to be preceded by high valuations for the market as a whole. The reason is

that IPO timing is endogenous { ¯rms are induced to go public by improvements in invest-

ment opportunities (e.g. declines in expected returns or increases in expected pro¯tability),

and these improvements also have the e®ect of lifting the valuations of all ¯rms. The fact

that IPO waves follow high market valuations has been documented e.g. by Lerner (1994),

Loughran, Ritter, and Rydqvist (1994), Pagano, Panetta, and Zingales (1998), Baker and

Wurgler (2000), and Lowry (2003).1 Most of these papers provide behavioral explanations,

but we show that this phenomenon is also consistent with a rational model.

1Schultz (2003) argues that equity issuers appear to time the market ex post but not ex ante, because
market peaks are known only ex post. His crucial assumption is that ¯rms issue equity at higher prices.
(Note that issuance at higher prices arises endogenously in our model.) According to Schultz, IPO volume
is correlated with future returns ex post, but not ex ante. In contrast, in our model ¯rms go public after
declines in expected returns, so that high IPO volume predicts low market returns also ex ante.
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IPO valuations are especially high in our model, boosted not only by low discount rates

and high expected cash °ows, but also by prior uncertainty about average pro¯tability. This

uncertainty increases ¯rm value, as shown by P¶astor and Veronesi (2003).2 M/B is predicted

to decline after the IPO for two reasons. The ¯rst reason is learning. Upon observing realized

pro¯ts, investors update their beliefs and the posterior uncertainty declines, resulting in a

gradual decline in M/B over the lifetime of a typical ¯rm. The second reason is mean

reversion. Declines in expected returns induce private ¯rms to go public and at the same

time push M/B up, but sooner or later expected returns revert to their long-term averages,

pulling M/B down. Expected pro¯tability is also assumed to be mean-reverting. The same

argument implies that the market's M/B should also decline after an IPO wave.

Did stock prices exhibit a \bubble" in the late 1990s? The late 1990s were a period of

frenzied IPO activity, which in our model results from declines in expected returns or from

increases in expected pro¯tability or prior uncertainty. Fama and French (2002, 2003) and

Lettau, Ludvigson, and Wachter (2003), among others, argue that expected returns declined

recently. Expected pro¯tability was high in the late 1990s, judging by the equity analysts'

earnings forecasts. Low discount rates and high cash °ow expectations clearly imply high

valuation for the market as a whole. Moreover, prior uncertainty also appears to have

been high. Technological revolutions, such as the one perceived in the late 1990s, are likely

to be accompanied by high prior uncertainty, as the long-term prospects of new ¯rms are

particularly uncertain when new paradigms are entertained. Indeed, our empirical proxies

reveal unusually high prior uncertainty in the late 1990s. This high uncertainty helped fuel

the IPO wave observed at the time, and it also helps justify the astronomical valuations of

many IPOs in the late 1990s.

We calibrate our valuation model to the circumstances of March 10, 2000, which is often

referred to as the peak of the Nasdaq \bubble". We ¯nd that the observed valuations are

consistent with levels of the equity premium, expected pro¯tability, and prior uncertainty

that are plausible given the high IPO volume in the 1990s. We do not attempt to rule out

any behavioral explanations for the \bubble"; we only argue that they are not necessary,

since the prices in March 2000 are consistent with our rational valuation model.

2The intuition relies on a simple convexity argument. As an example, consider the Gordon growth model,
P = D=(r¡ g), where P is stock price, D is tomorrow's dividend, r is the discount rate, and g is the growth
rate of future dividends. Note that P is convex in g. If g is uncertain, P is equal to the expectation of
the right hand side. This expectation increases with uncertainty about g, holding other things constant,
due to the previously mentioned convexity. See P¶astor and Veronesi (2003) for a more careful explanation.
Interestingly, Bill Miller, portfolio manager of the Legg Mason Value Trust, used similar logic to justify the
valuation of Amazon.com in 1999: \...being wrong isn't very costly, and being right has a high payo®... With
Amazon, we believe the payo® for being right is high." Amazon's Allure..., Barron's, 15 Nov 1999.
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Of course, this is not the ¯rst paper to analyze time variation in IPO volume. The

clustering of IPOs was documented by Ibbotson and Ja®e (1975) and Ritter (1984), among

others. One strand of the literature focuses on the adverse selection costs of issuing equity

resulting from the di®erences between the managers' information and the market's informa-

tion about ¯rm value (e.g. Myers and Majluf, 1984). In this literature, IPO (and SEO)

volume is driven by time variation in the amount of asymmetric information.3 In contrast,

IPO waves in our model are obtained under perfect information symmetry.

Another possibility is that many ¯rms go public when they need capital for investment.

Supporting empirical evidence is provided by Choe, Masulis, and Nanda (1993) and Lowry

(2003), for example, although other studies, e.g. Helwege and Liang (2003), report evidence

to the contrary. To the extent that ¯rms invest more when they expect higher pro¯ts, this

idea is captured through the cash °ow channel in our model. Zingales (1995) focuses on the

corporate control aspect of an IPO, which is absent from our model. Benninga, Helmantel,

and Sarig (2003) model the tradeo® between private bene¯ts of control and the diversi¯cation

bene¯t of going public, and derive implications for optimal IPO timing that overlap with the

implications of our cash °ow channel. IPO waves can also obviously arise if technological

innovations cluster in time. In our model, only one idea is born each period, and IPO waves

instead arise due to clustering in the inventors' optimal IPO timing.

Some studies argue that IPO volume °uctuates in response to market mispricing.4 The

necessary assumption is that the periodic misvaluation can somehow be detected by the

owners of the ¯rms going public but not by the investors providing IPO funds. In this

literature, market returns are predictable due to time variation in investor sentiment. We

also assume that returns are predictable, but we di®er on the source of this predictability. We

model investor preferences using a habit formation model similar to Campbell and Cochrane

(1999), so that time variation in expected market returns is driven by time-varying risk

aversion of the representative investor. We do not need to take a ¯rm stand on which of the

two interpretations of predictability is closer to the truth, because whether expected returns

vary for rational or behavioral reasons, their implications for IPO volume in our model are

the same. Our modeling follows the rational avenue because it is tractable and because we

feel no need to depart from the rational model when it is not necessary.

3See, for example, Lucas and McDonald (1990), Choe, Masulis, and Nanda (1993), Bayless and Chaplinsky
(1996), Ho®mann-Burchardi (2001), and Lowry (2003). For other information-based models, see Persons and
Warther (1997), Chemmanur and Fulghieri (1999), Subrahmanyam and Titman (1999), Stoughton, Wong,
and Zechner (2001), Lowry and Schwert (2002), Benveniste, Busaba, and Wilhelm (2002), and Alti (2003).

4See, for example, Ritter (1991), Loughran and Ritter (1995), Rajan and Servaes (1997, 2003), Pagano,
Panetta, and Zingales (1998), Baker and Wurgler (2000), and Lowry (2003).
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Jovanovich and Rousseau (2001) present a model in which delaying an IPO is valuable

because it allows a private ¯rm to learn about a parameter of its own production function.

The idea that investment may be delayed due to learning is also discussed in the literature

on irreversible investment under uncertainty (e.g. Cukierman, 1980, and Bernanke, 1983).5

In our model, learning about the project does not begin until the IPO, and the option to

delay an IPO is valuable due to time variation in aggregate market conditions.

The paper is organized as follows. Section 2 develops our model of stock valuation under

time-varying investment opportunities. Section 3 discusses the decision to go public and

analyzes some properties of optimal IPO timing together with IPO valuation. Section 4 uses

a long simulated sample to investigate some properties of IPO waves in our model. Section

5 tests the main predictions of our model empirically. Section 6 examines the recent stock

price \bubble" using our valuation model. Section 7 concludes.

2. Valuing Publicly Traded Firms

This section develops a stock valuation model that is used in Section 3 in the analysis of

optimal IPO timing. We build on the model of P¶astor and Veronesi (2003, henceforth PV),

in which stock prices depend on expected pro¯ts, expected returns, and prior uncertainty

about average pro¯tability. We extend the PV model to allow for time variation in all three

quantities at the aggregate level. This time variation generates IPO waves in Section 4.

2.1. Time-Varying Pro¯tability

Consider a publicly traded ¯rm i whose pro¯ts are protected by a patent until time Ti. Let

½it = Y it =B
i
t denote the ¯rm's instantaneous pro¯tability at time t, where Y

i
t denotes the

earnings rate and Bit denotes the book value of equity. We take the ¯rm's investment policy

as given and assume that pro¯tability follows a mean-reverting process until time Ti:

d½it = Á
i
¡
½it ¡ ½it

¢
dt+ ¾i;0dW0;t + ¾i;idWi;t; (1)

whereW0;t andWi;t are uncorrelated Wiener processes capturing systematic (W0;t) and ¯rm-

speci¯c (Wi;t) components of the random shocks that drive the ¯rm's pro¯tability. Mean

5The option to delay investment is also studied by Brennan and Schwartz (1985), McDonald and Siegel
(1986), Ingersoll and Ross (1987), Dixit (1992), Abel et al (1996), and Berk (1999). See also Shleifer (1986),
Gale (1996), Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2001), and Novy-Marx (2003).
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reversion in pro¯tability is consistent with empirical evidence, as discussed in PV. We also

assume that the ¯rm's average pro¯tability ½it can be decomposed as

½it = Ã
i
+ ½t:

The ¯rm-speci¯c component Ã
i
, which we refer to as the ¯rm's \average excess pro¯tability,"

re°ects the ¯rm's ability to capitalize on its patent and is assumed constant over time. The

common component ½t, referred to as \average aggregate pro¯tability," is assumed to exhibit

mean-reverting variation that re°ects aggregate economic conditions:

d½t = kL (½L ¡ ½t) dt+ ¾L;0dW0;t + ¾L;LdWL;t; (2)

where W0;t and WL;t are uncorrelated. Periods of high aggregate pro¯tability (which often

coincide with economic expansions) are characterized by ½t > ½L, and vice versa.

The ¯rm is assumed to pay no dividends, to be ¯nanced only by equity, and to issue no

new equity. These assumptions are made mostly for analytical convenience; relaxing them

would add complexity with no obvious new insights.6 The clean surplus relation then implies

that book equity grows at the rate equal to the ¯rm's pro¯tability:

dBit = Y
i
t dt = ½

i
tB

i
tdt: (3)

2.2. Time-Varying Equity Premium

We model agents' preferences using a habit formation model similar to Campbell and

Cochrane (1999, henceforth CC), which implies that the equity premium varies over time

due to time-varying risk aversion. Aggregate consumption Ct follows the process

dct = (b0 + b1½t) dt+ ¾cdW0;t; (4)

where ct = log (Ct). Consumption growth is allowed to depend on average aggregate prof-

itability because such a link might seem plausible ex ante, but none of our results rely on this

link.7 Consumption is not linked to production in any other way; as other recent studies, we

6Dividends can be easily introduced with no e®ect on our conclusions. In fact, the calibration of the
\bubble" in Section 6 uses the version of the model that includes dividends. Debt ¯nancing can be allowed
as long as its dynamics do not a®ect the ¯rm's pro¯tability process. New equity can also in principle be
issued after the IPO. PV explain that if the ¯rm raises more capital when expected pro¯ts are high and pays
higher dividends when expected pro¯ts are low, then the ¯rm's market value becomes even more convex in
expected pro¯tability, and prior uncertainty has an even bigger positive e®ect on ¯rm value.

7As discussed later, our calibration uses the data-implied value of b1. This value turns out to be small
(b1 = 0:08 in Table 1), and using b1 = 0 leads to the same qualitative conclusions throughout.
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assume that consumption is ¯nanced mostly by income (e.g. labor income) that is outside

our model. Markets are complete, and all agents have identical information and preferences.

All agents are endowed with the habit utility function

U (Ct;Xt; t) = e
¡´t (Ct ¡Xt)1¡°

1¡ ° ; (5)

whereXt is an external habit index, ° regulates the local curvature of the utility function, and

´ is a pure time discount parameter. Following CC, we work with the surplus consumption

ratio St = (Ct ¡Xt) =Ct. The stochastic discount factor (SDF) ¼t can then be written as
¼t = UC (Ct; Xt; t) = e

¡´t (CtSt)
¡° = e¡´t¡°(ct+st) (6)

where st = log (St). CC assume that st follows a mean-reverting process with time-varying

volatility and perfect correlation with unexpected consumption growth. This speci¯cation

allows CC to solve for market prices numerically. To obtain analytical solutions for prices,

even in the presence of learning, we depart from CC and assume that

st ´ s (yt) = a0 + a1yt + a2y2t ; (7)

where yt is a state variable driven by the following mean-reverting process:

dyt = ky (y ¡ yt) dt+ ¾ydW0;t: (8)

As shown in the appendix, high values of yt imply a low volatility of the SDF and thus a low

equity premium. The appendix also describes the parameter restrictions that we impose on

s (y) to ensure that the model is consistent with the habit formation setting, namely that

St 2 (0; 1) for all t, and that s (y) in (7) is increasing in y for all plausible values of y.

2.3. Time-Varying Prior Uncertainty About Average Pro¯tability

Average excess pro¯tability Ã
i
is unobservable, and all agents learn about Ã

i
over time. For

any ¯rm i that goes public at time t, all agents have a common prior on Ã
i
, with prior

uncertainty equal to b¾t. b¾t is the same for all ¯rms going public at time t, for simplicity. It
seems plausible for b¾t to vary over time. For example, uncertainty about the Ãi's of new ¯rms
is large when these ¯rms cluster in an industry that has experienced technological advances

whose long-term impact is uncertain. We assume that average aggregate pro¯tability ½t is

observable, so it can also be referred to as \expected aggregate pro¯tability."8

8Unobservable ½t can be incorporated at the cost of a signi¯cant increase in complexity but with little
bene¯t for the purpose of this paper. It can be shown that higher uncertainty about ½t increases expected
cash °ow but also increases the discount rate, resulting in a relatively small net e®ect on prices. Veronesi
(2000) discusses these e®ects in a di®erent framework.
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We assume that b¾t takes values in the discrete set V = fv1; :::; vng, and that it switches
from one value to another in each in¯nitesimal interval ¢ according to the transition proba-

bilities ¸hk¢ = Pr
¡b¾t+¢ = vkjb¾t = vh¢. A discrete state space model is used mainly to allow

a reasonably convenient solution for optimal IPO timing in Section 3. In the calibration

below, we assume that b¾t moves relatively slowly over time between adjacent states.
All agents begin learning about Ã

i
as soon as ¯rm i begins producing (i.e. immediately

after its IPO, as explained in Section 3). Agents learn by observing realized pro¯tability ½it,

as well as ct, ½t, and ½
j
t for all ¯rms j that belong to the set It of ¯rms that are alive at time

t. The learning process is described by the following lemma, proved in the appendix.

Lemma 1. Suppose the prior of Ã
i
at time t0 is normal, Ã

i » N
³bÃit0 ; b¾2t0´, and the priors

are uncorrelated across ¯rms. Then the posterior of Ã
i
at any time t > t0 conditional on

Ft = f(½js; cs; ½s) : t0 · s · t; j 2 Itg is also normal, Ã
ijFt » N

³bÃit; b¾2i;t´, where
(a) The conditional mean bÃit = E[ÃitjFt] evolves according to the process

dbÃit = b¾2i;t Ái¾i;idfWi;t; (9)

where fWi;t is the idiosyncratic component of the Wiener process capturing the agents'

perceived expectation errors (see equation (31) in the appendix).

(b) The mean squared error b¾2i;t = E ·³Ãi ¡ bÃit´2 jFt¸ is non-stochastic and given by
b¾2i;t = 1

1b¾2t0 + (Ái)2

¾2i;i
(t¡ t0)

(10)

The uncertainty about Ã
i
declines deterministically over time due to learning. Note that

the assumption of uncorrelated priors on Ã
i
can be relaxed. For example, good news about

a ¯rm's Ã
i
might be bad news for the Ã

i
's of the ¯rm's competitors, in which case negative

prior correlation would seem appropriate. Correlated priors on Ã
i
would also lead to tractable

solutions for prices, but they would have no obvious e®ect on any of our conclusions.

