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Abstract
We study how securities and trading mechanisms can be designed to mitigate

the adverse impact of market imperfections on liquidity. In the line of DeMarzo
and Duffie (1999), we consider asset owners who seek to obtain liquidity by
selling their claims on future cash flows, on which they have private informa-
tion. In contrast with them, we allow for strategic liquidity supply and take a
mechanism design approach to characterize the optimal security and the opti-
mal trading mechanism. For a given, arbitrary, security, issuers with cash-flow
below a threshold entirely sell their securities, while issuers with greater cash-
flows are excluded from trading. The optimal security design entirely avoids this
partial market break-down phenomenon. Moreover, standard debt is optimal.
Because of its low informational sensitivity, debt mitigates the adverse selection
problem. Furthermore, by pooling all issuers with high cash-flows, it reduces
the ability of strategic liquidity suppliers to exclude them from trade to better
extract rents from agents with lower cash-flows. We also show that competition
in non–exclusive schedules between finitely many oligopolistic liquidity suppliers
implements the competitive trading mechanism.
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1. Introduction

This paper analyzes the link between the characteristics of securities and their liquid-

ity. While corporate finance theory offers interesting insights in the design of optimal

securities (see, e.g., Townsend (1979), Allen and Gale (1988), Harris and Raviv (1989)),

market microstructure theory analyses how different trading mechanisms offer variable

degrees of liquidity, emphasizing the consequences of adverse selection and strategic

behaviour on the trading process. An important contribution of this literature has

been to shown how such market imperfections can increase bid-ask spreads or the price

impact of trades, and thus reduce the liquidity of the market. The present paper bor-

rows from these two approaches to study the interaction between security design and

market mechanisms. Our objective is to shed some light on how the design of securities

can mitigate these market imperfections and thus enhance the liquidity and efficiency

of the trading process.

Our analysis is directly in the line of the insightful recent paper by DeMarzo and

Duffie (1999), with which it shares the following features. The potential security issuer

owns a project yielding a random future cash-flow. Since her discount rate is lower

than one, she could benefit from selling today claims on these future cash-flows and

thereby obtaining liquidity. She faces financial intermediaries whose discount rate is

greater than hers. This generates potential gains from trade between the issuer and

these liquidity suppliers. The extent to which those gains can be reaped is limited,

however, because, while the security is designed under homogeneous information, it is

then traded after the issuer has observed a private signal on the future cash-flows (in

the present paper, for simplicity, we assume the issuer’s signal is perfectly informative

about the future cash-flow). DeMarzo and Duffie (1999) study the optimal design

of the security by an issuer facing Walrasian liquidity suppliers. They consider the

situation where the issuer offers to sell a certain quantity of the security and the

liquidity suppliers respond by quoting a price at which they earn zero expected profits.

This is a signaling game similar to Kyle (1985). Because of adverse selection, the price

is decreasing in the quantity. To mitigate this illiquidity, the issuer designs securities

with limited sensitivity to her private information. This gives rise to the optimality of

debt contracts. This is in the spirit of Myers and Majluf’s (1984) pecking order theory,

arguing that firms prefer to issue debt rather than equity because it is less sensitive to

private information. The optimality of debt is also reminiscent of the results obtained

by Innes (1990) in a moral hazard framework.
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In contrast with DeMarzo and Duffie (1999), we analyze the consequences of market

power on liquidity supply and security design. A growing body of empirical evidence

documents strategic behaviour on the part of financial intermediaries and market mak-

ers (see, e.g., Christie and Schultz (1994), or Chen and Ritter (2000)). Furthermore,

the banking literature has emphasized that financial intermediaries are likely to enjoy

market power, for example because capital adequacy requirements limit entry, or be-

cause banks with preexisting relationships with firms are in a privileged position to lend

to them (see, e.g., Freixas and Rochet (1997)). Against this backdrop, we endeavor to

shed light on the following issues:

(i) Through what channels does market power affect liquidity ? How does it exac-

erbate the lemon’s problem induced by adverse selection?

(ii) How do issuers react to the market power of financial intermediaries? How can

they mitigate the illiquidity it induces? Does this alter qualitatively the type of

security they issue?

By construction, the signaling trading game analyzed by DeMarzo and Duffie (1999)

has a Walrasian flavor: liquidity suppliers quote a price equal to the expected value

of the security, conditional on the fraction of the security sold by the issuer. As in

Leland and Pyle (1977), albeit for different reasons, retention is a credible signal of

the security’s value because it is costly for the issuer. To analyze the consequences

of market power, we consider instead a screening trading game, in the line of Glosten

(1994), or Biais, Martimort and Rochet (2000). In this market structure, liquidity

suppliers first place limit orders, specifying the prices at which they are willing to

buy variable quantities, and then the issuer selects from this menu of offers the trade

size maximizing her expected utility. (Because we want to disentangle the respective

consequences of market power and the screening nature of our trading game, we analyze

in turn competitive and strategic liquidity suppliers.) Limit order trading prevails in

the German or French bourses, the internet based ECN Island, or the NYSE. This

trading game also captures some of the features of the IPO market, where investors

place offers to buy the shares at certain prices (either through indications of interest

in the book building process (see e.g., Hanley and Wilhelm (1995) or Cornelli and

Goldreich (1998)), or through bids in IPO auctions (see, e.g., Biais and Faugeron-

Crouzet (2001)). Benveniste, Wilhelm and Yu (1999) present empirical evidence on the

determination of quantities sold by issuing firms after these offers have been placed.
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In Section 3, we show that, for a given security design, the outcome of the trading

interaction between the issuer and the liquidity suppliers has the following charac-

teristics. The worse the private signal of the issuer, the more willing she is to sell

the security, and the greater her trade. Reflecting this adverse selection problem, the

(endogenous) cost function of the liquidity suppliers takes the form of lower-tail con-

ditional expectations, as in Glosten (1994) and Biais, Martimort and Rochet (2000).

