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Abstract

Consistency of a binary relation requires any preference cycle to involve indifference only.

As shown by Suzumura (1976b), consistency is necessary and sufficient for the existence

of an ordering extension of a binary relation. Because of this important role of consis-

tency, it is of interest to examine the rationalizability of choice functions by means of

consistent relations. We describe the logical relationships between the different notions

of rationalizability obtained if reflexivity or completeness are added to consistency, both

for greatest-element rationalizability and for maximal-element rationalizability. All but

one notion of consistent rationalizability are characterized for general domains, and all of

them are characterized for domains that contain all two-element subsets of the universal

set. Journal of Economic Literature Classification No.: D11.

Keywords: Rational Choice, Revealed Preference, Consistency, Binary Domains.



1 Introduction

Samuelson (1938) began his seminal paper on revealed preference theory with a remark

that “[f]rom its very beginning the theory of consumer’s choice has marched steadily

towards greater generality, sloughing off at successive stages unnecessarily restrictive con-

ditions” (Samuelson, 1938, p. 61). Even after Samuelson (1938; 1947, Chapter V; 1948;

1950) laid the foundations of “the theory of consumer’s behaviour freed from any vestigial

traces of the utility concept” (Samuelson, 1938, p. 71), the exercise of Ockham’s razor

persisted within revealed preference theory. Capitalizing on Georgescu-Roegen’s (1954,

p. 125; 1966, p. 222) observation that the intuitive justification of the axioms of revealed

preference theory has nothing to do with the special form of budget sets but, instead, is

based on the implicit consideration of choices from two-element sets, Arrow (1959) ex-

panded the analysis of rational choice and revealed preference beyond consumer choice

problems. He pointed out that “the demand-function point of view would be greatly

simplified if the range over which the choice functions are considered to be determined is

broadened to include all finite sets” (Arrow, 1959, p. 122). Sen (1971, p. 312) defended

Arrow’s domain assumption by posing two important questions: “why assume the axioms

[of revealed preference] to be true only for ‘budget sets’ and not for others?” and “[a]re

there reasons to expect that some of the rationality axioms will tend to be satisfied in

choices over ‘budget sets’ but not for other choices?”

While it is certainly desirable to liberate revealed preference theory from the narrow

confinement of budget sets, the admission of all finite subsets of the universal sets into

the domain of a choice function may well be unsuitable for many applications. In this

context, two important groups of contributions stand out. In the first place, Richter

(1966; 1971), Hansson (1968) and Suzumura (1976a; 1977; 1983, Chapter 2) developed

the theory of rational choice and revealed preference for choice functions with general

non-empty domains which do not impose any extraneous restrictions whatsoever on the

class of feasible sets. In the second place, Sen (1971) showed that Arrow’s results (as well

as others with similar features) do not hinge on the full power of the assumption that

all finite sets are included in the domain of a choice function—it suffices if the domain

contains all two-element and three-element sets.

It was in view of this current state of the art that Bossert, Sprumont and Suzumura

(2001) examined two crucial types of domains in an analysis of several open questions

in the theory of rational choice. The first is the general domain à la Richter, Hansson

and Suzumura, and the second is the class of base domains which include all singletons
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and all two-element subsets of the universal set. The status of the general domain seems

to be impeccable, as the theory developed on this domain is relevant in whatever choice

situations we may care to specify. The base domains also seem to be on safe ground, as

the concept of rational choice as maximizing choice is intrinsically connected with pairwise

comparisons: singletons can be viewed as pairs with identical components, whereas two-

element sets represent pairs of distinct alternatives. As Arrow (1951, p. 16; 1963) put

it, “one of the consequences of the assumptions of rational choice is that the choice

in any environment can be determined by a knowledge of the choices in two-element

environments.”

In this paper, we focus on the rationalizability of choice functions by means of con-

sistent relations. The concept of consistency was first introduced by Suzumura (1976b),

and it is a weakening of transitivity requiring that any revealed preference cycle should

involve indifference only. As was shown by Suzumura (1976b; 1983, Chapter 1), consis-

tency is necessary and sufficient for the existence of an ordering extension of a binary

relation. For that reason, consistency is a central property for the analysis of rational

choice as well: in order to obtain a rationalizing relation that is an ordering, an extension

procedure is, in general, required in order to ensure that the rationalization is complete.

Violations of transitivity are quite likely to be observed in practical choice situations. For

instance, Luce’s (1956) well-known coffee-sugar example provides a plausible argument

against assuming that indifference is always transitive: the inability of a decision maker

to perceive ‘small’ differences in alternatives is bound to lead to intransitivities. As this

example illustrates, transitivity frequently is too strong an assumption to impose in the

context of individual choice. In collective choice problems, it is even more evident that the

plausibility of transitivity can be questioned. On the other hand, it is difficult to interpret

observed choices as ‘rational’ if they do not possess any coherence property. Because of

Suzumura’s (1976b) result, consistency can be considered a weakening of transitivity that

is minimal in the sense that it cannot be weakened further without abandoning all hope

of finding a rationalizing ordering extension.

We examine consistent rationalizability under two domain assumptions. The first is,

again, the general domain assumption where no restrictions whatsoever are imposed, and

the second weakens the base domain hypothesis: we merely require the domain to contain

all two-element sets but not necessarily all singletons, and we refer to those domains as

binary domains. Thus, our results are applicable in a wide range of choice problems.

