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Abstract
When economic agents have diverse private information on the fun-

damentals of the economy, prices may serve as a poor aggregator of
this private information. We examine the information value of prices
in a monopolistic competition setting that has become standard in
the New Keynesian macroeconomics literature. We show that public
information has a disproportionate effect on agents’ decisions, crowds
out private information, and thereby has the potential to degrade the
information value of prices. This effect is strongest in an economy
with keen price competition. Monetary policy must rely on less in-
formative signals of the underlying cost conditions.
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1 Introduction

One of the often-cited virtues of a decentralized economy is the ability of

the market mechanism to aggregate the private information of the individual

economic agents. Each economic agent has a window on the world. This

window is a partial vantage point for the underlying state of the economy.

But when all the individual perspectives are brought together, one can gain a

much fuller picture of the economy. If the pooling of information is effective,

and economic agents have precise information concerning their respective sec-

tors or geographical regions, the picture that emerges for the whole economy

would be a very detailed one. When can policy makers rely on the effective

pooling of information from individual decisions?

This question is a very pertinent one for the conduct of monetary pol-

icy. Central banks that attempt to regulate aggregate demand by adjusting

interest rates rely on timely and accurate generation of information on any

potential imbalances in the economy. The role of the central bank in this

context is of a vigilant observer of events to detect any nascent signs of grow-

ing imbalances. In particular, most central banks focus on the development

of inflationary pressures. Signs of such pressures can be met by prompt

central bank action through the use of monetary policy instruments.

It is possible to make a case that the information value of prices has

improved in recent years. In his Jackson Hole paper, Rogoff (2003) notes

that in very competitive sectors, like agriculture or semi-conductors, prices

are significantly more flexible than in less competitive or highly regulated

sectors. To the extent that globalisation and deregulation has increased

competition across a wide range of industries, one could argue that firms

are operating in a more competitive environment, and hence their prices will

behave more like the prices in competitive sectors.
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It is not our purpose here to assess the empirical claim that industries

have, in fact, become more competitive.1 Rather, we will assess the condi-

tional statement which claims that if imperfectly competitive economies be-

come more competitive, prices will become more responsive to changes in the

fundamentals. Although it is undeniable that very competitive sectors such

as agriculture and semi-conductors have very responsive prices, the question

is whether the relationship between competition and price responsiveness is

a continuous one.

There is some reason for doubting that the relationship between compe-

tition and price responsiveness is always continuous. Ball and Romer (1990)

show that when firms worry about their market share, they will be reluctant

to be first to raise prices (prices exhibit “real rigidities”) so that even a small

menu cost may induce firms not to change their prices. As the degree of

competition increases, the real rigidities will become more severe, and this

effect may become more potent.

We will show in this paper that even in the absence of menu costs and

other nominal rigidities, greater competition may actually reduce the respon-

siveness of prices to changes in the underlying fundamentals. Our case is

built on the importance of distributed information in decentralised economies

where firms have access to information that is local to their region or indus-

try, as well as to publicly available information that is available to firms

economy-wide. Firms have their own “window on the world”. In such a

setting, when firms try to defend their market share, this will entail some

degree of second-guessing the pricing strategies of their competitors. Even
1The evidence is somewhat mixed. Andersen and Wascher (2001) show that forecasts

for inflation were consistently too high relative to actual outcomes in the late 1990s,
whereas forecasts of costs did not display unusual behaviour, and suggest a decline in
the markup of price. However, direct measurements of markup have not revealed such
declines (see Bowman (2003), OECD (2002)).
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when there are no nominal rigidities, the outcome of navigating through the

higher-order beliefs entailed by the second-guessing of others leads firms to

set prices that are far less sensitive to firms’ best estimates of the underlying

marginal costs.

Our conclusion is that the relationship between competition and price

responsiveness is highly discontinuous. As an imperfectly competitive econ-

omy becomes more competitive, the price responsiveness falls. In the limit,

as markup falls to zero, prices become completely unresponsive to the funda-

mentals. Thus, it is critical to distinguish between a perfectly competitive

economy and the competitive limit of an imperfectly competitive economy.

The notion that equilibrium outcomes, particularly prices, are affected

by imperfect common knowledge is not new. The macroeconomics literature

on the forecasting the forecasts of others begun by Townsend (1983), Phelps

(1983) and Sargent (1991) has examined the quantitative impact of “sym-

metrically uninformed” agents. The issue has recently been revisited by

Woodford (2003a) and others2 in the context of an imperfectly competitive

economy. The conclusions drawn from this literature to date have largely

relied on numerical simulations of fully-fledged macroeconomic models mod-

ified to incorporate private information. The value of such exercises lies in

their ability to inform debates on the numerical time series properties of

macroeconomic aggregates. For instance, Woodford (2003a) has shown how

the combination of strategic behaviour and private information can induce

greater persistence in macroeconomic variables in response to shocks relative

to a common information benchmark.
2See Hellwig (2002), Ui (2003) and Adam (2003). See also Kasa (2000) and Pearlman

and Sargent (2002). The latter shows how the problem can sometimes be reduced to the
one with common knowledge. Similar issues arise in the context of asset pricing. See
Allen et al. (2002), and Bacchetta and Van Wincoop (2002, 2004).
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However, the cost of complexity is that it is difficult to isolate the key

forces at work. One of our tasks in this paper is to attempt to fill in this

gap by presenting a theoretical framework that is simple enough to unpack

the precise mechanism at work in the degradation of the information value

of prices. For this purpose, we will concentrate on two examples - a simple

Gaussian dynamic model, and a static model where we abstract from any

intertemporal learning or allocation problems. The virtue of such simple

examples is that we can employ arguments that rely on well-known results

from elementary probability theory.

We show that when price competition between firms becomes more in-

tense, the aggregate price level becomes extremely unresponsive to the under-

lying fundamentals. In a dynamic context, prices exhibit a great deal of iner-

tia. Even though firms are rational and form prices based on forward-looking

expectations, actual behaviour of prices have the outward signs of adaptive

expectations. One of the enduring puzzles that macroeconomists have strug-

gled with is how to explain the the apparent inertia in inflation without

resorting to adaptive expectations (see Gali and Gertler (1999)). Our ex-

amples suggest that models of distributed information may be a promising

line to pursue in tackling this problem.