2.4. Stock Prices and Returns

After its IPO, ¯rm i earns abnormal pro¯ts (Ã
i
) until its patent expires at time Ti. Any

abnormal earnings after Ti are assumed to be eliminated by competitive market forces, so
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that the ¯rm's market value at Ti equals its book value, M
i
Ti
= BiTi . (See PV, pp.5-6, for

additional discussion.) The ¯rm's market value at any t · Ti is M
i
t = Et

£
(¼Ti=¼t)B

i
Ti

¤
,

where the SDF ¼t is given in (6). The following proposition is proved in the appendix.

Proposition 1. Let hi = Ti ¡ t be the time to expiration of the patent of ¯rm i. Then

(a) The ¯rm's ratio of market value of equity to book value of equity is given by

M i
t

Bit
= Gi

³
hi; ½

i
t; ½t;

bÃit; yt; b¾i;t´ ; (11)

where

Gi
³
hi; ½

i
t; ½t;

bÃit; yt; b¾i;t´ = Zi ³hi; ½it; ½t; bÃt; yt´£ e 12KÁ(hi)2b¾2i;t (12)

and Zi
³
hi; ½

i
t; ½t;

bÃt; yt´ is de¯ned in equation (32) in the appendix.
(b) The ¯rm's excess stock returns follow the process

dRit = ¹R (yt; hi) dt+ ¾R;0 (yt; hi) d
fW0;t + ¾R;L (hi) dfWL;t + ¾R;i (b¾i;t; hi) dfWi;t; (13)

where dfWj;t's are Wiener processes de¯ned by the agents' expectation errors (see equa-

tion (31) in the appendix), and the explicit formulas for expected excess return ¹R,

systematic volatility ¾R;0, and the components of idiosyncratic volatility ¾R;L and ¾R;i

are given in equations (33) through (36) in the appendix.

What determines market prices? Proposition 1 implies that M/B is high if cash °ows are

high, if the discount rate is low, and if uncertainty is high. As for cash °ows, M/B increases

with expected aggregate pro¯tability, ½t, with expected excess pro¯tability,
bÃit, as well as

with current pro¯tability, ½it. As for the discount rate, M/B depends on the state variable y,

which captures risk tolerance. This dependence is nontrivial, but we ¯nd numerically that

M=B increases with y in the calibrated model, as expected. High y implies low risk aversion,

and thus a low equity premium and high prices. The fact that prices are high as a result

of high expected cash °ow or low discount rate is not surprising, of course. What seems

more interesting is that M/B also increases with b¾i;t, as clearly seen from equation (12). The
intuition behind this relation, ¯rst documented in PV, is provided in footnote 2.

Return volatility in equation (13) has three components. Systematic volatility ¾R;0 (yt; hi),

given in equation (34) in the appendix, declines with y in our calibrated model. Firm-speci¯c

volatility ¾R;i depends crucially on uncertainty b¾i;t, as shown in equation (36). Higher b¾i;t
makes the perceived Ã

i
more volatile, which increases return volatility. This additional

volatility is idiosyncratic because dbÃit in equation (9) is uncorrelated with consumption. The
third component of volatility, ¾iR;L (hi), is small and essentially constant over time.
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2.5. A Long-Lived Firm

The analysis so far pertains to patent-owning ¯rms that recently went public. Newly listed

¯rms constitute only a small fraction of the market (e.g. Lamont, 2002). To be able to relate

IPO waves to the market as a whole, we assume the existence of a \long-lived" ¯rm, which

represents the rest of the market. Let Bmt denote this ¯rm's book value, andD
m
t its dividends

at time t. The ¯rm's dividend yield, cm = Dm
t =B

m
t , is constant, and its instantaneous

pro¯tability is ½t. Clean surplus implies that dB
m
t = (Y

m
t ¡Dm

t ) dt = (½t ¡ cm)Bmt dt, and
the pricing formula is Mm

t = Et
£R1
t
¼s=¼tD

m
s ds

¤
. It is shown in the appendix that

Mm
t

Bmt
´ cm

Z 1

0

Zm (s; ½t; yt) ds; (14)

where Zm (s; ½t; yt) is given in equation (37) in the appendix. Excess returns follow

dRmt = ¹
m
R (yt; ½t) dt+ ¾

m
R;0 (yt; ½t) dfW0;t + ¾

m
R;L (yt; ½t) dfWL;t; (15)

where ¹mR , ¾
m
R;0, and ¾

m
R;L are given in equations (38) and (39) in the appendix.

2.6. Some Proxies

Our explicit pricing formulas help us construct useful empirical proxies. Two key variables

of interest that are unobservable in the data are the equity premium and prior uncertaintyb¾t. Note from equations (14) and (15) that neither the market value nor the volatility of the
long-lived ¯rm depends on b¾t. In contrast, both M/B and the volatility of IPOs are strongly
positively related to b¾t. This distinction suggests two proxies for b¾t. One proxy, NEWVOLt
= ¾ipoR;t ¡ ¾mR;t, compares the return volatilities of IPOs and the long-lived ¯rm, and the
other proxy compares their M/B ratios: NEWMBt = log

¡
M ipo
t =Bipot

¢¡ log (Mm
t =B

m
t ).

9 The

intuition that both NEWVOL and NEWMB should increase with b¾t is con¯rmed numerically
in our calibrated model. In the long simulated sample discussed in Section 4., NEWVOL and

NEWMB exhibit high positive correlations (0.84 and 0.75) with b¾t, while their correlations
with the other two state variables are much lower: 0.04 with expected market return and

zero with ½t for NEWVOL, -0.28 with expected market return and 0.12 with ½t for NEWMB.

(All correlations are computed for ¯rst di®erences because those are used in the empirical

work.) Our proxies for prior uncertainty thus have solid theoretical motivation.

9Jovanovich and Rousseau (2002, 2003) focus on a related quantity, the dispersion in Q (which is closely
related to M/B) across ¯rms. They ¯nd that most merger waves in the 20th century were preceded by a rise
in this dispersion. They also argue that this dispersion increases due to arrival of new technologies.
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One of our proxies for the equity premium is market return volatility (MVOL). The equity

premium and MVOL are highly correlated in our model because both variables decrease with

yt for all plausible values of yt. Both variables also increase with ½t, but the e®ect is weak.

In our simulation, MVOL is highly positively correlated (0.91) with the equity premium,

but not with the other two state variables (the correlation is 0.06 with ½t, and zero with b¾t).
The usefulness of MVOL as a proxy is underlined by the fact that its empirical estimates

have reasonably high precision. Another proxy for changes in the equity premium is realized

market returns, motivated by the fact (e.g. Campbell and Ammer, 1993) that market returns

seem to respond more to news about discount rates than to news about cash °ows.

2.7. Calibration

This subsection describes the parameters chosen to calibrate the model. All parameters

are summarized in Table 1, together with some implied aggregate quantities. We use data

on quarterly real aggregate consumption and aggregate pro¯tability between 1966Q1 and

2002Q1 to estimate the parameters for ct in equation (4) and for ½t in equation (2). Both

series are described in the appendix. The Kalman ¯lter is applied to the discretized versions

of the respective processes. The estimated parameters imply expected consumption growth

of 2.37% and volatility of 0.94% per year. For pro¯tability, we obtain ½L = 12:16% per year,

kL = 0:1412, and ¾LL = 0:64% per year.
10 We impose ¾L;0 = 0, which implies zero correlation

between ½t and yt. This innocuous restriction (unconstrained estimation produces ¾L;0 very

close to zero) makes it easier to interpret our subsequent results, as all three state variables

that drive IPO volume (½t, yt, and b¾t) are independent of each other.
The agents' preferences are characterized by the processes for st in equation (7), yt in

equation (8), and by the utility parameters ´ and °. The parameters are chosen to calibrate

the expected return, volatility, and M/B of the long-lived ¯rm to their respective empirical

values for the market, while producing reasonable properties for the real risk-free rate. Our

values y = ¡:0017 and ¾y = :5156 imply the average equity premium of 6.8% and market

volatility of 15% per year, and the speed of mean reversion ky = :073 implies a half-life of 9.5

years for yt. We use a 10% dividend yield cm for the long-lived ¯rm. The resulting average

aggregate M/B is 1.7, equal to the time-series average in the data. The average risk-free rate

is 3.3% per year. The volatility of the risk-free rate is 3.9%, which is slightly higher than in

the data (as is common in models with habit utility) but still reasonable.

10The speed of mean reversion kL implies a half-life of about 4.9 years. That is, given any starting value
½0, it takes on average 4.9 years for ½t to cover half the distance between ½0 and its central tendency ½L.
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The parameters for individual ¯rm pro¯tability ½it in equation (1) are chosen to match

the median ¯rm in the data. We use Ái = 0:3968, estimated by PV. PV also report an

8.34% per year median volatility of the AR(1) residuals for individual ¯rm pro¯tability. We

decompose this volatility into ¾i;0 = 4:79% and ¾i;i = 6:82% per year, which implies a M/B

of 1.7 for a ¯rm with 15 years to patent expiration and bÃit = 0 when b¾t = 0, yt = ¹y, and

½it = ½t = ½L. Finally, prior uncertainty b¾t moves along the grid V = f0; 1; :::; 12g % per year.
The transition probabilities are such that there is 10% probability in any given month of b¾t
moving up or down to an adjacent value in the grid. If b¾t hits the boundary of the grid, there
is a 20% probability of moving away from the boundary. This speci¯cation is adopted for

simplicity. One alternative approach would link b¾t to the number of recent IPOs, as those
might in principle help agents learn about the prospects of new ¯rms. Such an approach

would complicate the optimal IPO timing problem, but it would lead to the same pricing

formula, and we believe that none of the model's implications would change.

3. Optimal IPO Timing

There are two classes of agents, \inventors" and \investors". Investors are endowed with the

stream of consumption good given in equation (4). Inventors are endowed with the ability

to invent ideas that can deliver abnormal pro¯ts. Inventors compete so it is always optimal

to patent a new idea as soon as it is discovered. Upon patenting his idea, an inventor starts

a private ¯rm that owns the patent. The private ¯rm produces no revenue because the

inventor lacks the capital necessary to begin production. This capital is raised in an IPO,

in which the private ¯rm is sold to investors. Production begins immediately after the IPO,

generating pro¯ts described in (1). The inventor times the IPO to maximize the value of his

patent. The basic tradeo® is that delaying the IPO forfeits abnormal pro¯ts, but it may be

optimal if investment opportunities are expected to improve su±ciently in the future.

Maximizing the value of the patent is optimal for the inventor as it increases the value of

his endowment, and thus maximizes his life-time utility of consumption, given in equation

(5). Complete markets allow investors to insure the pre-IPO consumption of inventors using

contingent claims. Assuming that their endowments are equally valuable, investors and

inventors consume equally, justifying the representative agent framework in Section 2.2.

The capital necessary for production is raised by issuing equity because the inventor has

a strong incentive to diversify. If he instead borrowed and began producing, his entire wealth

would become driven by idiosyncratic shocks (dfWi;t) that cannot be hedged unless equity is

12



issued in an IPO. Standard risk-sharing arguments imply that the inventor wants to issue

some equity, so the IPO takes place. To simplify the exposition, we assume that the inventor

sells all of his ownership in the IPO, but it is easy to show that all implications of our model

are identical if the inventor retains any fraction of ownership after the IPO.

Figure 2 summarizes the sequence of events. At time ti, the idea is invented and patented.

The patent enables the owner to earn average excess pro¯tability Ã
i
until time Ti, but

production requires capital Bti that must be raised in an IPO.11 At time ¿i, ti · ¿i · Ti, the
inventor decides to go public and ¯les the IPO. The IPO itself takes place at time ¿i+`. The

lag ` re°ects mostly the time required by the underwriter to conduct the \road show". We

choose ` = 3 months.12 Only the inventor knows how to invest Bti (e.g. what machine to buy

or construct), and this knowledge is too complex to be sold, so Bti must be invested by the

inventor at the IPO. This assumption rules out pre-IPO patent sales. Once the investment

Bti is made, it is irreversible in that the project cannot be abandoned.13

In the IPO, the inventor sells the ¯rm to investors for its fair market value M i
¿i+`
, given

in Proposition 1, and pays a proportional underwriting fee f = 0:07.14 The inventor's payo®

is thusM i
¿i+`

(1¡ f)¡Bti, the value of the patent net of fees. The inventor chooses the time
to go public to maximize his expected payo®, properly discounted. The value of the patent

net of fees at any time t, ti · t · Ti, is given by

V (½t; yt; b¾t; Ti ¡ t) = max
¿i
Et

µ
¼¿i+`
¼t

¡
M i
¿i+`

(1¡ f)¡Bti¢¶ (16)

The optimal IPO timing problem bears resemblance to the pricing of American options, as the

inventor solves for the optimal stopping time, or the best time to exercise his option/patent.

Due to the time-inhomogeneity of the problem and the complexity of the pricing function,

we solve for V and the optimal stopping time numerically. The value of the patent must

satisfy the standard Euler equation Et [d (¼tVt)] = 0. The appendix shows that this condition

11For simplicity, we assume that Bti is proportional to the book value of the long-lived ¯rm, Bti = qBmti ,
with q = 0:0235%. Every month between January 1960 and December 2002, the book value of new lists
(ordinary common shares that ¯rst appear on CRSP in that month) is divided by the total book value.
The time-series average of the monthly ratios is 0.0235%, excluding the spikes in July 1962 and December
1972 when AMEX and Nasdaq were added to CRSP. The exact value of q is not important for any of our
conclusions. As long as q is reasonably small, the long-lived ¯rm accounts for the bulk of the market portfolio.
12Lowry and Schwert (2002) report that the average time between the IPO ¯ling and o®er dates between

1985 and 1997 is 72 days. The median is 63 days, the minimum 11 days, and the maximum 624 days.
13Schwartz (2001) ¯nds that the option to abandon a patent-protected project often represents a substantial

part of the project's value. This option is not considered here, for tractability (options on options are not easy
to value), but if it were, it would further increase IPO valuations, supporting one of our main conclusions.
14Chen and Ritter (2000) ¯nd that in 91% of the U.S. IPOs raising between $20 and $80 million (and in

77% of all IPOs) between 1995 and 1998, the gross spreads received by underwriters were exactly 7%. IPO
underpricing can also be incorporated by using a bigger f without a®ecting our qualitative results.
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translates into a system of partial di®erential equations, one for each possible uncertainty

state b¾t 2 V = fv1; :::; vng. Using the ¯nal condition that the patent is worthless at Ti if
not exercised before, we work backwards to compute Vt for every combination of the state

variables on a ¯ne grid. See the appendix for details.

3.1. When Do Firms Go Public?

Figure 3 plots the combinations of the equity premium and ½t for which the inventor optimally

decides to go public. Each line denotes the locus of points that trigger the IPO decision, or

the \entry boundary." Firms go public for all pairs of the equity premium and ½t that lie

inside the \entry region" north-west of the entry boundary. If the idea is born when market

conditions are inside the entry region, an IPO is ¯led immediately. Otherwise, the inventor

waits until market conditions improve, and an IPO is ¯led as soon as the entry boundary is

reached. If this never happens before the patent expires, the ¯rm never goes public.

The top left panel considers a ¯rm with bÃit = 0 and a patent with T = 15 years to

expiration. The entry boundary is upward sloping, so if the equity premium increases, ½t must

also increase to trigger entry. The entry boundary moves south-east as prior uncertainty b¾t
increases. Both e®ects are intuitive. At any point in time, the inventor compares the option

value of delaying the IPO with the value of the abnormal pro¯ts given up by waiting. The

option to wait is valuable when investment opportunities are bad and the patent's market

value is low. IPOs take place when investment opportunities improve so that the option to

wait is not valuable enough. Indeed, Figure 3 shows that IPOs take place when the cost of

capital is low, when expected pro¯tability is high, or when prior uncertainty is high.

The other three panels in Figure 3 tell the same story, with some additional insights.