Unlike many contributions to the theory of rational choice, we do not have to assume

that triples are part of the domain.
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Depending on the additional properties that can be imposed on rationalizations (re-

flexivity and completeness), different notions of consistent rationalizability can be defined.

We characterize all but one of those notions in the general case, and all of them in the

case of binary domains. It is worth noting that we obtain full characterization results on

binary domains (in particular, on domains that do not have to contain any triples), even

though consistency imposes a restriction on possible cycles of any length.

In Section 2, the notation and our basic definitions are presented, along with some

preliminary lemmas. Section 3 develops the theory of consistent rationalizability on gen-

eral domains, whereas Section 4 expounds the corresponding theory on binary domains.

Some concluding remarks are collected in Section 5.

2 Preliminaries

The set of positive (non-negative) integers is denoted by N (N0). For a set S, |S| is the

cardinality of S. Let X be a universal non-empty set of alternatives. X is the power

set of X excluding the empty set. A choice function is a mapping C: Σ → X such that

C(S) ⊆ S for all S ∈ Σ, where Σ ⊆ X with Σ 6= ∅ is the domain of C. Note that

C maps Σ into the set of all non-empty subsets of X. Thus, using Richter’s (1971)

terminology, the choice function C is assumed to be decisive. Let C(Σ) denote the image

of Σ under C, that is, C(Σ) = ∪S∈ΣC(S). In addition to arbitrary non-empty domains,

to be called general domains, we consider binary domains which are domains Σ ⊆ X such

that {S ∈ X | |S| = 2} ⊆ Σ.

Let R ⊆ X×X be a (binary) relation on X. The asymmetric factor P (R) of R is given

by (x, y) ∈ P (R) if and only if (x, y) ∈ R and (y, x) 6∈ R for all x, y ∈ X. The symmetric

factor I(R) of R is defined by (x, y) ∈ I(R) if and only if (x, y) ∈ R and (y, x) ∈ R for all

x, y ∈ X. The non-comparable factor N(R) of R is given by (x, y) ∈ N(R) if and only if

(x, y) 6∈ R and (y, x) 6∈ R for all x, y ∈ X.

A relation R ⊆ X × X is (i) reflexive if, for all x ∈ X, (x, x) ∈ R; (ii) complete if, for

all x, y ∈ X such that x 6= y, (x, y) ∈ R or (y, x) ∈ R; (iii) transitive if, for all x, y, z ∈ X,

[(x, y) ∈ R and (y, z) ∈ R] implies (x, z) ∈ R; (iv) consistent if, for all K ∈ N \ {1} and

for all x0, . . . , xK ∈ X, (xk−1, xk) ∈ R for all k ∈ {1, . . . , K} implies (xK , x0) 6∈ P (R); (v)

P-acyclical if, for all K ∈ N \ {1} and for all x0, . . . , xK ∈ X, (xk−1, xk) ∈ P (R) for all

k ∈ {1, . . . , K} implies (xK, x0) 6∈ P (R).

The transitive closure of R ⊆ X × X is denoted by R, that is, for all x, y ∈ X,

(x, y) ∈ R if there exist K ∈ N and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ R for
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all k ∈ {1, . . . , K} and xK = y. Clearly, R is transitive and, because we can set K = 1,

it follows that R ⊆ R.

The direct revealed preference relation RC ⊆ X × X of a choice function C with an

arbitrary domain Σ is defined as follows. For all x, y ∈ X, (x, y) ∈ RC if there exists

S ∈ Σ such that x ∈ C(S) and y ∈ S. The (indirect) revealed preference relation of C is

the transitive closure RC of the direct revealed preference relation RC .

For S ∈ Σ and a relation R ⊆ X × X, the set of R-greatest elements in S is {x ∈ S |
(x, y) ∈ R for all y ∈ S}, and the set of R-maximal elements in S is {x ∈ S | (y, x) 6∈
P (R) for all y ∈ S}. A choice function C is greatest-element rationalizable if there exists

a relation R on X, to be called a G-rationalization, such that C(S) is equal to the set

of R-greatest elements in S for all S ∈ Σ. C is maximal-element rationalizable if there

exists a relation R on X, to be called an M-rationalization, such that C(S) is equal to

the set of R-maximal elements in S for all S ∈ Σ. We use the term rationalization in

general discussions where it is not specified whether greatest-element rationalizability or

maximal-element rationalizability is considered.

Depending on the properties that we might want to impose on a rationalization, differ-

ent notions of rationalizability can be defined. For simplicity of presentation, we use the

following notation. G (respectively RG; CG; RCG) stands for greatest-element ratio-

nalizability by means of a consistent (respectively reflexive and consistent; complete and

consistent; reflexive, complete and consistent) G-rationalization. Analogously, M (respec-

tively RM; CM; RCM) is maximal-element rationalizability by means of a consistent

(respectively reflexive and consistent; complete and consistent; reflexive, complete and

consistent) M-rationalization. Note that we do not identify consistency explicitly in these

acronyms even though it is assumed to be satisfied by the rationalization in question.

This is because consistency is required in all of the theorems presented in this paper,

so that the use of another piece of notation would be redundant and likely increase the

complexity of our exposition. However, note that the two lemmas stated below do not

require consistency. In particular, the implication of part (i) of Lemma 2 does not apply

to rationalizability by a consistent relation; see also Theorem 1.