There are potentially troubling implications of our results for monetary

policy. The experience of monetary policy in the 1990s has posed challenges

for the view that the central bank can rely on the rate of inflation to guide

monetary policy. Even as overall inflation pressures eased during the latter

half of the 1990s, economies expanded rapidly under conditions of strong

demand, accompanied by surging asset prices. The subsequent downturn

in economic activity in the major industrial economies, and especially the

United States, has fuelled debates about the information value of goods price
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inflation as an indicator of overall economic imbalances.3

We begin in the next section with a simple Gaussian dynamic price setting

model, and then follow up with a general finite state setting in a static context

that does not entail any distributional restrictions. We then present a small

numerical example. We conclude by discussing the implications of our results

for the conduct of monetary policy.

2 Price Inertia

We will be concerned with the pricing rule for firms of the form:

qi = Eiq + ξEiχ (1)

where qi is the (log) price set by firm i, q is the average price across firms,

χ is marginal cost (in real terms) – our “fundamental variable” – and ξ

is a constant between 0 and 1. The operator Ei denotes the conditional

expectation with respect to firm i’s information set. Pricing rules of this

form have been discussed for some time. Phelps (1983) derived a similar

pricing rule in a competitive economy, and compared it to the ‘beauty contest’

game discussed in Keynes’s General Theory (1936), in which the optimal

action involves second-guessing the choices of other players. Townsend (1978,

1983) also discussed similar pricing rules.4. However, our discussion in this

paper has most in common with Woodford (2003a), who has revived interest

in pricing rules of this form by showing how they arise naturally in macro

models with differentiated goods and imperfectly competitive markets. The

parameter ξ is related to the elasticity of substitution between goods, and
3See Borio, English and Filardo (2002) for further discussion of the challenges raised

for monetary policy frameworks by these experiences.
4See Morris and Shin (2002) for a welfare analysis of coordination games that give rise

to the beauty contest.
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becomes small as the economy becomes more competitive. Appendix A

presents an illustrative derivation in a partial equilibrium setting.

Rewrite (1) in terms of nominal marginal cost, defined as z ≡ χ + q,

yielding qi = (1− ξ)Eiq + ξEiz. Taking the average across firms,

q = (1− ξ) Ēq + ξĒz (2)

where Ē(·) is the “average expectations operator”, defined as Ē(·) ≡ R Ei(·)di.
Hence,

q =
∞X
k=1

ξ (1− ξ)k−1 Ēkz (3)

where Ēk is the k-fold iterated average expectations operator. With differ-

ential information, the k-fold iterated average expectations do not collapse

to the single average expectation5.

Let us now embed the price setting decision in a dynamic context. Time

is indexed by t ∈ {1, 2, · · · }, and suppose that z follows an AR(1) Gaussian
process {zt} where

zt = a+ φzt−1 + ηt

ηt is Gaussian noise, and 0 < φ < 1. The unconditional expectation of zt

is µ = a/ (1− φ). There is a continuum of firms, and none of them ever

observe the true value of the fundamentals zt. Instead, at date t, firm i

observes the realization of the signal

xit = zt + εit

where εit is normal with mean zero and variance σ2ε. The noise terms {εit}
are independent across i and across t. The information set of firm i at date

t is

{xi1, xi2, · · · , xit}
5See Morris and Shin (2002)
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and must form beliefs on current, future and past realizations of zt based on

these signals alone. However, the firms know that zt has mean µ, and so can

utilize this information also. We may regard the unconditional mean µ as

being the sole piece of public information. All other information is private

to that firm alone.

Let Eit (.) denote the expectation conditional on firm i’s information set

at date t. From the formula for conditional expectations of jointly normal

random variables, we have

Eit

 z1...
zt

 =
 µ...
µ

+ VzxV −1xx

 xi1 − µ...
xit − µ

 (4)

where Vzx is the matrix of covariances where the (s, u)th entry is the covari-

ance between zs and xiu, and Vxx is the covariance matrix for (xi1, xi2, · · · , xit).
We can write (4) as

Eit


µ
z1
...
zt

 =

1 0 · · · 0
c1t
... VzxV −1xx

ctt



µ
x1
...
xt

 (5)

where  c1t...
ctt

 =
 1...
1

− VzxV −1xx

 1...
1

 (6)

are the weights placed on the unconditional mean µ in forming conditional

beliefs on {zs}. Taking the average of (5) across the continuum of firms, we
have

Ēt


µ
z1
...
zt

 =

1 0 · · · 0
c1t
... VzxV −1xx

ctt



µ
z1
...
zt

 (7)
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Let us denote:

Bt ≡


1 0 · · · 0
c1t
... VzxV −1xx

ctt


The matrix Bt corresponds to the average belief operator Ēt, and satisfies

the following property.

Lemma 1 Bt is the transition matrix of a Markov chain over {µ, z1, · · · , zt}
where µ is the sole absorbing state. All other states are transient.

To prove this lemma, note from (6) that the rows of Bt must sum to

one. We need to show that VzxV −1xx has non-negative entries but its largest

eigenvalue is strictly less than one. To begin, note that since the noise terms

{εit} are independent across t, we have Cov(xit, zs) = Cov(zt, zs). Thus, Vzx
is equal to Vzz, the covariance matrix for {zt}. Since Vzz is symmetric and
positive definite, it can be diagonalized as

Vzz = EΛE
0

where Λ is the diagonal matrix of strictly positive eigenvalues λ1, · · · ,λt.
Meanwhile, note that

Vxx = Vzz + σ
2
εI

= EΛE0 + σ2εI

= E
¡
Λ+ σ2εI

¢
E0

so that Vxx can also be diagonalized in terms of the set of eigenvectors E.

In other words, Vzz and Vxx are diagonalizable within the same linear basis.

Then,

VzzV
−1
xx = E


λ1

λ1+σ2ε
. . .

λt
λt+σ2ε

E0
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Hence, all the eigenvalues of VzzV −1xx are positive, but strictly less than one.

This proves the lemma.

Higher-order average beliefs at date t are then determined by the iterated

application of the average belief matrix Bt. The inertia of higher order

beliefs is reflected in the weight given to realizations of zs in the distant past

and to the ex ante mean µ. We have

Bkt =

"
1 0³Pk−1

i=0 (VzxV
−1
xx )

i
´
c (VzxV

−1
xx )

k

#

Since the eigenvalues of VzxV −1xx are strictly less than one, (VzxV −1xx )
k → 0 as

k becomes large. The unconditional mean µ is the unique absorbing state of

the Markov chain. As the order of iterated beliefs increases, all the weight

becomes concentrated on µ and away from the subsequent realizations of

{zs}. Thus, we have proved:

Theorem 2 As k →∞, Ēkt


µ
z1
...
zt

→

µ
µ
...
µ

 .
The unconditional mean µ in our example is the sole piece of public

information among the firms - it is the sole piece of information that is

common knowledge among the firms. In general, any signal that is publicly

observed by the firms, and hence common knowledge among them, will be

an absorbing state in the Markov chain representation.

