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1 Introduction

In economies with infinitely-lived consumers and uncertainty, endogenous debt con-
straints describe how markets respond when sellers of future claims are unable to
commit to loan or insurance contracts they can afford. Recent research has found
much use for this concept in investigating the fundamental theorems of welfare eco-
nomics (Kehoe and Levine [24]), anomalies in asset returns (Alvarez and Jermann [3]),
and international risk sharing (Kehoe and Perri [22]). This paper examines the com-
plementary question of endogenous debt constraints in a model with finite lives and
without uncertainty. We characterize the set of stationary and dynamic competitive
equilibria under perfect foresight and find that binding constraints lead to complemen-
tarity between current and future consumption. This mechanism can result in multiple
steady states and indeterminacy with many degrees of freedom or in the non-existence
of competitive equilibria.

We investigate a pure-exchange deterministic economy with perfect information and
one perishable consumption good. Overlapping generations of homogeneous households
who live for three periods inhabit this economy. There is no fiat money or storage
technology; the only way to transfer consumption from one period to another is by
borrowing or lending.

A crucial feature of our setting is that individuals cannot commit to their contracts.
Following default, harmed creditors can garnish the debtor’s assets and loan revenues
but cannot seize her private endowments. Since no defaulter will rationally choose to
lend in these conditions, default is necessarily followed by the defaulter’s abstention
from the loan market. Under perfect information, lenders know how much borrow-
ers will voluntarily repay and will not lend in excess of that. Therefore, equilibrium
allocations will be constrained to remove all incentives to default.

With hump-shaped endowment profiles, young agents will typically want to borrow
and middle-aged ones will want to lend. Young agents who cannot commit to repay-
ment may face binding debt constraints that tie their consumption to their income.
The key issue is how debt limits reflect agent characteristics and market conditions.

Debt limits are low for households with low discount factor, flat endowment profile
and/or high intertemporal elasticity of substitution. Agents of that type value con-
sumption smoothing and access to the intertemporal credit market so slightly that they
have no incentive to repay any borrowed amount. Autarky turns out to be the only
stationary allocation of this economy and no dynamic competitive equilibrium exists
for all initial distributions of debt other than zero.

Constraints are more generous for households with a high discount factor, peaky
endowment profiles and/or low intertemporal elasticity of substitution. These agents
put a high value on smoothing consumption between middle and old age and, therefore,
on being able to lend when their endowment is high. Agents with such characteristics
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value market participation highly and have a strong incentive to repay. In these cir-
cumstances, some borrowing takes place and lifecycle consumption becomes smoother
than income.

How much borrowing takes place depends a great deal on expected future loan
yields. In particular, an increase in future yields makes future lending more attractive,
thereby raising the amount young agents will voluntarily pay back. As a result, agents
borrow more in youth, lend more in middle-age and consume more in both youth and
old age. The strong income effect generated by changes in future yields makes the
demand for loans by the young non-monotonic and becomes the source of multiple
equilibria and indeterminacy. Youth and old-age consumption are complements for
rationed individuals, even though they may be highly substitutable in their utility
function.

The outcome is two non-autarkic, saddle-point stable steady states: one uncon-
strained and one constrained. Which one prevails depends on how much the initial
middle-aged cohort owes to the initial old. For intermediate values of the initial debt
load, the economy converges to the unconstrained steady state where debt constraints
are slack, interest rates are high and lifecycle consumption is smoothed exactly as un-
der commitment. For low initial debt loads, the economy converges to the constrained
steady state with tight debt contraints, low interest rates and limited borrowing that
hampers consumption smoothing. Autarky is an unstable steady state that can be
reached only from a zero initial debt.

Non-autarkic economies may suffer from sequential indeterminacy, a severe form of
multiple equilibria with several degrees of freedom. For initial debt loads in certain
ranges, both constrained and unconstrained equilibria are feasible. These environments
can easily generate complex dynamic behavior, with excess sensitivity of yields and
consumption to shocks, in which the economy switches regimes from constrained to
unconstrained, or vice versa, in response to a small perturbation in income or wealth
or because of changing expectations about future yields.

The key feature of our work is that households are finitely lived, so that credit
market exclusion is temporary. Market yields prevailing during the time of exclusion
from market activity greatly affect the consumption pattern of credit-rationed traders.
It is the yields prevailing in middle-age, when an agent may default on her debt,
that determine the agent’s eagerness to lend and, therefore, to repay her youthful
debts. This particular feature distinguishes what we do here from related research
in environments with infinitely lived agents and limited contract enforceability. In
Kehoe and Levine [24], [25] and Alvarez and Jermann [3], the punishment for default
lasts forever so that changes in any single future market yield are unlikely to change
borrowing limits significantly. On the other hand, in Bewley [10] and Bulow and Rogoff
[11], default does not preclude future lending; hence, there is no punishment for default
and, in either case, no borrowing in equilibrium.
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Our economy also differs substantially from related models with exogenous liquidity
constraints that permit loans up to a fixed fraction of the remaining lifecycle endow-
ment, as in Jappelli and Pagano [21]. Liquidity constraints diminish individual loan
demand by strengthening the substitution effect of interest-rate changes. The outcome
is a unique equilibrium that converges to a relatively low steady-state yield. Lifecy-
cle models with these constraints and fiat money exhibit a standard initial-conditions
indeterminacy and straightforward dynamic properties.

Our model has three testable implications. First, it predicts a positive correlation
between consumption and income. This is consistent with the findings of many empir-
ical papers that use aggregate or PSID data and find that consumption is excessively
sensitive to income.1 ,2 Second, unlike other models with exogenous or no debt con-
straints, our model predicts a positive relationship between current consumption and
expected future interest rates for rationed agents. Third, we predict a positive rela-
tionship between current consumption and intertemporal consumption substitutabil-
ity. Young individuals with a rising earnings profile are likely to face binding debt
constraints that tie consumption to income and reduce intertemporal substitutability.
Middle-age individuals face a falling earnings profile that implies slack debt constraints,
considerable smoothing of consumption between middle and old age, and high intertem-
poral substitutability.3

The rest of the paper is organized as follows. Section 2 lays out the economic envi-
ronment. Some basic property of equilibria with commitment are reviewed in section
3. Section 4 describes the corresponding lifecycle economy without commitment; equi-
libria are studied in Section 5 while Section 6 characterizes dynamic equilibria. Section
7 compares our results with models of exogenous debt limits; Section 8 connects our
findings with related literature. Finally, Section 9 discusses extensions and points out
potential implications for asset prices.

2 The economic environment

We study a closed, pure-exchange economy of overlapping cohorts with a typical life-
cycle L = 3 periods that is well suited for exploring lifecycle issues in environments

1See Flavin [17], Hansen and Singleton [19] [20], Mankiw et al. [30] and Campbell and Mankiw
[12] for evidence using aggregate data; Zeldes [35] and Hall and Mishkin [18] for evidence using PSID
data.

2These findings, however, have been questioned by a number of authors. For example, Attanasio
and Weber [7] show that excess sensitivity in macro data can be attributed to aggregation bias; Runkle
[32] and Altonji and Siow [2] find weak or no evidence of excess sensitivity in PSID data.

3In a lifecycle model without debt constraints, Attanasio and Browning [8] use cohort-mean data
from the U.K. Family Expenditure Survey and find that the elasticity of intertemporal substitution
increases with the level of consumption.
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with heterogeneous agents. For simplicity, we abstract from production, uncertainty
and finite lifecycles4 of length L > 3. Time is indexed by t = 1, 2, . . . and cohorts
by v = −1, 0, 1, . . .. Members of cohort v are identical, and are double-indexed by a
cohort superscript and a calendar-time subscript. There are Nv = (1 + n)v individuals
in cohort v ≥ 1, with n > −1. Cohorts v = −1, 0 are transitional with lifecycles of 1
and 2 periods respectively. All subsequent cohorts v ≥ 1 live three periods: youth at
t = v, middle age at t = v + 1, old age at t = v + 2.

Endowments and preferences are common knowledge. In particular, the endowment
profile of a generation-t household is

yt =











y2 ≥ 0 for t = −1
(y1, y2) ∈ R2

+ for t = 0
(y0, y1, y2) ∈ R3

+ for t ≥ 1
(1)

The corresponding utility functions at the beginning of economic life are

V t
t =











c−1
1 for t = −1
u(c01) + βu(c02) for t = 0
∑2

s=0 β
su(ctt+s) for t ≥ 1

(2)

where ct = (ctt, c
t
t+1, c

t
t+2) ∈ R3

+ is the household consumption vector, β > 0 is the
subjective discount factor, and u : R+ → R is a twice continuously differentiable,
strictly increasing concave function.