We conclude this section with two preliminary results. We first present the follow-

ing lemma, the first part of which is due to Samuelson (1938; 1948); see also Richter

(1971). It states that the direct revealed preference relation must be contained in any

G-rationalization and, moreover, that if an alternative x is directly revealed preferred to

an alternative y, then y cannot be strictly preferred to x by any M-rationalization.

Lemma 1 (i) If R is a G-rationalization of C, then RC ⊆ R.
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(ii) If R is an M-rationalization of C, then RC ⊆ R ∪ N(R).

Proof. (i) Suppose that R is a G-rationalization of C and x, y ∈ X are such that

(x, y) ∈ RC . By definition of RC , there exists S ∈ Σ such that x ∈ C(S) and y ∈ S.

Because R is a G-rationalization of C, we obtain (x, y) ∈ R.

(ii) Suppose R is an M-rationalization of C and x, y ∈ X are such that (x, y) ∈ RC .

By way of contradiction, suppose (x, y) 6∈ R ∪ N(R). Therefore, (y, x) ∈ P (R). Because

R maximal-element rationalizes C, this implies x 6∈ C(S) for all S ∈ Σ such that y ∈ S.

But this contradicts the hypothesis (x, y) ∈ RC .

Our second preliminary observation concerns the relationship between maximal-element

rationalizability and greatest-element rationalizability when no further restrictions are im-

posed on a rationalization. This applies, in particular, when consistency is not imposed.

Moreover, an axiom which is necessary for either form of rationalizability is presented.

This requirement is referred to as the V-axiom in Richter (1971); we call it direct-revelation

coherence in order to have a systematic terminology throughout this paper.

Direct-Revelation Coherence: For all S ∈ Σ, for all x ∈ S, if (x, y) ∈ RC for all

y ∈ S, then x ∈ C(S).

Suzumura (1976a) establishes that, in the absence of any requirements on a rational-

ization, maximal-element rationalizability implies greatest-element rationalizability. Fur-

thermore, Richter (1971) shows that direct-revelation coherence is necessary for greatest-

element rationalizability by an arbitrary G-rationalization on an arbitrary domain. We

summarize these observations in the following lemma. For completeness, we provide a

proof.

Lemma 2 (i) If C is maximal-element rationalizable, then C is greatest-element ratio-

nalizable.

(ii) If C is greatest-element rationalizable, then C satisfies direct-revelation coherence.

Proof. (i) Suppose R is an M-rationalization of C. It is straightforward to verify that

R′ = {(x, y) | (y, x) 6∈ P (R)} is a G-rationalization of C.

(ii) Suppose R is a G-rationalization of C, and let S ∈ Σ and x ∈ S be such that

(x, y) ∈ RC for all y ∈ S. By part (i) of Lemma 1, (x, y) ∈ R for all y ∈ S. Because R is

a G-rationalization of C, this implies x ∈ C(S).

See also Kim and Richter (1986) for some relationships between greatest-element ratio-

nalizable choice functions and motivated choices. The notion of a motivation is similar to
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that of an M-rationalization but the two concepts differ: a relation R is a motivation of

a choice function C if C(S) is equal to the set {x ∈ S | (y, x) 6∈ R for all y ∈ S} for all

S ∈ Σ. Note that, in contrast to an M-rationalization, the relation R itself rather than

its asymmetric factor P (R) appears in the definition of a motivation.

Richter (1971) shows that direct-revelation coherence is not only necessary but also

sufficient for greatest-element rationalizability on an arbitrary domain, without any fur-

ther restrictions imposed on the G-rationalization. Moreover, the axiom is necessary

and sufficient for greatest-element rationalizability by a reflexive (but otherwise unre-

stricted) rationalization on an arbitrary domain. The requirement remains, of course,

necessary for greatest-element rationalizability if we restrict attention to binary domains.

As shown below, if we add consistency as a requirement on a rationalization, direct-

revelation coherence by itself is sufficient for neither greatest-element rationalizability nor

for maximal-element rationalizability, even on binary domains.

3 General Domains

In this section, we impose no restrictions on the domain Σ. We begin our analysis by

providing a full description of the logical relationships between the different notions of

rationalizability that can be defined, given our consistency assumption imposed on a ra-

tionalization. The possible definitions of rationalizability that can be obtained depend on

whether reflexivity or completeness are added to consistency. Furthermore, a distinction

between greatest-element rationalizability and maximal-element rationalizability is made.

For convenience, a diagrammatic representation is employed: all axioms that are depicted

within the same box are equivalent, and an arrow pointing from one box b to another box

b′ indicates that the axioms in b imply those in b′, and the converse implication is not

true without further assumptions regarding the domain of C.

Theorem 1 Suppose Σ is a general domain. Then

RCG, CG, RCM, CM

↓ ↓

RG, G RM, M

Proof. We proceed as follows. In Step 1, we prove the equivalence of all axioms that

appear in the same box. In Step 2, we show that all implications depicted in the theo-
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rem statement are valid. In Step 3, we provide examples demonstrating that no further

implications are true in general.

Step 1. For each of the three boxes, we show that all axioms listed in the box are

equivalent.

1.a. We first prove the equivalence of the axioms in the top box.

Clearly, RCG implies CG and RCM implies CM. Moreover, if a relation R is reflexive

and complete, it follows that the set of R-greatest elements in S is equal to the set of

R-maximal elements in S for any S ∈ Σ. Therefore, RCG and RCM are equivalent.