This implies that the price at which the liquidity suppliers are willing to purchase any

amount of the security is lower than the unconditional expectation of the value of the

security. This is analogous to the small trade spread arising in screening models of

market microstructure, in the line of Glosten (1994). As in Akerlof (1970), the “good

types”, i.e., the issuers with large future cash-flows, are those who suffer the most from

the adverse selection problem. This can lead to a market break-down for these issuers,

who do not trade at all. The spread, and correspondingly the fraction of issuer types

excluded from trade, are greater in the monopolistic liquidity supply case than in its

competitive counterpart. Very much in line with the classical IO paradigm, the mo-

nopolist, when setting his price schedule, trades off the increase in profit per unit (from

widening the spread) with the decrease in volume traded (due to excluding potential

issuers from trade).

The outcome of the trading process in our screening game contrasts with the market

outcome in DeMarzo and Duffie (1999), where infinitesimal trade have an infinitesimal

impact on prices, and where the good types are not entirely excluded from the market.

Another difference between the market outcomes in our screening model and in the

signaling game analysed by DeMarzo and Duffie (1999) is that while in the latter

transaction size decreases smoothly with expected cash-flows, in the former there is a

bang-bang solution: issuers with future cash-flows under a certain threshold sell 100%

of the security, while issuers with cash-flows above the threshold are entirely excluded

from trade. Thus, in contrast with DeMarzo and Duffie (1999) where the sale of the

(a fraction) of the security is to be interpreted as collateralization or tranching, issuers

who actually obtain liquidity in our model entirely sell the security they issue.

In Section 4, we turn to the analysis of the optimal security design. The key issue

is how the security can be designed to mitigate the negative consequences of adverse

selection and market power, to enhance liquidity, reduce the spread, improve market

participation, and thus increase the gains from trade. We show that the optimal

security is a debt contract. Debt mitigates the adverse selection problem, by making
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the payoff less sensitive to the high cash-flow realizations. This is in line with Myers and

Majluf (1984), and DeMarzo and Duffie (1999). In addition, debt contracts mitigate

the market power of the monopolistic liquidity supplier. This differs from DeMarzo

and Duffie (1999) where liquidity suppliers are competitive. The intuition of our result

is the following. The monopolistic liquidity suppliers extract rents from the agent by

excluding good types from trade, which reduces the ability of the other issuers to earn

rents by disguising their type. When the security’s payoff increases smoothly with the

cash-flow from the project (as with equity), the monopolistic liquidity supplier can

fine-tune the determination of which issuers are excluded from trades. In particular,

if he finds it advantageous, he can choose to exclude only a small fraction of issuers.

In contrast, with debt contracts, the security’s payoff are the same for all issuers with

future cash-flows above the debt service. Hence the monopolistic liquidity supplier

cannot discriminate across them. He must either include them all, or exclude them

all from the market. Since the latter would be quite costly (as it would imply loosing

a large fraction of the most profitable customers), the monopolistic liquidity supplier

prefers to design his schedule so that all issuers participate to the market. Thus, the

optimal design of the security enables to entirely avoid exclusion from the market. In

this context, as all issuers types sell 100% of their securities, there is no informational

content of trades, i.e., the expectation of the value of the security given a sale is equal

to its unconditional value. This low information content of the sale of debt securities

in our model is in line with the results of several empirical studies (see e.g., Dann and

Mikkelson (1984), Eckbo (1986), and Mikkelson and Partch (1986)).

The methodological contribution of this stage of our analysis, is to study sequential

mechanism design. Indeed, we analyze how the issuer optimally designs her mechanism

(the security) to influence the mechanism subsequently designed by the monopolistic

liquidity supplier (the trading game). In this context, the issuer first acts as a principal,

anticipating that, at the next stage of the game, she will play the role of an agent.

To analyze this situation we rely on variational techniques, both at the stage of the

determination of the optimal schedule, and then for the determination of the optimal

security, given the optimal schedule. This approach, where two mechanism design

problems are nested, is somewhat in line with the recent literature on hierarchical

mechanism design (see, e.g., McAfee and McMillan (1995), Melumad, Mookherjee and

Reichelstein (1995), and Faure-Grimaud, Laffont and Martimort (2001)) .

Arguably, the framework considered here is quite general, since we make no para-
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metric assumptions on the distribution of the random cash–flow, and since we consider

a large class of trading mechanisms and securities. For example, while the class of

securities we consider includes debt, equity, or convertible bonds, we do not restrict

our analysis to these types of contract.

One could argue that there are three limitations to our analysis, however. First,

we assume that the issuer initially designs one security, and is then restricted to that

security.1 Second, for technical reasons, we assume that both the security payoff and

the residual claim of the agent must be increasing in the final cash–flow generated

by the asset. This rules out mechanisms which have been shown to be optimal in

other security design analyses, such as the “live–or–die” contract obtained by Innes

(1990) for example. Third, one might wonder if the competitive case we analyze,

which corresponds to an information–constrained Pareto optimum, could emerge from

an actual trading game, where liquidity suppliers would post competing schedules.

In Section 5, we show that our analysis is robust to these three limitations:

We analyze, in the competitive case, the situation where, instead of one security,

the issuer initially designs at time a menu of securities, among which she will be able to

choose at the trading stage. Furthermore, in that analysis, we relax the monotonicity

assumptions. Quite strikingly we find that the equilibrium allocations arising in this

more general setting are exactly the same as those arising in our basic model.

We also analyze the case where instead of a single liquidity supplier, there are several

liquidity suppliers posting non–exclusive competing transfer schedules. We show that

the trades arising in the competitive case also are a Nash equilibrium of the oligopolistic

liquidity supply game.