Households of generation t = −1, 0, 1, . . . maximize lifetime utility given the vector
of yields (Rt, Rt+1). If they repay their loans, lifecycle budget constraints have the
usual form

ctt+2 ≤ y2 + (1 + n)w1 for t = −1 (3)

ctt+1 +
ctt+2

R1
≤ y1 − w1 +

y2

R1
for t = 0 (4)

ctt +
ctt+1

Rt

+
ctt+2

RtRt+1

≤ y0 +
y1

Rt

+
y2

RtRt+1

for t ≥ 1. (5)

In these expressions Rt = 1+ rt is the yield on a loan of one consumption unit lent out
at t and payable at t + 1. The parameter w1 ∈ [−y2, y1] defines initial conditions for
our economy; it specifies the value of principal and interest owed by each household of
cohort v = 0 to a counterpart in cohort v = −1.

4L = 3 is an assumption we make for analytical tractability. In overlapping generation economies
with collateral income or a commitment technology (Kehoe and Levine [23]; Azariadis, Bullard and
Ohanian [9]) we know that equilibria with L = 3 have similar qualitative properties (existence, con-
vergence, determinacy) to equilibria with L > 3.
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Letting bt = (btt, b
t
t+1) ∈ R2 be the vector of claims by a member of cohort t

at the end of periods (t, t + 1), we may rewrite the lifecycle constraint (5), under the
assumption that loans are repaid, as a set of three period-by-period budget constraints,
that is,

y0 = ctt + btt, (6)

y1 +Rtb
t
t = ctt+1 + btt+1, (7)

y2 +Rt+1b
t
t+1 = ctt+2. (8)

These apply, respectively, to youth, middle age, and old age.
Given the vector of yields (Rt)

∞
t=1, individual asset demands (btt, b

t
t+1)

∞
t=0 are influ-

enced by the discount factor β, the utility function u, the endowment profile (y0, y1, y2),
and the enforcement mechanism for loan contracts. If endowments consist of collat-
eral goods, then a relatively inexpensive legal mechanism creates an environment of
commitment in which households do not default on any loans they can afford to repay.
For example, a mechanism that allows creditors to seize publicly known endowments
of individual debtors reduces the debtors’ incentive to default. Environments without
collateral income cannot set up this enforcement technology; they must rely instead on
the self-interest of borrowers to enforce repayment promises. In this setting, individ-
ual rationality constraints (IRC’s henceforth) on borrowers must supplement lifecycle
budget constraints.

To simplify the set of competitive equilibria, we restrict the endowment and prefer-
ences to ensure that equilibrium is unique in an economy with commitment but without
money or public debt. This requires

Assumption 1 In the economy with commitment, all dated goods are normal and
gross substitutes at all prices.

For a CES utility function with elasticity of intertemporal substitution equal to σ > 0,
a sufficient condition for Assumption 1 to be satisfied is σ ≥ 1. If 0 < σ < 1, then either
y1 > y0 ≥ y2 or y1 > y2 > y0 and n < 0 is a sufficient condition. Gross substitutability
trivially means that consumption demand in any period is an increasing function of the
price of consumption in any other period within the household’s lifespan. Further, asset
demands in a commitment economy are increasing functions of loan yields. Specifically,
we have

Lemma 1 Let
{

btt, b
t
t+1

}

=
{

B(Rt, Rt+1), B̂(Rt, Rt+1)
}

be the list of asset demands

with commitment for cohort t ≥ 1, that is, (btt, b
t
t+1) = arg maxV t

t s.t. (6), (7), (8) and
ct = (ctt, c

t
t+1, c

t
t+2) ∈ R3

+. Then

1. The functions B : R2
+ → R and B̂ : R2

+ → R are continuously differentiable and
increasing.
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2. B̂(Rt, Rt+1) = z(Rt+1, wt+1) where wt+1 = −RtB(Rt, Rt+1) is the debt of a mem-
ber of cohort t to cohort t−1, payable at t+1; and z(R,w) ≡ arg maxz {u(y1 − w
−z) + βu(y2 +Rz)} is the asset position of a middle-aged individual with debt
load w when the expected loan yield is R > 0.

We conclude that, in a commitment economy, the community (or aggregate) demand
for assets at any time t ≥ 2,

Bu(Rt−1, Rt, Rt+1) = B(Rt, Rt+1) +
1

1 + n
B̂(Rt−1, Rt), (9)

is also an increasing function of the vector (Rt−1, Rt, Rt+1).

3 Commitment equilibria

We review first an environment in which loan contracts are enforceable by binding legal
commitments or by a costless technology based on collateral income. Consumption
loans are the only store of value in this economy; a competitive equilibrium is a list
(ctt, c

t−1
t , ct−2

t , Rt)
∞
t=1 which satisfies the budget constraints (6) - (8) and makes the

community demand for assets, defined in equation (9), vanish at each date t ≥ 1.
Equilibria in this economy have straightforward properties that mimic those of standard
atemporal economies. Assuming gross substitutes, there is a unique steady state, and
a unique dynamic equilibrium that converges to the steady state.

More formally, equilibria are solutions to the difference equation

Bu(Rt−1, Rt, Rt+1) = 0, t ≥ 2 (10)

for a given initial restriction on (R1, R2) that is implied by market clearing at t = 1
for the initial debt load, w1, of cohort v = 0 to cohort v = −1. This is a second-
order difference equation that we can easily decompose into a system of two first-order
equations if we use as state variable the sequence (Rt, wt) of yields and debt loads:

B(Rt, Rt+1) +
1

1 + n
z(Rt, wt) = 0, t ≥ 1 (11)

(1 + n)wt+1 = Rt z(Rt, wt), t ≥ 1 (12)

w1 ≥ −y2 given. (13)

This system consists of the market-clearing condition (11), the evolution of the debt
load (12), and the initial condition (13).

Solutions to equation (10) or to the dynamical system (11) to (13) are available
from Kehoe and Levine [23], Kehoe, Levine, Mas-Colell and Woodford [26], and from
Azariadis, Bullard and Ohanian [9] who study OLG economies with arbitrary lifecycles
L ≥ 2. Without proofs, we summarize their results in
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Theorem 1

1. If Assumption 1 is satisfied, there is at most one stationary equilibrium with
commitment, (w∗

u, R
∗
u).

2. If a steady state exists, then for each initial condition w1 ≥ −y2 such that
z(R1, w1) ≥ −y0, there is a unique equilibrium sequence that converges non-
monotonically to (w∗

u, R
∗
u).

The logic of this result is simple. Steady states are zeros of the increasing function
Bu(R,R,R); there can be at most one such zero. Furthermore, sequences converging
to R∗

u must do so in oscillatory fashion.
To prove that a stationary equilibrium exists in which young individuals borrow

from middle-age ones, we assume that the endowment profile is sufficiently “peaky”.
In particular, we have

Assumption 2 Let R0 = u′(y0)/(βu
′(y1)) be the marginal rate of substitution at the

endowment point (y0, y1), and R1 = u′(y1)/(βu
′(y2)) be the corresponding marginal rate

of substitution at the endowment point (y1, y2). Then

R1 < 1 + n < R0. (14)

For a CES utility function, equation (14) becomes (y2/y1)
1/σ < β(1 + n) < (y1/y0)

1/σ.
A hump-shaped income profile satisfies both Assumption 2 and Assumption 1. This
leads directly to the following result:

Theorem 2 Let Du(R) = Bu(R,R,R) be the community asset demand at a constant
yield R > 0. If Assumptions 1 and 2 hold, then

1. There is a unique steady state R∗
u ∈ (R1, R0), and it is a saddle.

2. This state is dynamically efficient if, and only if, Du(1 + n) ≤ 0.

3. B(R∗
u, R

∗
u) < 0 < B̂(R∗

u, R
∗
u), that is, the young borrow from the middle-aged

when the loan yield is R∗
u.

4. Starting from any initial debt load w1 6= w∗
u, the equilibrium sequence (w∗

t , R
∗
t )

lies on a continuous one-dimensional manifold ψu.

Figure 1 illustrates the equilibrium in the commitment economy with constant pop-
ulation. Non-negative equilibrium consumption requires that the equilibrium manifold
Rt = ψu(wt) be defined for all debt loads such that

z(Rt, wt) ≥ −y0 (15)
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wt ≥ −y2. (16)

Initial debt loads lower than −y2 cannot be repaid by old individuals and violate (16).
Since middle-age borrowing from the young cannot exceed the young’s endowment, as
stated in (15), there is a lower bound on the interest rate for each initial debt load. The
equilibrium manifold ψu, which is defined for combinations of (wt, Rt) that satisfy (15)
and (16), describes the unique solution sequence (w∗

t , R
∗
t ) that converges to (w∗

u, R
∗
u) for

a given initial condition w1 ∈ [−y2, y1]. The double arrows indicate that convergence
to the unique steady state is non-monotonic.

[FIGURE 1 ABOUT HERE]

Suppose, for example, that β = 1, u(c) = log c, n = 0, yt = (e, 1, e) with 0 < e < 1.
Then

btt =
1

3

(

2e− 1

Rt
− e

RtRt+1

)

, btt+1 =
1

2

(

1 +Rtb
t
t −

e

Rt+1

)

,

and the steady state is (w∗
u, R

∗
u) = ((1 − e)/3, 1).