To see that CM implies RCM, suppose R is a consistent and complete M-rationalization

of C. Let

R′ = R ∪ {(x, x) | x ∈ X}.

Clearly, R′ is reflexive. R′ is consistent and complete because R is. That R′ is an M-

rationalization of C follows immediately from the observation that R is.

To complete Step 1.a of the proof, it is sufficient to show that CG implies RCG.

Suppose R is a consistent and complete G-rationalization of C. Let

R′ = [R ∪ {(x, x) | x ∈ X} ∪ {(y, x) | x 6∈ C(Σ) and y ∈ C(Σ)}]

\ {(x, y) | x 6∈ C(Σ) and y ∈ C(Σ)}.

Clearly, R′ is reflexive by definition.

To show that R′ is complete, let x, y ∈ X be such that x 6= y and (x, y) 6∈ R′. By

definition of R′, this implies

(x, y) 6∈ R and [x 6∈ C(Σ) or y ∈ C(Σ)]

or

x 6∈ C(Σ) and y ∈ C(Σ).

If the former applies, the completeness of R implies (y, x) ∈ R and, by definition of R′, we

obtain (y, x) ∈ R′. If the latter is true, (y, x) ∈ R′ follows immediately from the definition

of R′.

Next, we show that R′ is consistent. Let K ∈ N \ {1} and x0, . . . , xK ∈ X be such

that (xk−1, xk) ∈ R′ for all k ∈ {1, . . . , K}. Clearly, we can, without loss of generality,

assume that xk−1 6= xk for all k ∈ {1, . . . , K}. We distinguish two cases.

(i) x0 6∈ C(Σ). In this case, it follows that x1 6∈ C(Σ); otherwise we would have

(x1, x0) ∈ P (R′) by definition of R′, contradicting our hypothesis. Successively apply-

ing this argument to all k ∈ {1, . . . , K}, we obtain xk 6∈ C(Σ) for all k ∈ {1, . . . , K}. By
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definition of R′, this implies (xk−1, xk) ∈ R for all k ∈ {1, . . . , K}. By the consistency of

R, we must have (xK, x0) 6∈ P (R). Because xK 6∈ C(Σ), this implies, according to the

definition of R′, (xK, x0) 6∈ P (R′).

(ii) x0 ∈ C(Σ). If xK 6∈ C(Σ), (xK , x0) 6∈ P (R′) follows immediately from the definition of

R′. If xK ∈ C(Σ), it follows that xK−1 ∈ C(Σ); otherwise we would have (xK−1, xK) 6∈ R′

by definition of R′, contradicting our hypothesis. Successively applying this argument to

all k ∈ {1, . . . , K}, we obtain xk ∈ C(Σ) for all k ∈ {1, . . . , K}. By definition of R′,

this implies (xk−1, xk) ∈ R for all k ∈ {1, . . . , K}. By the consistency of R, we must

have (xK , x0) 6∈ P (R). Because x0 ∈ C(Σ), this implies, according to the definition of R′,

(xK , x0) 6∈ P (R′).

Finally, we show that R′ is a G-rationalization of C. Let S ∈ Σ and x ∈ S.

Suppose first that (x, y) ∈ R′ for all y ∈ S. If |S| = 1, x ∈ C(S) follows imme-

diately because C(S) is non-empty. If |S| ≥ 2, we obtain x ∈ C(Σ). Because R is a

G-rationalization of C, this implies (x, x) ∈ R. By definition of R′, (x, z) ∈ R for all

z ∈ C(S). Therefore, (x, z) ∈ R for all z ∈ C(S) ∪ {x}. Suppose, by way of contradic-

tion, that x 6∈ C(S). Because R is a G-rationalization of C, it follows that there exists

y ∈ S \ (C(S) ∪ {x}) such that (x, y) 6∈ R. The completeness of R implies (y, x) ∈ P (R).

Let z ∈ C(S). It follows that (z, y) ∈ R because R is a G-rationalization of C and, as

established earlier, (x, z) ∈ R. This contradicts the consistency of R.

To prove the converse implication, suppose x ∈ C(S). Because R is a G-rationalization

of C, we have (x, y) ∈ R for all y ∈ S. In particular, this implies (x, x) ∈ R and, according

to the definition of R′, we obtain (x, y) ∈ R′ for all y ∈ S.

1.b. The proof that RM and M are equivalent is analogous to the proof of the

equivalence of RCM and CM in Step 1.a.

1.c. Clearly, RG implies G. Conversely, suppose R is a consistent G-rationalization

of C. Let

R′ = (R ∪ {(x, x) | x ∈ X}) \ {(x, y) | x 6∈ C(Σ) and x 6= y}.

Clearly, R′ is reflexive.

Next, we prove that R′ is consistent. Let K ∈ N \ {1} and x0, . . . , xK ∈ X be such

that (xk−1, xk) ∈ R′ for all k ∈ {1, . . . , K}. Again, we can assume that xk−1 6= xk for all

k ∈ {1, . . . , K}. By definition of R′, x0 ∈ C(Σ). The rest of the proof follows as in part

(ii) of the consistency of the relation R′ in Step 1.a.

It remains to be shown that R′ is a G-rationalization of C. Let S ∈ Σ and x ∈ S.

First, suppose (x, y) ∈ R′ for all y ∈ S. By definition of R′, (x, y) ∈ R for all

y ∈ S \ {x}. Analogously to the corresponding argument in Step 1.a, the assumption
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x 6∈ C(S) implies the existence of y ∈ S\(C(S)∪{x}) such that (x, y) 6∈ R, a contradiction.