2. The basic model

2.1. The extensive form of the game

Assumptions There are two agents: a financial intermediary, and an agent who owns

assets generating random cash-flows in the future. Both agents are risk-neutral and

the market interest rate is normalized to zero.

At time t+ 1, the random cash flow, denoted X, is obtained. X is drawn according

to an absolutely continuous c.d.f. G with positive density g over a compact interval

X = [x, x] ⊂ R++.

1This differs from Nachman and Noe (1994), where the security is designed by the agent after she
has observed her private information, and thus conveys a a signal of the profitability of her assets.
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At time t, trading can take place between the two agents. There are potential gains

from trade, as the agent who owns X is more impatient than the financial intermediary.

The discount factor of the former is δ < 1, while that of the latter is normalized to

1. The financial intermediary is referred to as the liquidity supplier, while the agent

owning the asset is referred to as the issuer. Because of the linearity of the preferences

and the difference in discount factors, social optimality requires full transfer of the asset

from the issuer to the liquidity supplier at time t. Market imperfections can prevent

these gains from trade from being fully exploited, however, as discussed below.

At time t − 1, before trading can take place, the issuer observes a private signal

on the future realization of the cash flows. This creates an adverse selection problem,

limiting the extent to which gains from trade can be reaped. For simplicity, we consider

the case where the private signal observed by the issuer is perfectly informative.2

At time t− 2, the trading mechanism is designed. It is a mapping: T : [0, 1]→ R,

from the fraction q of the security sold at time t by the issuer into a transfer T .

At time t − 3, rationally anticipating the following stages of the game, the issuer

designs the security that will be exchanged at time t. The payoff F of that security

is contingent on the realized cash–flow. We assume the issuer has limited liability,

i.e., 0 ≤ F ≤ X. The security is a measurable mapping ϕ : X → R+ such that

F = ϕ(X) ∈ [0, X]. In the first part of our analysis, as in Harris and Raviv (1989) or

Nachman and Noe (1994), we shall restrict the set of admissible securities to the set

of functions satisfying the following limited liability and monotonicity conditions:

(LL) ϕ(x) ∈ [0, x] for all x ∈ X ;

(M) ϕ is non-decreasing on X ;

(MR) IdX − ϕ is non-decreasing on X ,

where IdX is the identity function on X . Conditions (M)–(MR) require that both the

payment to the liquidity supplier and to the issuer be non-decreasing in the realized

cash-flow. We impose (MR) mainly for technical convenience. Together with (LL)–

(M), it implies that the set Φ of admissible securities payments is a subset of Lipschitz,

hence absolutely continuous functions on X . Denote by F the set of possible values

for f . Our assumptions on ϕ imply that this set is an interval [f, f ].

2This differs from DeMarzo and Duffie (1999) who allow for noisy private signals.
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Our assumption that, at time t− 3, the issuer designs a single security (ϕ), rather

than a menu of securities will be relaxed in Section 5. We believe that, in certain

contexts, it is quite reasonable, however. One example is offered by the following

setting: A manufacturing firm will generate cash flows X in the future (at time t+ 1),

and needs cash now (at time t−3). It initially sells to a financier a security ϕ with payoff

contingent on these cash flows. The financier can be a bank providing a loan, a supplier

providing trade credit, or a venture capitalist purchasing convertible bonds. After

this initial exchange, the financier naturally receives information about the project.

Correspondingly, it observes a private signal on the cash flows. Then it is subject to

a liquidity shock, and demands liquidity from the market.3 To obtain this liquidity, it

sells the security it holds in its portfolio: ϕ. The price at which it initially purchases

the security from the manufacturing firm reflects its rational expectation about future

market liquidity. The security is initially designed to maximize market liquidity, and

correspondingly the initial sale price.

Comparison with DeMarzo and Duffie (1999) The two major differences between our

analysis and theirs are the following: First, we take a different approach to modeling

the trading game. DeMarzo and Duffie (1999) consider a signaling game, whereby the

issuer, after observing her signal, chooses the size (q) of the trade, and the liquidity

suppliers react to this quantity by quoting prices. In contrast, we take a mechanism

design approach. The trading mechanism is a menu of pairs {q, T (q)}, from which the

informed agent selects the optimal trade. This menu of trades, designed (at time t−2)

before the private signal is observed, can be interpreted as a screening mechanism. If

the transfer schedule (T (q)) is convex, it amounts to a sequence of limit orders, as in

Biais, Martimort and Rochet (2000). As will be shown below, the allocation arising

in the signalling equilibrium is implementable in the trading mechanism. It is not

the optimal allocation, however, as established in the next section. This is because

the screening mechanism yields more commitment power, as the liquidity supplier can

commit to a menu of trades before the quantity q is observed.4

3In the case of a bank, the need for liquidity can be due to prudential rules (see Dewatripont
and Tirole, 1994). In the case of a trade creditor it can stem from a transient cash flow gap, or
an investment oppportunity, combined with credit rationing constraints. In the case of a venture
capitalist it can reflect an opportunity to invest in new projects combined with constraints on raising
new funds.

4This commitment power makes it possible to engineer cross-subsidization between the issuer’s
types. Indeed, in the equilibrium of our screening model, the liquidity supplier will earn profits when
trading with issuers whose cash-flows are high, while he will make losses when trading with issuers
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The second difference is that, while in the context of the signaling model, competi-

tive liquidity supply is warranted, we allow for strategic liquidity supply. We consider

two polar cases. In the monopoly case, the trading mechanism is designed, at time

t − 2, by the liquidity supplier, to maximize his expected profit, under the incentive

and participation constraints of the informed agent. The latter constraint requires

that the informed agent accepts to participate in the trading mechanism, at time t.