4 Debt-constrained asset demands

This section and the next one describe stationary competitive equilibria in an envi-
ronment in which individual endowments cannot be used as collateral5 and households
cannot credibly commit to repay loans when doing so is not in their own interest. The
absence of commitment means that borrowing against future income will typically be
limited more tightly than lifecycle budget constraints permit, in a manner that reflects
market conditions and individual agent characteristics.

As in Kehoe and Levine [24] [25], we assume that the legal environment has the
following characteristics: all information, including default, is public; there are no
restrictions on saving, as agents can lend at any point in life, even after default. In
the event of default, the defaulter’s private endowments cannot be seized while all
her assets, including current and future loan revenues up to the default amount, can
be garnished by harmed creditors. Hence, this rule of law is more sophisticated than
bilateral punishment.

The legal environment of our model means that the private cost of default is the
forgone gain from trading in the intertemporal market for the rest of the agent’s life.
This feature does not rest on any restriction on lending/saving, as individuals are
allowed to lend after they default; rather, they have no incentive to do so because
public information and the rule of law make the revenues from current and future loan

5Kiyotaki and Moore [27] construct a model of economic volatility that exploits the interaction
between collateral and borrowing constraints. See section 9 for details.
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contracts vulnerable to claims by prior debtors. Similarly, an individual can borrow
after default, but she will not find any lender ready to do so because middle-aged
individuals have no incentive to repay their loans. In this environment, default does
not occur in equilibrium because fully informed rational lenders will never lend more
than borrowers are willing to repay.6

To understand the factors affecting debt limits, we study the optimal lending deci-
sion for a member of cohort t who cannot credibly commit to repay. This decision is
the solution to the following problem:

{

btt, b
t
t+1

}

= arg max
2
∑

s=0

βsu(ctt+s), (17)

given the vector (Rt, Rt+1) of yields, and subject to (6), (7), (8) and the IRC’s:

u(ctt+1) + βu(ctt+2) ≥ u(y1) + βu(y2) (18)

and
u(ctt+2) ≥ u(y2). (19)

Individual rationality amounts to self-enforcement of loan contracts: it restricts lenders
to offer contracts that the borrowers find preferable to autarky. The IRC (19) means
that middle-aged individuals cannot borrow at all because market participation is of
no value in the last period of life. An equivalent solvency constraint is

btt+1 ≥ 0. (20)

Young households face the more complicated problem, illustrated in Figure 2, of
choosing in middle age between default and continued trading. Young borrowers carry
into middle age negative claims valued at Rtb

t
t < 0, and a utility function V t

t+1 =
u(ctt+1) + βu(ctt+2).

[FIGURE 2 ABOUT HERE]

Post-youth consumption will be autarkic, that is, (ct
t+1, c

t
t+2) = (y1, y2), which is

point A in Figure 2, if the borrower chooses default and a zero subsequent asset position.
Repayment of the loan permits continued market participation and accumulation of
assets to provide for old age. In this case, given (Rt, Rt+1) and the debt load wt =
−Rt b

t
t, we have

(ctt+1, c
t
t+2) = arg max V t

t+1 (21)

subject to ctt+1 +
ctt+2

Rt+1

≤ y1 − wt +
y2

Rt+1

6In contrast, default is a socially useful institution in environments with private information (Dubey
et al. [16], Araujo et al. [4]).
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y2 ≤ ctt+2.

Borrowers prefer the solution of (21) to autarky if, and only if, the debt load wt carried
from youth into middle age is not too large relative to the expected future yield Rt+1.
In terms of Figure 2, this is the case if the debt load −RtB

c
y does not exceed the

horizontal distance between point A and point B. Sufficiently low expected rates of
interest Rt+1 < R1 will induce households to borrow in middle age, violating the old-
age debt constraint (19) for that cohort. On the other hand, values of Rt+1 above the
autarkic yield R1 allow young members of cohort t to borrow within their IRC’s. High
current interest rates, Rt, reduce the borrowing limit −Bc

y, that is, the loan size that
makes debtors indifferent between autarky and market participation.

A key point of figure 2 is that both the borrowing limit −Bc
y and consumption

in youth increase with the expected future yield Rt+1. High future yields lower the
utility cost of repaying loans in middle age and, simultaneously, make saving for old age
more attractive. Figure 2 shows that an increase in Rt+1 makes the budget line steeper,
thereby increasing the borrowing limit −Bc

y. This means that the youthful consumption
demand of a constrained individual is a decreasing function of the price of old-age
consumption. This means that constrained consumers regard dated consumption goods
as complements rather than substitutes, and leads to

Theorem 3 If Assumptions 1 and 2 hold, then consumption in youth and old age
are gross substitutes if debt constraints are slack, complements if debt constraints are
binding.

Loss of intertemporal substitutability also means that asset demand ceases to be mono-
tonically increasing in yields, so that the uniqueness of equilibrium may be destroyed.
Sections 5 and 6, in particular, show that the lack of commitment destroys the unique-
ness of equilibrium.

Figure 2 also implies that the debt constraint on the young is

btt ≥ Bc
y(Rt, Rt+1). (22)

Properties of the borrowing limit, −Bc
y, are collected in the following result which we

prove in Appendix A.1.

Lemma 2

1. Bc
y is continuously differentiable.

2. There exists a number y1 ∈ (0, y1] and a decreasing function f : [R1,∞) →
[−y1, 0] such that

Bc
y(Rt, Rt+1) = f(Rt+1)/Rt. (23)
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3. f ′(R) = −z[R,−f(R)]/R and f(R1) = 0.

4. f(R) → −ȳ1 as R → ∞.

Asset demands for the economy without commitment are now easy to define in a
way that respects the IRC’s (18) and (19). Specifically,

btt = max{B(Rt, Rt+1), f(Rt+1)/Rt} (24)

btt+1 = max{0, z(Rt+1,−Rtb
t
t)}. (25)

Competitive equilibria correspond to a sequence (wt, Rt)
∞
t=1 of debt loads and loan

yields which satisfy the asset demand schedules (24) and (25), an initial condition
w1 ∈ (0, y1), and the market clearing condition

btt +
1

1 + n
bt−1
t = 0 (26)

for each t = 1, 2, . . .
Before we look for solutions to this equation, it is useful to learn something about

interest rates at which households face binding IRC’s. For a member of cohort v = t,
Lemma 2 says that the middle-age IRC will be binding at t+1 if, and only if, Rt+1 < R1.
The same household will have to contend with a binding constraint in youth if the
expected future yield, Rt+1, is low for a given current yield, Rt. That event tightens
borrowing limits on the young: it boosts their constrained asset demand, which is
decreasing in Rt+1, above the corresponding unconstrained demand, which is increasing
in Rt+1. The technical result (proved in appendix A.2) is

Lemma 3 If Assumption 2 holds, there exists a continuously differentiable, decreasing
function m : [0, R0] → R+ such that:

1. Members of cohort t are debt-constrained at t+ 1 if, and only if, Rt+1 < R1.

2. The same group is debt-constrained at t if, and only if, Rt+1 < m(Rt).

3. The function m satisfies m(R0) = R1 and has a unique fixed point at R∗ ∈
(R1, R0).

Continuing with the example at the end of Section 3, suppose again that β =
1, u(c) = log c, n = 0, yt = (e, 1, e) with 0 < e < 1. Constrained asset demands are now

btt =







0 if Rt+1 ≤ R1 = e

−
(

1 −
√

e/Rt+1

)2
/Rt otherwise

btt+1 =

{

0 if Rt+1 ≤ R1 = e
1
2
(1 +Rtb

t
t − e/Rt+1) otherwise
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If we compare these with the unconstrained demands of Section 3, we find that debt
constraints bind on the middle-aged if Rt+1 < e; they bind on the young if both
Rt+1 ≥ e and

eRt < µ(Rt+1) ≡ 3

√

e

Rt+1
−
(

1 +
e

Rt+1

)

.

5 Stationary states without commitment

This section studies the properties of steady states in our perfect-foresight economy
without commitment. The income effects that arise from changes in debt limits may
overcome the substitutability of intertemporal consumption dictated by the utility
function, permitting three, instead of one, steady states in equilibrium. One steady
state is unconstrained and identical to that of the corresponding commitment economy;
it carries a large interest rate, large potential gains from trade, and generous debt limits
for the young. Constraints are slack in this equilibrium.

Another steady state is completely autarkic with no borrowing or lending in equi-
librium, and a loan yield no bigger than the autarkic marginal rate of substitution
for middle-age individuals. This equilibrium has poor welfare properties: it imposes
zero debt limits on everyone and allows no gains from trade. Autarkic allocations are
constrained-suboptimal and can be easily improved by a benevolent central planner
that respects the IRC’s.

Between autarky and no-rationing lies a constrained state with an intermediate
loan yield and binding debt limits. Here the gains from trade are modest, and young
consumers desire to borrow more than their rations permit.