The implications of theorem 2 are profound for an economy with firms

that face fierce competition. From equation (3), we know that the aver-

age price level is a weighted average of higher order average expectations of

nominal marginal cost. As the parameter ξ becomes small, it is the higher

order average expectations that receive more and more weight. However,

10



we know from theorem 2 that higher order average expectations contain very

little information value in that the recent realizations of the fundamentals

{zt} have very little impact on price. In the limit as ξ → 0, we approach

the competitive limit of the imperfectly competitive economy. From (3),

whatever is the history of the economy and the current value of zt is, we

have

qt → µ as ξ → 0

In this economy, the price level is completely unresponsive to changes in the

fundamentals. The price level is held fixed at µ, the unconditional mean of

nominal marginal cost. Thus, in spite of the lack of any nominal rigidities,

and in spite of rational pricing setting behaviour of the firms, there is a great

deal of inertia.

3 General Static Economy

We now examine a more general example with a finite number of states, but

a one shot pricing problem for firms. We maintain the pricing rule

qi = (1− ξ)Eiq + ξEiz

If nominal marginal cost were common knowledge among the firms, the

unique equilibrium price would then be given by qi = z, for all firms i.

We call this outcome the perfect information benchmark.

However, suppose that firms have imperfect information. In particular,

we will suppose that firm i observes a noisy signal zi of z given by

zi = z + εi

where the noise term εi is i.i.d. across firms. Faced with this uncertainty,

each firm must estimate the price charged by the other firms from his own
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estimate of z. We will first examine a special case in which firms have

identical information concerning the underlying fundamentals.

3.1 Pooled Information Benchmark

By the pooled information benchmark, we refer to the hypothetical situation

in which firms pool their information, so that all firms have access to all the

information available to the set of firms taken as a whole. Among other

things, firms end up having identical information in this case.

When there are a large number of firms each with conditionally indepen-

dent signals, this case can be considered an approximation to the perfect

information case. If we denote by Ii the information set of firm i, then the

pooled information benchmark endows each firm with the information set

given by the union [
i

Ii

The information set of firm i includes all those random variables that firm

i observes - such as its own characteristics. These signals then define a

partition over the overall state space in the standard way. We will make use

of both formalisms below.

Let us use the shorthand E∗ (·) for the conditional expectation with re-
spect to the pooled information set

S
i Ii. When firms have access to pooled

information, the equilibrium pricing rule gives

q = E∗ (z) (8)

Thus, average price is given by the mark-up times the expected average

nominal marginal costs across firms. An increase in marginal cost is reflected

in a one-for-one increase in average prices. Thus, in the pooled information

benchmark, an outside observer (such as the central bank) can make good
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inferences on the underlying cost conditions. We will now contrast this with

the general case in which firms have differential information.

3.2 Equilibrium

To avoid unnecessary technical details, we will assume that the firms can be

partitioned into a finite number N of equally-sized subclasses, where firms

in each subclass are identical, and commonly known to be so. We will also

assume that the random variables z and {εi} take on finitely many possible
values. We define a state ω to be an ordered tuple:

ω ≡ (z, ε1, ε2, · · · , εN )

that specifies the outcomes of all random variables of relevance. We will

denote by Ω the state space that consists of all possible states. The state

space is finite given our assumptions.

There is a known prior density φ over the state space Ω that is implied by

the joint density over z and the idiosyncratic terms εi. The prior is shared

by all firms, and represents the commonly shared assessment of the likelihood

of various outcomes before the realization of marginal cost z. However, once

the firm observes its own signal zi, it makes inferences on the economy from

its knowledge of the joint density of the random variables by forming the

conditional density over the state space based on the realization of its own

signal zi. Equivalently, firm i’s information partition over Ω is generated by

the equivalence relation∼i over Ω, where ω ∼i ω0 if and only if the realization
of zi is the same at ω and ω0.

Some matrix notation is useful at this point. Index the state space Ω by

the set {1, 2, · · · , |Ω|}. We will use the convention of denoting a random

variable f : Ω → R as a column vector of length |Ω|, while denoting any
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probability density over Ω as a row vector of the same dimension. Thus,

from here on, the prior density φ will be understood to be a row vector of

length |Ω|. We will denote by bi (k) the row vector that gives the posterior
density for firm i at the state indexed by k. By gathering together the

conditional densities across all states for a particular firm i, we can construct

the matrix of posterior probabilities for that firm. Define the matrix Bi

as the matrix whose kth row is given by the posterior density at the state

indexed by k. That is

Bi ≡


− bi (1) −
− bi (2) −

...
− bi (|Ω|) −


We note one important general property of this matrix. We know that the

average of the rows of Bi weighted by the prior probability of each state

must be equal to the prior density itself. This is just the consequence of the

consistency between the prior density and the posterior densities. In our

matrix notation, this means that

φ = φBi (9)

for all firms i, so that φ is a fixed point of the mapping defined by Bi.

More specifically, note that Bi is a stochastic matrix in the sense that it

is a matrix of non-negative entries where each row sums to one. Hence,

it is associated with a Markov chain defined on the state space Ω. Then

equation (9) implies that the prior density φ is an invariant distribution over

the states for this Markov chain. We will make much use of this property

in what follows. This formalization of differential information environments

in terms of Markov chains follows Shin and Williamson (1996) and Samet

(1998).
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For any random variable f : Ω → R, denote by Eif the conditional
expectation of f with respect to i’s information. Eif is itself a random

variable, and so we can denote it as a column vector whose kth component

is the conditional expectation of firm i at the state indexed by k. In terms

of our matrix notation, we can write:

Eif = Bif

As well as the conditional expectation of any particular firm, we will also be

interested in the average expectation across all firms. Define Ēf as

Ēf =
1

N

NX
i=1

Eif

Ēf is the random variable whose value at state ω gives the average expecta-

tion of f at that state. The matrix that corresponds to the average expec-

tations operator Ē is simply the average of the conditional belief matrices

{Bi}, namely
B ≡ 1

N

NX
i=1

Bi

Then, for any random variable f , the average expectation random variable

Ēf is given by the product Bf . Since Bf is itself a random variable, we

can define

B2f ≡ BBf

as the average expectation of the average expectation of f . Iterating further,

we can define Bkf as the kth order iterated average expectation of f . Then,

the equilibrium pricing rule (1) can be expressed in matrix form as

qi = ξBiz + (1− ξ)Biq
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Here, qi is a column vector whose jth entry is the price of firm i at the jth

state, and z is the column vector whose jth component is the (true) marginal

cost at the jth state. Taking the average across firms, we have

q = ξBz + (1− ξ)Bq (10)