Finally, suppose x ∈ C(S). This implies (x, y) ∈ R for all y ∈ S because R is a

G-rationalization of C. Furthermore, because C(S) ⊆ C(Σ), we have x ∈ C(Σ). By

definition of R′, this implies (x, y) ∈ R′ for all y ∈ S.

Step 2. The strict implications depicted by the arrows in the theorem statement are

straightforward.

Step 3. Given Steps 1 and 2, to prove that no further implications are valid, it is

sufficient to provide examples showing that (a) M does not imply G; and (b) G does not

imply M. Note that this independence of M and G in the presence of consistency does

not contradict part (i) of Lemma 2—consistency is not required in the lemma.

3.a. M does not imply G.

Example 1 Let X = {x, y, z} and Σ = {{x, y}, {x, z}, {y, z}}. For future reference,

note that Σ is a binary domain. Define the choice function C by letting C({x, y}) =

{x, y}, C({x, z}) = {x, z} and C({y, z}) = {y}. This choice function is maximal-element

rationalizable by the consistent (and reflexive) rationalization

R = {(x, x), (y, y), (y, z), (z, z)}.

Suppose C is greatest-element rationalizable by a consistent rationalization R′. Because

C(Σ) = X, greatest-element rationalizability implies that R′ is reflexive. Therefore, be-

cause y ∈ C({y, z}) and z 6∈ C({y, z}), we must have (y, z) ∈ R′ and (z, y) 6∈ R′.

Therefore, (y, z) ∈ P (R′). Because R′ is a G-rationalization of C, z ∈ C({x, z}) implies

(z, x) ∈ R′ and x ∈ C({x, y}) implies (x, y) ∈ R′. This yields a contradiction to the

assumption that R′ is consistent.

3.b. To prove that G does not imply M, we employ an example due to Suzumura

(1976a, pp. 151–152).

Example 2 Let X = {x, y, z} and Σ = {{x, y}, {x, z}, {x, y, z}}, and define C({x, y}) =

{x, y}, C({x, z}) = {x, z} and C({x, y, z}) = {x}. This choice function is greatest-

element rationalizable by the consistent (and reflexive) rationalization

R = {(x, x), (x, y), (x, z), (y, x), (y, y), (z, x), (z, z)}.

Suppose R′ is an M-rationalization of C. Because z ∈ C({x, z}), maximal-element ra-

tionalizability implies (x, z) 6∈ P (R′) and, consequently, z 6∈ C({x, y, z}) implies (y, z) ∈
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P (R′). Analogously, y ∈ C({x, y}) implies, together with maximal-element rationalizabil-

ity, (x, y) 6∈ P (R′) and, consequently, y 6∈ C({x, y, z}) implies (z, y) ∈ P (R′). But this

contradicts the above observation that we must have (y, z) ∈ P (R′). Note that consistency

(or any other property) of R′ is not invoked in the above argument. Moreover, R is re-

flexive. Thus, RG does not even imply maximal-element rationalizability by an arbitrary

rationalization.

We now provide characterizations of two of the three notions of rationalizability iden-

tified in the above theorem. The first is a straightforward consequence of Richter’s (1966)

result and the observation that consistency is equivalent to transitivity in the presence

of reflexivity and completeness. Richter (1966) shows that the congruence axiom is nec-

essary and sufficient for greatest-element rationalizability by a transitive, reflexive and

complete rationalization. Congruence is defined as follows.

Congruence: For all x, y ∈ X, for all S ∈ Σ, if (x, y) ∈ RC , y ∈ C(S) and x ∈ S, then

x ∈ C(S).

We obtain

Theorem 2 C satisfies RCG if and only if C satisfies congruence.

Proof. As is straightforward to verify, a relation is consistent, reflexive and complete if

and only if it is transitive, reflexive and complete. The result now follows immediately

from the equivalence of congruence and greatest-element rationalizability by a transitive,

reflexive and complete rationalization established by Richter (1966).

In order to characterize G (and, therefore, RG; see Theorem 1), we employ the con-

sistent closure of the direct revealed preference relation RC . The consistent closure of a

relation R is analogous to the transitive closure: the idea is to add all pairs to the relation

R that must be in a G-rationalizing relation due to the requirement that the rationaliza-

tion be consistent. After we add all pairs of alternatives to R that need to be added as a

consequence of consistency, the resulting relation may require further additions that are

not imposed in the first step. Consequently, we proceed in a recursive fashion. Let R be

an arbitrary binary relation and let R0 = R. Now suppose Rt has been defined for t ∈ N0,

and define

Rt+1 = Rt ∪ {(x, y) | (x, y) ∈ Rt and (y, x) ∈ Rt}.

Because X is not necessarily finite, new pairs may be added at each step. However, even

if X is not countable, a countable number of steps turns out to suffice in order to capture
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all additions that are relevant for our purposes. The consistent closure of a binary relation

R is now obtained as

R∗ = ∪t∈N0R
t.

The consistent closure is analogous to the transitive closure of a relation. Suzumura

(1983, pp. 11–12) shows that the transitive closure can be defined in terms of a recursive

procedure that parallels the one employed above to obtain the consistent closure. To

illustrate the definition of the consistent closure and its relationship to the transitive

closure, consider the following examples.