In formal language, steady states are time-invariant lists (c0, c1, c2, w, R) for the
lifecycle consumption vectors, the debt load w, and the interest rate yield R, with
the property that all cohorts are either debt-constrained in youth or unconstrained in
any stage of life.7 At a constant yield R, aggregate demand for consumption loans is
the sum of the corresponding demands by young and middle-aged households. From
Lemma 1.3, Theorem 2 and equation (9), we obtain aggregate asset demands

Du(R) = B(R,R) +
1

1 + n
z[R,−RB(R,R)] (27)

if debt constraints are always slack; and

Dc(R) =
f(R)

R
+

1

1 + n
z[R,−f(R)] (28)

7Assumption 2 guarantees that middle-age individuals are unconstrained at steady states.
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if debt constraints always bind on the young. Stationary solutions to the market
clearing condition (26) then satisfy:

max{Du(R), Dc(R)} = 0 (29)

We already know from Lemma 3, particularly from parts 1 and 2, that debt con-
straints will bind on the young if the interest rate is small enough. In particular, we
directly obtain

Lemma 4 Let R∗ ∈ (R1, R0) be the unique fixed point of the map m : [0, R0] →
R+ which defines the boundary of the constraint set

{

(Rt, Rt+1) ∈ R2
+ | B(Rt, Rt+1) ≤

f(Rt+1)/Rt)}.

Proof: see appendix A.3.
Using Lemma 3.2, we find that the stationary demand for assets is debt constrained

if, and only if, R < R∗. Figure 3 draws the stationary community asset demand for
β = 1, u(c) = log c, n = 0, yt = (0.2, 1, 0.2). One noteworthy feature of this graph is
the non-monotonicity of demand due to binding constraints that weaken the intertem-
poral consumption substitutability. Debt constraints are slack for any R ≥ R∗, and
community asset demand is monotone in R because all dated consumption goods are
gross substitutes at high interest rates. The situation changes when R < R∗: binding
debt constraints lead to complementarity between youthful and old-age consumption,
and to non-monotonicity of the asset demand schedule.

[FIGURE 3 ABOUT HERE]

To characterize steady states in economies without commitment, it is useful to
proceed by comparing the stationary yield, R∗

u, of the commitment equilibrium with
the fixed point, R∗, of the line that separates the constrained set of yields from the
unconstrained one. Let w∗ be the debt load corresponding to R∗.

Economies with peaky endowment profiles, low rates of time preference and mod-
erate intertemporal elasticities of substitution, like the one in Figure 3, impose a high
penalty on defaulting borrowers and will satisfy R∗

u ≥ R∗. Here, debt limits will be
high for any given vector of yields that exceeds R1. The commitment equilibrium yield
R∗

u will also be a stationary equilibrium in a no-commitment economy with slack debt
constraints. However, this equilibrium will no longer be unique: it will coexist with
two additional constrained stationary allocations.

One allocation is autarkic and nominally indeterminate: all generations hold zero
assets, and the loan yield is any R ∈ (0, R1], that is, any yield up to the autarkic
marginal rate of substitution of the most patient age group. Any yield R ≤ R̄1 is, by
Assumption 2, below the growth factor 1 + n for this economy. Hence, the autarkic
allocation is constrained-suboptimal and it can be improved by a benevolent central
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planner who spreads consumption more evenly over the lifecycle and still respects the
IRC’s (18) and (19).

Another equilibrium occurs at an intermediate yield R∗
c ∈ (R1, R

∗), where the
borrowing limit of the young is reduced by low expected future yields to the point
where it falls below the relevant unconstrained demand. This allocation may or may
not be constrained optimal. It is optimal if R∗

c ≥ 1 + n because the discounted value
of the aggregate endowment profile is finite at both the market interest rate charged
by creditors, and also at the higher marginal rate of substitution of rationed debtors.

Economies with low default penalties correspond to relatively flat endowment pro-
files or high intertemporal elasticities of substitution. Here the only possible stationary
equilibrium is autarky at an indeterminate yield R ∈ (0, R1]. As we shall see in section
6, dynamic competitive equilibria generally fail to exist in economies with identical
cohorts when assets are in zero net supply.

Stationary equilibria and their welfare properties are summed up in

Theorem 4 Let R∗
u ∈ (R1, R̄0) be the unique stationary yield of the commitment econ-

omy, and R∗ ∈ (R1, R̄0) be the unique fixed point of the constraint set defined in Lemma
4. Then

1. If R∗
u ≥ R∗, the no-commitment economy has one unconstrained stationary equi-

librium at R∗
u, one autarkic constrained equilibrium with identically zero asset

holdings at any R ≤ R1, and one constrained non-autarkic equilibrium with non-
zero asset holdings at R∗

c ∈ (R1, R
∗).

2. If R∗
u < R∗, the no-commitment economy has a unique stationary autarkic equi-

librium at R ≤ R1.

3. The autarkic steady state is constrained-suboptimal. Moreover, stationary alloca-
tions are constrained-optimal if the aggregate endowment vector has finite value
when evaluated at the marginal rate of substitution of unconstrained agents.

Proof: See Appendix A.4.8

Continuing with the example of Sections 3 and 4, consider an economy with β =
1, u(c) = log c, n = 0, yt = (e, 1, e), with 0 < e < 1. Then R∗ is the solution to the
equation

eR = µ(R) → eR2 +R − 3
√
eR + e = 0.

For e ≤ 0.25, R∗
u ≥ R∗ and there are three steady states: (a) the unconstrained steady

state (w∗
u, R

∗
u) = ((1 − e)/3, 1); (b) the autarkic steady state (w, R̄1) = (0, e); (c) the

non-autarkic constrained steady state (w∗
c , R

∗
c) where

w∗
c = −f(R∗

c) =

(

1 −
√

e

R∗
c

)2

8We thank an anonymous referee for suggesting part 3 of Theorem 4.
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and R∗
c is the unique solution to

f(R)

R
+

1

2

(

1 + f(R) − e

R

)

= 0 ↔ −R(1 + e) + (2 +R)
√
eR− e = 0

in the interval (R̄1, R
∗). For 0 < e < 0.25, R∗

u is below R∗ and the unique stationary
solution is the autarkic steady state.

6 Regimes of dynamic equilibria

This section studies dynamic equilibria and explores their convergence to the steady
states studied in Section 5. The key geometric issue is to understand how the phase
diagram in Figure 1 changes in the presence of debt limits. As one may expect, we
find that the loss of gross substitutability generates a rich pattern of complex dynamic
behavior which is easiest to understand if we start with the commitment economy
in Figure 1. That figure says that equilibrium converges to the unconstrained state
(w∗

u, R
∗
u) from any value of the principal-and-interest, w1, owed by the initial middle-

aged to the initial old, between −y2 and the boundary of the region in which z(R1, w1) ≥
−y0, that is for any initial debt that the debtor can afford to repay.

Without commitment, the initial values of debt loads that will be repaid necessarily
shrink from what they can afford to what they choose to repay. Since the old will always
default on all debt and the middle aged will refuse to repay large debts, it is easy to
see why unconstrained equilibria will converge to the steady state (w∗

u, R
∗
u) only from

a relatively small interval of positive initial debt [w̄1, w̄2], as shown in Figure 4. Very
small initial debt loads in the interval [0, w̄1) rule out unconstrained equilibria because
they induce the middle aged to lend a lot, lowering interest rates and violating the
debt constraint on the young.

By the same token, very small initial debt loads in the interval [0, w̄c] tighten debt
constraints and support rationed dynamic equilibria that converge to the constrained
steady state (w∗

c , R
∗
c). No initial debt load, other than w1 = 0, is consistent with a

purely autarkic equilibrium.
In formal language, a sequence (wt, Rt)

∞
t=1 of debt loads and loan yields is a dy-

namic equilibrium if w1 ∈ [0, y1] is given by history, and for each t, (wt, Rt) solves
the individual maximization problem (17), satisfies the IRC’s (18), (19) and the asset
market clearing condition (26). In particular, an equilibrium satisfies IRC’s on the
middle aged that require non-negative saving

z(Rt, wt) ≥ 0. (30)

In addition, slack debt constraints on the young require non-positive excess demand
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for loans at any yield for which they are slack, i.e.,

J(Rt, wt) ≡ max

{

0,
z(Rt, wt)

1 + n

}

+B(Rt, m(Rt)) ≤ 0. (31)

The space of feasible equilibrium sequences for the no-commitment economy lies be-
tween the lines z(Rt, wt) = 0, J(Rt, wt) = 0 and wt ≥ 0, as shown in Figures 4 and
5. Allocations below z(Rt, wt) = 0 have low interest rates and imply negative lending
by the middle-aged; allocations to the left of J(Rt, wt) = 0 have low debt loads for
the current middle-aged, which raise lending and lower the equilibrium interest rate,
thereby violating the debt constraint on the young. These figures show that the state
space is considerably smaller than that of the corresponding commitment economy of
Figure 1 because state variables must be consistent with debt constraints.