The top right panel plots the entry boundaries for three di®erent values of expected excess

pro¯tability bÃit, with b¾t = 0. Higher values of bÃit expand the entry region by shifting the
entry boundary south-east, which is intuitive because a more pro¯table patent has a higher

opportunity cost of waiting for an improvement in the investment environment. The bottom

panels focus on the e®ects of time to the patent's expiration, T . As time passes and T

declines, the entry boundary moves south-east, lowering the hurdle for entry. This is also

intuitive. As the patent ages, expected improvements in investment opportunities become

smaller and the need to begin capitalizing on the patent becomes more pressing.
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3.2. Valuing IPOs

Figure 4 plots a ¯rm's M/B at the time of optimal entry. For each value of the equity

premium on the x axis, ¹½t is chosen from the optimal entry boundary (Figure 3). Note that

M/B depends nontrivially on the underlying state variables. If the entry decision were made

based on a simple cuto® rule, such as `go public as soon as M/B exceeds 3', the plots of M/B

would be overlapping °at lines. Instead, M/B increases with the equity premium along the

entry boundary. As the premium increases, ½t also increases (see Figure 3), and the resulting

gain in market value more than o®sets the loss due to the larger premium. In sum, inventors

pay attention to the overall market conditions, not just to current market prices.

The main message from Figure 4 is that IPOs command high market prices in our model.

Recall from the calibration that when yt, ½
i
t, and ½t are at their unconditional values andb¾t = 0, a ¯rm with bÃit = 0 and T = 15 has a M/B of 1.7. Most M/B values in Figure 4

are higher, with M/B of 5 in some cases (for higher M/Bs, see Section 6). The reason is

the endogeneity of IPO timing, as IPOs take place when market conditions are good. For

example, when b¾t = bÃit = 0, T = 15, and ½t is at its unconditional value of ½L = 12:16%,
optimal entry in Figure 3 occurs at the equity premium of about 3%, substantially below its

unconditional value of 6.8%. An immediate implication is that M/B should decline after the

IPO, on average, as the underlying state variables revert to their central tendencies.

IPO market values are high not only due to low discount rates and high expected pro¯ts,

but also thanks to prior uncertainty about Ã
i
. As shown in the top left panel of Figure 4, M/B

at the IPO increases with b¾t, as an outcome of two countervailing e®ects. Prior uncertainty
raises M/B, holding other things equal, but other things are not equal because the entry

boundary shifts south-east as b¾t increases (Figure 3). In this shift, ½t goes down for any given
equity premium, reducing the market value at entry. The reduced ½t apparently matters less

due to mean reversion in ½t. Also note that prior uncertainty gives a second reason why M/B

should decline after the IPO, on average. As soon as the ¯rm begins generating observable

pro¯ts, the market begins learning about Ã
i
, which reduces uncertainty (see equation 10)

and thus also M/B (see Proposition 1).15 Despite their projected decline, the high IPO

valuations are perfectly rational, of course. Investors buy expensive IPO shares because the

fair value of expected future cash °ows is high when b¾t is high (Proposition 1).
More pro¯table patents clearly result in higher IPO valuations, as shown in the top right

15This channel was ¯rst discussed in PV, who also ¯nd empirically that younger ¯rms have higher M/B
than older ¯rms, ceteris paribus, and attribute this ¯nding to learning about average pro¯tability.
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panel of Figure 4. For example, with a 4% equity premium, a ¯rm with bÃi = 0 commands
M/B of about 3, while a ¯rm with bÃi = 4% goes public at M/B of 4.5. Finally, the bottom

panels of Figure 4 con¯rm the intuition that patents with less time to expiration (lower T )

are less valuable, leading to lower M/B at the IPO.

4. IPO Waves

IPO waves arise naturally in our model as a result of optimal IPO timing. This section

analyzes the properties of IPO waves in a simulated environment. To make IPO waves

endogenous, we assume that the pace of innovation is constant, so that exactly one idea

is invented and patented each month. New patents do not make existing patents obsolete,

but ideas become obsolete (i.e. unable to generate abnormal pro¯ts) immediately after their

patent expires. To introduce heterogeneity across ideas in their excess pro¯tability, we drawbÃit randomly from the set f¡6;¡4; : : : ; 4; 6g % per year with equal probabilities. Ideas are

born into di®erent economic conditions, as investment opportunities change month to month.

To decide when to go public, patent owners solve the optimal timing problem described in

the previous section. To obtain population values for the variables of interest, we simulate

10,000 years (120,000 months) of data.

Figure 5 illustrates the dependence of IPO volume on the three state variables: the

equity premium (left panels), expected aggregate pro¯tability ½t (center panels), and prior

uncertainty b¾t (right panels), all in percent per year. To focus on the individual e®ects, only
one state variable is allowed to vary over time in each panel; the other two variables are ¯xed

to their long-term averages (for equity premium and ½t) or to zero (for b¾t). For illustration
purposes, we plot typical 100-year segments of simulated data.

The panels on the left show that IPO volume responds strongly to time variation in the

equity premium. Few if any ¯rms go public after increases in the premium, but many ¯rms go

public when the cost of capital declines. A decline in the premium represents an improvement

in investment opportunities, which may draw some patents into their entry region (Figure

3). Most of the time, there is a `backlog' of private ¯rms waiting for economic conditions to

improve. A drop in expected return that is either dramatic or persistent induces many of

these ¯rms to go public at about the same time, creating an IPO wave. The ¯gure shows

periods as long as ¯ve years in which no IPOs take place (as the equity premium rises), but

also months of feverish IPO activity, with over 20 IPOs per month (as the premium drops).16

16Since new ideas arrive at the rate of one per month, the average number of IPOs in our simulations
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The center panels show that increases in expected aggregate pro¯tability ½t tend to

be followed by more IPOs, and vice versa. However, this cash °ow e®ect is substantially

weaker than the e®ect of changing expected returns, for two reasons. First, ½t exhibits

less variation than the equity premium. The statistical process for ½t is calibrated using

parameters obtained from aggregate pro¯tability data, as explained earlier, and aggregate

pro¯tability in the data is relatively stable (see Figure 6, to be discussed). Second, ½t reverts

to its mean faster than the variable yt that drives expected returns (see Table 1). Since

changes in ½t are perceived as shorter-lived, their impact on prices is weaker. The inventor's

option to wait for an increase in ½t is thus less valuable, and he often ¯nds it optimal to ¯le

an IPO as soon as the idea is patented. Hence, IPOs in the top center panel of Figure 5 are

distributed much more evenly across time than IPOs in the other panels.

The panels on the right show that IPO waves are also caused by increases in prior

uncertainty b¾t. Increases in b¾t shift the entry boundary to the right (see Figure 3), inducing
some inventors sitting on a fence to enter capital markets. Given the dynamics of b¾t speci¯ed
in Section 2.7., b¾t has a powerful e®ect on IPO volume.
In summary, IPO volume in our model is driven by time variation in the equity premium,

prior uncertainty, and expected pro¯ts. The ¯rst two channels have been largely neglected

in the extant literature. The literature has examined the third channel, but this cash °ow

channel seems to be the weakest of the three in our calibration. Now that we know how IPO

waves are generated in our model, we turn to the various properties of IPO waves.

4.1. Simulation Evidence Around IPO Waves

IPO waves are periods in which the number of IPOs is consistently high. Following Helwege

and Liang (2003), we calculate three-month centered moving averages in which the number

of IPOs in each month is averaged with the numbers of IPOs in the months immediately

preceding and following that month. \Hot markets" are de¯ned as months in which the

moving average falls into the top quartile across the whole simulated sample. IPO waves are

then de¯ned as all sequences of consecutive hot-market months.17 In our simulated 10,000-

year-long sample, there are 4,790 IPO waves whose length ranges from 1 to 23 months, with

is just under one IPO per month (less than one because some patents never go public). In the data, the
number of IPOs between January 1960 and December 2002 averages 28.78 per month. Thus, to convert IPO
volume in our simulation into a comparable number in the data, multiply it roughly by a factor of 30.
17Rarely, a month with zero IPOs can be designated as the ¯rst or last month of a wave if the large IPO

volume in the neighboring month in°ates the moving average. Such months are excluded from the wave.
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the median of 2 months and the average of 2.8 months. The maximum number of IPOs in

any given month is 65, while the median across months is zero and the average is 0.9.

Since we assume a three-month lag between an IPO ¯ling and the IPO itself, it is also

useful to de¯ne an IPO \pre-wave" as an IPO wave shifted back in time by three months.

Each IPO wave in our model is driven by state variable changes that occur in the respective

pre-wave. Let \b" denote the beginning of a wave, or more precisely the last month before

the wave begins, and let \e" denote the end of the wave's last month. An IPO wave then

begins at the end of month b and ends at the end of month e, whereas an IPO pre-wave

begins at the end of month b-3 and ends at the end of month e-3.

Table 2 reports the averages of selected variables around IPO waves. Due to the enormous

size of the simulated sample, all averages can be treated as population values, so no p-values

are shown. Column 1 of Panel A reports the average change in the given variable during

a pre-wave. First, IPO waves are generated by pre-wave changes in the discount rate, as

expected total market return declines during a pre-wave by 0.92% per year on average.

This decline is due to declines in expected excess return (0.51%) as well as the risk-free rate

(0.41%). Expected return declines consistently before the wave and begins increasing shortly

before the end of a wave. Waves tend to occur when the cost of capital is low { expected

market return during a wave averages 7.00% per year, while the average outside a wave

is 10.61%. Second, IPO waves are triggered by pre-wave changes in expected cash °ows.

Expected pro¯tability rises by 0.06% per year during a pre-wave, and waves tend to occur

in periods of above-average expected pro¯tability. The cash °ow channel is substantially

weaker than the discount rate channel, as observed earlier. Third, IPO waves are initiated

by pre-wave changes in prior uncertainty. This uncertainty increases by 0.35% per year

during a pre-wave, and waves tend to occur in periods of above-average prior uncertainty.

Table 2 thus illustrates the importance of all three channels in generating IPO waves.

Table 2 also examines how our proxies for changes in investment opportunities vary

around simulated IPO waves. Market volatility, MVOL, declines during pre-waves by 0.62%

per year on average, and waves tend to occur in periods of low MVOL (14.13% during a

wave versus 15.38% outside a wave). This result follows from the strong positive relation

between expected market return and MVOL in our model, and it helps justify MVOL as a

proxy for expected market return in the empirical analysis. The excess volatility and M/B

of new ¯rms (NEWVOL and NEWMB) both increase during pre-waves. Both variables are

closely related to prior uncertainty in our model, and they will proxy for prior uncertainty
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in the empirical analysis.18 The table also shows that the market's aggregate M/B (de¯ned

as the sum of earnings divided by the sum of book values across all ¯rms) increases during

pre-waves, by 0.13 on average. IPO waves take place when the market is valued highly { the

aggregate M/B equals 2.02 during a wave, on average, versus 1.69 outside a wave.

Realized market returns should be unusually high before IPO waves due to declines in

expected returns and increases in expected pro¯tability. Indeed, Panel B of Table 2 shows

that average returns are signi¯cantly higher during pre-waves than outside pre-waves: 38.76%

versus 6.79% per year. Market returns are low during and after IPO waves { total returns

average 7.69% per year during a wave and 8.60% over the ¯rst three post-wave months,

substantially less than the 10.72% average outside a wave. There are two reasons behind

the low market returns after pre-waves. First, these returns are expected to be low if the

wave is caused by a pre-wave decline in expected return. Second, investment opportunities

typically begin deteriorating during the wave in light of the endogeneity of IPO timing { if

investment opportunities didn't get worse, the wave would have continued.

4.2. Regression Analysis

Table 3 further analyzes the determinants of IPO volume. Each column reports the coe±-

cients from a regression of the number of IPOs on the variables listed in the ¯rst column,

all simulated from our calibrated model. Although the model is simulated at a monthly

frequency, all variables are cumulated to the quarterly frequency so that Table 3 matches

its empirical counterpart, Table 5. No p-values are shown because all coe±cients are highly

statistically signi¯cant due to the size of the simulated sample (40,000 quarters).

Let us ¯rst examine the discount rate channel for generating IPOs. As shown in column

1, IPO volume increases after declines in expected market return over the previous two

quarters. Column 5 shows that IPO volume also increases after declines in the risk-free

rate. As seen from column 6, declines in market return volatility (which proxy for declines

in expected market return) also tend to be followed by more IPOs. The results in column

9 also support the discount rate channel: IPO volume is positively related to past market

returns, but negatively related to future and current returns. Realized returns are high while

18Computing NEWVOL and NEWMB requires at least one IPO in the given month. Since only one idea is
born each month, our simulated sample includes many months with zero IPOs, especially before IPO waves.
To avoid missing observations in the months with the biggest improvements in investment opportunities, we
assume that only one ¯rm with T = 15 and bÃit = 0 is born in any month t into the current market conditions
summarized by yt, ½t, and b¾t. This assumption is made for the purpose of constructing NEWVOL and
NEWMB only, and it provides a cleaner assessment of these proxies for b¾t than any obvious alternatives.
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expected return drops, but they are low after the drop stops.

The cash °ow and uncertainty channels are also clearly demonstrated in Table 3. As

shown in column 2, IPO volume is high after increases in expected pro¯tability ¹½. The

results in column 9, discussed in the previous paragraph, are also consistent with the cash

°ow channel. IPO volume is also high after increases in prior uncertainty b¾, as shown in
column 3, as well as after increases in the excess volatility and M/B of new ¯rms (columns

7 and 8), both of which proxy for b¾ in our empirical work.
All regressions in Table 3 also include a lag of IPO volume on the right-hand side, to be

consistent with the subsequent empirical regressions. This lag is always highly signi¯cant,

but its removal does not alter any of the above relations. Also note that theR2's are relatively

low, between 0.06 and 0.19, because the true relations between IPO volume and the given

variables are complex and nonlinear in our model. We run linear regressions for two reasons

{ to be consistent with the subsequent empirical regressions, and because they su±ce to

clearly demonstrate the presence of all three channels that produce IPOs in our model.

5. Empirical Analysis

This section empirically investigates some implications of the model presented earlier. The

model suggests three determinants of IPO volume: time-varying expected returns (the dis-

count rate channel), time-varying expected pro¯tability (the cash °ow channel), and time-

varying uncertainty about average pro¯tability (the uncertainty channel). The empirical

evidence is consistent with the existence of all three channels, as shown below.

5.1. Data

The data on the number of IPOs, obtained from Jay Ritter's website, cover the period

January 1960 through December 2002. To avoid potential concerns about nonstationarity

(see Lowry, 2003), we de°ate the number of IPOs by the number of public ¯rms at the end

of the previous month.19 In the rest of the paper, \the number of IPOs" and \IPO volume"

19All individual stock price data is obtained from the Center for Research in Security Prices (CRSP) at
the University of Chicago. We de¯ne public ¯rms as ordinary common shares (CRSP sharecodes 10 or 11)
with positive market values. The number of CRSP-listed ¯rms jumps in July 1962 and December 1972 due
to the addition of Amex and Nasdaq ¯rms. Following Lowry (2003), we use the actual number of public
¯rms after December 1972, but estimate the number of public ¯rms prior to that by assuming that this
number grew at the compounded growth rate of 0.45% per year before December 1972.
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both refer to the de°ated series, whose values range from zero to 2.1% per month, with an

average of 0.5%. The pattern of time variation in the de°ated series looks so similar to the

pattern in the raw series plotted in Figure 1 that it is not worth plotting separately.

The data on our proxies for changes in investment opportunities are also constructed

monthly for January 1960 through December 2002, unless speci¯ed otherwise. We use all

available data at the time of this writing. Market returns (MKT) are total returns on the

value-weighted portfolio of all NYSE, AMEX, and NASDAQ stocks, extracted from CRSP.