For the sake of realism, we impose that, if the informed agent chooses not to trade

(or equivalently not to participate in the trading mechanism), the liquidity supplier

cannot demand any payment from this agent. In the alternative case, referred to as

the competitive case, the trading mechanism is designed by the issuer to maximize her

expected utility, subject to the participation constraint of the liquidity suppliers. By

comparing the allocations arising in the monopoly case and in the competitive case,

we shed some light on the consequences of market power for market liquidity.

2.2. Incentive Compatibility and Individual Rationality Conditions

Consider a given a security design F and transfer schedule T . Conditional on her

private information about future cash flows, the issuer selects what fraction q of the

security to sell to the liquidity supplier. At this interim stage, since the issuer has

perfect advance knowledge of the cash-flows, and since the security’s payoff is only

contingent on these, she also perfectly knows the realization f = ϕ(x) of F . Her utility

is: T (q) + δ(x− fq), while the profit of the liquidity supplier isqf − T (q). Thus, for a

given security design, i.e., a given mapping ϕ, the type of the informed agent is entirely

summarized by f , and the set of possible types is F .

The issuer finds it attractive to trade q rather than not to trade at all and consume

δx if and only if:

f ≤ T (q)

δq
. (1)

This condition holds if the unit price of the security T (q)
q

is high enough, δ is low enough

(i.e., the issuer is sufficiently impatient), and the security payoff f is low enough. Thus,

the willingness to trade signals a relatively low type. This underscores the adverse

selection problem arising in our model, very much in line with Akerlof’s (1970) lemons

problem.

whose cash-flows are low. This cross-subsidization of the bad types by the good types also takes place
in the screening games analyzed by Glosten (1994) and Biais, Martimort and Rochet (2000).
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The trading mechanism must be incentive compatible and satisfy the issuer’s in-

dividual rationality constraint for all realizations of f . There is no loss of generality

in applying the revelation principle (Myerson (1979)): any implementable allocation

achieved via a transfer schedule T (q) can also be achieved via a truthful direct mecha-

nism (τ, q) : F → R×[0, 1] that stipulates a transfer and a trading volume as a function

of the issuer’s report of her type f ∈ F . Incentive compatibility requires that:

f ∈ arg max
f̂∈F

τ(f̂)− δfq(f̂); f ∈ F . (2)

We denote by UF the corresponding informational rent:

UF (f) = sup
f̂∈F

τ(f̂)− δfq(f̂). (3)

UF is analogous to the informational rent of a regulated firm with privately observed

marginal cost δf , as in Baron and Myerson (1982). We take the dual approach and

characterize the set of pairs (UF , q) that correspond to an incentive compatible mech-

anism. This set is characterized in the following lemma.

Lemma 1 A pair (UF , q) is implementable if and only if:

(i) UF is convex on F ;

(ii) For almost every f ∈ F , U̇F (f) = −δq(f).

Lemma 1 simply reflects the fact that UF is the upper enveloppe of a family of affine

and decreasing functions of f . This characterization of the incentive compatibility

condition via the dual variable UF is in the line of Mirrlees (1971), and has been

used in financial contracting settings by Rochet and Vila (1994), Biais, Martimort and

Rochet (2000) and Biais, Bossaerts and Rochet (2001). Convexity of UF together with

U̇F = −δq implies the following important property.

Lemma 2 In any implementable allocation, the volume of trade q is non-increasing in

the security payoff f , and consequently in the cash-flow x.

The intuition is in the line of Akerlof (1970). As discussed above, issuers with relatively

large future cash-flows are relatively less eager to trade at a given price than issuers

with lower future cash-flows. That issuers with low cash-flows are always ready to

trade depresses the price, which makes issuers with high cash-flows even less eager to
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trade. In the limit this can lead to a market breakdown, where the issuers with the

largest cash-flows obtain zero gains from trade. Lemmas 1 and 2, and their intuition

are similar to Proposition 1 in DeMarzo and Duffie (1999). The similarity of incentive

compatibility conditions in screening trading games and signaling trading games also

arises in microstructure models à la Kyle (1985) and Glosten (1989). See Biais and

Rochet (1997) for a discussion of this point.

In addition to the above incentive compatibility constraint, a feasible trade mecha-

nism must also satisfy the issuer’s ex-post participation constraint. Specifically, since

the issuer has always the option not to trade, and since in this case she cannot be

compelled to pay anything to the liquidity supplier, the issuer’s informational rent UF

must always be non-negative:

UF (f) ≥ 0; f ∈ F . (4)

Since UF is non-increasing by Lemma 1, this simplifies to:

UF (f) ≥ 0. (5)

2.3. The Expected Utilities of the Agents

Given a security F and a schedule T , the expected profit of the liquidity supplier is:∫
F

(fq(f)− T (q(f)) dGϕ(f), (6)

where Gϕ is the c.d.f. of the random variable F = ϕ(X). Similarly, the ex-ante expected

informational rent of the issuer is :∫
F

(T (q(f))− δfq(f)) dGϕ(f). (7)

Adding the expected profits of the liquidity supplier and the expected rent of the issuer,

we obtain the total gains from trade:

(1− δ)
∫
F
fq(f) dGϕ(f). (8)

The greater the difference between the discount rate of the liquidity suppliers and that

of the issuer, the greater the potential gains from trade. The gains from trade are also

increasing in the cash-flows transferred from the second period to the first.
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2.4. Ex-Ante Efficiency

As a benchmark, we first consider the case where a benevolent social planner chooses

a trading mechanism so as to maximize social welfare. Following Holmström and

Myerson (1983), efficiency is defined at an ex-ante stage, i.e., before the issuer learns

the value of the future cash-flows. Thus an ex-ante optimal mechanism maximizes the

expected rent of the issuer:

sup
(T,q)

∫
F

(T (q(f))− δfq(f)) dGϕ(f)

subject to the liquidity supplier’s participation constraint:∫
F

(fq(f)− T (q(f)) dGϕ(f) ≥ π

for some π ≥ 0. The only difference between this program, and the problem of the

issuer analyzed in the following sections is that, the incentive compatibility and ex–post

individual rationality conditions of the issuer are not imposed.