Competitive equilibria with slack constraints are non-negative solutions (wt, Rt)
to the dynamical system described by equations (11) and (12). Geometrically, these
sequences lie on the unconstrained equilibrium manifold ψu, defined for the commit-
ment economy by Theorem 2.4, between the lines z(Rt, wt) = 0, J(Rt, wt) = 0 and
wt ≥ 0 of Figures 4 and 5. In an analogous fashion, equilibria with tight constraints
are incentive-compatible solutions to

f(Rt+1) = −Rt
z(Rt, wt)

1 + n
(32)

and equation (12). Geometrically, these sequences lie on the constrained manifold ψc,
which is studied in detail in Appendix A.6, between the lines z(Rt, wt) = 0, J(Rt, wt) =
0 and w ≥ 0 of Figure 4 and 5. These sequences converge monotonically to the non-
autarkic steady state (w∗

c , R
∗
c), which is easily shown to be a saddle. The one exception

is when the economy begins with autarky, that is, the initial debt load is w1 = 0.
Then the unique equilibrium allocation is the source (wt, Rt) = (0, R), for all t, with
R ∈ (0, R̄1]. The reason for the indeterminate autarkic yield is well known from the
literature on incomplete markets: the complete absence of trading is consistent with
any equilibrium yield less than, or equal to, the marginal rate of substitution of the
most patient trader, i.e. of middle-aged individuals.

Consider first economies with (β, y1/y0, y1/y2) large and σ small, so that R∗
u > R∗.

Households value consumption smoothing greatly. Theorem 4 showed that the economy
without commitment has three stationary equilibrium allocations

(wt, Rt) =
{

(w∗
u, R

∗
u), (w

∗
c , R

∗
c), (0, R) for R ∈ (0, R̄1)

}

, ∀t. (33)

Figure 4 shows the dynamic equilibria for this economy. Converging to the uncon-
strained steady state (w∗

u, R
∗
u) are sequences of dynamic equilibria with slack constraints

that start from a historically given value w1 and lie on the incentive-compatible por-
tion of the commitment equilibrium manifold ψu. The following result is proved in
Appendix A.5:
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Theorem 5 Suppose R∗
u > R∗. Then there exist critical values w̄1 ∈ [0, w∗

u] and
w̄2 ∈ [w∗

u, y1] for the debt load such that:

1. At most one unconstrained equilibrium sequence exists for any initial value, w1,
of the debt load.

2. An unconstrained equilibrium sequence exists if, and only if, w1 ∈ [w̄1, w̄2].

3. The unconstrained equilibrium manifold spans the critical values w∗ and R∗.

Figure 4 shows that the values (w̄1, w̄2) are the intersections of the manifold ψu with
the incentive-compatibility lines J = 0 and z = 0. Hence, the commitment equi-
librium manifold ψu of the no-commitment economy is defined only for debt loads
wt ∈ [w̄1, w̄2], ∀t. Intuitively, only positive but moderate debt loads satisfy the IRC’s
of young and middle-age individuals. For any initial condition w1 ∈ [w̄1, w̄2], there is
a unique unconstrained equilibrium sequence that approaches non-monotonically the
unconstrained steady state.

[FIGURE 4 ABOUT HERE]

The second stationary allocation is the constrained non-autarkic equilibrium (w∗
c , R

∗
c).

This steady state is a saddle and convergence toward it is monotonic. In comparing
the constrained non-autarkic steady state with the unconstrained one, we find that:
(a) the debt load and the interest rate are lower at the constrained non-autarkic steady
state, w∗

c < w∗
u, R

∗
c < R∗

u; and (b) there is less borrowing and lending at the constrained
non-autarkic steady state, f(R∗

c)/R
∗
c > B(R∗

u, R
∗
u).

Theorem 6 Suppose R∗
u > R∗. Then there is a critical value, w̄c ∈ [w̄1, w

∗
u), for the

debt load such that:

1. If w1 = 0, autarky is an equilibrium allocation.

2. If w1 ∈ (0, w̄c], there is a unique non-autarkic equilibrium sequence with tight
debt constraints that converges monotonically to (w∗

c , R
∗
c).

3. If w1 > w̄c, there is no equilibrium sequence with tight debt constraints.

4. The constrained equilibrium manifold ψc spans the critical values w∗ and R∗.

Proof: See Appendix A.6.
Approaching the constrained non-autarkic steady state are sequences of dynamic

equilibria with tight debt constraints that start from a historically given value w1

and lie on the incentive-compatible portion of the constrained manifold ψc. This is
defined for debt loads wt ∈ (0, w̄c], where w̄c is shown to be the intersection between
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the constrained manifold ψc and the incentive-compatible line for the young J = 0 in
Figure 4. Large values of the initial debt load violate the IRC for the young and are
outside the domain of the constrained equilibrium manifold.

The third stationary allocation in the economy is the constrained autarkic equi-
librium (0, R), for R ∈ (0, R̄1], characterized by zero borrowing and lending. When
the economy begins with autarky, that is, initial debt load is w1 = 0, then the unique
equilibrium allocation is the source (wt, Rt) = (0, R), for all t, with R ∈ (0, R̄1]. The
autarkic steady state is unstable, and any shock leading to positive debt loads makes
the economy move away from it. In welfare terms, the autarkic stationary allocation
is Pareto-dominated by the constrained non-autarkic stationary allocation. This is
hardly a surprise since autarky is associated with a peaky consumption profile in this
economy.

Figure 4 illustrates the manifold ψc which overlaps with the unconstrained manifold
ψu for wt ∈ [w̄1, w̄c]. Equilibrium is indeterminate whenever the debt load is in this
interval. More precisely, debt loads in this interval belong to both the constrained and
the unconstrained equilibrium sequences.

Multiple equilibria will thus appear for a wide range of initial conditions. First, if
w1 lies in the overlapping region [w̄1, w̄c]; second, if the initial value w1 is sufficiently
larger than w∗

u so that the unconstrained manifold will lead its successor, w2, into the
overlap region; third, if either the constrained stationary allocations are spanned by
the unconstrained manifold, or the unconstrained stationary allocation is spanned by
the constrained manifold, or both.

We do not know if the constrained steady state (w∗
c , R

∗
c) or the unconstrained one

(w∗
u, R

∗
u) are generally spanned by the equilibrium manifold of the other steady state.

If neither state is spanned, then equilibrium will be unique for w1 ∈ [0, w̄1] or for w1

sufficiently close to w∗
u: in the former case, debt constraints bind for all t, and the equi-

librium sequence converges to the constrained state; in the latter case, debt constraints
are slack for all t, and the equilibrium sequence converges to the unconstrained state.

If the constrained non-autarkic steady state is spanned by the unconstrained mani-
fold, then the equilibrium is not unique for w1 ∈ (0, w̄1]. The economy can switch from
ψc to ψu once it enters the overlap region. Along the same lines, if the unconstrained
steady state is spanned by the constrained manifold, the equilibrium is not unique for
any w1 ∈ [w̄c, w̄2].

As long as the overlap region between the two manifolds is not empty, indetermi-
nacy of perfect-foresight equilibria may persist for one or more periods. We call this
phenomenon sequential indeterminacy and give an example of it in the next paragraph.
Equilibria with binding and slack constraints may coexist for several time periods, and
either one of the steady states (w∗

c , R
∗
c), (w

∗
u, R

∗
u) can be reached from the initial debt

load w1. When both equilibrium manifolds span one or more stationary allocations,
then the economy can move from one equilibrium manifold to the other even after a
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stationary allocation has been reached. These equilibria have countably infinite de-
grees of freedom and display an extreme form of recurrent indeterminacy. It is worth
noting that Theorems 5 and 6 do not require any form of dynamic inefficiency in the
underlying full-commitment economy. Hence, complex dynamic behavior under en-
dogenous debt constraints has little to do with dynamic efficiency, as the following
example demonstrates.

Continuing with the example of the previous sections, consider the economy with
β = 1, u(c) = log c, n = 0, yt = (e, 1, e) with e = 8/45 < 1/4. For this economy, the
commitment equilibrium at R∗

u = 1 is dynamically efficient. Without commitment, we

have z(R,w) = (1 − w)/2 + f(R)/R, f(R) = −(1 −
√

e/R)2, and the manifold ψc is

defined by w = −f(R), that is, by the joint solution of equations (12) and (32). Then
we easily check from figure 4 that ψc starts at the point (w,R) = (0, R̄1) = (0, e) =
(0, 8/45) and ends at (w,R) = (w̄c, R̄c) = (4/9, 72/45). To see this, we recall that
(w̄c, R̄c) is the common solution to equations J(R,w) = z(R,w) + f(R)/R = 0 and
w = −f(R). We conclude that the constrained manifold for this economy spans the
unconstrained steady state (w∗

u, R
∗
u) = ((1 − e)/3, 1) = (37/135, 1).

Consider now the case where (β, y1/y0, y1/y2) are small and σ is large, so that
R∗

u < R∗. These households have a high intertemporal elasticity of substitution and
place little value on consumption smoothing. At the same time, the endowment profile
is relatively flat and future punishments are discounted heavily. In this economy,
individuals have a strong incentive to default and face very tight debt limits.

From Theorem 4, we know that this economy has a unique stationary autarkic allo-
cation (0, R) for any R ∈ (0, R̄1], ∀t; we also know that there are no equilibrium gains
from trade at (w∗

u, R
∗
u), which fails to be an incentive-compatible allocation. Walrasian

perfect-foresight equilibrium does not exist in this class of economies without commit-
ment: any initial condition w1 ∈ (0, w̄2] leads to equilibrium sequences that result in
default by middle-aged individuals, thereby violating our definition of equilibrium.