By successive substitution, and from the fact that 0 < ξ < 1, we have

q = ξ
∞X
i=0

((1− ξ)B)k Bz

= ξ (I − (1− ξ)B)−1Bz (11)

= MBz

where M is the matrix

M = ξ (I − (1− ξ)B)−1

Thus, equilibrium average price q is given by (11). Let us note some pre-

liminary observations on the comparison between (11) and the perfect infor-

mation benchmark, in which the cost function is common knowledge across

firms. With perfect information, we have

q = z (12)

There are two differences between (11) and (12). First, there is the effect

of fundamental uncertainty. Since the firms do not know the true marginal

cost, Bz is different from z. However, if the noise εi is very small, or when

N is large (there are many classes of firms), Bz ' z.
However, there is a second, more important difference given by the ap-

pearance of the matrix M in the equilibrium of the differential information

economy. The matrixM is a stochastic matrix (i.e. a matrix of non-negative
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entries whose rows sum to one) since each row of the matrix ((1− ξ)B)k
sums to (1− ξ)k so that the matrix (I − (1− ξ)B)−1 = P∞

i=0 ((1− ξ)B)k
has rows which sum to 1 + (1− ξ) + (1− ξ)2 + · · · = 1/ξ. Thus, the matrix
M = ξ (I − (1− ξ)B)−1 is a stochastic matrix.
The matrix M serves the role of “adding noise” (in the sense of Black-

well(1951)) to the random variable Bz. The effect of the noise is to smooth

out the variability of prices across states. Thus, in going from (12) to (11)

the average prices become less reliable signals of the underlying cost condi-

tions of the economy. Since the noise matrix M is a convex combination

of the higher order beliefs
©
Bk
ª
, we must first understand what determines

these higher order beliefs. In general, higher order expectations contain

much less information than lower order expectations in the following precise

sense. For any random variable f , denote by max f the highest realization

of f , and define min f analogously as the smallest realization of f . Then for

any stochastic matrices C and D and any random variable f ,

maxCDf ≤ maxDf

minCDf ≥ minDf

CD is a “smoother” or “noisier” version of D in the sense of Blackwell. So,

the higher is the order of the iterated expectation, the more rounded are the

peaks and troughs of the iterated expectation across states.

The importance of the parameter ξ is now apparent. The smaller is this

parameter, the greater is the weighting received by the higher order beliefs

in the noise matrix M , so that the prices are much less informative about

the underlying cost conditions. In particular, the limiting case of Bk as

k →∞ is an important benchmark, since this is the limit of the solution for

equilibrium average price q as ξ → 0. We turn to this question now.
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3.3 Public Information Limit

The limiting case for higher order beliefs Bk as k becomes large has a special

property. From (9), we know that

φ = φB (13)

so that the prior density φ is an invariant distribution for the Markov chain

defined by the average belief matrix B. By post-mulitiplying both sides by

B, we have

φ = φB = φB2

so that φ is an invariant density for B2 also. By extension, we can see that φ

is an invariant density for Bk for any kth order average belief operator. We

also know from the elementary theory of Markov chains that under certain

regularity conditions (which we will discuss below), the sequence
©
Bk
ª∞
k=1

converges to a matrix B∞ whose rows are identical, and given by the unique

stationary distribution over Ω. Since we know that the prior density φ is an

invariant distribution, we can conclude that under the regularity conditions,

all the rows of B∞ are given by φ. That is

B∞ =


− φ −
− φ −

...
− φ −

 (14)

In other words, the limiting case of higher order beliefs Bk as k becomes

large is so noisy that all information is lost, and the average beliefs converge

to the prior density φ at every state. In particular, for any random variable

f , successively higher order beliefs are so noisy that all all peaks and troughs

into a constant function, where the constant is given by the prior expectation
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f̄ (i.e. the expectation of f with respect to the prior density φ). In other

words,

Bkf →


f̄
f̄
...
f̄

 as k →∞ (15)

To introduce the regularity conditions that ensure this, and to delve fur-

ther into the underlying structure of our results, let us denote the (j, k)th

entry of B by

b (j, k)

This is the probability of one-step transition from state j to state k in this

Markov chain. The condition that guarantees (14) is the following.

Condition 3 For any two states j and k, there is a positive probability of

making a transition from j to k in finite time.

Condition 3 ensures that the matrix B corresponds to a Markov chain

that is irreducible, persistent and aperiodic. It is irreducible since all states

are accessible from all other states. For finite chains, this also means that

all states are visited infinitely often, and hence persistent. Finally, the

aperiodicity is trivial, since all diagonal entries of B are non-zero irrespective

of condition 3. We can then prove lemma 4.

Lemma 4 Suppose B satisfies condition 3. Then, the prior density φ is

the unique stationary distribution, and Bk → B∞, where B∞ is the matrix

whose rows are all identical and given by φ.

Condition 3 has an interpretation in terms of the degree of information

shared between the firms. It corresponds to the condition that\
i

Ii = ∅ (16)
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In other words, the intersection of the information sets across all firms is

empty. There is no signal that figures in the information set of all the

firms. This condition is satisfied in our case since the signals of firms’ costs

are highly correlated, but not exactly identical. Thus, (16) holds, so that

condition 3 is satisfied. Another way to phrase this is to say that there is

no non-trivial event that is common knowledge among the firms. The only

event that is common knowledge is the trivial event Ω, which is the whole

space itself.

If the intersection
T
i Ii were non-empty, then some signals are observed

by every firm, and the outcomes of these signals become public and hence

common knowledge. The equilibrium pricing decision of firms can be analysed

for this more general case in which firms have access to public information,

as well as their private information.

In this more general case, the limiting results for the higher order average

belief matrices Bk correspond to the beliefs conditional on public signals.

In order to introduce these ideas, let us recall the notion of an information

partition for a firm. Let firm i’s information partition be defined by the

equivalence relation ∼i where ω ∼i ω0 if firm i cannot distinguish between

states ω and ω0. Denote firm i’s information partition by Pi, and consider set
of all information partitions {Pi} across firms. The meet of {Pi} is defined
as the finest partition that is at least as coarse as all of the parititions in

{Pi}. The meet of {Pi} is thus the greatest lower bound of all the individual
partitions in the lattice over partitions ordered by the relation “is finer than”.

The meet of {Pi} is denoted by ^
i

Pi

The meet is the information partition that is generated by the public signals

- i.e. those signals that are in the information set of every firm, and hence
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in the intersection \
i

Ii

The meet has the following property6.

Lemma 5 If two states ω and ω0 belong to the same element of the meetV
i Pi, then there is positive probability of making a transition from ω to ω0

in finite time in the Markov chain associated with B.