Solving this program is immediate. The participation constraint of the liquidity

supplier is binding, and the optimal trading volume is constant: q = 1. It follows then

that, with an equity contract, the issuer fully reaps all the gains from trade.

3. Liquidity Supply

In this section, we analyze the optimal price-quantity schedule for a given security

design F . We consider the two polar cases of competitive and monopolistic liquidity

supply. In the competitive case, the schedule T is designed by the issuer, who ex-

tends a take-it-or-leave it offer to the liquidity supplier; the situation is reversed in the

monopolistic case.

The Competitive Case. We first consider the case where the issuer has all the bargain-

ing power. Given a security F , the issuer’s problem is to design the transfer schedule T

to maximize her expected rent (7), subject to her incentive compatibility condition (2),

her ex-post individual rationality condition (4), and the participation constraint of the

liquidity supplier, that his expected profit be non-negative. Recall that the expected

rent of the issuer is equal to the expected total gains from trade minus the expected

profit of the liquidity supplier:∫
F

(1− δ)fq(f) dGϕ(f)−
∫
F

(fq(f)− T (q(f))) dGϕ(f).
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To maximize her rent, the issuer designs the schedule so as to saturate the participation

constraint of the liquidity supplier and set his expected profit to zero. The liquidity

supplier’s zero-profit condition simplifies the program of the issuer to the choice of a

trading volume q which maximizes the overall expected gains from trade (8) under her

incentive compatibility condition, characterized in Lemma 1, and her ex-post partic-

ipation constraint (5). The only difference between this problem and the design of

the ex-ante efficient allocation is the ex-post participation constraint, since the ex-ante

efficient trading profile is incentive compatible.

The Monopolistic Case. Now turn to the case where the liquidity supplier has all

the bargaining power. The liquidity supplier’s task is to choose a transfer schedule

T in order to maximize his expected profit (6), subject to the incentive compatibility

condition (2) and the ex-post individual rationality condition (4). Recall that the

expected profit of the liquidity supplier is equal to the expected total gains from trade

minus the expected informational rent of the issuer:∫
F

(1− δ)fq(f) dGϕ(f)−
∫
F

(T (q(f))− δfq(f)) dGϕ(f).

The relevant constraints are again the incentive compatibility conditions, characterized

in Lemma 1, and the ex-post participation contraint (5). Since the informational rent is

non-increasing, the participation constraint of the issuer must be binding at the upper

end of the support F .

The optimal trading mechanism. The menus (τ c, qc) and (τm, qm) offered respectively

by the issuer and by the liquidity supplier are characterized in the following proposition.

Proposition 1 There exist f cF ≥ fmF and τ c0 ≥ τm0 = 0 such that, for all f ∈ F , and

for i ∈ {c,m},

(i) τ i(f) = τ i0 + δf iF whenever f ≤ f iF and τ i(f) = τ i0 otherwise;

(ii) qi(f) = 1 whenever f ≤ f iF and qi(f) = 0 otherwise.

Moreover, τ c0 = 0 whenever f cF < f .

In both the competitive and the monopolistic cases, issuers with cash-flows below

a the threshold f iF sell 100% of the security, while issuers above this threshold do not

trade at all. Correspondingly, issuers with small future cash-flows obtain large gains
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from trade, while issuers with large future cash-flows can face a market break-down,

and obtain no gains from trade. This “bang–bang” solution differs markedly from

the signalling equilibrium analyzed by DeMarzo and Duffie (1999), where the trade

smoothly decreases with the issuer’s type.5 As in the monopoly pricing model of Riley

and Zeckhauser (1983), it arises because of the combined effect of the linearity of the

preferences and the screening nature of the trading game.

In order to saturate the liquidity supplier’s break-even constraint in the competi-

tive case, it can be necessary to allow for a lump-sum transfer τ c0 given to the issuer

independently of her trade. This can however only arise when no type of the issuer is

excluded from trade. Indeed, when some types are excluded from trade, it is preferable

to increase the price of the security, in order to make trading more attractive for the

good types and thus minimize the extent of the market break-down, rather than giving

a lump-sum transfer.

The optimal transfer schedule can be implemented with a limit order to buy, or

bid price, posted by the liquidity supplier, at which he stands ready to buy up to one

unit of the security.6 Saturating the participation constraint of the liquidity supplier

(and, for smplicity, neglecting the lump-sum tax τ i0), we obtain the price at which the

competitive liquidity supplier purchases the security:∫ fcF

f

f dGϕ(f)

Gϕ(f cF )
= E(F |F ≤ f cF ).

This is reminiscent of the result obtained by Glosten (1994) in a screening model with

competitive market makers, where the bid is equal to the lower tail expectation of the

final value of the security.

In the competitive case, the threshold f cF above which issuers opt out from trading,

and the bid price are pinned down by combining this lower tail expectation and the

ex-post rationality condition of the issuer:

δf cF = E(F |F ≤ f cF ).

5Note that, by Lemma 2, such a smoothly decreasing trade would be implementable in the screening
mechanism we consider.

6In line with the analogy drawn in the market microstructure literature between limit orders and
options (Copeland and Galai (1983)), we can also interpret this arrangement as the option, for the
issuer, to sell her securities at a predetermined price.
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In line with basic price theory, the left–hand–side this equates the valuation of the

marginal issuer for the security with the security’s price.