The geometric reason why equilibrium does not exist is shown in Figure 5, which
draws the manifolds ψu and ψc for this economy. The equilibrium manifold has a “hole”
in the interval (w̄c, w̄1) which contains the unconstrained steady state (w∗

u, R
∗
u). For

this reason, the “hole” will attract all sequences (wt, Rt) that start on either ψu or ψc

anywhere in the domain (0, w̄2]. Therefore, no equilibrium exists for any initial w1,
other than w1 = 0. The following result follows immediately.

Theorem 7 Suppose R∗
u < R∗. Then equilibrium is autarkic if w1 = 0, and no equi-

librium exists if w1 6= 0.

[FIGURE 5 ABOUT HERE]

Figure 6 sums up how existence results from Theorems 5, 6 and 7 depend on the
initial debt load w1, preferences and the endowment profile. Equilibrium does not exist
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for R∗
u < R∗ or for extreme values of the initial debt load outside the interval [0, w̄2].

Moderately low values of w1 ∈ (0, w̄1) lead to initially constrained equilibrium, while
w1 ∈ [w̄c, w̄2] means that equilibria will start with slack constraints. Both situations
are possible when w1 ∈ (w̄1, w̄c).

[FIGURE 6 ABOUT HERE]

7 Comparison with exogenous debt constraints

This section explores the conjecture that the complex dynamical equilibria found in
our model are neither the inherent property of lifecycle economies with many trading
periods, nor the outcome of dynamic inefficiency. We claim instead that indeterminacy
and complex dynamics stem from the large income effects associated with the impact
of yield changes on endogenous debt constraints in any environment where defaulters
are excluded from intertemporal market activity for finitely many, and typically few,
trading periods. Large income effects of this type may occur not only in our setting,
but also in those of Bewley [10] and Kehoe and Levine [25] if sanctions on defaulters
lasted exactly one period instead of none and infinitely many, respectively.

To develop this argument further, we examine two variations of the model stud-
ied earlier. The first variant replaces our endogenous debt constraints with liquidity
constraints à la Jappelli and Pagano [21]. The second variant features a dynamically
inefficient economy where loans are prohibited and the only store of value is a fixed
stock of fiat money per person. We already presented in Section 6 a parametric example
showing how sequential indeterminacy may occur in economies without commitment
even if the corresponding commitment economy is dynamically efficient.

7.1 Liquidity Constraints

Following Jappelli and Pagano [21], we assume that default is punished by garnishing
a fixed fraction φ ∈ [0, 1] of the defaulter’s current and future endowment. In other
words, we relax the assumption that private endowments cannot be seized following
default and express this restriction as:

ctt = y0 − btt ≤ y0 +
φ

Rt

(

y1 +
y2

Rt+1

)

ctt+1 = y1 +Rtb
t
t − btt+1 ≤ y1 +

φy2

Rt+1
.

Kehoe and Levine [25] examine the implications of these constraints in an economy
with infinitely-lived agents facing idiosyncratic income risk, perpetual exclusion after
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default, and φ = 0. They find that liquidity constraints prolong the impact of shocks on
individual consumption. We, on the other hand, want to know if liquidity constraints
contribute to indeterminacy.

The restrictions above imply debt constraints of the form

btt ≥ − φ

Rt

(

y1 +
y2

Rt+1

)

(34)

btt+1 ≥ −wt+1 −
φy2

Rt+1

. (35)

Each of these is increasing in (Rt, Rt+1). When the constraints do not bind, asset
demands are the unconstrained demands of Section 2. The analysis can then proceed
as in our model. Specifically, asset demands are given by (24) and (25), with (34)
replacing f(Rt+1)/Rt and (35) replacing zero. Community asset demand at t is

Bφ(Rt−1, Rt, Rt+1) = btt +
bt−1
t

1 + n
, (36)

which is monotone increasing in its arguments. This implies that: (a) there is at most
one steady state at which individuals are either unconstrained or constrained; and (b)
consumption goods at all dates are gross substitutes.

If the fraction φ is large enough, borrowing may be unconstrained in the sense that
neither the debt constraint (34) nor (35) is binding. Unconstrained equilibria exist and
converge non-monotonically to the steady state (w∗

u, R
∗
u) studied in Section 3.

If the fraction φ is not large enough, borrowing may be constrained. Let’s consider
the case where young agents are constrained while middle-aged ones are not, i.e. (34)
is binding while (35) is not. In our notation, equilibrium sequences satisfy

Dφ(Rt, Rt+1) ≡ − φ

Rt

(

y1 +
y2

Rt+1

)

+
1

1 + n
z
(

Rt, φ
(

y1 +
y2

Rt

))

= 0, (37)

which is a first-order difference equation. Equation (37) has a unique solution R∗
c < R∗

u.
Inverting Dφ = 0, we obtain Rt+1 = γ(Rt), where γ is a decreasing function for all
Rt above some critical value R̃. It is easy to show that the unique constrained steady
state is a source. Hence, for φ small, the unique constrained equilibrium R∗

c < R∗
u is

consistent only with an initial debt load w1 = φ(y1 +y2/R
∗
c); all other initial debt loads

are either inconsistent with equilibrium or lead to equilibrium sequences for which the
constraint is initially slack for t ≤ T − 1 and tight for all t ≥ T .

Consider again the economy with β = 1, u(c) = log c, n = 0, yt = (e, 1, e) with
0 < e < 1, and debt constraints as in (34) and (35). If

1 − e

3(1 + e)
< φ < 1,
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then asset demands are unconstrained and the economy converges to the unique un-
constrained steady state calculated at the end of Section 3. Otherwise, the con-
straint on the young is binding. For low values of φ, there is a unique steady state
0 < R∗

c < 1 = R∗
u, which is also a source.

These findings suggest that exogenous liquidity constraints do not support multi-
ple equilibria, do not contribute to indeterminacy and do not generate the complex
dynamic behavior supported by endogenous debt constraints in lifecycle environments.

7.2 Fiat Money

Here we tackle the question of whether complex equilibria are possible in a version of
our model in which fiat money is the only store of value. By complex equilibria we
mean the sequential indeterminacy of Theorems 5 and 6, which rests crucially on the
existence of multiple steady states, rather than the initial-conditions indeterminacy
usually found in dynamically inefficient lifecycle economies.

The simplest environment is an OLG economy where agents are unable to borrow,
namely, φ = 0 in terms of the liquidity constraints of the previous section, but can
exchange fiat money for consumption goods. We look at the case of a constant amount
of fiat money M̄ initially held by the transitional middle-aged and old generations.
Individual budget constraints are the same as in (6) to (8) with

btt =
M t

t

Pt
, btt+1 =

M t
t+1

Pt+1
, Rt =

Pt

Pt+1
, M t

t ≥ 0, M t
t+1 ≥ 0,

where M t
t is money demand by the young at t, M t

t+1 is money demand by the same
individual when middle-aged, Pt is the price level at t and Rt is the real yield on money
balances. If M̄ is the stock of fiat money in the economy with β = 1, u(c) = log c, n =
0, yt = (e, 1, e) and 0 < e < 1, then equilibria satisfy individual asset demands

(btt, b
t
t+1) =

(

0,
1

2

(

1 − e

Rt+1

))

plus the market clearing condition

bt−1
t =

M̄

Pt
.

This condition implies btt+1 = Rtb
t−1
t or, equivalently,

1 − e

Rt+1

= Rt − e. (38)

Equation (38) admits two stationary solutions: an unstable, dynamically efficient
steady state R∗ = 1 with valued fiat money at P ∗ = 2M̄/(1 − e), and a stable,
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dynamically inefficient steady state R = e < 1 with worthless fiat money at P = +∞.
In addition to these stationary states, there will also exist monetary equilibria starting
at P1 > P ∗ and converging to the autarkic state; these display the initial-conditions
indeterminacy typical of dynamically inefficient OLG economies.

We conclude that liquidity constraints with fiat money are inconsistent with com-
plex equilibrium behavior, at least in environments where all goods are normal and
gross substitutes. There are two Pareto-rankable steady states, but no sequential in-
determinacy.

An environment in which the government prints currency at a constant rate and
pays lump-sum subsidies has the same qualitative features as the model with fiat
money analyzed above. Here money supply grows over time and there is a stationary
equilibrium where nominal money supply and the price level change at a common rate,
and real money holding is constant for each generation. Autarky is again a stationary
equilibrium and the usual initial-conditions indeterminacy is also present.

8 Related Literature

Earlier theories of intertemporal allocation rationalize the evidence against consump-
tion smoothing by stressing the importance of unobservable shocks in informationally
constrained environments.9 Attanasio and Davis [6], on the other hand, study con-
sumption and wage movements among birth cohorts and education groups, finding
evidence of a remarkable failure of consumption insurance in response to relative wage
movements across education groups, and across birth cohorts within education groups.
Since wages are public information, models of incomplete information cannot rational-
ize these findings; instead, they provide support for environments like ours with limited
enforceability of contracts.