Market volatility (MVOL) is computed each month after July 1962 as standard deviation

of daily market returns within the month. The aggregate M/B ratio (M/B) is the sum

of market values of equity across all ordinary common shares divided by the sum of the

most recent book values of equity. The risk-free rate (RF) is the nominal yield on a one-

month T-bill, obtained from Ken French's website. Aggregate pro¯tability (return on equity,

ROE) is computed quarterly for 1966Q1 through 2002Q1 using data from Compustat, as

described in the appendix. As another measure of cash °ow expectations, we use the I/B/E/S

summary data on equity analysts' forecasts of long-term earnings growth. These forecasts

have horizons of ¯ve years or more, which makes them suitable given the relatively long-term

nature of ¹½. For each ¯rm and each month, the average forecast of long-term earnings growth

is computed across all analysts covering the ¯rm. The forecast of average earnings growth

(IBES) is then computed by averaging the average forecasts across all ordinary common

shares. The resulting series is available for November 1981 through March 2002. The monthly

time series of M/B, MVOL, ROE, and IBES are plotted in Figure 6.

We construct both proxies for prior uncertainty discussed in Section 2.6. New ¯rm excess

volatility (NEWVOL) in a given month is computed by subtracting market return volatility

from the median return volatility across all new ¯rms, de¯ned as ¯rms whose ¯rst appearance

in the CRSP daily ¯le occured over the previous month. A given ¯rm's return volatility in

each month is the standard deviation of daily stock returns within the month. NEWVOL has

464 valid monthly observations in the 486-month period between July 1962 and December

2002. New ¯rm excess M/B ratio (NEWMB) is computed for each month between January

1950 and March 2002 as follows. First, we compute the median M/B across all new ¯rms,

de¯ned as those that appeared in the CRSP monthly ¯le over the previous year.20 NEWMB

is computed as the natural logarithm of that median minus the log of the median M/B

across all ¯rms. The construction of M/B for individual ¯rms is described in the appendix.

20This de¯nition of new ¯rms ensures availability of their valid M/B ratios. Few ¯rms have valid M/B
ratios in the ¯rst few months after listing because M/B is computed using lagged book equity, which is often
available only on an annual basis and generally available only after market equity becomes available. For
both NEWMB and NEWVOL, we require at least three new ¯rms to compute a valid median.
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NEWMB has eight missing values between January 1960 and March 2002. The monthly

time series of NEWVOL and NEWMB are plotted in Figure 7.

5.2. Empirical Evidence Around IPO Waves

Table 4 reports the averages of selected variables around IPO waves, de¯ned in the same

way as in Table 2. Between 1960 and 2002, there are 16 IPO waves whose length ranges

from one to 21 months, with a median of 5 months and an average of 8.1 months. The

t-statistics, reported in parentheses, capture the signi¯cance of the di®erence between the

variable's average in the given period and outside that period. For example, the t-statistic

for average MVOL during a wave (-3.18) is computed from a monthly regression of market

volatility on a dummy variable equal to one if the month is part of an IPO wave and zero

otherwise. A positive (negative) t-statistic reveals that the average in the given period is

bigger (smaller) than the variable's average in the full sample. All variables except for the

unitless M/B-related variables are expressed in percent per year.

The average pre-wave change in MVOL is signi¯cantly negative at -2.81% (t = ¡2:27),
consistent with our hypothesis that IPO waves are often caused by declines in expected

returns. Moreover, the average MVOL during a wave (12.67%) is signi¯cantly lower than

outside a wave (15.24%). Aggregate M/B ratio increases during pre-waves by 0.08 (t = 1:79),

as predicted by the model. M/B is above its full-sample average of 1.7 in and around IPO

waves, suggesting that the waves tend to occur when prices are high. Aggregate pro¯tability

and IBES both increase before IPO waves, as predicted by the cash °ow channel, but nei-

ther increase is statistically signi¯cant. NEWVOL increases signi¯cantly during pre-waves,

consistent with the uncertainty channel, but NEWMB does not.

Panel B of Table 4 shows that average market returns are high before IPO waves and

low thereafter, as predicted by the model. Market excess returns are signi¯cantly higher

two quarters before a wave (25.83% annualized with t = 2:81), while they are below average

during and especially after IPO waves (-5.35% with t = ¡1:36 in the ¯rst quarter). This
pattern is quite similar to the pattern observed in Table 2, supporting the model.

Since the averages in Table 4 are computed across only 16 IPO waves, only a few relations

are statistically signi¯cant.21 More detailed empirical analysis is therefore performed in the

21Note that the t-statistics are generally higher in absolute value during IPO waves than in a given month
simply as a result of a larger number of observations. For example, there are 129 months that belong to an
IPO wave, but only 16 months that correspond to the beginning of a wave.
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following section, which focuses on IPO volume rather than on IPO waves alone.

5.3. Regression Analysis

Each column of Table 5 corresponds to a separate regression, in which the number of IPOs in

the current quarter is regressed on proxies for changes in investment opportunities. Lagged

IPO volume is included on the right-hand side to capture persistence in IPO volume that

is unexplained due to any potential misspeci¯cation in the regressions. Lowry (2003) also

includes lagged IPO volume on the right-hand side of her regressions. She also always

includes a ¯rst-quarter dummy that captures an apparent seasonality in IPO volume, and

we follow her treatment. Both variables are signi¯cant in each regression. The t-statistics

are in parentheses. Note that Table 5 is an empirical counterpart of Table 3.

First, we test the discount rate channel, in which new IPOs are triggered by declines

in expected returns. Column 1 shows that IPO volume is signi¯cantly positively related to

total market returns over the previous two quarters (t = 3:34 and 3.25), consistent with both

the discount rate and cash °ow channels. Moreover, IPO volume is signi¯cantly negatively

related to market returns in the subsequent quarter (t = ¡2:23), consistent with the discount
rate channel.22 The relation with current returns is positive, not negative as in Table 3, but

this di®erence does not contradict the model. IPO waves in the data tend to last longer

than our simulated IPO waves, perhaps due to clustering in the production of new ideas,

which is outside the model. As a result, actual IPO waves have more overlap than simulated

waves with the declines in expected returns that caused the waves, and therefore also with

high realized returns. Column 2 shows that IPO volume is signi¯cantly negatively related

to current (t = ¡4:41) as well as past (t = ¡3:59) changes in market volatility, again
consistent with the discount rate channel. Since changes in the risk-free rate in column 3

seem unrelated, IPO volume appears to be driven by time variation in the risk premia.

Second, the cash °ow channel is also supported by the data. Column 5 shows that IPO

volume is positively related to current (t = 2:50) as well as future changes in aggregate

pro¯tability, suggesting that ¯rms tend to go public when cash °ow expectations improve.23

The same conclusion is reached in column 6: IPO volume is signi¯cantly higher (t = 5:07)

when equity analysts on average upgrade their forecasts of long-term earnings growth.

22This negative relation is also reported by Lamont (2002), Schultz (2003), and Lowry (2003).
23We include leads rather than lags of ROE in the regression because changes in expectations of future

cash °ows should be detectable in future cash °ows.
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Third, prior uncertainty also seems to go up before ¯rms go public. In columns 8 and

9, IPO volume is positively related to recent changes in the excess M/B ratio of new ¯rms

(t = 3:18 and 2.35) as well as to recent changes in the excess volatility of new ¯rms (t = 2:23),

both of which are strongly associated with prior uncertainty in our model.

Some of the relations described above lose their statistical signi¯cance when realized

market returns are included in the regression. The reason goes beyond the simple lost-

degrees-of-freedom e®ect. The right-hand side variables are merely proxies for unobservable

changes in expectations and uncertainty. In reasonably e±cient markets, where prices re°ect

much of the available information, realized returns are the best proxy for changes in invest-

ment opportunities { when investment opportunities improve, prices go up, and vice versa.

It is thus not surprising that including market returns drives some of the weaker proxies

below the threshold of signi¯cance. The role of these other proxies is simply to provide

additional evidence on the likely causes of the observed price changes. To summarize, we

con¯rm empirically that ¯rms go public especially after capital becomes cheaper, after cash

°ow expectations improve, and after prior uncertainty regarding future growth increases.

6. The Recent Stock Price \Bubble"

On March 10, 2000, the Nasdaq Composite Index closed at its all-time high of 5,048.62. For

comparison, the same index reached 1,114 in August 1996 as well as in October 2002. Many

practitioners and some academics refer to the time period culminating in March 2000 as the

\Nasdaq bubble" because they ¯nd it di±cult to rationally explain the high valuations. In

this section, we calibrate our rational valuation model to the circumstances of March 10,

2000, and show that the observed valuations can be explained using plausible values of prior

uncertainty, expected returns, and expected pro¯tability.

To judge the plausibility of our choices, it is important to realize that the peak of the

\bubble" was preceded by a decade of frenetic IPO activity. More than 500 ¯rms per year

went public in every year between 1992 and 1999 (except for 1998 with 344 IPOs), and 123

¯rms went public in the ¯rst quarter of 2000. There was at least one IPO wave in each

year between 1991 and 1997, according to the strict de¯nition presented earlier, and the last

IPO wave in our sample occurred in the summer of 1999. The 1990s can thus be loosely

characterized as one big IPO wave. According to our model, the unusually high IPO volume

in the 1990s must have been caused either by a prolonged decline in expected market returns

or by prolonged increases in expected pro¯tability or prior uncertainty. If all three channels
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were at work, then expected market return in March 2000 was quite low, and both expected

pro¯tability and prior uncertainty were quite high. Low discount rates and high cash °ow

expectations imply high valuations for the market as a whole, and high prior uncertainty

implies especially high valuations for ¯rms that recently went public. The high market prices

in March 2000 should therefore not be surprising, at least qualitatively.

Several recent studies also argue that expected market return in March 2000 was low.

Fama and French (2002) report recent estimates of the equity premium of 2.6% and 4.3% per

year. Fama and French (2003) argue that a declining cost of equity capital attracted weaker

¯rms to capital markets recently. At the extreme, Glassman and Hassett (1999) argue that

the equity premium declined to zero. P¶astor and Stambaugh (2001) estimate the premium of

4.8% at the end of 1999. Welch (2001) surveys 510 academics in 2001 and reports a median

equity premium forecast of 3%. Based on this evidence, the values of the equity premium

between 2% and 5% per year receive the most attention in our calibration.

At the peak of the \bubble", many Nasdaq ¯rms were expected to deliver high future

pro¯tability. Firm pro¯ts were strong, as shown in Figure 6, and equity analysts expected

unusually high long-term earnings growth. The average forecast of long-term earnings growth

(IBES) in March 2000 was 22.77%, higher than ever before. This average forecast is even

higher, 28.82%, when computed across Nasdaq ¯rms only. There is also abundant anecdotal

evidence that cash °ow expectations at the time were very optimistic.24

Prior uncertainty was also high, according to its proxies, plotted in Figure 7. NEWMB

rises substantially in the late 1990s and declines after 2000. NEWVOL exhibits an even

more remarkable pattern: In 1998, it triples from about 2% per day to about 6%, it remains

around 6% through the end of 2000, and then it drops back to about 2% after 2000. These

extraordinary humps indicate abnormally high prior uncertainty in 1998 through 2000. This

is not surprising. The long-term prospects of new ¯rms are uncertain when old paradigms are

fading away and a \new era" is being embraced. During the \Internet revolution", investors

appeared to be unusually uncertain about future productivity and growth.25 26 The high

24E.g. \Applegate: This business cycle is extraordinary... Today tech earnings are growing 24%, which is
signi¯cantly better than the rest of the market. Their prices are accordingly richer... I'm comfortable right
here, sticking with the Ciscos, Microsofts and Intels." David Henry, USA Today, 16 December 1999.
25E.g. \...the projections of revenue growth were, by and large, wild guesses." New Economy, Bad Math, ...

Avital Louria Hahn, Investment Dealers Digest, 23 October 2000. E.g. \The problem is that since we know
so little about where the Net is headed, predicting cash °ow so far into the future is largely meaningless...
investing in this new technology was a bet..." You Believe? ... Fortune Magazine, June 7, 1999.
26In 1999, 57.4% of IPOs were carried out by Internet ¯rms, according to Ljungqvist and Wilhelm (2003).

Ofek and Richardson (2002, 2003) analyze the rise and fall of Internet stock prices in 1998 through 2000.
They also discuss the high return volatility of Internet ¯rms, which is consistent with high prior uncertainty.
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prior uncertainty in the late 1990s may have attracted many ¯rms to go public, and it might

also have contributed to the exorbitant valuations of many IPOs at that time.

6.1. Matching Nasdaq's Valuation

For each Nasdaq-traded ¯rm, the market value of equity on March 10, 2000 is computed

by multiplying the share price by the number of shares outstanding, using the CRSP daily

¯le. The book value of equity at the end of 1999 is computed as described in the appendix.

Nasdaq's M/B, computed as the sum of market values of all Nasdaq ¯rms divided by the

sum of book values, is equal to 6.85. Matching this large number is the task of this section.

Nasdaq's pro¯tability, ½t = 12:79%, is computed as the sum of earnings of all Nasdaq ¯rms in

1999 divided by the sum of book values of equity at the end of the previous year. Similarly,

Nasdaq's dividend yield, c = 2:06%, is computed as the sum of dividends available to common

stockholders of all Nasdaq ¯rms in 1999 divided by the sum of book values at the end of the

previous year. Expected aggregate pro¯tability is set equal to the 1999Q4 value of aggregate

market pro¯tability (the sum of earnings of all NYSE/Nasdaq/Amex ¯rms divided by the

sum of most recent book values of equity), so that ¹½ = 15:66% per year.

In our model, M/B is assumed to converge to one after T years. As discussed in PV, this

theoretical treatment ignores the practical issues of conservative accounting and of intangible

assets missing from the books, which imply that M/B might exceed one even after pro¯ts

are competed away. From the practical standpoint, therefore, it seems reasonable to assume

that M/B converges to the average M/B of mature ¯rms whose patents have expired. We

assume that Nasdaq's M/B after T = 15 years converges to 1.29, which is the average across

years 1962 through 1999 of the median M/B across \old" ¯rms, de¯ned as those that ¯rst

appeared in the CRSP monthly ¯le no later than December 1947 (i.e. 15 years before 1962).

All other parameters needed to calibrate the model are taken from Table 1.

Panel A of Table 6 reports the model-implied M/B for Nasdaq on March 10, 2000 under

zero prior uncertainty (b¾ = 0) for di®erent values of the equity premium and expected excess
pro¯tability ( bÃi). The model-implied M/B increases with bÃi and decreases with the equity
premium, as expected. When Nasdaq is expected to deliver the same average pro¯tability as

the market ( bÃi = 0), not even the equity premium of 1% per year is able to match Nasdaq's
M/B of 6.85.27 With bÃi > 0, though, the model often produces M/Bs that match or exceed
27Using an in°ation-adjusted residual income model, Ritter and Warr (2002) argue that stocks in the Dow

Jones 30 index were overvalued in the late 1990s even if the equity premium was zero.
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6.85. For example, with bÃi = 4% per year, the equity premium needed to match Nasdaq's

M/B is about 2.5% per year, and with bÃi = 6%, the required premium is about 4.5%. A

high enough bÃi and a low enough equity premium will do the trick, of course.

Matching Nasdaq's M/B is easier when we recognize that ¹Ãi is unknown. Panel B reports

\implied prior uncertainty", or the prior uncertainty b¾ that equates the model-implied M/B
to the observed M/B.28 Implied uncertainty is listed as zero for all pairs of bÃi and the equity
premium that deliver M/B > 6:85 in Panel A. When bÃi = 0 and the equity premium is 4%,

matching M/B of 6.85 requires prior uncertainty of 9.42% per year. It seems more reasonable

to use bÃi > 0, though, as investors apparently expected excess pro¯ts on Nasdaq stocks (e.g.
footnote 24). Raising bÃi to 2% per year, implied uncertainty drops to 7.50%. When bÃi and
the equity premium are both at the plausible value of 4%, the required uncertainty is 4.86%,

which seems plausible as well. To summarize, Nasdaq's M/B on March 10, 2000 appears

consistent with reasonable parameter values in our valuation model.

In Table 6, the Nasdaq ¯rms are expected to earn abnormal pro¯ts over T = 15 years

after March 2000. Table 7 is an equivalent of Panel B of Table 6 with T = 10 and 20 years.