The difference between the bid price and the unconditional expectation of the value

of the security is similar to the bid-ask spread. The greater the probability mass

corresponding to low cash-flow realizations, the lower the bid price, the wider the

spread, and, consequently, the greater the mass of high–cash flows issuers who are

deterred from trading. This is similar to the result obtained in screening models of

market microstructure (Glosten (1989, 1994), Biais, Martimort and Rochet (2000))

that the small trade spread maps into the set of investors’ types who are excluded

from trade.

As the threshold value of the cash-flow above which the issuer exits the market

is greater in the competitive than in the monopoly case, more gains from trade are

achieved in the former than in the latter. This bears some analogy with credit rationing

models such as Bolton and Scharfstein (1990), or market microstructure models such

as Biais, Martimort and Rochet (2000). The intuition is that the monopolistic liquidity

supplier trades off the benefits of a high volume of trade against the incentive costs of

inducing the issuer to reveal truthfully low realizations of the cash-flows. This rent-

efficiency trade-off is less acute when the issuer designs the trading mechanism, since

the rent extraction motive is not present.

4. Security Design

In both the competitive and the monopolistic environments, the issuer’s problem is

to choose a security F , or equivalently a function ϕ ∈ Φ, in order to maximize her

expected rent, anticipating the equilibrium price at which she will be able to sell the

securities. For simplicity we assume hereafter that:

d

dx

(
G(x)

g(x)

)
≥ 1− δ

δ
; x ∈ X . (9)

This condition is slightly stronger than the standard assumption of log-concavity of

the density g. It ensures that one may neglect the constraint that UF be convex when

solving for the optimal transfer schedule. In other terms, it enables us to focus on

the first-order conditions of the mechanism design problem, while warranting that the

second-order conditions hold.
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4.1. Debt and equity

Equity. If the issuer designs a pure equity contract, i.e., ϕ = IdX , the optimal schedules

(τ c, qc) and (τm, qm) are as stated in the next proposition.

Proposition 2 If the issuer designs an equity contract, then, in the competitive

case, the threshold level of cash–flows above which issuers exit the market is: f cE =

min{x, f c} where f c is the highest value of f such that:

δf =

∫ f

x

φ g(φ) dφ

G(f)
, (10)

while in the monopoly case it is fmE = min{x, fm}, where fm is the highest value of f

such that:
1− δ
δ

f − G(f)

g(f)
≥ 0.

When fE = x, all issuer types achieve gains from trade. Otherwise, issuers with

high cash-flows are excluded from the market. To determine if issuers with type f

should be excluded from the market, the monopolistic liquidity supplier compares the

gains from trade (1 − δ)fg(f) that can be achieved with these agents, with the rent

δG(f) they must be left. This rent increases with the cumulative distribution of types

up to f , since, as incentive compatible rents are decreasing with types, rents left to

type f must be left to all types below f .

Debt. Now consider the case where the security traded is debt with face value d, i.e.,

ϕ = min{IdX , d}. First consider the competitive case. As above, to determine which

issuers trade, and at what price, we need to study the consistency between the liquidity

supplier’s participation constraint, and the issuer ex-post rationality condition. The

highest face value such that these two conditions can both hold is dc, the maximum

value of d ∈ F such that: ∫ d

x

fg(f) df + (1−G(d))d = δd.

The following proposition characterizes the set of issuers who participate to the market

for a given face value d:

Proposition 3 If the issuer designs a debt contract with face value d, then f cD = d if

d ≤ dc and f cD = f cE otherwise.
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The intuition is the following. If the face value of the debt is too high, d > dc, then

the participation constraint of the liquidity supplier cannot hold jointly with the ex-

post rationality constraint of all issuers. Market equilibrium then requires that the

highest types, with cash-flow between f cD and d, be excluded from the market. This

effectively converts the debt contract into an equity contract, since for all the issuers

who participate to the market, ϕ(x) = x. Therefore the threshold above which issuers

exit the market is the same as under the equity contract, f cE. On the other hand, if

d ≤ dc then the participation constraint of the liquidity supplier is consistent with

the ex-post rationality condition of all issuer types. In that case, all issuers sell their

security, and thus reap gains from trade.

In analogy with dc, let dm be the highest possible value of d ∈ F such that:∫ d

x

fg(f) df + (1−G(d))d− δd =

∫ fmE

x

(f − δfmE ) g(f) df.

dm is the highest face value of debt such that the liquidity supplier obtains the same

expected profit than under an equity contract. Then we have the following result.

Proposition 4 If the issuer designs a debt contract with face value d, then fmD = d

if d ≤ dm and fmD = fmE otherwise.

The intuition is the following. When the issuer designs a debt contract with face

value d, the liquidity supplier has the option to shut-down the upper tail of the payoff

distribution by setting the price at which the issuer can sell his security to fmD < δd.

If d is large enough, it may be optimal for the monopolistic liquidity supplier to do

so. The shut-down threshold is then optimally set at fmE . Just as the issuer in the

competitive case, the liquidity supplier is effectively converting a debt contract into an

equity one. On the other hand, if d ≤ dm, then all issuer types find it preferable to sell

their security.

Remark. In DeMarzo and Duffie (1999), the interpretation of min{IdX , d} as a stan-

dard debt contract requires the assumption that the unsold fraction of the security is

not held on the balance sheet of the issuer at the time of default. This does not arise

in our model, since, when the issuer trades, the security is entirely transferred to the

liquidity supplier.

16



4.2. The optimal security

First, note that risk-free cash-flows are not subject to adverse selection problems.

Hence, in the line of Myers and Majluf (1984), it is always optimal to sell these,

in order to maximize trade and thus the gains from trade. Consequently, it is optimal

to design the security to yield at least the worst possible realization of the cash-flow.