Storesletten, Telmer and Yaron [33] consider a life-cycle model with commitment,
aggregate risk and highly persistent idiosyncratic shocks to labor income. Because
the idiosyncratic shocks are nearly permanent, risk sharing is imperfect. Increasing
income inequality with age goes together with increasing consumption inequality in
this setting, just as it does in U.S. data. In this model, middle-age individuals want
to save for their retirement whereas young individuals want to save as a precaution
against labor market shocks that are hard to insure against. As a result, young and
middle-age agents are net savers while old agents are net dissavers.

Our setting provides a complementary rationale to Storesletten et al. for the lack of
consumption smoothing. Our model has no risk, and the lack of consumption smooth-
ing over the lifecycle is entirely due to limited enforceability of loan contracts. If we

9See Atkeson and Lucas [5] and Phelan and Townsend [31] for efficient allocations with hidden
effort, Cole and Kocherlakota [14] for efficient allocation with hidden storage.
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added a highly persistent idiosyncratic risk, then a precautionary motive for saving
would arise to reduce consumption in youth even below the debt limit we derive in
Section 4.

To our knowledge, this paper is the first to study an environment with finitely
lived agents who face finite exclusion from the intertemporal market after default. It
is important to highlight how differences in the length of the exclusion period affect
the properties of dynamic equilibria.

Kehoe and Levine [24] examine debt limits resulting from participation constraints
in an economy with infinitely lived households. In their setting, default triggers perpet-
ual exclusion from intertemporal trade while same-date exchanges are still permitted.
The size of this penalty implies, under certain technical assumptions, the existence of a
second-best (constrained efficient) competitive equilibrium with linear prices. Kocher-
lakota [28] analyzes efficient allocations in a setting with two infinitely lived agents,
participation constraints and complete information. Efficient allocations may result
in full risk sharing (as the discount factor tends to one), in limited risk sharing or no
risk sharing at all, namely in autarky. Alvarez and Jermann [3] show how to model
participation constraints as portfolio constraints and generate limited risk sharing in a
setting with otherwise complete markets. They also characterize the conditions (high
discount rates, low risk aversion, low variance and high persistence of the idiosyncratic
shocks) under which autarky is the only feasible allocation.

Our model shares some of the characteristics of infinitely lived agent models; for
example, autarky can always be decentralized as a steady state. If Assumption 2 fails,
autarky is the unique competitive equilibrium, and it may be constrained efficient. If
Assumption 2 holds, then our model, unlike infinite-life models, has the potential for
nonexistence of dynamic equilibria when autarky is the only feasible stationary allo-
cation. If the parametric environment supports borrowing and lending, then complex
dynamic behavior is likely, and so are multiple equilibria and the excess sensitivity
of consumption and of interest rates to small and temporary perturbations in endow-
ments. These features stem from the complementarity of intertemporal consumption
that limited enforceability generates in our setting with finite life and finite exclusion.

We suspect that some of the features of our lifecycle setting may be shared by a
setting with infinitely lived households in which default is punished with temporary
and relatively short exclusion from intertemporal trade. Bewley [10], Woodford [34]
and Aiyagari [1] study economies with infinitely-lived agents and stringent exogenous
debt constraints and find that consumption smoothing must necessarily rely on buffer
stocks of collateral securities, including unproductive assets like inferior real estate,
public debt or fiat money. These are outcomes we typically associate with dynami-
cally inefficient overlapping generations, not with infinitely-lived households economies.
Chatterjee et al. [13] study an economy with uncollaterilized debt, no commitment to
repay, limited exclusion from borrowing after default and shocks to preferences. They
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focus on the steady state; in equilibrium, individuals with low assets and high present
marginal utility of consumption default on their loans. Tighter limits on bankruptcy
filing, which imply a stronger commitment to repay, will increase borrowing and wel-
fare.

9 Conclusions and Extensions

We have studied dynamic competitive equilibria under perfect foresight in a deter-
ministic, pure-exchange economy with finitely lived individuals who cannot commit to
repay their loans. For hump-shaped income patterns over the lifecycle, individuals face
binding debt limits when young, consumption tracks income early in life, and youth
and old-age consumption become complements. Despite the simplicity of the environ-
ment (homogeneous households, three-period lifecycle, one store of value in zero net
supply), equilibria turn out to be complex. If consumption smoothing is highly valued,
there are multiple steady states, persistent indeterminacy and regime switching.

The key innovation of our paper, and the foundation for complex dynamic behavior,
lies in the intertemporal complementarity of consumption for debt-constrained house-
holds. Complementarity means that an anticipated rise in future interest rates may
substantially boost current consumption of constrained households. Indeterminacy,
and the potential for excess sensitivity, thus occurs for utility functions that allow
consumption to be highly substitutable over time for lenders. We also note that stan-
dard forms of exogenous debt limits, like the liquidity constraints used in Jappelli and
Pagano [21], are not consistent with complex dynamic behavior because they amplify
the substitution effect of interest-rate changes.

We conclude with a few remarks on the robustness of our findings. Within-cohort
heterogeneity will not affect results significantly. For instance, if endowments are suf-
ficiently dispersed, then at each equilibrium some households will be constrained and
others will be unconstrained. We would still expect several equilibria to exist when
the intertemporal elasticity of substitution is low and the endowment profile is peaky;
the fraction of constrained households will be different for each equilibrium sequence.
We also believe that the mechanisms described here are relevant for economies with
production and a richer array of assets.

Lifecycles longer than L = 3 raise the issue of the length of the exclusion period.
We suspect that a short but positive exclusion period will preserve most of the features
of our results. From Kehoe and Levine [24], we hazard the guess that longer-lasting
punishments will increase the likelihood of both existence and second-best efficiency
for competitive equilibria.

Introducing uncertainty will permit trading in securities if individual characteristics
are public information and allow bankruptcy as equilibrium under private information.
Adding collateral goods, as in Kiyotaki and Moore [27], to our model will dilute the
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impact of IRC’s, which will then apply only to non-collateral borrowing. Since col-
lateral goods raise the punishment for default, a reasonable guess in this case is that
competitive equilibrium will exist for a larger set of partially collateralized economies.

Finally, debt constraints are likely to have considerable implications for asset prices
in economies with limited collateral and a short exclusion period after default. Sig-
nificant asset price implications are likely because debt constraints limit the potential
for arbitrage between non-collateral assets (claims on labor income) and collateral ones
(public debt, claims on capital and capital income). We expect that the implied bounds
on arbitrage will influence household portfolios by diverting too much wealth away from
relatively risky or poorly collateralized assets into buffer stocks of less risky or fully
collateralized securities. The outcome may well be what is predicted in Constantinides
et al. [15]: an excessive premium on risky assets, combined with anemic yields on
collateralized safe securities.
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A Appendix

A.1 Proof of Lemma 2

We rely on figure 2, and the definition of the constraint youthful demand for assets.
Formally, Bc

y(Rt, Rt+1) = f(Rt+1)/Rt solves an equation that expresses indifference
between solvency and default, that is,

u(y1) + βu(y2) = max
z≥0

{u[y1 + f(Rt+1) − z] + βu(y2 +Rt+1z)} . (A.1)

Part 1 follows directly from the fact that the function u is twice continuously differ-
entiable. The monotonicity properties of Bc, and Part 3, are direct consequences of
equation (A.1) and the envelope theorem. Figure 2 implies that y1 + f(Rt+1) tends to
a small positive number, y1 − ȳ1, as Rt+1 → ∞; this proves Part 4 and completes the
proof.

A.2 Proof of Lemma 3

Part 1 follows directly from figure 2. To prove the remaining statement, we know from
equation (24) that members of cohort t are constrained in youth if, and only if

f(Rt+1) > RtB(Rt, Rt+1). (A.2)

The left-hand side of (A.2) is continuously differentiable and decreasing for all Rt+1 >
R̄1; it vanishes at Rt+1 = R̄1. The right-hand side is also continuously differentiable
and decreasing for all (Rt, Rt+1) ∈ R2

+. Furthermore,

B(R̄0, R̄1) = 0 > B(R̄1, R̄0)

by Assumption 2. By the implicit function theorem, the equation

f [m(R)] = RB(R,m(R)) (A.3)

is uniquely solved by a continuously differentiable, decreasing function m : [0, R̄0] →
R+ such that m(R̄0) = R̄1 < R̄0 and m(R̄1) > R̄1. Therefore m has a unique fixed
point R∗ ∈ (R̄1, R̄0). 2

A.3 Proof of Lemma 4

First we define v(y, R) to be the indirect utility function of any middle-age person
in cohort v = t facing lifecycle income y over the last two periods of life, and yield
R > 0. The utility gains from intertemporal trades for this person are then v(y1 −
wt+1 + y2/Rt+1, Rt+1) − v(y1 − w̄t+1 + y2/Rt+1, Rt+1) where w̄t+1 = −f(Rt+1).
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A.4 Proof of Theorem 4

This proof relies on Lemma 4, and relates to Figure 3. From equation (29) we recall
that steady-state yields are zeros of the continuous aggregate asset demand schedule

D(R) =











Du(R) ≡ B(R,R) + 1
1+n

z[R,−RB(R,R)] if R ≥ R∗

Dc(R) ≡ f(R)
R

+ 1
1+n

z[R,−f(R)] if R ∈ (R̄1, R
∗)

0 if R < R̄1

The top line describes unconstrained asset demand and, hence, D(R∗
u) = 0 and limR→∞

D(R) > 0. In addition, R∗ > R̄1 by Lemma 3; f(R) vanishes at R = R̄1 with a
zero derivative by Lemma 2; and z(R̄1, 0) = 0 by the definition of the yield R̄1 in
Assumption 2 and the function z in Lemma 1. Therefore, at R̄1, the aggregate demand
D(R) vanishes with a positive derivative.