Lemma 5 gives a generalization of condition 3. The idea is that the

Markov chain defined by the average belief matrix B can be expressed in

block diagonal form:

B =


A1

A2
. . .

AJ


and where each sub-matrix Aj defines an irreducible Markov chain that cor-

responds to an element of the meet
V
iPi. Then, the higher-order belief

limit is given by

B∞ =


A∞1

A∞2
. . .

A∞J


Furthermore, we have

φ = φB∞ = φ


A∞1

A∞2
. . .

A∞J


6See, for instance, Shin and Williamson (1996).
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and so for any random variable f , the higher order expectation of f at each

state has the following limiting property, in which the limit of the higher

order expectation is the conditional expectation based on the public signals

only. In other words, we have:

Theorem 6 As k →∞,

Bkf →


E (f | ∩i Ii) (ω1)
E (f | ∩i Ii) (ω2)

...
E (f | ∩i Ii) (ωN )


where E (f | ∩i Ii) (ω) is the conditional expectation of f at state ω based on
public information only.

In appendix B, we provide an alternative proof of this result that uses

the eigenvalues of the average belief matrix that bring out some additional

features of the problem. Theorem 6 implies that for small values of ξ, the

dominant influence in determining the average price level p is given by the

set of public signals. For example, suppose the central bank announces a

forecast for the price level, and this is a sufficient statistic for any public

signals available to firms. Then the equilibrium average price p will largely

reflect the central bank’s forecast regardless of the underlying cost conditions

in the economy.

3.4 Example

We illusrate our results through a simple example. Consider an economy

with three firms. Suppose that marginal cost z can assume one of two values,

zH or zL, with probabilities pH and 1− pH respectively, where zL = zH − ².
Each firm i ∈ {1, 2, 3} observes a private signal of z, denoted zi, given by

zi = z + ²i (17)
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where the idiosyncratic noise term ²i takes realizations ², 0 or −² with prob-
abilities p², 1 − 2p² and p², respectively. The noise terms are independent

across firms.

In this economy there is a total of 54 states - 2 possible realizations for

cost and 33 configurations of signals for each cost realization. A state is

identified with the realization of the tuple (z, ²1, ²2, ²3). These are illustrated

in Table 1, along with the objective (prior) probability of the occurrence of

each state.

Given the assumptions we have made, firms can observe four possible

values of their private signals: zH + ², zH , zL or zL − ². When either the
first or last of these is observed, firms know the value of marginal cost with

certainty (zH and zL, respectively). However, since the signals of other firms

are not observed, firms cannot identify the state even when either of these

two signals is observed. For example, if firm 1 receives the signal zH + ²,

then it knows that the index of the realised state (see Table 1) is between

1 and 9, but it cannot further distinguish amongst these states. Thus, the

first nine rows of the posterior probability matrix for firm 1, B1, has the

(renormalised) prior for states 1 to 9 in the first nine columns, and zeros in the

remaining columns. The rest of the posterior for firm 1 can be constructed

by undertaking a similar analysis, as can the posteriors for the other two

firms.

To make our example concrete, let us choose values for the parameters

in the model. For the marginal cost parameters, our choices are: zH = 5,

zL = 3 and pH = 0.5. Since ² = zH−zL, we have ² = 2. Of greater relevance,
as will be made clear below, are the choices of ξ and p². As a baseline value,

a reasonable choice for ξ is 0.15 (see Woodford (2003b) for a discussion of

the size of this parameter). The baseline value for p² is 1/3, which means the
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distribution of the noise term gives equal weight to the three possible values.

Turning now to the features of this economy we wish to highlight, Figure

1 shows the set of feasible tuples for marginal cost and the price level in

pooled and differential information versions of the model. These are given

by the circles in the respective panels. Recall that in an economy with perfect

information (i.e. no uncertainty), q = z. In both panels, this equilibrium is

denoted by “×”. Finally, the square marks the tuple of the means of the two
variables, which is identical in all three types of economies.

In the pooled information benchmark, the true marginal cost is fully

revealed provided that at least one firm receives an extreme signal. For

instance, if z = zL, then it takes just one firm to receive the signal zL− ² for
the true marginal cost to become common knowledge, and we have the full

information outcome. Conditional on z = zL, this happens with probability

1− ¡2
3

¢3
= 19

27
, and this outcome is marked by the circle that is superimposed

on the “×”. With probability
¡
2
3

¢3
, none of the firms receive the extreme

signal zL − ², and given our assumption of a uniform prior, all firms give

equal weight to z = zL and z = zH . In this case, the firms learn nothing,

and we have q = zL+zH
2

= 4. This is represented by the circle to the left

of the square at the value 4. Clearly, as the number of firms increases, the

probability of the full information outcome increases to 1.

Contrast this with the price distribution under the equilibrium with dif-

ferential information, given by the right hand panel of Figure 1. Conditional

on the true marginal cost, there are four possible values of the average price,

corresponding to how many firms have received an extreme signal that re-

veals the true cost level. The uniform density assumption implies that this

is all that matters - if an extreme value is not observed, then the signal is

uninformative of the underlying true cost. The equilibrium outcomes in the
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differential information economy are more tightly bunched together near the

mean but are farther away from the true value of the underlying fundamental

(marginal cost). In particular, note that even in the case where all three

firms have observed an extreme outcome (so that all firms know the true

cost), they end up choosing a price that is very far from the price in the per-

fect information case. The reason here is that even though each firm knows

the true cost, this true cost is not common knowledge. Each firm allows the

possibility that one or both of the other firms do not know the true cost, and

“shade” their decisions towards the mean. This illustrates the smoothing

property of higher-order beliefs: as the order of belief increases, the posterior

places relatively more weight on the prior (which results in prices being closer

to their mean). Hence, our conclusion follows that prices may not be a good

indicator of underlying cost pressures when information is dispersed across

firms with strategic interactions.

What is the effect of changing the weights on the orders of beliefs in the

expectations of firms? Evidence of this is presented in Figure 2. The left

panel of the figure repeats the differential information case from Figure 1.

In the right panel of Figure 2 the weights on higher-order beliefs have been

increased by changing the value of ξ from 0.15 to 0.05. Recall from equation

(11) that the weights on higher orders are a decreasing function of ξ, i.e. for

smaller values of ξ, the weight on beliefs of order k declines more slowly as k

becomes large. Again, the importance of the smoothing property of higher-

order beliefs is evident; prices in the economy with greater competition are

distributed even more closely together near the mean.