This yields the following lemma.

Lemma 3 There exists an optimal security F such that ϕ(x) = x.

Our next proposition is key to our results. Let i ∈ {c,m}, and consider a security

F with payoff ϕ such that issuers above a certain threshold f iF do not trade. What

this proposition asserts is that the issuer could strictly gain by offering instead an

alternative security, with payoff capped at a level slightly above the shut-down level

f iF . That alternative security Fε would have payoff ϕε = min{ϕ, f iF + ε}, and would be

such that all issuers would trade. Rationally anticipating the participation of all issuer

types, including the better ones, the liquidity supplier would be ready to pay a slightly

better price, δ(f iF + ε), than for F , as long as ε is not high enough to make the issuer’s

incentive prohibitively expensive. At that price, issuers with high cash-flows would be

willing to sell the security, given that its payoff is capped just above f iF . The increase

in price implies that the security Fε strictly dominates the original security F from the

issuer’s point of view. Given our assumptions on F , this implies that it is not optimal

for the issuer to design a security involving shut-down for good types. Thus, we can

state the following proposition.

Proposition 5 The optimality of security F requires that all issuer types entirely sell

their holdings to the liquidity supplier.

This result underscores the difference between our screening model and the signaling

models of Leland and Pyle (1977) and DeMarzo and Duffie (1999). In these models, an

informed agent can credibly signal the quality of a project only by retaining part of the

cash-flows generated by this project. For an arbitrarily chosen security, the analogue of

this phenomenon in our screening model is the possibility of market break-down. From

the issuer’s point of view, this way of signaling the quality of her assets is however

very costly. Hence she is better off designing her security to avoid market break-down

altogether. As a consequence, the market for an optimal security will be very liquid.

For instance, in the competitive case, the price at which such a security will be traded
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will just be equal to the unconditional expectation
∫
F f dG

ϕ(f) of the value of this

security, thereby eliminating the bid-ask spread.

The Competitive Case. The program of the issuer is to maximize the total gains from

trade, subject to her own incentive compatibility and ex-post participation constraints

at the trading stage, and to the zero-profit constraint of the liquidity suppliers. The

analysis of Section 3 implies that these constraints simplify to a bang-bang trading

structure, whereby issuers with types above a certain threshold do not trade, while

those below entirely sell their security at a price equal to a lower tail expectation.

Proposition 7 simplifies the situation further by mandating to concentrate only on

securities such that there is no shut-down. Thus we can restate the issuer’s problem of

choosing an optimal security as an infinite-dimensional linear programming problem:

sup
ϕ∈Φ

(1− δ)
∫
X
ϕ(x) g(x) dx

subject to the no shut-down condition:∫
X
ϕ(x) g(x) dx ≥ δϕ(x).

This inequality can alternatively be seen as an ex-post participation constraint for

the issuer, requiring that the price
∫
X ϕ(x) g(x) dx of the security be greater than its

present value for all issuer types, even for the issuer with the greatest possible cash-

flow, i.e., δϕ(x). Note that in formulating the issuer’s problem, we have already taken

into account the liquidity supplier’s break-even constraint, which must be saturated at

the optimum. The issuer’s security design problem can then be analyzed as follows.

Let us form the Lagrangian:

L(ϕ, λ) = (1− δ)
∫
X
ϕ(x) g(x) dx+ λ

(∫
X
ϕ(x) g(x) dx− δϕ(x)

)
,

where λ is the Lagrange multiplier of the issuer’s ex-post participation constraint. By

(LL)–(M)–(MR), any ϕ ∈ Φ is absolutely continuous, the derivative ϕ̇ is a.e. well-

defined with 0 ≤ ϕ̇ ≤ 1, and ϕ(x) =
∫ x
x
ϕ̇(ξ) dξ for all x ∈ X . Hence, integrating by

parts, we get:

L(ϕ, λ) = − (1 + λ− δ)
∫
X
ϕ̇(x)G(x) dx+ (1− δ)(1 + λ)ϕ(x).

The maximization of L(ϕ, λ) with respect to ϕ can thus be treated as a standard

optimal control problem. We have then the following result.
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Proposition 6 Suppose that (9) holds. Then the debt contract with face value dc is

an optimal security from the issuer’s point of view.

The intuition is that a debt contract trades-off in an optimal way two conflicting

objectives. On the one hand, it is efficient to transfer as much cash-flows from the

second period to the first. On the other hand, the lemons problem limits the extent

to which this can be done. By imposing a cap on the security payoff, a debt contract

minimizes this adverse selection cost, in support of Myers and Majluf’s (1984) pecking-

order hypothesis.

The Monopolistic Case. In the monopoly case, the issuer designs the security to maxi-

mize her expected gain from trade, anticipating the optimal response of the monopolis-

tic liquidity supplier, and her own reaction, reflected in her incentive compatibility and

ex-post participation constraints. The issuer anticipates that the liquidity supplier will

design his schedule to maximize his expected profit. She designs the optimal security

to mitigate the adverse consequences of this rent extraction strategy on the gains from

trade. From the previous section, we know that the transfer schedule optimally de-

signed by the monopolistic liquidity supplier is a simple take-it-or-leave-it offer to buy

all the security at a given price. In designing this offer the liquidity supplier trades-off

the benefit from a large market, from which no issuer would be excluded, with the ben-

efits of a smaller market, excluding issuers with high cash-flows, but extracting more

rents from the others. Proposition 7 implies that with the optimal security there is no

shut-down. Thus we can re-state the issuer’s problem of choosing an optimal security

as an infinite-dimensional linear programming problem:

sup
ϕ∈Φ

δ

∫
X

(ϕ(x)− ϕ(x)) g(x) dx,

subject to the no shut-down condition:∫
X

(ϕ(x)− δϕ(x)) g(x) dx ≥
∫ x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx; x̃ ∈ X .