The gross substitutes assumption for unconstrained asset demand means thatD(R∗)
< 0 if, and only if, R∗ < R∗

u. In that event, the continuity of asset demand dictates
that D(R) < 0 for all R below R∗ and close to it, and D(R) > 0 for all R above R̄1

and close to it. The existence of at least one stationary yield R∗
c ∈ (R̄1, R

∗) follows
immediately from the maintained assumption R∗ < R∗

u. This proves Part 1 of the
theorem.

The non-autarkic constrained steady state is unique if the middle-age saving func-
tion z(R,w) satisfies the additional technical condition

R

z

∂z

∂R
+
∂z

∂w
< n, ∀(R,w) ∈ R2

+ (A.4)

which means that the income effect of an interest rate change on constrained borrowers
cannot be too large, and the asset demand schedule Dc(R) cannot bend backward “too
rapidly”. Inequality (A.4) and Lemma 2.3 directly imply that the constrained excess
demand function Dc(R) is increasing at any constrained steady state R̃ ∈ [R̄1, R

∗].
Specifically, for w̃ = −f(R̃), we have

D
′

c(R̃) = −z(R̃, w̃)

R̃2
+

1

1 + n

[

∂

∂R
z(R̃, w̃) − f ′(R̃)

∂

∂w
z(R̃, w̃)

]

= − z(R̃, w̃)

(1 + n)R̃

[

−n +
R̃

z

∂z

∂R
+
∂z

∂w

]

< 0

whenever R̃ ≥ R̄1, w̃ ≥ 0 and Dc(R̃) = f(R̃)/R̃ + z(R̃, w̃)/(1 + n) = 0.
Part 2 corresponds to Figure 3. We note first R∗

u is no longer a zero of the ex-
cess demand function; also, any R ≤ R̄1 supports an autarkic stationary allocation.
Non-autarkic stationary equilibria may exist in principle, but the argument in the pre-
vious paragraph will rule them out if the asset demand does not bend backward “too
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sharply”. In particular, Figure 3 implies that non-autarkic steady states exist in pairs,
and one member of each pair violates inequality (A.3).

For Part 3 we define second-best efficiency (or constrained optimality) by the al-
locations achievable by a central planner who maximizes social welfare subject to the
resource constraint

ctt +
ct−1
t

1 + n
+

ct−2
t

(1 + n)2
≤ y0 +

y1

1 + n
+

y2

(1 + n)2
(A.5)

and the IRCs in (18) and (19). IRCs in a planning problem mean that individuals can
opt out of a planned allocation at any point in their lifecycle, choosing autarky instead.

A stationary allocation (c0, c1, c2) ∈ R3
+ is a constrained optimum with equal treat-

ment if it maximizes the social welfare function

W = α0u(c0) + α1u(c1) + α2u(c2) (A.6)

for a given positive vector (α0, α1, α2) which represents the weights (λ0, λ1, λ2) ≥ 0 of
the cohorts v = −1, v = 0 and v > 0, respectively, subject to the constraint (A.5) and
the participation constraints (18) and (19). Specifically, the social welfare parameters
(α0, α1, α2) satisfy

α0 = λ2, α1 = βλ2 + λ1, α2 = β2λ2 + βλ1 + λ0.

The first-order conditions for this problem yield

u′(c0)

βu′(c1)
≥ 1 + n (A.7)

with strict inequality if the young are rationed at the allocation (c0, c1, c2); and

u′(c1)

βu′(c2)
≥ 1 + n. (A.8)

with strict inequality if the middle-age are rationed. Assumption 2 says that (A.7) and
(A.8) are violated at the autarkic steady state which, therefore, is not a constrained
equal-treatment optimum.

Suppose now that a stationary allocation (c∗0, c
∗
1, c

∗
2) satisfies both (A.7) and (A.8)

with strict inequality which means that unconstrained agents attach finite value to the
infinitely long aggregate endowment vector. Then one can easily show that allocation
to be a constrained equal-treatment optimum by finding multipliers (π∗

1, π
∗
2) ≥ 0 for

the participation constraints such that the vector (c∗0, c
∗
1, c

∗
2, π

∗
1, π

∗
2) satisfies exactly the

first-order conditions for the planner’s problem described above. 2

30



A.5 Proof of Theorem 5

This result characterizes solutions (wt, Rt)
∞
t=1 to equations (12) and (32) which conform

to the constraints (30) and (31). Figure 4 and 5 show that these solutions are defined
for (R,w) ∈ [R̄1,∞)× [0, ȳ1] in the state space bounded by the equalities J(R,w) = 0
and z(R,w) = 0. Both J and z are increasing in R and decreasing in w; furthermore,
z(R̄1, 0) = 0; limR→∞ z(R, ȳ1) = 0; and J ≥ f [m(R)]/R for all R ≥ R̄1 by equations
(31) and (23). Therefore, J(R,w) < z(R,w) for all feasible (R,w), which means that
the locus J = 0 lies above z = 0. Figure 4 illustrates.

We conclude that unconstrained equilibrium sequences lie on that segment of the
unconstrained manifold ψu of the commitment economy defined in Theorem 2, which
satisfies the incentive constraint J ≤ 0 for the young, and z ≥ 0 for the middle aged.
In an economy without commitment, the unconstrained manifold exists only for initial
values w1 ∈ (w̄1, w̄2) of the debt load, as shown in Figure 4, such that 0 < w̄1 < w̄2 < y1.
One easily shows that w̄1 < w∗ < w̄2, which proves Part 3. 2

A.6 Proof of Theorem 6

Part 1 is obvious; parts 2, 3, and 4 are less so. Equilibrium sequences with tight debt
constraints for each t = 1, 2, . . . solve the dynamical system of equations (32) and
(12), subject to the solvency constraints (18), (19). The steady states of this system
are easily shown to possess monotone convergence properties: (0, R̄1) is a source and
(w∗, R∗

c) a saddle. To study in more detail the equilibrium manifold ψc, we define three
auxiliary functions

M(R,w) ≡ B(R,R) +
z(R,w)

1 + n
(A.9)

N(R,w) ≡ −w
R

+
z(R,w)

1 + n
(A.10)

Q(R,w) ≡ f(R)

R
+
z(R,w)

1 + n
. (A.11)

Note first that R < R∗ → m(R) > R → f(m(R)) < f(R) → f(m(R))/R =
B(R,m(R)) > B(R,R) → Q(R,w) > J(R,w) > M(R,w) for all incentive-compatible
pairs (R,w). By the same token, R > R∗ → Q(R,w) < J(R,w) < M(R,w) for
all incentive-compatible (R,w). In addition, the equations M = 0, N = 0 < Q = 0
describe upward sloped loci. Therefore we have:

1. If R < R∗, then the locus Q(R,w) = 0 lies below J(R,w) = 0, and M(R,w) = 0
lies above J(R,w) = 0 for all (R,w) ∈ (R̄1,∞) × (0, y1).

2. If R > R∗, then Q = 0 lies above J = 0, and M = 0 lies below J = 0 for all
(R,w) ∈ (R̄1,∞) × (0, y1).

31



3. Q(R̄1, 0) = N(R̄1, 0) = 0

4. The loci Q(R,w) = 0 and N(R,w) = 0 lie above z(R,w) = 0.

5. Q = 0 lies below N = 0 if, and only if, R < R∗
c and w < w∗

c ≡ −f(R∗
c).

Equations (12) and (32) require that the upward-sloped constrained equilibrium
manifold ψc lie between the lociN = 0 andQ = 0. This manifold intersects the solvency
constraint J = 0 at some point (w̄c, R̄c) such that R̄c > R∗ and w̄c > −f(R∗) ≡ w∗.
Hence, no constrained equilibrium exists for w1 > w̄c; a constrained equilibrium ex-
ists if w1 ∈ (0, w̄c] and converges monotonically to the state (w̄c, R̄c). Lastly, con-
strained equilibria exist for all initial conditions in the neighborhood of the critical
point (w∗, R∗). This completes the proof.
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Figure 1: The equilibrium manifold of the commitment economy

Figure 2: Individual rationality constraints for cohort t
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Figure 3: Stationary community asset demand

Figure 4: Dynamic equilibria for (β, y1/y0, y1/y2) large, σ small
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Figure 5: Dynamic equilibria for (β, y1/y0, y1/y2) small, σ large
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