This table shows that implied prior uncertainty is highly sensitive to T . With T = 10,

matching Nasdaq's M/B requires a fair amount of optimism. With bÃi = 8% (i.e. expected

total pro¯tability of ¹½+ bÃi = 23:66%) and a 2% equity premium, implied prior uncertainty

is 7.15%. Raising the equity premium to 4% raises implied prior uncertainty to almost 10%.

In contrast, with T = 20, matching Nasdaq's M/B is easy. Even with bÃi = 2% and a 4%

equity premium, implied uncertainty is only 3.83%.

What choice of T is appropriate here? Taking our model literally, T should re°ect patent

duration. According to the U.S. law, patents issued before June 8, 1995 typically last for

17 years from the date of issuance, while patents granted after June 8, 1995 last for 20

years from the date of ¯ling. The e®ective life of a patent is often shorter than 20 years,

because some products such as drugs require various regulatory approvals before coming to

the market, but patent extensions can frequently be obtained to compensate for the time

lost in regulatory review (see Schwartz, 2001). Values of T between 10 and 20 years thus

seem reasonable. We report results for T = 10, 15, and 20 years, with the most emphasis

on T = 15. Of course, many patents of the Nasdaq ¯rms in 2000 had less than 15 years to

expiration. On the other hand, many ¯rms had R&D in progress that almost guaranteed

new patents in the near future. PV also choose T = 15 in their analysis.

28The idea of backing out the prior uncertainty needed to match the observed evidence is not new. In
a mean-variance framework where investors can invest in U.S. as well as non-U.S. stocks, P¶astor (2000)
computes the prior uncertainty about mispricing necessary to explain the observed degree of home bias.
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6.2. Matching the Valuations of Individual Firms

Table 8 reports the implied prior uncertainty for selected high-pro¯le technology ¯rms. Each

¯rm's M/B is computed on March 10, 2000, pro¯tability and dividend yield are computed

over 1999, and T = 15 throughout. The valuations of Compaq (M=B = 3:20), Dell (55:96),

and Lucent (16:07) are easy to match using our valuation model. For example, while Dell's

and Lucent's M/Bs appear huge, their most recent annual ROEs are over 110% and 85%,

respectively. As a result, the implied prior uncertainty for all three ¯rms is under 6% even

with bÃi = 0 and the equity premium as high as 5%. The valuations of HP (8:31), IBM

(8:97), Intel (11:09), Microsoft (18:79), and Motorola (5:81) can also be reconciled with our

model for plausible parameter values. With bÃi = 5% and the equity premium of 4%, HP's

implied prior uncertainty is 6%, Intel's and Motorola's is 3%, and IBM's and Microsoft's

valuations are matched even with zero prior uncertainty.

The ¯rms whose valuations are more di±cult to match are Cisco (M=B = 39:02), Oracle

(62:23), and Yahoo (78:41). Now we need to resort to the equity premium of 3% (or less).

With bÃi = 10%, which implies expected total pro¯tability of ¹½ + bÃi = 25:66%, the implied
prior uncertainty is 7.48% for Cisco, 8.41% for Oracle, and 14.37% for Yahoo. These param-

eter combinations do not seem implausible to us, but Yahoo's valuation is clearly pushing

the limits. With the above parameter values, the market's 95% con¯dence interval for Ya-

hoo's average pro¯tability in excess of aggregate pro¯tability over the following 15 years

is (¡18:74%; 38:74%) per year. Fixing ¹½ at 15.66%, this translates into a 95% con¯dence

interval for Yahoo's average total pro¯tability of (¡3:08%; 54:50%) per year.

Is such uncertainty implausibly large? Not necessarily. Oracle's and Microsoft's average

annual ROEs over the previous 14 years (over which their data is available on Compustat,

1987{2000) were 52.35% and 45.45%, respectively. Two other ¯rms from Table 8, Cisco and

Dell, also delivered average annual ROE in excess of 45% over the previous ten years or more.

If investors in March 2000 believed that Yahoo might possibly turn into the next Oracle but

that it might also fail, then the prior uncertainty must have been huge, and even values as

large as 14.37% should be considered seriously.29 In summary, even Yahoo's astronomical

valuation can be justi¯ed by su±ciently high prior uncertainty.

After March 2000, the valuations dropped signi¯cantly and the IPO activity cooled down.

In our model, such events are caused by positive shocks to expected returns or by negative

29Some related evidence is reported by PV, who extract prior uncertainty from the estimated cross-sectional
dispersion of average annual ROE. They report the dispersion of 13.68% (7.28%) per year when at least 10
(20) valid ROEs are required to compute the average. They choose b¾t = 10% as a round-number compromise.
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shocks to expected cash °ows or prior uncertainty. Both realized and expected pro¯ts came

down after 2000 (Figure 6), as did both proxies for prior uncertainty (Figure 7), but it seems

di±cult to establish causality. We prefer to avoid speculation as to why the \bubble" burst,

and simply pin it on unexpected worsening of investment opportunities.

To summarize, the high market valuations observed in March 2000 can be rationalized

in our model using plausible values for expected returns, pro¯tability, and prior uncertainty.

March 2000 was preceded by a decade of extensive IPO activity, and the economic conditions

that entice ¯rms to go public also imply high market valuations.

7. Conclusions

In their recent survey of the IPO literature, Ritter and Welch (2002) conclude that \market

conditions are the most important factor in the decision to go public." We agree, and we point

out which dimensions of market conditions appear the most relevant: the equity premium,

expected aggregate pro¯tability, and prior uncertainty. Ritter and Welch (2002) also argue

that \perhaps the most important unanswered question is why issuing volume drops so

precipitously following stock market drops." Our model provides a simple answer. Whether

prices drop due to increases in expected returns or decreases in expected cash °ows, IPO

volume declines as private ¯rms wait for more favorable market conditions.

Our model has numerous asset pricing implications for IPO volume. IPO waves should be

preceded by high market returns, followed by low market returns, and accompanied by high

stock prices and by increases in aggregate pro¯tability. IPO waves should also be preceded

by increased disparity between new ¯rms and old ¯rms in terms of their valuations and

return volatilities. All of these implications are con¯rmed in the data.

A broad objective of this paper is to establish IPO volume as a useful tool in asset pricing.

IPO volume helps us better understand prices because it proxies for unobservable changes in

investment opportunities. For example, observing high IPO volume should lead us to infer

that investment opportunities have improved, justifying higher prices. We point to the 1990s

IPO wave and argue that stock prices in March 2000 were high thanks to some combination

of high prior uncertainty, low expected returns, and high expected pro¯tability.

This paper highlights the importance of prior uncertainty about average pro¯tability.

We show that this uncertainty helps explain high IPO valuations, and that its increases can

lead to IPO waves. We argue that prior uncertainty is high during technological revolutions.
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According to its proxies, prior uncertainty was unusually high in the late 1990s.

We cannot rule out behavioral explanations for time-varying IPO volume, but two of

our empirical ¯ndings seem more in line with our rational model than with stories based on

mispricing. High IPO volume tends to be accompanied by increased aggregate pro¯tability

as well as increased di®erence between the volatilities of new ¯rms and old ¯rms. Both facts

are consistent with our model, but neither appears to be predicted by the mispricing story in

which ¯rms go public in response to market overvaluation. Di®erentiating mispricing from

rational variation in expected returns clearly merits more work.

This paper links IPO volume to market returns, but not to the returns on individual

IPOs; thus we make no contribution to the literature on the long-run IPO performance.30

The arrival of new ideas is exogenous in our model, but endogenizing it could be interesting.

If capital must be raised to produce an idea, then low cost of capital might accelerate the

pace of technological innovation, leading to IPO clustering. We show that IPOs cluster in

time as a result of optimal IPO timing even if the rate of technological change is constant.

Our model can also explain why some IPO waves exhibit industry concentration: increases in

industry-speci¯c prior uncertainty or excess pro¯tability can lead to IPO waves concentrated

in the given industry, without triggering IPOs in other industries.

Our focus is on IPO waves, but our model can be modi¯ed in principle to address a

broader issue of cyclicality of investment. Suppose public ¯rms can invent ideas or purchase

them from inventors. A public ¯rm solving for the optimal time to make an irreversible

investment is considering tradeo®s similar to those of our inventor, and \investment waves"

could obtain after investment opportunities improve. If the capital for investment is raised

in a seasoned equity o®ering (SEO), we might also see SEO waves. We do not focus on SEOs

because public ¯rms are more likely than the inventor to seek and obtain debt ¯nancing,

and capital structure issues are beyond the scope of this paper. More generally, we do

not focus on investment by public ¯rms because such ¯rms often invest simply to maintain

competitive stock of physical capital rather than to embark on new projects with uncertain

and perishable abnormal pro¯ts, making some of the key features of our framework less

relevant. Prior uncertainty, for example, is clearly higher for IPOs than for the investment

projects of existing public ¯rms. Nonetheless, properties of aggregate investment in time-

varying market conditions certainly deserve to be investigated further.

30For important contributions to that literature, see Ritter (1991), Loughran and Ritter (1995), Brav and
Gompers (1997), Brav, Geczy, and Gompers (2000), and Schultz (2003), among others.
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Figure 1. IPO volume. The ¯gure plots the number of IPOs in each month between
January 1960 and December 2002. The data is obtained from Jay Ritter's website.
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Figure 3. Optimal IPO Timing. Each panel plots the entry boundary, the set of pairs of
the equity premium (horizontal axis) and expected aggregate pro¯tability ½ (vertical axis)
for which the inventor optimally decides to go public. The entry boundaries are reported for
three levels of prior uncertainty b¾t = 0, 5%, and 10% per year (top left panel), ¯rm-speci¯c
excess pro¯tability Ã̂ = 0 and §4% per year (top right panel), and time T = 5, 10, and 15
years to the patent's expiration (bottom panels). An IPO takes place for values of the equity
premium and ½ north-west of each boundary. Unless noted otherwise, the parameter values
used to compute the optimal IPO timing decision are given in Table 1.
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Figure 4. IPO valuations. Each panel plots the ¯rm's market-to-book ratio (M/B) at
the time of the IPO. For each value of the equity premium, the value of expected aggregate
pro¯tability ½ is chosen from the optimal entry boundary shown in Figure 3. The M/Bs are
reported for three levels of prior uncertainty b¾t = 0, 5%, and 10% per year (top left panel),
¯rm-speci¯c excess pro¯tability Ã̂ = 0 and §4% per year (top right panel), and time T = 5,
10, and 15 years to the patent's expiration (bottom panels). Unless noted otherwise, the
parameter values used to compute the optimal IPO timing decision are given in Table 1.
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Figure 6. Monthly time series of selected aggregate variables. The top panel plots aggregate
M/B (M/B), the sum of market values of equity across all ¯rms divided by the sum of the most recent
book values of equity. The second panel plots market return volatility (MVOL), the standard deviation of
daily market returns within the month, which is available since July 1962. The third panel plots aggregate
pro¯tability (ROE), the sum across stocks of earnings in the current quarter divided by the sum of book
values of equity at the end of the previous quarter. The monthly ROE series is created from the quarterly
series for 1966Q1 through 2002Q1 by intrapolation. The bottom panel plots the average analyst long-term
earnings growth forecast (IBES). For each ¯rm, forecasts of long-term earnings growth are averaged across
all analysts covering the ¯rm, and IBES is computed as the average of such averages across ¯rms. The IBES
series is available for November 1981 through March 2002.

36



1960 1965 1970 1975 1980 1985 1990 1995 2000
0

2

4

6

8

10

%
 p

er
 d

ay
New Firm Excess Volatility (NEWVOL)

1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.5

0

0.5

1

1.5

2

Year

Lo
g 

di
ffe

re
nc

e

New Firm Excess M/B (NEWMB)

Figure 7. Monthly time series of proxies for prior uncertainty. The top panel
plots NEWVOL, the median return volatility (standard deviation of daily returns) across all
newly listed ¯rms in excess of market return volatility. NEWVOL is available between July
1962 and December 2002. The bottom panel plots NEWMB, the log median M/B across all
newly listed ¯rms in excess of the log median M/B across all ¯rms. NEWMB is available
between January 1960 and March 2002.
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Table 1
Parameter Values in the Calibrated Model.

The table reports the parameter values used to calibrate our model. The parameters of the processes for

expected aggregate pro¯tability and consumption growth are estimated from the consumption and aggregate

pro¯tability data using the Kalman ¯lter. ¾L;0 is restricted to zero to eliminate correlation across the three

state variables (½t, yt and b¾t). The parameters of the individual pro¯tability process are calibrated to the
median ¯rm in our sample. The utility parameters (´ and °), the parameters de¯ning the log surplus

consumption ratio s (y) = a0 + a1yt + a2y
2
t , and those characterizing the state variable yt are calibrated to

match the observed levels of the equity premium, market volatility, aggregate M=B, and the interest rate.

The transition probabilities ¸i;i§1 that characterize the uncertainty process b¾t on the grid V = f0; :1; :::; :12g
are chosen to obtain plausible dynamics for b¾t. ¸b denotes the transition probability at the boundaries of
the grid. All entries are annualized.

Aggregate Pro¯tability Consumption Growth Individual Pro¯tability

kL ½L ¾LL ¾L;0 b0 b1 ¾c Ái ¾i;0 ¾i;i
0.1412 12.16 % 0.64 % 0 1.40 % 0.0812 0.94 % 0.3968 4.79 % 6.82 %

Utility Surplus Consumption Ratio Uncertainty

´ ° ky y ¾y a0 a1 a2 ¸i;i§1 ¸b
0.0475 3.70 0.073 -0.0017 0.5156 -2.8779 0.2132 -0.0198 10% 20%

Unconditional Moments from Calibration

E
£
Rmktt

¤
¾
¡
Rmktt

¢
E [rf;t] ¾ (rf;t) E [M=B] ¾ (M=B) E [b¾t] ¾ (b¾t) E [½t] ¾ (½t)

6.8% 15% 3.3% 3.9% 1.7 .614 6.11% 3.5% 12.1% 1.2%

38



Table 2
Simulation Evidence Around IPO Waves.

The table reports averages of selected variables and market returns around simulated IPO waves, which are
de¯ned in the text. \b" stands for the beginning of an IPO wave, more precisely the end of the last month
before the wave begins. \e" stands for the end of the wave's last month. \b(e)§n" denotes n months before
or after the beginning (end) of a wave. A pre-wave is de¯ned as the period that begins at the end of month
b{3 and ends at the end of month e{3. Expected excess and total returns are computed for the market
portfolio, the value-weighted portfolio of all existing simulated ¯rms. Expected pro¯tability stands for ½,
and prior uncertainty stands for b¾. MVOL denotes market return volatility, M/B is the aggregate M/B
ratio, RF is the risk-free rate, NEWVOL is the di®erence between the return volatility of a new ¯rm and
market volatility, and NEWMB is the log di®erence between the M/B of a new ¯rm and the M/B of the
market. All variables except for M/B and NEWMB are expressed in percent per year.

Panel A. Averages of ¯rst-column variables.

Avg change Before wave Wave After wave Outside
in pre-wave b-6 b-3 b b+1:e e e+3 e+6 wave

Expected total return -0.92 8.48 8.12 7.48 7.00 7.56 7.58 7.65 10.61
Expected pro¯tability 0.06 12.23 12.25 12.28 12.29 12.28 12.28 12.27 12.20
Prior uncertainty 0.35 6.26 6.26 6.56 6.68 6.54 6.53 6.52 6.27

Expected excess return -0.51 6.40 6.25 5.89 5.63 5.93 5.93 5.95 7.05
RF -0.41 2.08 1.88 1.59 1.37 1.63 1.65 1.69 3.56
M/B 0.13 1.83 1.87 1.95 2.02 1.95 1.95 1.95 1.69

MVOL -0.62 15.00 14.85 14.42 14.13 14.49 14.48 14.50 15.38
NEWVOL 3.54 51.58 51.20 54.34 55.03 54.08 53.84 53.76 53.15
NEWMB 0.08 0.41 0.42 0.48 0.51 0.48 0.47 0.47 0.32

Panel B. Average realized market returns.