Example 3 Let X = {x, y, z} and R = {(x, x), (x, y), (y, y), (y, z), (z, x), (z, z)}. We

obtain R∗ = R = X × X.

Example 4 Let X = {x, y, z} and R = {(x, y), (y, z)}. We have R∗ = R and R =

{(x, y), (y, z), (x, z)}.

In Example 3, the consistent closure coincides with the transitive closure, whereas in Ex-

ample 4, the consistent closure is a strict subset of the transitive closure. More generally,

R∗ is always a subset of R; this is a consequence of the following lemma. It establishes

an important property of R∗: just as R is the smallest transitive relation containing R,

R∗ is the smallest consistent relation containing R.

Lemma 3 Let R be a binary relation on X. R∗ is the smallest consistent relation con-

taining R.

Proof. We first prove that R∗ is consistent. Suppose K ∈ N \ {1} and x0, . . . , xK ∈ X

are such that (xk−1, xk) ∈ R∗ for all k ∈ {1, . . . , K}. If (xK , x0) 6∈ R∗, we immediately

obtain (xK , x0) 6∈ P (R∗) and we are done. Now suppose that (xK, x0) ∈ R∗. By definition

of R∗, it follows that, for all k ∈ {0, . . . , K}, there exists tk ∈ N0 such that (xk−1, xk) ∈
Rtk for all k ∈ {1, . . . , K} and (xK, x0) ∈ Rt0 . Let t = max{tk | k ∈ {0, . . . , K}}.
Because, by definition, Rtk ⊆ Rt for all k ∈ {0, . . . , K}, it follows that (xk−1, xk) ∈ Rt

for all k ∈ {1, . . . , K} and (xK , x0) ∈ Rt. This implies (x0, xK) ∈ Rt and, together with

(xK , x0) ∈ Rt, the definition of Rt+1 implies (x0, xK) ∈ Rt+1. Because Rt+1 ⊆ R∗, it

follows that (x0, xK) ∈ R∗ and thus (xK , x0) 6∈ P (R∗), which establishes the consistency

of R∗.

To show that R∗ is the smallest consistent relation containing R, suppose that Q

is an arbitrary consistent relation containing R. Because Q is consistent, its consistent

closure Q∗ is equal to Q itself. Thus, it is sufficient to establish that R∗ ⊆ Q∗. Suppose
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(x, y) ∈ R∗. By definition of R∗, this implies that there exists t ∈ N0 such that (x, y) ∈ Rt

or [(x, y) ∈ Rt and (y, x) ∈ Rt]. The proof is complete if we can show that Rt ⊆ Qt

for all t ∈ N0. To do so, we proceed by induction. Clearly, R0 = R ⊆ Q = Q0. Now

suppose Rt ⊆ Qt for t ∈ N. A well-known result on the transitive closure of a relation

is that if a relation is contained in another relation, the transitive closure of the former

is contained in the transitive closure of the latter (see, for instance, Suzumura, 1983, pp.

11–12). Thus, we obtain Rt ⊆ Qt. By definition, we now obtain Rt+1 ⊆ Qt+1 and the

proof is complete.

Analogously to Lemma 1, we obtain

Lemma 4 (i) If R is a consistent G-rationalization of C, then R∗
C ⊆ R.

(ii) If R is a consistent M-rationalization of C, then R∗
C ⊆ R ∪ N(R).

Proof. (i) Suppose R is a consistent G-rationalization of C.

We first prove by induction that Rt
C ⊆ R for all t ∈ N0. By Lemma 1, R0

C = RC ⊆ R.

Now suppose Rt
C ⊆ R for some t ∈ N0. Let (x, y) ∈ Rt+1

C . By definition, this implies

(x, y) ∈ Rt
C or [(x, y) ∈ Rt

C and (y, x) ∈ Rt
C ]. If (x, y) ∈ Rt

C , (x, y) ∈ R follows from

the induction hypothesis. Now suppose the second possibility applies. Again using the

induction hypothesis, (y, x) ∈ Rt
C implies

(y, x) ∈ R. (1)

By definition of the transitive closure of a relation, (x, y) ∈ Rt
C implies that there exist

K ∈ N and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ Rt
C for all k ∈ {1, . . . , K} and

xK = y. By the induction hypothesis, (xk−1, xk) ∈ R for all k ∈ {1, . . . , K}. If (x, y) 6∈ R,

(1) implies (y, x) = (xK , x0) ∈ P (R). Because (x0, x1) ∈ R, we must have K > 1. But

this contradicts the consistency of R. Therefore, (x, y) ∈ R.

To complete the proof of part (i), suppose (x, y) ∈ R∗
C . By definition, there exists

t ∈ N0 such that (x, y) ∈ Rt
C which, by the previous observation, implies (x, y) ∈ R.

The proof of part (ii) is analogous, given Lemma 1.

The following axiom is a strengthening of direct-revelation coherence which we call

consistent-closure coherence. It is obtained by replacing RC with its consistent closure

R∗
C in the definition of direct-revelation coherence.

Consistent-Closure Coherence: For all S ∈ Σ, for all x ∈ S, if (x, y) ∈ R∗
C for all

y ∈ S, then x ∈ C(S).

We now obtain
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Theorem 3 C satisfies G if and only if C satisfies consistent-closure coherence.