It was argued above that many industrial economies may have witnessed

the degree of competition having intensified in the 1990s. In the context of

our model, this would have the effect of lowering ξ because one factor that
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determines ξ is the elasticity of substitution across goods, as measured by θ

— more intense competition is embodied by a higher value for θ and hence a

smaller value for ξ. If competition has indeed intensified, then the distorted

picture presented by aggregate price outcomes may have gotten worse in

recent years.

Lastly, one versatile feature of our model is that, apart from the require-

ment of a finite state space, our equilibrium solution has been obtained inde-

pendently of any distributional assumptions on the common prior or signals.

But, of course, specific choices for these distributions — by varying pH or p²,

or by specifying the distribution of ²i to be asymmetric — will impact upon

the actual realisations of the price level. The final feature of the model we

illustrate brings to light the effect of different distributional assumptions.

We highlight the importance of the relative precision of the private signals

on the dispersion of the price level. In general, we would expect that more

precise private signals (relative to commonly held information, i.e. the prior)

should result in more efficient outcomes; that is, prices should converge to

marginal cost, the perfect information benchmark. In order to assess this,

notice that the variance of the noise term in the private signal is given by

2²p², and is therefore an increasing function of p². We therefore reduce p²,

from 1/3 to 1/12; the results are shown in Figure 3. When we reduce p² in

this way, the uniform posterior density is lost, and we must allow a greater

number of possible combinations of signals. Conditional on the true cost

level, there are 10 possible equilibrium average prices7.

Some interesting effects are evident by reducing p² to 1/12. We can see
7Either all firms observe the true cost, or only two of the firms observe the true cost

(which can happen in two ways), or only one firm observes the true cost (which can happen
in three ways), or none of the firms observe the true cost (which can happen in four ways).
Thus, there are 1 + 2+ 3 + 4 = 10 possible outcomes for average price.
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that the range of feasible prices is now larger, both in the direction towards

the true value of the state (marginal cost) and away from it. The price

level is furthest away from the true cost level when all the firms have noise

that takes them further from the true cost level. This happens with small

probability, but when it does happen, the firms take their signals at face

value, and the average price is far away from the true cost. Of course, in ex

ante terms, these extreme outcomes would be very unlikely. Thus, the price

level will sometimes be further away from marginal cost compared to when

the signals are noisier, but more often they will be closer to the fundamental.

4 Implications for Monetary Policy

In expanding upon previous work, we have developed a model of pricing

behaviour that has potentially strong implications for the information value

of prices. In a nutshell, our main result is that goods prices, particularly

the aggregate price, may provide a distorted picture of underlying activity

in the economy. In this section we discuss some possible ramifications of our

results for the role played by aggregate goods price measures in the conduct

of monetary policy. It should be noted that while our analysis has focused

on the behaviour of the price level, the policy implications drawn here are

likely to be equally valid for measures of goods price inflation as well. In view

of the greater emphasis in current policy practice on inflation stabilisation,

rather than price level stabilisation, we will generally refer to inflation8. Our

discussion will focus on two issues: price level or inflation targets as a goal

of monetary policy and inflation as an indicator variable in the conduct of

policy. We do not, however, seek to provide new empirical evidence to test
8A formal analysis of inflation would require us to extend our model to a truly dynamic

setting. See Woodford (2003a), Amato and Shin (2003) or Hellwig (2002) for dynamic
models with imperfect common knowledge.
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the conjectures put forward here.

Inflation targeting has now become one of the main paradigms of mon-

etary policy. Fry et al. (2000), for example, document the rise of inflation

targeting in advanced industrial and emerging market economies alike. In

many countries, the adoption of inflation targeting was a solution to problems

with previous monetary regimes.9 In part, the move towards a regime cen-

tered around an inflation target was a natural progression for policy makers

who had been primarily focused on inflation stabilisation in any case. In-

flation targeting has also generated considerable interest in academic circles

(see, e.g., Svensson (1999) and Svensson and Woodford (2003), among many

others). Ultimately, inflation targeting became credible because of the wide-

spread view that high and variable inflation rates reduce welfare and that

the best contribution of monetary policy to improving welfare is to control

inflation10. Price level targeting is not currently practiced in any countries,

at least not explicitly. But with the attainment of low and stable inflation,

some authors have called for central banks to move one step further and aim

at price targets.

Apart from recognition of the direct costs of high and variable inflation,

the appeal of inflation targeting has been rooted in the view that inflation

movements generally reflect underlying economic imbalances. The basis for

this is some version of the Phillips curve, which is the standard model of in-

flation determination. In the Phillips curve, misalignments between demand

and supply translate into fluctuations in inflation. Other shocks might also
9Despite progress during the 1980s in controlling inflation, several central banks were

forced to abandon their monetary regime in the early 1990s. As an alternative, and to
solidify the gains in bringing down inflation, many chose to adopt inflation targeting.
10Even under this perspective of monetary policy, there may be instances when deviating

from primary attention on inflation would be a preferable strategy; see Mussa (2003) for
a recent discussion of this point.
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buffet inflation (e.g. inefficient supply shocks), making it more difficult to

identify the true source of price changes; but it is generally the case that

inflation is seen to be a sufficient statistic of imbalances in real activity.

In this regard, the desirability of either inflation or price level targeting

might need to be reevaluated in the light of the issues addressed in our

paper. We have argued that the price level may be a poor reflection of

underlying economic activity. For instance, in Figure 1, price outcomes are

much closer to the mean than to marginal cost in each state of the world.

Where competitive pressures are even more intense, such as in Figure 2, the

price level is distributed even more tightly around the mean. Using as a

metric the squared or absolute distance between the price level and its mean

(assumed to be the policy target), one would judge monetary policy to have

been a success in the differential information economy. But this conclusion

would be erroneous if the true objective of monetary policy is to keep prices

at their efficient level in each state of the world, namely, equal to marginal

cost.

Whether or not a central bank pursues price level or inflation stabilisation

as a goal of monetary policy, changes in aggregate prices can serve a separate

role as an indicator of imbalances between aggregate demand and supply.

For instance, inflation can enter as a separate term in a policy rule (e.g.

the Taylor rule). In various versions of New Keynesian dynamic general

equilibrium models, interest rate rules that give a dominant role to inflation

have been shown to be near optimal (see, e.g., Woodford (2003b) and the

references therein). But the same arguments above apply equally well to the

efficacy of inflation as an indicator variable. Just as the price level or inflation

may be a poor metric of efficient allocations, it may also be a poor guide of

the true state of underlying fundamentals. A central bank that moves its
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policy interest rate mainly in response to inflation fluctuations could end up

displaying too little activism. The smoothing effect of higher-order beliefs

on prices could induce a false sense of efficiency in goods markets.