Pre-wave Outside Before wave Wave After wave Outside

b{2:e{3 pre-wave b{5:b{3 b{2:b b+1:e e+1:e+3 e+4:e+6 wave

Total return 38.76 6.79 18.61 28.29 7.69 8.60 7.46 10.72
Excess return 37.23 3.25 16.58 26.58 6.34 6.96 5.79 7.16
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Table 3
Simulation Evidence: Regressions of IPO Volume on Selected Variables.

Each column represents a quarterly regression of IPO volume on the variables listed in the ¯rst column. All
variables are taken from a 10,000-year-long sample simulated from our calibrated model. No t-statistics are
given because all reported numbers are highly signi¯cant. \¢" denotes changes (¯rst di®erences), and \¡n"
(\+n") denotes quarterly lags (leads). ER denotes expected total market return, and all other variables are
de¯ned in Table 2. The units were chosen to ensure some signi¯cant digits for all coe±cients in the table:
IPO volume is measured as the number of ¯rms that went public this quarter, MKT is measured in decimals
per month, and all other variables in percent per year.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 1.98 1.94 1.95 2.02 1.96 1.94 1.94 1.95 1.49 1.94

¢ER-2 -0.40 -0.57
¢ER-1 -1.09 -1.12

¢¹½-2 0.08 0.44
¢¹½-1 0.97 1.34

¢¾̂-2 0.13 0.20
¢¾̂-1 0.81 0.81

¢RF-2 -0.38
¢RF-1 -1.22

¢MVOL-2 -0.38 -0.41
¢MVOL-1 -2.49 -1.92

¢NEWMB-2 0.13 0.44
¢NEWMB-1 12.06 6.68

¢NEWVOL-2 0.02 0.02
¢NEWVOL-1 0.09 0.02

MKT-2 8.11 5.81
MKT-1 18.63 3.62
MKT -2.03 -1.89
MKT+1 -2.36 -2.15
MKT+2 -2.57 -2.23

IPO(t-1) 0.23 0.24 0.24 0.21 0.24 0.25 0.25 0.24 0.22 0.21

T 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000
R2 0.13 0.06 0.07 0.16 0.10 0.15 0.11 0.07 0.15 0.19
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Table 4
Empirical Evidence Around IPO Waves

The table reports averages of selected variables and market returns around IPO waves, which are de¯ned in
the text. \b" stands for the beginning of an IPO wave, more precisely the end of the last month before the
wave begins. \e" stands for the end of the wave's last month. \b(e)§n" denotes n months before or after
the beginning (end) of a wave. A pre-wave is de¯ned as the period that begins at the end of month b{3 and
ends at the end of month e{3. MVOL denotes market return volatility, M/B is the aggregate M/B ratio, RF
is the risk-free rate, ROE is aggregate pro¯tability (return on equity), IBES is the average analyst forecast of
long-term earnings growth, NEWVOL is the di®erence between the median return volatility of new ¯rms and
market volatility, and NEWMB is the log di®erence between the median M/B of new ¯rms and the median
M/B across all ¯rms. All variables except for M/B and NEWMB are expressed in percent per year. The
t-statistics, reported in parentheses, assess the signi¯cance of the di®erence between the variable's averages
in the given period and outside that period.

Panel A. Averages of selected variables.

Avg change Before wave Wave After wave Outside
in pre-wave b-6 b-3 b b+1:e e e+3 e+6 wave

MVOL -2.81 12.36 13.66 12.70 12.67 12.73 15.63 15.00 15.24
(-2.27) (-1.14) (-0.48) (-0.97) (-3.18) (-0.96) (0.54) (0.21) (3.18)

M/B 0.08 1.78 1.87 1.94 1.81 1.93 1.90 1.97 1.78
(1.79) (-0.06) (0.50) (0.96) (0.50) (0.89) (0.72) (1.15) (-0.50)

RF -0.01 5.41 5.39 5.49 5.68 5.74 5.79 5.34 5.68
(-0.03) (-0.42) (-0.44) (-0.29) (0.02) (0.09) (0.17) (-0.52) (-0.02)

ROE 0.32 11.69 11.59 11.71 12.24 12.11 13.10 12.02 12.57
(0.54) (-1.02) (-1.15) (-1.00) (-1.01) (-0.48) (0.81) (-0.60) (1.01)

IBES 0.39 16.93 16.88 16.86 16.81 17.45 17.58 17.57 17.83
(1.32) (-0.66) (-0.72) (-0.74) (-2.90) (-0.03) (0.12) (0.12) (2.90)

NEWVOL 9.87 46.92 42.26 47.65 44.82 47.19 50.12 49.87 49.46
(2.27) (-0.24) (-1.06) (-0.11) (-1.97) (-0.19) (0.34) (0.28) (1.97)

NEWMB -0.05 0.44 0.56 0.55 0.55 0.46 0.49 0.46 0.51
(-0.69) (-0.91) (0.50) (0.41) (1.18) (-0.67) (-0.31) (-0.74) (-1.18)

Panel B. Average realized market returns.

Pre-wave Outside Before wave Wave After wave Outside
b{2:e{3 pre-wave b{5:b{3 b{2:b b+1:e e+1:e+3 e+4:e+6 wave

Total return 15.20 9.13 31.17 21.45 9.51 0.49 18.86 11.03
(1.11) (-1.11) (2.77) (1.45) (-0.28) (-1.35) (1.09) (0.28)

Excess return 9.54 3.44 25.83 15.74 3.83 -5.35 13.42 5.35
(1.12) (-1.12) (2.81) (1.44) (-0.28) (-1.36) (1.12) (0.28)
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Table 5
Empirical Evidence: Regressions of IPO Volume on Selected Variables

Each column represents a quarterly regression of IPO volume on the variables listed in the ¯rst column. \¢"
denotes changes (¯rst di®erences), and \¡n" (\+n") denotes quarterly lags (leads). All variables are de¯ned
in Table 4. Their units were chosen to ensure some signi¯cant digits for all coe±cients in the table: Scaled
IPO volume is measured in percent per month, MKT in decimals per month, ROE and RF in percent per
month, MVOL and NEWVOL in percent per day, and IBES in percent per year. The t-statistics, given in
parentheses, are computed using standard errors that are robust to heteroskedasticity and serial correlation
of residuals (Newey-West with ¯ve lags).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Intercept 0.23 0.31 0.33 0.20 0.34 0.57 0.47 0.31 0.37 0.21 0.35
(3.03) (4.48) (4.71) (2.50) (3.92) (5.04) (3.09) (4.33) (4.67) (2.79) (3.76)

MKT-2 1.67 1.70 2.33 2.09
(3.25) (2.81) (3.06) (3.40)

MKT-1 2.09 2.01 2.67 2.00
(3.34) (2.60) (2.71) (2.68)

MKT 2.06 1.88 2.31 3.32
(4.51) (3.50) (3.08) (4.67)

MKT+1 -0.95 -0.69 -1.56 -0.97
(-2.23) (-1.68) (-2.38) (-1.52)

MKT+2 -0.49 -0.16 -0.81 -0.04
(-0.74) (-0.21) (-1.26) (-0.09)

¢MVOL-2 -0.31 -0.00 -0.18
(-1.91) (-0.02) (-1.06)

¢MVOL-1 -0.63 -0.11 -0.58
(-3.59) (-0.48) (-2.64)

¢MVOL -0.60 -0.20 -0.78
(-4.41) (-1.14) (-4.92)

¢RF-2 0.50 0.80 0.16
(0.89) (1.69) (0.26)

¢RF-1 -0.38 0.05 -0.44
(-1.03) (0.15) (-1.17)

¢RF 0.44 0.55 0.61
(1.02) (1.76) (1.50)

¢ROE 0.90 0.78 0.01
(2.50) (2.83) (0.04)

¢ROE+1 0.55 0.68 0.07
(1.43) (2.06) (0.19)

¢ROE+2 0.64 0.30 0.96
(1.90) (0.71) (3.30)

¢IBES-2 -0.16 0.22
(-0.87) (0.99)

¢IBES-1 -0.43 -0.46
(-1.37) (-1.81)

¢IBES 0.78 0.26
(5.07) (1.41)

¢NEWMB-2 0.46 0.53 0.54
(2.35) (3.31) (2.45)

¢NEWMB-1 0.52 0.30 0.66
(3.18) (1.70) (3.36)

¢NEWMB 0.11 -0.23 -0.15
(0.59) (-1.22) (-0.62)

¢NEWVOL-2 0.12 0.05 0.12
(2.23) (1.10) (2.61)

¢NEWVOL-1 0.03 -0.08 -0.01
(0.57) (-1.75) (-0.41)

¢NEWVOL 0.01 0.01 -0.03
(0.19) (0.18) (-0.67)

IPO(t-1) 0.84 0.87 0.85 0.85 0.84 0.79 0.75 0.87 0.84 0.82 0.88
(23.09) (21.47) (20.20) (23.66) (18.30) (11.16) (11.04) (19.79) (18.75) (19.19) (17.90)

Q1 Dummy -0.48 -0.42 -0.42 -0.45 -0.26 -0.67 -0.60 -0.51 -0.43 -0.52 -0.44
(-4.92) (-4.52) (-5.00) (-4.73) (-2.22) (-4.59) (-4.45) (-5.40) (-4.42) (-4.95) (-3.41)

T 169 159 171 157 142 79 77 136 144 113 105
R2 0.78 0.75 0.72 0.79 0.72 0.70 0.80 0.76 0.71 0.83 0.81
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Table 6
Nasdaq Valuation on March 10, 2000

Panel A reports the model-implied M/B for the Nasdaq Composite Index on March 10, 2000 under zero
prior uncertainty for di®erent values of the equity premium and expected pro¯tability in excess of aggregate
pro¯tability ( bÃi). Panel B reports the prior uncertainty ¾̂ that equates the model-implied M/B to the

observed M/B. All variables (equity premium, bÃi, and ¾̂t) are expressed in percent per year. The observed
M/B for Nasdaq on March 10, 2000 is 6.85, its observed pro¯tability (ROE) in 1999 is ½t = 12:79% per year,
and its dividend yield (dividends over book equity) in 1999 is c = 2:06% per year. We set ¹½ = 15:66% per
year, equal to the aggregate market pro¯tability in 1999Q4. M/B for Nasdaq is assumed to converge after
T = 15 years to the long-run value of 1.29, equal to the average M/B of old ¯rms, as de¯ned in the text.
The remaining parameters needed to calibrate the model are given in Table 1.

Excess ROE Equity premium (% per year)bÃi (% per year) 1 2 3 4 5 6 7 8 9 10

Panel A. Model-implied M/B with zero prior uncertainty.

-5 2.70 2.51 2.30 2.05 1.81 1.57 1.33 1.11 0.91 0.72
0 4.82 4.46 4.07 3.62 3.18 2.74 2.31 1.91 1.55 1.20
2 6.10 5.64 5.14 4.56 4.01 3.45 2.90 2.39 1.93 1.49
4 7.73 7.14 6.51 5.77 5.06 4.35 3.65 3.01 2.42 1.86
6 9.82 9.07 8.26 7.31 6.41 5.50 4.61 3.79 3.05 2.33
8 12.49 11.52 10.49 9.28 8.13 6.96 5.83 4.78 3.84 2.93
10 15.91 14.67 13.35 11.80 10.33 8.84 7.40 6.06 4.86 3.69

Panel B. Prior uncertainty needed to match the observed M/B.

-5 11.40 11.87 12.39 13.04 13.72 14.47 15.28 16.14 17.05 18.12
0 6.97 7.71 8.49 9.42 10.34 11.31 12.34 13.40 14.48 15.73
2 3.99 5.18 6.29 7.50 8.62 9.77 10.94 12.12 13.31 14.66
4 0.00 0.00 2.63 4.86 6.46 7.93 9.34 10.70 12.03 13.51
6 0.00 0.00 0.00 0.00 3.01 5.50 7.39 9.05 10.60 12.25
8 0.00 0.00 0.00 0.00 0.00 0.00 4.69 7.03 8.93 10.85
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.10 6.87 9.23
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Table 7
Implied Prior Uncertainty for Nasdaq With Di®erent Horizons

The table is an equivalent of Panel B of Table 6 with T = 10 and T = 20. It reports the prior uncertainty
¾̂ that equates the model-implied M/B to the observed M/B. All variables (equity premium, bÃi, and ¾̂t)
are expressed in percent per year. The observed M/B for Nasdaq on March 10, 2000 is 6.85, its observed
pro¯tability (ROE) in 1999 is ½t = 12:79% per year, and its dividend yield (dividends over book equity)
in 1999 is c = 2:06% per year. We set ¹½ = 15:66% per year, equal to the aggregate market pro¯tability in
1999Q4. M/B for Nasdaq is assumed to converge after T years to the long-run value of 1.29, equal to the
average M/B of old ¯rms, as de¯ned in the text. The remaining parameters needed to calibrate the model
are given in Table 1.

Excess ROE Equity premium (% per year)bÃi (% per year) 1 2 3 4 5 6 7 8 9 10

T=10

-5 19.70 19.93 20.25 20.75 21.38 22.22 23.33 24.81 25.70 26.88
0 15.93 16.31 16.89 17.70 18.60 19.62 20.46 21.47 22.81 24.87
2 14.15 14.57 15.22 16.12 17.09 18.21 19.44 20.45 21.61 23.37
4 12.10 12.59 13.34 14.36 15.44 16.67 18.00 19.43 20.57 22.09
6 9.63 10.24 11.14 12.34 13.59 14.97 16.45 17.99 19.59 20.98
8 6.25 7.15 8.40 9.93 11.45 13.06 14.73 16.43 18.17 20.03
10 0.00 0.00 4.09 6.70 8.80 10.81 12.77 14.71 16.63 18.78

T=20

-5 8.23 8.74 9.24 9.83 10.41 11.04 11.71 12.41 13.14 13.98
0 3.04 4.22 5.18 6.17 7.07 7.97 8.88 9.79 10.70 11.73
2 0.00 0.00 1.84 3.83 5.15 6.34 7.45 8.51 9.55 10.69
4 0.00 0.00 0.00 0.00 1.74 4.08 5.66 7.01 8.24 9.54
6 0.00 0.00 0.00 0.00 0.00 0.00 2.93 5.07 6.67 8.22
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.51 4.60 6.66
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58
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Table 8
Implied Prior Uncertainty on March 10, 2000 for Selected Technology Firms

The table is an equivalent of Panel B of Table 6 for selected technology ¯rms. It reports the prior uncertainty
about average pro¯tability (¾̂) that equates the model-implied M/B to the observed M/B. All variables

(equity premium, bÃi, and ¾̂t) are expressed in percent per year. Each ¯rm's name is accompanied by the
¯rm's observed M/B on March 10, 2000 as well as the ¯rm's realized pro¯tability ½t and dividend yield c
in 1999. We set ¹½ = 15:66% per year, equal to the aggregate market pro¯tability in 1999Q4. M/B for each
¯rm is assumed to converge after T = 15 years to the long-run value of 1.29, equal to the average M/B of
old ¯rms, as de¯ned in the text. The remaining parameters needed to calibrate the model are from Table 1.