Proof. To prove the only-if part of the theorem, suppose R is a consistent G-rationalization

of C and let S ∈ Σ and x ∈ S be such that (x, y) ∈ R∗
C for all y ∈ S. By Lemma 4,

(x, y) ∈ R for all y ∈ S. Thus, because R is a G-rationalization of C, x ∈ C(S). Note

that the consistency of R is not used in the above argument.

Now suppose C satisfies consistent-closure coherence. We complete the proof by show-

ing that R∗
C is a consistent G-rationalization of C. That R∗

C is consistent follows from

Lemma 3. To prove that R∗
C is a G-rationalization of C, suppose first that S ∈ Σ and

x ∈ S. Suppose (x, y) ∈ R∗
C for all y ∈ S. Consistent-closure coherence implies x ∈ C(S).

Conversely, suppose x ∈ C(S). By definition, this implies (x, y) ∈ RC for all y ∈ S and,

because RC = R0
C ⊆ R∗

C , we obtain (x, y) ∈ R∗
C for all y ∈ S.

4 Binary Domains

We now turn to the special case of binary domains. These domains are of interest because

they represent a natural weakening of some domains studied in the earlier literature on

rational choice. In particular, the binary-domain assumption is implied by the requirement

that Σ contains all non-empty and finite subsets of X, by the assumption that the domain

contains all pairs and all triples and by the requirement that Σ is a base domain. Moreover,

binary domains occur naturally in applications such as tournaments where a pairwise

comparison of all agents is performed; consider, for example, a round-robin tournament.

In the case of binary domains, the presence of all two-element sets in Σ guarantees that

every G-rationalization must be complete and, as a consequence, all rationality require-

ments involving greatest-element rationalizability and consistency become equivalent. In

contrast, maximal-element rationalizability by a consistent and complete rationalization

remains a stronger requirement than maximal-element rationalizability by a consistent

and reflexive rationalization. These observations are summarized in the following theo-

rem.

Theorem 4 Suppose Σ is a binary domain. Then

RCG, CG, RCM, CM, RG, G

↓

RM, M
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Proof. We divide the proof into the same three steps as in Theorem 1.

Step 1. We prove the equivalence of the axioms for each of the two boxes.

1.a. Using Theorem 1, the equivalence of the axioms in the top box follows from the

observation that any consistent G-rationalization of C must be complete, given that Σ is

binary.

1.b. This part is already proven in Theorem 1.

Step 2. Again, the strict implication indicated by the arrow in the theorem statement

is straightforward.

Step 3. To prove that the reverse implication is not valid, Example 1 can be employed.

As shown in Theorem 4, there are only two different versions of rationalizability for

binary domains. Consequently, we can restrict attention to the rationalizability axioms

G and M in this case, keeping in mind that, by Theorem 4, all other rationalizability

requirements involving consistent rationalizations are covered as well. Although there are

some analogies between the results in this section and some of the theorems established in

Bossert, Sprumont and Suzumura (2001), our characterizations are novel because, unlike

the earlier paper, they employ consistency and they apply to binary domains rather than

base domains.

First, we show that G (and all other axioms that are equivalent to it according to The-

orem 4) is characterized by the following weak congruence axiom (see Bossert, Sprumont

and Suzumura, 2001).

Weak Congruence: For all x, y, z ∈ X, for all S ∈ Σ, if (x, y) ∈ RC , (y, z) ∈ RC , x ∈ S

and z ∈ C(S), then x ∈ C(S).

In contrast to congruence, weak congruence does not apply to chains of direct revealed

preference of an arbitrary length but merely to chains involving three elements. For binary

domains, weak congruence is necessary and sufficient for all forms of greatest-element

rationalizability involving a consistent G-rationalization.

Theorem 5 Suppose Σ is a binary domain. C satisfies G if and only if C satisfies weak

congruence.

Proof. By Theorem 4, G is equivalent to RCG given that Σ is a binary domain. More-

over, as mentioned earlier, consistency is equivalent to transitivity in the presence of

reflexivity and completeness. Theorem 3 in Bossert, Sprumont and Suzumura (2001)
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states that greatest-element rationalizability by a reflexive, complete and transitive rela-

tion is equivalent to weak congruence, provided that Σ is a binary domain. The result

follows immediately as a consequence of this observation.

Finally, we establish that direct-revelation coherence and P-acyclicity of RC together

are necessary and sufficient for M (and RM) on a binary domain. This result is analogous

to the characterization of greatest-element rationalizability by a P-acyclical, reflexive and

complete rationalization on base domains (domains that contain all singletons in addition

to all two-element sets) in Bossert, Sprumont and Suzumura (2001, Theorem 5).

Theorem 6 Suppose Σ is a binary domain. C satisfies M if and only if C satisfies

direct-revelation coherence and RC is P-acyclical.

Proof.

Step 1. We first show that M implies that RC is P-acyclical (that direct-revelation

coherence is implied follows from Lemma 2). Suppose R is a consistent M-rationalization

of C. By way of contradiction, suppose RC is not P-acyclical. Then there exist K ∈
N \ {1} and x0, . . . , xK ∈ X such that (xk−1, xk) ∈ P (RC) for all k ∈ {1, . . . , K} and

(xK , x0) ∈ P (RC). Because Σ is a binary domain, {xk−1, xk} ∈ Σ for all k ∈ {1, . . . , K}
and {x0, xK} ∈ Σ. By definition of RC , it follows that xk 6∈ C({xk−1, xk}) for all k ∈
{1, . . . , K} and x0 6∈ C({x0, xK}). Because R is an M-rationalization of C, it follows

that (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K} and (xK , x0) ∈ P (R), contradicting the

consistency of R.