A related argument about the potential problems with using consumer

price inflation as an indicator is what has been called “the paradox of credi-

bility” (see, e.g., Borio and Lowe (2002)). The idea is that as central banks

have become more credible with the achievement of low and stable inflation,

inflation itself may have become a less reliable signal of other imbalances. By

policy being more credible, inflation expectations are anchored more closely

around target inflation rates, and are less prone to move with changing cost

conditions. Firms are rational in our model and the probability distribution

of marginal cost has been taken as given; thus we have implicitly assumed

that monetary policy is credible. But this simply means that, if anything, our

analysis is more applicable today with high credibility of monetary policy.

Our results, therefore, support the view that prices may be a poor indicator

of marginal costs is such an environment.

5 Concluding Remarks

Our main task in this paper has been to show that an economy with diverse

private information has features that are not captured in representative in-

dividual models where all firms share the same information. The most

distinctive of these features is the crowding out of private information by the

commonly shared information. The impact of public information is greater

for those economies where price competition is more fierce.

The observation that public signals have a disproportionately large im-

pact in games with coordination elements is not new, but our main focus

has been to present the arguments in a framework that is sufficiently simple
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so as to isolate the key effects at work. By basing our analysis on a static

framework with a finite state space, we have been able to employ elemen-

tary methods from Markov chain theory. The results we obtain show how

increased competitive pressures magnify the effects of strategic complemen-

tarity on the choice of prices across firms, and thereby increase the weight

placed on higher order average beliefs in the optimal choice of firms. Higher

order beliefs are less informative of the underlying fundamentals, and hence

the equilibrium prices become more detached from the underlying cost con-

ditions. The simulation results reported by Woodford (2003a) and others

rely on these key features. By showing the origin of these features in a sim-

ple theoretical model and numerical example, we hope our results can throw

light on precisely how differential information affects prices. This, and our

preliminary discussion of policy implications, will hopefully lead to further

avenues of research in this area.
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A Derivation of Pricing Rule

We give an illustrative derivation of the pricing rule (1) in a partial equilib-

rium setting. A continuum of firms indexed by the unit interval [0, 1] choose

prices for differentiated goods, where firm i faces the demand curve

yi =
³pi
P

´−θ
Y (18)

where pi is the price charged by firm i, P is aggregate price level, given by the

Dixit-Stiglitz price index [
R 1
0
p1−θi di]

1
1−θ , and Y is the aggregate output given

by [
R 1
0
y
θ−1
θ

i di]
θ

1−θ , and the parameter θ > 1 is the elasticity of substitution

between goods produced by different firms. The firm has some pricing power,

but the higher is θ, the more sensitive is the demand for a firm’s output with

respect to the relative prices across firms. In the absence of uncertainty, the

first order condition for profit maxmization is given by

pi
P
=

θ

θ − 1c (yi, Y ) (19)

where c (yi, Y ) is the real marginal cost for firm i when his own output is yi

and the aggregate output is Y . Thus, firms charge a mark-up over marginal

cost, where the mark-up is decreasing in θ. For illustration, let us suppose

that the marginal cost for firm i takes the form:

c (yi, Y ) = Ay
α
i w (Y ) (20)

where α and A are positive constants, and w (Y ) is the real wage that depends

on the aggregate output. Substituting out yi from (19) using (18), we can

write the first-order condition as

pi
P
=
£
θ
θ−1c (Y, Y )

¤ξ
(21)

where the parameter ξ is given by

ξ =
1

1 + αθ
(22)
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From (21) and introducing uncertainty, we have

pi = Ei

Ã
P

·
θ

θ − 1c (Y, Y )
¸ξ!

Taking logs,

log pi = logEi

Ã
P

·
θ

θ − 1c (Y, Y )
¸ξ!

(23)

To obtain (1) from (21) (up to an additive constant), we take two ap-

proximations. The first approximation is

logEi

³
P · c (Y, Y )ξ

´
' Ei log

³
P · c (Y, Y )ξ

´
+ C (24)

where C is some constant. This relationship would be exact in some special

cases, such as when conditional on firm i’s information set, P and c (Y, Y )

have a joint lognormal distribution. In such a case,

Ei

³
P · c (Y, Y )ξ

´
= Ei (exp [log P + ξ log c (Y,Y )])

= Ei (exp [X ])

= exp

·
Ei (X) +

1

2
vari (X)

¸
where X ≡ logP + ξ log c (Y, Y ) is normally distributed conditional on firm
i’s information set. Thus, we have

logEi

³
P · c (Y, Y )ξ

´
= Ei (X) +

1

2
vari (X)

= Ei log
³
P · c (Y,Y )ξ

´
+ C

if we assume that C = vari (X) /2 is identical across i. This will hold,

for example, when the firms are symmetric ex ante, so that the signals of

log
³
P · c (Y, Y )ξ

´
that each firm observes are (conditionally) normally dis-

tributed, with mean equal to log
³
P · c (Y, Y )ξ

´
and constant variance equal

across firms.
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Substituting (24) into (23), and omitting constants, we have

log pi = Ei logP + ξEi log c (Y,Y ) (25)

The second approximation we take is q ' log P . Making the substitution
into (25) leads to (1) directly, where χ ≡ log c (Y, Y ). Although we already
have a linear relation between qi, Ei log P and Eiχ in (25), many of the

results in the paper require us to express (1) in terms of q. Specifically, this

approximation is required when recursively substituting out for q to obtain

(3), after averaging (2) across firms. Avoiding the approximation q ' log P
would significantly increase the complexity of the calculation of higher-order

beliefs; in particular, analytic solutions would no longer be attainable.

It is worth noting, however, that the closely related literature on staggered

price setting (e.g. Calvo contracts) has also relied on a log-linear approxi-

mation of the aggregate price index in the derivation of the New Keynesian

Phillips Curve, as shown in Sbordone (JME, 2002, p. 270), Woodford (In-

terest and Prices, 2003) and many other recent papers. While the details are

slightly different, the principle is the same: a log-linearisation of the price

index is needed to derive a tractable expression of aggregate price dynamics.

B Alternative Proof of Theorem 6

An alternative proof of theorem 6 can be given in terms of the eigenvalues

and eigenvectors of the average belief matrix. Let there be n states in Ω, and

denote by pij the (i, j)-th entry of B. For the moment, we will assume that

pij > 0 for all i, j. We’ll return to comment on how the result genernalizes.

Suppose there are N firms. Since pij is the average conditional probability

of state j at state i, we have

pij =
1

N
(p1 (j|i) + p2 (j|i) + · · ·+ pn (j|i))
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where pk (j|i) is the k-th firm’s conditional probability of state j at state i.
Let S(i, j) be the subset of individuals for whom states i and j belong to

the same element of their information partition. Clearly, S (i, j) = S (j, i).