Excess ROE Equity premium (% per year)bÃi (% per year) 1 2 3 4 5 6 7 8 9 10

Cisco, M=B = 39:02, ½t = 29:49%, c = 0

0 13.88 14.26 14.69 15.24 15.81 16.46 17.15 17.92 18.72 19.68
5 10.61 11.11 11.66 12.34 13.04 13.81 14.64 15.53 16.45 17.54
10 5.70 6.59 7.48 8.51 9.49 10.52 11.59 12.68 13.80 15.08

Compaq, M=B = 3:20, ½t = 5:01%, c = 1:27%

0 0.00 0.00 0.00 1.53 4.51 6.44 8.10 9.63 11.09 12.67
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.42 6.48 8.93
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dell, M=B = 55:96, ½t = 110:67%, c = 0

0 0.00 0.00 0.77 4.12 5.89 7.44 8.89 10.27 11.63 13.12
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.06 7.43 9.60
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.48

Hewlett-Packard, M=B = 8:31, ½t = 18:35%, c = 3:84%

0 8.93 9.52 10.17 10.97 11.77 12.65 13.58 14.57 15.59 16.76
5 0.00 2.82 4.57 6.14 7.50 8.81 10.12 11.41 12.69 14.12
10 0.00 0.00 0.00 0.00 0.00 0.00 4.46 6.92 8.88 10.83

IBM, M=B = 8:97, ½t = 37:16%, c = 4:15%

0 5.22 6.17 7.14 8.25 9.30 10.41 11.55 12.70 13.87 15.20
5 0.00 0.00 0.00 0.00 1.83 5.03 7.09 8.86 10.48 12.19
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.18 8.13

Intel, M=B = 11:09, ½t = 29:53%, c = 1:48%

0 7.06 7.78 8.56 9.48 10.38 11.35 12.36 13.41 14.49 15.72
5 0.00 0.00 0.00 2.97 5.17 6.92 8.48 9.95 11.36 12.91
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.24 6.95 9.26

Lucent, M=B = 16:07, ½t = 85:04%, c = 4:73%

0 0.00 0.00 0.00 0.00 1.85 5.09 7.18 8.97 10.60 12.33
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.32 8.27
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Microsoft, M=B = 18:79, ½t = 49:57%, c = 0

0 5.85 6.71 7.59 8.60 9.57 10.60 11.66 12.75 13.86 15.14
5 0.00 0.00 0.00 0.00 3.41 5.68 7.48 9.09 10.59 12.21
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 5.67 8.31

Motorola, M=B = 5:81, ½t = 6:09%, c = 2:17%

0 7.09 7.82 8.59 9.52 10.42 11.39 12.41 13.47 14.55 15.78
5 0.00 0.00 0.00 3.00 5.20 6.95 8.52 10.00 11.42 12.97
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.30 7.00 9.32

Oracle, M=B = 62:23, ½t = 43:45%, c = 0

0 14.40 14.77 15.19 15.72 16.27 16.90 17.59 18.32 19.12 20.02
5 11.28 11.76 12.28 12.93 13.60 14.33 15.14 16.00 16.90 17.96
10 6.88 7.63 8.41 9.33 10.23 11.20 12.21 13.26 14.33 15.57

Yahoo, M=B = 78:41, ½t = 10:52%, c = 0

0 18.53 18.81 19.14 19.57 20.01 20.19 20.44 20.79 21.26 22.03
5 16.22 16.56 16.93 17.40 17.91 18.48 19.10 19.78 20.19 20.60
10 13.53 13.93 14.37 14.93 15.51 16.16 16.88 17.65 18.48 19.45
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8. Appendix

(A) Data

Aggregate consumption data is obtained quarterly from NIPA. Consumption is de¯ned as real
per capita consumption expenditures on non-durables plus services, seasonally adjusted. The series
is de°ated by the personal consumption expenditure de°ator (PCE), also taken from NIPA.

The following data is obtained from CRSP and Compustat. Quarterly aggregate pro¯tability
(ROE) is computed as the sum across stocks of earnings in the current quarter divided by the
sum of book values of equity at the end of the previous quarter. Quarterly earnings, which are
generally available from 1966Q1, denote income before extraordinary items available for common
(Compustat item 25) plus deferred taxes from the income account (item 35, if available). If either
value is indicated as .A (annual) or .S (semi-annual) in the quarterly ¯le, these values are divided
by four (if .A) or two (if .S). When quarterly book equity is missing, it is replaced by the most
recent annual book equity. Following Fama and French (1993), annual book equity is constructed
as stockholders' equity plus balance sheet deferred taxes and investment tax credit (item 35) minus
the book value of preferred stock. Depending on availability, stockholder's equity is computed as
Compustat item 216, or 60+130, or 6-181, in that order, and preferred stock is computed as item
56, or 10, or 130, in that order. Quarterly book equity, which is generally available from 1972Q1,
is constructed analogously. Stockholders' equity is item 60, or 59+55, or 44-54, preferred stock is
item 55, and deferred taxes and tax credit is item 52. If the quarterly values are indicated as .A
(annual) or .S (semi-annual) in the SAS data¯le, the respective annual or semiannual values are
used. Monthly ROE values are intrapolated from quarterly values. Market equity is computed
monthly by multiplying the common stock price by common shares outstanding, both obtained
from CRSP. M/B ratio is computed as market equity divided by book equity from the most recent
quarter. We eliminate the values of market equity and book equity smaller than $1 million, as well
as M/B ratios smaller than 0.01 and larger than 100. All variables that require Compustat data
(e.g. ROE, M/B) are constructed through the end of 2002Q1.

(B) Preferences and the Stochastic Discount Factor

This appendix describes in detail the properties of the process of log surplus consumption

log (St) ´ st ´ s (yt) = a0 + a1yt + a2y2t (17)

The process for yt implies a normal unconditional distribution for yt with mean y and variance
¾2y;0=2ky. Let yD = y ¡ 4¾y=

p
2ky and yU = y + 4¾y=

p
2ky be the boundaries between which

yt lies 99.9% of the time. To ensure that log surplus st conforms to the economic intuition of a
habit formation model, we impose the following parametric restrictions: a2 < 0, a1 > ¡2a2yU and
a0 < 1=4

¡
a21=a2

¢
: These restrictions ensure that for all t, st < 0, and thus St 2 (0; 1), and that

s (y) is increasing in y for all y 2 [yD; yU ]. The process for log surplus is given by
dst = ¹s (y) dt+ ¾s (y) dW0;t (18)

with

¹s (y) = ky(¹y ¡ yt) (a1 + 2a2y) + a2¾2y
¾s (y) = (a1 + 2a2y)¾y

The restrictions above imply that ¾s (y) is positive and decreasing in y, for all y 2 [yD; yU ]. Since s
increases with y in the relevant range, surplus is perfectly correlated with innovations to aggregate
consumption, and its volatility is higher for low surplus levels.
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Given the dynamics of consumption (4) and log surplus (18), the process for the stochastic
discount factor ¼t = UC (Ct;Xt; t) = e

¡´t (CtSt)¡° = e¡´t¡°(ct+st) is given by

d¼t = ¡rt¼tdt¡ ¼t¾¼;tdW0;t

where
rt = R0 +R1½t +R2yt +R3y

2
t

with

R0 = ´ + °b0 + °a1kyy ¡ 1
2
°2¾2c + (°a2 ¡

1

2
°2a21)¾y¾

0
y ¡ °2a1¾c¾0y

R1 = °b1

R2 = °
¡
2a2kyy ¡ a1ky ¡ °a2

¡
2¾c¾

0
y + a12¾y¾

0
y

¢¢
R3 = 2a2°

¡¡ky ¡ °a2¾y¾0y¢
and

¾¼;t = ° (¾c + (a1 + 2a2yt)¾y)

The parameter restrictions imposed earlier imply that ¾¼;t decreases as yt (and hence also the
surplus St) increases. As a result, expected returns and return volatility are low when yt is high.

(C) Proofs:

The following Lemma is instrumental to most of the results:

Lemma A1: Let Z » N (¹;§). Let a0 denote an (n£ 1) vector and a1 denote an (n£ n)
matrix such that

¡¡2a1 +§¡1¢¡1 exists and is a valid covariance matrix. Then we have
E
h
ea

0
0Z+Z

0a1Z
i
= c2e

a00¹+¹
0a1¹+ 1

2(a
0
0+2¹

0a1)(¡2a1+§¡1)¡1(a00+2¹0a1)
0

(19)

where
c2 = j§j¡ 1

2 j ¡ 2a1 +§¡1j¡ 1
2

Proof : By de¯nition

Et

h
ea

0
0Z+Z

0a1Z
i
= c1

Z
Rn

ea
0
0Z+Z

0a1Ze¡
1
2
(Z¡¹)0§¡1(Z¡¹)dZ (20)

where c1 = (2¼)
¡n
2 j§j¡1

2 . Since

¡ (Z¡ ¹)0§¡1 (Z¡ ¹) = ¡Z0§¡1Z+ 2¹§¡1Z¡ ¹0§¡1¹

the whole exponent in the integrand of (20) is given by

Exponent = a00Z+ Z
0a1Z¡ 1

2
Z0§¡1Z+ ¹0§¡1Z¡1

2
¹0§¡1¹

By developing the term ¡1
2 (Z¡ ¹)0

¡¡2a1 +§¡1¢ (Z¡ ¹) the following identity obtains
Z0a1Z¡ 1

2
Z0§¡1Z+ ¹0§¡1Z¡1

2
¹0§¡1¹ = ¡1

2
(Z¡ ¹)0 ¡¡2a1 +§¡1¢ (Z¡ ¹) + 2¹0a1Z¡ ¹0a1¹
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Thus, the exponent in (20) can be rewritten as

Exponent =
¡
a00 + 2¹

0a1
¢
Z¡ ¹0a1¹¡ 1

2
(Z¡ ¹)0 ¡¡2a1 +§¡1¢ (Z¡ ¹)

implying

E
h
ea

0
0Z+Z

0a1Z
i
= c1

Z
R
e(a

0
0+2¹

0a1)Z¡¹0a1¹e¡
1
2
(Z¡¹)0(¡2a1+§¡1)(Z¡¹)dZ

= c2e
¡¹0a1¹E¤

h
e(a

0
0+2¹

0a1)Z
i

where c2 = c1

³
2¼

n
2 jGj 12

´
= j§j¡ 1

2 jGj 12 and G =
¡¡2a1 +§¡1¢¡1 ; and E¤ (:) denotes the expec-

tation computed assuming that Z » N (¹;G) : Since we then have¡
a00 + 2¹

0a1
¢
Z » N

³¡
a00 + 2¹

0a1
¢
¹;
¡
a00 + 2¹

0a1
¢
G
¡
a00 + 2¹

0a1
¢0´

we ¯nally obtain that the expectation is

E¤
h
e(a

0
0+2¹

0a1)Z
i
= e(a

0
0+2¹

0a1)¹+ 1
2(a

0
0+2¹

0a1)G(a00+2¹0a1)
0

thereby yielding

E
h
ea

0
0Z+Z

0a1Z
i
= c2e

a00¹+¹
0a1¹+ 1

2(a
0
0+2¹

0a1)G(a00+2¹0a1)
0

¥

The following Lemma is applied repeatedly to price stocks and bonds.

Lemma A2: Consider an asset with payo® eº
ebT where º is a constant,

debt = ¡³0½t + ³1½it ¡ ³2¢ dt;
and ½t and ½

i
t follow the processes (2) and (1). For every T > t, with h = T ¡ t, we obtain

Et

·
¼T
¼t
eº(

ebT¡ebt)¸ = Zg ³h; ½t; ½it; Ãi; yt´ ´ c2 (h) eq0(h)+ª(h)½t+º³1QÁi (h)½it+KÁ(h)º³1Ã
i
+q1(h)yt+q2(h)y2t

(21)
where

QÁi (h) =
³
1¡ e¡Áih

´
=Ái; KÁi (h) =

¡
h¡QÁi (h)

¢
; (22)

ª (h) =
º³1 + º³0 ¡ °b1

kL
+
º³1e

¡Áih

Ái ¡ kL ¡ Á
iº³1 + (º³0 ¡ °b1)

¡
Ái ¡ kL

¢
kL (Ái ¡ kL) e¡kLh; (23)

and c2 (h), qi (h) ; i = 0; 1; 2; are provided in equations (26) and (27)-(29), respectively.

Proof: Consider Nt =
³
ºebt ¡ °ct; yt; ½t; ½it´; this follows the Gaussian process

dNt = (AN +BNNt) dt+§NdWt

with

AN =

0BB@
¡°b0 ¡ º³2

kyy
kL½L
ÁiÃ

1CCA ;BN =
0BB@
0 0 º³0 ¡ °b1 º³1
0 ¡ky 0 0
0 0 ¡kL 0
0 0 Ái ¡Ái

1CCA ;§N =
0BB@
¡°¾c 0 0
¾y 0 0
¾L;0 ¾L;L 0
¾i;0 0 ¾i;i

1CCA ;
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Standard results on Gaussian processes imply that NT jNt » N (¹N (Nt; h) ;SN (h)), where

¹N (Nt; h) = ª (h)Nt +

Z h

0
ª (h¡ s)ANds (24)

SN (h) =

Z h

0
ª (h¡ s)§N§0Nª (h¡ s)0 ds (25)

and

ª (h) =

0BBB@
1 0 ª (h) º³1QÁi (h)
0 e¡kyh 0 0
0 0 e¡kLh 0

0 0 Ái

Ái¡kL

³
e¡kLh ¡ e¡Áih

´
e¡Áih

1CCCA
with ª (h) de¯ned in (23). For any x; denote Qx (h) = x

¡1 ¡1¡ e¡xh¢ and Kx (h) = (h¡Qx (h)).
We can now apply the result of Lemma A1 to obtain an analytical expression for the expectation

(21). De¯ne nt =
³
ºebt ¡ °ct; yt´0 = [1; 1; 0; 0]£Nt. We have nT jNt » N (¹n (Nt; h) ;Sn (h)) with

Sn (h) = [1; 1; 0; 0]£ SN (h)£ [1; 1; 0; 0]0 ;and

¹n (Nt; h) = [1; 1; 0; 0]£ ¹N (Nt; h) =

µ
ºebt ¡ °ct +ª(h) ½t + º³1QÁi (h) ½it + » (h)

e¡kyhyt + kyyQky (h)

¶
where, computing the integral in (24) explicitly, we ¯nd

» (h) = (¡°b0 ¡ º³2 + (º³1 + º³0 ¡ °b1)) ½Lh+ ½L
º³1

Ái ¡ kL
¡
kLQÁ (h)¡ ÁiQkL (h)

¢
¡½L (º³0 ¡ °b1)QkL (h) + Ãº³1KÁ (h) :

De¯ning a0 = (1;¡°a1)0 and a1 = ¡°a2
µ
0 0
0 1

¶
, we can write

Et

h
¼T e

ºebT i = Et he¡´T e¡°(cT+a0+a1yT+a2y2T )+ºebT i = e¡´T¡°a0Et hea0nT+n0T a1nT i
Using Lemma A1, we have

Et

h
ea

0
0nT+n

0
T a1nT

i
= c2 (h) e

a00¹n(Nt;h)+¹n(Nt;h)
0a1¹n(Nt;h)+

1
2(a

0
0+2¹n(Nt;h)

0a1)G(h)(a00+2¹n(Nt;h)
0a1)

0

with
c2 (h) = jG (h) j

1
2 =jS (h) j 12 ; (26)

and G (h) =
³
¡2a1 + Sn (h)¡1

´¡1
. Tedious but straightforward algebra shows

Exponent = ºebt ¡ °ct +ª(h) ½t + º³1QÁi (h) ½it + ³1 (h) + 12G11 (h)¡G12 (h) °a1
¡G12 (h) 2°a2e¡kyhyt ¡G12 (h) 2°a2kyyQky (h) +

1

2
G22 (h) °

2a21

+
³
2G22 (h) (°a2)

2 ¡ °a2
´³
e¡2kyhy2t + k

2
yy
2Q2ky (h) + 2e

¡kyhkyyQky (h) yt
´

+
¡
2G22 (h) °

2a1a2 ¡ °a1
¢ ³
e¡kyhyt + kyyQky (h)

´
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Substituting into Et

h
¼T=¼te

ºebT i = ¼¡1t e¡´T¡°a0Et
h
ea0nT+n

0
T a1nT

i
yields (21) with

q0 (h) = (¡°b0 ¡ º³2 ¡ ´ + (º³1 + º³0 ¡ °b1)) ½Lh+ ½L
º³1

Ái ¡ kL
¡
kLQÁ (h)¡ ÁiQkL (h)

¢
(27)

¡½L (º³0 ¡ °b1)QkL (h) +
1

2
G11 (h)¡G12 (h) °a1 ¡G12 (h) 2°a2kyyQky (h)

+
1

2
G22 (h) °

2a21 +
³
2G22 (h) (°a2)

2 ¡ °a2
´
k2yy

2Q2ky (h)

+
¡
2G22 (h) °

2a1a2 ¡ °a1
¢
kyyQky (h) ;

q1 (h) = ¡2G12 (h) °a2e¡kyh +
³
2G22 (h) (°a2)

2 ¡ °a2
´
2e¡kyhkyyQky (h) (28)

+
¡
2G22 (h) °

2a1a2 ¡ °a1
¢
e¡kyh + °a1;

q2 (h) =
³
2G22 (h) (°a2)

2 ¡ °a2
´
e¡2kyh + °a2: (29)

¥

Proof of Lemma 1: Consider the vector zt =
¡
ct; ½t; ½

1
t ; :::; ½

n
t

¢
of signals to identify the

unobservable variables, stacked in the vector Ã = (Ã
1
; :::; Ã

n
)0. The assumptions in the text imply

dzt =
¡
A+Bzt +Cª

¢
dt+ bdWt

whereWt = (W0;t;WL;t;W1;t; :::;Wn;t) and

A =

0BBB@
b0
kL½L
...
0

1CCCA , B =
0BBBBB@
0 b1 0 0 0
0 ¡kL 0 0 0
0 Á1 ¡Á1 0 0

0
...