Step 2. We show that direct-revelation coherence and the P-acyclicity of RC together

imply M. Define

R = RC \ {(x, y) | (x, y) ∈ I(RC)}.

By definition, P (R) = R = P (RC) and, consequently, R is consistent because RC is

P-acyclical.

It remains to be shown that R is an M-rationalization of C. Let S ∈ Σ and x ∈ S.

Suppose first that x is R-maximal in S, that is, (y, x) 6∈ P (R) for all y ∈ S. If S = {x},
x ∈ C(S) follows from the non-emptiness of C(S). Now suppose S 6= {x}, and let

y ∈ S \ {x}. Because Σ is a binary domain, {x, y} ∈ Σ. If x ∈ C({x, y}), we obtain

(x, y) ∈ RC by definition. If x 6∈ C({x, y}), it follows that (y, x) ∈ RC and, because

(y, x) 6∈ P (R) = P (RC) by assumption, we again obtain (x, y) ∈ RC . By direct-revelation

coherence, it follows that x ∈ C(S).

Now suppose x ∈ C(S). This implies (x, y) ∈ RC for all y ∈ S and, therefore,

(y, x) 6∈ P (RC) = P (R) for all y ∈ S. Therefore, x is R-maximal in S.
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5 Concluding Remarks

The only notion of consistent rationalizability that is not characterized in this paper is

maximal-element rationalizability by means of a consistent (and reflexive) rationalization

on a general domain. The reason why it is difficult to obtain necessary and sufficient

conditions in that case is the existential nature of the requirements for maximal-element

rationalizability. It is immediately apparent that the revealed preference relation must

be respected by any greatest-element rationalization, whereas this is not the case for

maximal-element rationalizability (see Lemma 2). In order to exclude an element from

a set of chosen alternatives according to maximal-element rationalizability, it merely is

required that there exists (at least) one element in that set which is strictly preferred to

the alternative to be excluded. The problem of identifying necessary and sufficient condi-

tions for that kind of rationalizability is closely related to the problem of determining the

dimension of a quasi-ordering; see, for example, Dushnik and Miller (1941). Because this

is an area that is still quite unsettled, it is not too surprising that characterizations of

maximal-element rationalizability on general domains are difficult to obtain. To the best of

our knowledge, this is a feature that is shared by all notions of maximal-element rational-

izability that are not equivalent to one of the notions of greatest-element rationalizability

on general domains: we are not aware of any characterization results for maximal-element

rationalizability on general domains unless the notion of maximal-element rationalizability

employed happens to coincide with one of the notions of greatest-element rationalizability.

Thus, there are important open questions to be addressed in future work in this area of

research.

References

Arrow, K.J. (1951; second ed. 1963), Social Choice and Individual Values, John Wiley

& Sons, New York.

Arrow, K.J. (1959), “Rational choice functions and orderings,” Economica 26, 121–127.

Bossert, W., Y. Sprumont and K. Suzumura (2001), “Rationalizability of choice

functions on general domains without full transitivity,” Discussion Paper 13-2001, C.R.D.E.,

Université de Montréal.

Dushnik, B. and E.W. Miller (1941), “Partially ordered sets,” American Journal of

Mathematics 63, 600–610.

16



Georgescu-Roegen, N. (1954), “Choice and revealed preference,” Southern Economic

Journal 21, 119–130.

Georgescu-Roegen, N. (1966), Analytical Economics: Issues and Problems, Harvard

University Press, Cambridge.

Hansson, B. (1968), “Choice structures and preference relations,” Synthese 18, 443–458.

Kim, T. and M.K. Richter (1986), “Nontransitive-nontotal consumer theory,” Journal

of Economic Theory 38, 324–363.

Luce, R.D (1956), “Semiorders and a theory of utility discrimination,” Econometrica

24, 178–191.

Richter, M.K. (1966), “Revealed preference theory,” Econometrica 34, 635–645.

Richter, M.K. (1971), “Rational choice,” in J. Chipman, L. Hurwicz, M. Richter,

and H. Sonnenschein (eds.), Preferences, Utility, and Demand, Harcourt Brace Jo-

vanovich, New York, pp. 29–58.

Samuelson, P.A. (1938), “A note on the pure theory of consumer’s behaviour,” Eco-

nomica 5, 61–71.

Samuelson, P.A. (1947), Foundations of Economic Analysis, Harvard University Press,

Cambridge.

Samuelson, P.A. (1948), “Consumption theory in terms of revealed preference,” Eco-

nomica 15, 243–253.

Samuelson, P.A. (1950), “The problem of integrability in utility theory,” Economica

17, 355–385.

Sen, A.K. (1971), “Choice functions and revealed preference,” Review of Economic Stud-

ies 38, 307–317.

Suzumura, K. (1976a), “Rational choice and revealed preference,” Review of Economic

Studies 43, 149–158.

Suzumura, K. (1976b), “Remarks on the theory of collective choice,” Economica 43,

381–390.

17



Suzumura, K. (1977), “Houthakker’s axiom in the theory of rational choice,” Journal

of Economic Theory 14, 284–290.

Suzumura, K. (1983), Rational Choice, Collective Decisions and Social Welfare, Cam-

bridge University Press, New York.

18