Denote by Pk (i) the ex ante probability of the cell of individual k’s partition

that contains state i. Then,

pij =
1

N

X
k∈S(i,j)

pj
Pk (i)

=
pj

P (i, j)

where P (i, j) is defined as 1
P (i,j)

≡ 1
N

P
k∈S(i,j)

1
Pk(i)

. Note that

P
k∈S(i,j)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (j)

so that P (i, j) = P (j, i). Thus, the matrix B can be written as

B ≡


p1

P (1,1)
p2

P (1,2)
· · · pn

P (1,n)
p1

P (2,1)
p2

P (2,2)
· · · pn

P (2,n)
...

...
. . .

p1
P (n,1)

p2
P (n,2)

· · · pn
P (n,n)


where pi is the ex ante probability of state i. We can show that B is diag-

onalizable and has real-valued eigenvalues. To see this, define two matrices

D and A. D is the diagonal matrix defined as:

D =


√
p1 √

p2
. . . √

pn


A is a symmetric matrix defined as

A =


p1

P (1,1)

√
p1p2

P (1,2)
· · ·

√
p1pn

P (1,n)√
p2p1

P (2,1)
p2

P (2,2)

√
p2pn

P (2,n)
...

. . .√
pnp1

P (n,1)

√
pnp2

P (n,2)
pn

P (n,n)
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It can be verified that B = D−1AD. Since A is a symmetric matrix, it

is diagonalizable and has real-valued eigenvalues λ1,λ2, · · · ,λn, and there is
an orthogonal matrix E whose columns are the eigenvectors of A. In other

words, A = EΛE0 where

Λ =


λ1

λ2
. . .

λn


and where E0 is the transpose of E. Thus,

B = D−1AD = D−1EΛE0D = CΛC−1

where C = D−1E. Thus, B is diagonalizable, has real valued eigenvalues,

and whose eigenvectors are given by the columns of C. The matrix C of

eigenvectors can be derived as follows. Since the rows of B sum to one, we

know that the vector

u =

 1...
1


satisfies u = Bu. Thus, u is the eigenvector that corresponds to the eigen-

value 1, which is the largest eigenvalue of B. From this, we have

u = Bu = D−1ADu

so that Du = ADu. In other words, Du is the eigenvector corresponding to

the eigenvalue 1 in A. Du is the column vector
√
p1
...√
pn
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Thus, the orthogonal matrix E of eigenvectors of B has the form:

E =


√
p1 · · ·√
p2 · · ·

...
...√

pn · · ·


and

E−1 = E0 =


√
p1

√
p2 · · · √

pn

...
...

...


From this, and from (12), we can write the matrix of eigenvectors C as

follows.

C =


1
...

...
...

1 c2 c3 cn
...
...

... · · · ...
1



C−1 =


p1 p2 p3 · · · pn
p1c21 p2c22 p3c23 · · · pnc2n
...

...
...

p1cn1 p2cn2 p3cn3 · · · pncnn


where ck is the kth eigenvector of B, and where ckj is the jth entry of ck.

Bringing all the elements together, we have:

Lemma 7 The matrix B of average conditional beliefs satisfies

B =


1
...

...
1 c2 cn
...
... · · · ...

1



1
λ2

. . .
λn




p1 p2 · · · pn
p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn
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Let f be a random variable, expressed as a column vector conformable

with B. Then,

C−1f =


p1 p2 · · · pn
p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn



f1
f2
...
fn

 =


E (f)
E (c2f )
...

E (cnf)


where E (.) is the expectations operator with respect to public information

only (i.e. with respect to the ex ante probabilities p1, p2, · · · , pn). E (ckf )

denotes the expectation of the state by state product of ck and f . Since

Bk = CΛkC−1, we can write

Bkf = CΛkC−1f

=


1 c21 c31 cn1
1 c22 c32 cn2
...
...

...
. . .

...
1 c2n c3n cnn




E (f)
λk2E (c2f)

...
λknE (cnf)



=


E (f ) +

Pn
j=2 λ

k
j cj1E (ckf )

E (f ) +
Pn

j=2 λ
k
j cj2E (ckf )

...
E (f ) +

Pn
j=2 λ

k
j cjnE (ckf )

→

E (f )
E (f )
...

E (f )

 as k →∞

since λj < 1 for j ≥ 2. Thus, theorem 6 holds when matrix B has positive

entries for all i and j. When B has zero entries, we know that there is some

t such that the power matrix Bt has entries that are all strictly positive.

This is due to the ergodicity of the Markov chain. When the meet of the

individual partitions is non-trivial, then there are as many unit eigenvalues

as there are elements in the meet. So, the above analysis would apply to

each element of the meet.
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Table 1

Example of a State Space for an Economy with Differential Information

State z ²1 ²2 ²3 Probability
1 zH ² ² ² pHp

3
²

2 zH ² ² 0 pHp2² (1− 2p²)
3 zH ² ² −² pHp3²
4 zH ² 0 ² pHp

2
² (1− 2p²)

5 zH ² 0 0 pHp²(1− 2p²)2
6 zH ² 0 −² pHp

2
² (1− 2p²)

7 zH ² −² ² pHp3²
8 zH ² −² 0 pHp2² (1− 2p²)
9 zH ² −² −² pHp3²
10 zH 0 ² ² pHp

2
² (1− 2p²)

· · ·
18 zH 0 −² −² pHp

2
² (1− 2p²)

19 zH −² ² ² pHp3²
· · ·

27 zH −² −² −² pHp
3
²

28 zL ² ² ² pLp
3
²

· · ·
54 zL −² −² −² pLp3²
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Figure 1

The Price Level Under Pooled and Differential Information Structures
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Notes: The circles represent the set of feasible values for the price level
against marginal cost in pooled information (left panel) and differential in-
formation (right panel) economies. The markers denoted by an × give the
tuples for price and marginal cost in a perfect information economy, while
the square is the tuple of means in all the economies.
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Figure 2
Impact on the Price Level of Changing Weights on Higher-Order Beliefs
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Notes: The circles represent the set of feasible values for the price level
against marginal cost in a differential information economy under different
assumptions for ξ. The markers denoted by an × give the tuples for price
and marginal cost in a perfect information economy, while the square is the
tuple of means in both types of economies.
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Figure 3
Impact on the Price Level of the Relative Precision of Private Signals
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Notes: The circles represent the set of feasible values for the price level
against marginal cost in a differential information economy under different
assumptions for p². The markers denoted by an × give the tuples for price
and marginal cost in a perfect information economy, while the square is the
tuple of means in both types of economies.
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