. . . 0
0 Án 0 0 ¡Án

1CCCCCA

C =

0BBBBB@
0 0 ¢ ¢ ¢
0 0 ¢ ¢ ¢
Á1

. . .

Án

1CCCCCA ; b =
0BBBBBBBB@

¾c;1 0 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0
¾L;0 ¾L;L 0 ¢ ¢ ¢ ¢ ¢ ¢ 0
¾0;1 0 ¾1;1

¾0;2
... ¾2;2

...
...

. . .

¾0;n 0 ¾n;n

1CCCCCCCCA
The Kalman-Bucy ¯lter implies the following result:

Lemma A3: Let there be n ¯rms in the time interval [t0; t1], and assume that investors have

a prior distribution at time t0 on the n + 1 dimensional vector Ã given by Ã»N
³bÃt0; b§t0´, withb§t0 diagonal. Then, for any t 2 [t0; t1] the posterior distribution on Ã is also normally distributed,

and given by Ã » N
³ bÃt; b§t´ where d bÃt = e§tdfWt with e§t = b§tC0 (b0)¡1 and

db§t
dt

= ¡
hb§tC0i ¡bb0¢¡1 hCb§0ti (30)

Finally,
dfWt = b

¡1 fdzt ¡ E [dztjFt]g = b¡1 fdzt ¡ [A+Bzt +Cbst] dtg (31)
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is a Brownian motion in the ¯ltered space.

Let b11 = ¾c;1, b12 = (¾L;0; ¾0;1; :::; ¾0;n), b22 = diag (¾LL;¾1;1; :::; ¾n;n), b21 = (0; ::; 0)
0, and

b0 =
µ
b11 b12
b21 b22

¶
Using known results about the inversion of partitioned matrices (see e.g. Magnus and Neudacker
(1991, page 11)), we obtain ³

b
0´¡1

=

µ
b¡111 ¡b¡111 b12b¡122
0 b¡122

¶
which leads to

C0
¡
b0
¢¡1

=

0B@ 0 0 Á1¾¡11;1 0 0

0 0 0
. . . 0

0 0 0 0 Án¾¡1n;n

1CA
Thus, since b§t0 is a diagonal matrix, we ¯nd

e§t = b§tC0 ¡b0¢¡1 =
0B@ 0 0 b¾21;tÁ1¾¡11;1 0 0

0 0 0
. . . 0

0 0 0 0 b¾2n;tÁn¾¡1n;n
1CA

This implies

db§t
dt

= ¡
hb§tC0i ¡bb0¢¡1 hCb§0ti = ¡e§t e§0t = ¡diagµ¡b¾2i;t¢2 ³Ái (¾i;i)¡1´2¶

Thus b§t is diagonal for every t, and in addition, each diagonal element i satis¯es the di®erential
equation db¾2i;t=dt = ¡³b¾2i;t´2 ³Ái¾¡1i;i ´2 ; whose solution is b¾2i;t = µ 1b¾2t0 + (

Ái)
2

¾2i;i
(t¡ t0)

¶¡1
. ¥

Proof of Proposition 1: Part (a) stems from Lemmas A1 and A2, and the law of iterated
expectations. We must compute

Et

·
¼T
¼t
BiT

¸
= Et

·
¼T
¼t
eb
i
T

¸
= Et

·
Et

·
¼T
¼t
eb
i
T jÃi

¸¸
The inner expectation is immediate from Lemma A2 for the special case where º = 1, ³0 = 0,

³1 = 1 and ³2 = 0. That is, Et

h
¼T
¼t
eb
i
T jÃi

i
= BitZ

i
³
h; ½t; ½

i
t; Ã

i
; yt

´
, where

Zi
³
h; ½t; ½

i
t; Ã

i
; yt

´
= c2 (h) e

q0(h)+ª(h)½t+QÁi(h)½
i
t+KÁi (h)Ã

i
+q1(h)yt+q2(h)y2t ; (32)

and where all functions of h, namely QÁi (h) ; KÁi (h), c2 (h) ; qi (h) for i = 0; 1; 2, ª (h) are as in
Lemma A2 with º = 1, ³0 = 0, ³1 = 1 and ³2 = 0. The last step is to realize that from Lemma 1,

Ã
i » N

³bÃit; b¾2i;t´ ; which implies KÁi (h)Ãi » N ³
KÁi (h) bÃi; KÁi (h)2 b¾2i;t´. This in turn yields

Et

·
Et

·
¼T
¼t
eb
i
T jÃi

¸¸
= Bitc2 (h) e

q0(h)+ª(h)½t+QÁi(h)½
i
t+KÁi(h)

bÃi+q1(h)yt+q2(h)y2t+1
2
K
Ái
(h)2b¾2i;t

= BitZ
i
³
h; ½t; ½

i
t;
bÃi; yt´ e 12KÁi

(h)2b¾2i;t
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Part (b): From the pricing function M i
t = B

i
tG

i
³
¿; ½it; ½t;

bÃit; yt; b¾i;t´, using Ito's Lemma yields
dM i

t =M
i
t

Ã
@G=@½it
G

d½it +
@G=@½t
G

d½t +
@G=@ bÃit
G

d bÃit + @G=@ytG
dyt

!
+ o (dt)

where o (dt) collects all the \dt" terms. From the de¯nition of G (:) in (11) we ¯nd

@G=@½it = QÁi (h)G; @G=@½t = ª(h)G

@G=@ bÃit = KÁi (h)G; @G=@yt = (q1 (h) + 2q2 (h) yt)G

Thus, the total return on the asset is
¡
dM i

t +D
idt
¢
=M i

t= ¹
i
M (t; h) dt+ ¾

i
M (t; h) d

fWt, with

¹iM (t; h) = rt +
¡
QÁi (h)¾

i¾0¼;t +ª13 (h)¾L¾
0
¼;t + (q1 (h) + 2q2 (h) yt)¾y¾

0
¼;t

¢
¾iM (t; h) =

¡
QÁi (h)¾

i +ª13 (h)¾L;t +KÁi (h) e¾it + (q1 (h) + 2q2 (h) yt)¾y¢
The process for excess return (13) therefore has

¹iR (t; h) = °
¡
QÁi (h)¾

i
0 +ª

i
13 (h)¾L;0

¢
(¾c + (a1 + 2a2yt)¾y) (33)

+°
¡
qi1 (h) + 2q

i
2 (h) yt

¢ ¡
¾y¾

0
c + (a1 + 2a2yt)¾

2
y

¢
¾iR;0 (t; h) = QÁi (h)¾

i
0 +ª

i
13 (h)¾L;0 +

¡
qi1 (h) + 2q

i
2 (h) yt

¢
¾y (34)

¾iR;L (t; h) = ªi13 (h)¾L;L (35)

¾iR;i (t; h) = QÁi (h)¾
i
i +KÁi (h)

Á

¾c
b¾2i;t (36)

¥

The Long Lived Firm: The market price of the long lived ¯rm isMm
t = E

£R1
t ¼s=¼tD

m
s ds

¤
=

cmE
£R1
t ¼s=¼tB

m
s ds

¤
. Assuming integrability, and applying Fubini theorem to invert the order of

integration, we can solve for the expectation by computing Et [¼TB
m
T ] when b

m
t = log (B

m
t ) follows

the process dbmt = (½t ¡ cm) dt. This is a special case of Lemma A2, and thus equation (14) is
immediately veri¯ed, with

Zm (s; ½t; yt) = Z
g (s; 0; ½t; 0; yt) jº=1;³0=1;³1=0;³2=cm (37)

Expected returns and volatility are then computed analogously as in the proof of Proposition 1. In
particular, from the pricing function M i

t = B
i
tG

m (½t; yt) with G
m (½t; yt) = c

m
R1
0 Zm (s; ½t; yt) ds;

and Ito's Lemma, we ¯nd

dM i
t =M

i
t

µ
@Gm=@½t
Gm

d½t +
@Gm=@yt
Gm

dyt

¶
+ o (dt)

where o (dt) collects all the \dt" terms. From the de¯nition of Gm (:) and Zm (:) ; we ¯nd

@Gm=@½t = cm
Z 1

0
ªm (s)Zm (s; ½t; yt) ds

@Gm=@yt = cm
Z 1

0
(qm1 (s) + 2q

m
2 (s) yt)Z

m (s; ½t; yt) ds
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where ªm (s) ; and qmi (s) are equal to ª (s) ; and qi (s) in Lemma A2 for the parametrization
º = 1; ³0 = 1; ³1 = 0; ³2 = c

m. De¯ning the quantities

Fm½ (t) =

R1
0 ªm (s)Zm (s; ½t; yt) dsR1

0 Zm (s; ½t; yt) ds

Fmy;1 (t) =

R1
0 qm1 (s)Z

m (s; ½t; yt) dsR1
0 Zm (s; ½t; yt) ds

Fmy;2 (t) = 2

R1
0 qm2 (s) ytZ

m (s; ½t; yt) dsR1
0 Zm (h; ½t; yt) ds

we ¯nd that excess returns and di®usion are given by

¹mR (t) = °
©
Fm½ (t)

¡
¾L¾

0
c + (a1 + 2a2yt)¾L¾y

¢
+ (Fy;1 (t) + Fy;2 (t) yt)

¡
¾y¾

0
c + (a1 + 2a2yt)¾y¾

0
y

¢ª
(38)

¾mR (t) = Fm½ (t)¾L;t + (Fy;1 (t) + Fy;2 (t) yt)¾y; (39)

¥

Payo® computation: Exercising at time ¿ , the expected payo® at time ¿ + ` is

EPayi¿;¿+` = E¿

µ
¼¿+`
¼¿

¡
M i
¿+` (1¡ f)¡Bti

¢¶
= BtiE¿

Ã
¼¿+`
¼¿

Ã
M i
¿+`

Bti
(1¡ f)¡ 1

!!
(40)

= Bti (1¡ f)E¿
Ã
¼¿+`
¼¿

M i
¿+`

Bti

!
¡BtiE¿

µ
¼¿+`
¼¿

¶

Using (11) for eh = T ¡ (¿ + `) ; we have
M i
¿+` = B

tic2

³eh´ eqi0(eh)+ªi(eh)½¿+`+QÁi(eh)½i¿+`+KÁ(eh) bÃi¿+`+qi1(eh)y¿+`+qi2(eh)y2¿+`e 12KÁ(eh)2b¾2i;t+`
The initial pro¯tability at the time of the IPO is unknown when the IPO decision is made, so it is
set equal to its unconditional expectation ½i¿+` = ½t+` +

bÃi¿+`. Then
E¿

Ã
¼¿+`

M i
¿+`

Bti

!
= ci2

³eh´ eqi0(eh)+³KÁ(eh)+QÁi(eh)´bÃi¿+`e¡´(¿+`)¡°a0 £E¿
·
e
1
2
KÁ(eh)2b¾2i;t+`¸ (41)

£E¿
µ
e¡°(ct+`+a1yt+`+a2y

2
t+`)e

³
ªi(eh)+QÁi(eh)´½¿+`+qi1(eh)y¿+`+qi2(eh)y2¿+`¶

where the term e

³
KÁ(eh)+QÁi(eh)´ bÃi¿+` can be taken out of the expectation, as agents do not change

their prior mean between ¿ and ¿ + ` (there is no new information, and thus bÃ¿+` is known to
all agents, by de¯nition). Instead, b¾2i;t+` could still move stochastically according to transition
matrix, but since its movement is independent of everything else, we can pull it out the expectation

of e
1
2
KÁ(eh)2b¾2i;t+` and compute it separately. Since b¾2i;¿ follows a continuous time Markov Chain

process, we have E¿

·
e
1
2
KÁ(eh)2b¾2i;t+` jb¾2i;t = vj¸ = [¤ (`)]j E (v) where ¤ (`) = W¡1diag

¡
e!j`

¢
W

and Ei (v) = e
1
2
KÁ(eh)2vi , and !j are the eigenvalues of the in¯nitesimal transition matrix ¤, and

W is the matrix of corresponding eigenvectors.
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Finally, the last term in (41) can be written as E¿

³
e¡°c¿+`+»½½¿+`+»y;1y¿+`+»y;2y

2
¿+`

´
, where

»½ =
³
ªi
³eh´+QÁi ³eh´´, »y;1 = ³qi1 ³eh´¡ °a1´, and »y;2 = ³qi2 ³eh´¡ °a2´ : Consider the vector

Nt = (¡°ct; yt; ½t) ; similar to the one used in the proof of Lemma A2, with º = 0: As in that proof,
N¿+`jN¿ » N (¹N (N¿ ; `) ;SN (`)), where ¹N (N¿ ; `) and SN (`) are de¯ned as in (24) and (25) for
the appropriate ª (`). By following exactly the same steps as in the proof of Lemma A2, we ¯nd
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³
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This ¯nally leads to
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Ã
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Similarly, we can compute E¿

³
¼¿+`
¼¿

´
immediately from Lemma A2, under the assumption º = 0.¥

(D) The optimal IPO time and the numerical solution of the system of PDEs

Given the stochastic discount factor ¼t, the value of the patent must satisfy the standard Euler
equation Et [d (¼tVt)] = 0. Recalling that b¾t before exercise moves on the grid V =©v1; :::; vnª,
de¯ne V kt = V

¡
½t; yt; v

k; T ¡ s¢. For each k, we then obtain the PDE
rtV

k
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Recall that ¾¼ = ° (¾c + (a1 + 2a2yt)¾y) ; which yields
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k
t =

@V kt
@t

+
@V k

@y
(Ay +Byyt) +

@V kt
@½

(A½ +B½yt + C½½t)

+
1

2

@2V kt
@y2

¾y¾
0
y +

1

2

@2V kt
@½2

¾L¾
0
L +

@2V kt
@½@y

¾0L¾
0
y +

X
h6=k

¸kh

³
V ht ¡ V kt

´

54



where r (½; yt) = R0 +R1½t +R2yt +R3y
2
t and

Ay = ky + ° (¾y¾c + a1¾y¾y) ; By = 2a2°¾y¾y ¡ k
A½ = kL½L + °

¡
¾L¾

0
c + a1¾L¾

0
y

¢
; B½ = °¾L¾y2a2; C½ = ¡kL

Thus, we ¯nally obtain0@r (½t; yt) +X
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From equation (16), the following must also hold at the time of exercise ¿

V (½¿ ; y¿ ; v¿ ; T ¡ ¿) = BtiE¿
µ
¼¿+`
¼¿

¡
Gi (¿ + `; T ) (1¡ f)¡ 1¢¶

Since the problem is then homogeneous, we can renormalize it by setting Bti = 1. We use an
explicit ¯nite di®erence method to solve this system of PDE numerically backward. Explicitly, let
V ijkt = V k (T ¡ t; y (i) ; ½ (j)), so that we can write

V ijkt+1 = V ijkt Aijk0 + V i+1;j;kt Aijk1 + V i¡1;j;kt Aijk2 + V i;j+1;kt Aijk3 + V i;j¡1;kt Aijk4
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Let EPayijkt+1 denote the expected payo® computed in (40). The American option component is

taken into account by requiring that V ijkt+1 = max
³
V ijkt+1; EPay

ijk
t+1

´
at every t + 1: The boundary

conditions around the grid are computed by extrapolating the values from the interior of the grid.
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