This can be interpreted by comparing the security design problem to a principal-agent

problem with moral hazard. The principal is the issuer, who designs the security, while

the agent is the liquidity supplier, and the moral-hazard variable is the decision by the

agent to shut-down the market or not. The issuer’s security design problem can then
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be analyzed as follows. Let us form the Lagrangian:

L(ϕ,Λ) = δ

∫
X

(ϕ(x)− ϕ(x)) g(x) dx

+

∫
X

(∫
X

(ϕ(x)− δϕ(x)) g(x) dx−
∫ x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

)
dΛ(x̃),

where Λ is the Lagrange multiplier associated to the no shut-down condition. It is a

distribution function on X , i.e., a non-decreasing, right-continuous function such that

Λ(x) = 0. The following lemma provides a sufficient condition for ϕ ∈ Φ to be an

optimal security (see, e.g., Luenberger (1969, §8.4, Theorem 1)).

Lemma 4 Let ϕ ∈ Φ, and Λ be a distribution function on X such that:∫
X

(∫
X

(ϕ(x)− δϕ(x)) g(x) dx−
∫ x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

)
dΛ(x̃) = 0

and:

L(ϕ,Λ) ≥ L(ϕ̃,Λ); ϕ̃ ∈ Φ.

Then ϕ is an optimal security in Φ.

To prove the optimality of debt, we proceed as follows. Suppose that (9) holds. Then,

by Proposition 5, the optimal debt contract from the issuer’s viewpoint has face value

dm. Given this contract, the only point at which the liquidity supplier’s shut-down

constraint is binding is at the level fmE . This suggests taking as a Lagrange multiplier

Λ a point-mass at fmE , i.e., a mapping of the form Λλ(x) = λχ{x≥fmE } for some λ > 0.

For this choice of Λ, the Lagrangian can be re-written as:

L(ϕ,Λλ) = (1− λ) δ

∫
X

(ϕ(x)− ϕ(x)) g(x) dx

+ λ

(
δ

∫ fmE

x

(ϕ(fmE )− ϕ(x)) g(x) dx+ (1− δ)
∫ x

fmE

ϕ(x) g(x) dx

)
.

Proceeding as in the competitive case, this expression can be further simplified to:

L(ϕ,Λλ) = (1− λ) δ

∫
X
ϕ̇(x)G(x) dx

+ λ

(
δ

∫ fmE

x

ϕ̇(x)G(x) dx+ (1− δ)
∫ x

fmE

ϕ(x) g(x) dx

)
.
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It is clear from this expression that the second term on the right-hand side is maximized

by setting ϕ = IdX . The same is true for the first term if λ ≤ 1. Overall, a pure equity

contract maximizes the Lagrangian if λ ≤ 1. But then, the no shut-down condition

would not be binding, and Lemma 4 would not apply. This means that, in order to

derive the optimality of debt, we must select λ > 1. Intuitively, the shadow cost of the

no shut-down condition must be high enough for debt to be an optimal security.

Lemma 5 There exists λ > 1 such that ϕ = min{IdX , dm} maximizes L(ϕ,Λλ) with

respect to ϕ ∈ Φ.

Since for the debt contract ϕ = min{IdX , dm},∫
X

(ϕ(x)− δϕ(x)) g(x) dx−
∫ fmE

x

(ϕ(x)− δϕ(fmE )) g(x) dx = 0,

the following result is an immediate consequence of Lemmas 4 and 5.

Proposition 7 Suppose that (9) holds. Then the debt contract with face value dm

is an optimal security from the issuer’s point of view.

Just as in the competitive case, a debt contract is optimal from the issuer’s point of

view. The fact that the face value of debt is smaller than in the competitive case

reflects the liquidity supplier’s market power. It is interesting to note that, in both

cases, the optimal security is risky debt. That this optimal security is informationally

sensitive, stands in stark contrast with the results of DeMarzo and Duffie (1999). In

their model, if the issuer observes a perfectly informative signal about the realization

of the cash-flows, there exists an optimal security whose payoff does not depend on

her private information and is identically equal to the lowest possible realization of

the cash-flows, ϕ = x. This difference between this result of and ours reflect both the

difference between our screening trading mechanism and their signaling game, and, in

the monopolistic case, the fact that the liquidity supplier would be able to extract all

the rent if the security was not informationally sensitive.

5. Robustness

We now investigate the robustness of our results to some of the assumptions underlying

our basic model.
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5.1. Menus of securities

So far, we have assumed that the choice of a security is made ex-ante. We now relax

this assumption, by allowing the issuer to design ex–ante a menu of securities, from

which she will select which to trade at the interim stage. A menu of securities is then

a mapping (x, x̂) 7→ ψ(x, x̂) such that ψ(x, x̂) ∈ [0, x] for all (x, x̂) ∈ X 2. For example,

this includes the case where, if x̂ is in a certain set, then the security is a debt contract,

while if x̂ is in the complementary set, then the security is an equity contract. Note

that we do not impose any monotonicity condition on the menu of securities.

By the revelation principle, there is no loss of generality in focusing on truthful

direct mechanisms (τ, q) : X → R × [0, 1] that stipulate a transfer and a trading

volume as a function of the issuer’s report of her type x ∈ X . Incentive compatibility

requires that:

x ∈ arg max
x̂∈X

τ(x̂)− δψ(x, x̂)q(x̂); x ∈ X . (11)

We now characterize the second-best efficient menu of securities ψ and the associated

trading structure (τ, q), that maximize the expected gains from trade. It is the solution

to the following infinite-dimensional linear programming problem:

sup
τ,q,ψ

(1− δ)
∫
X
ψ(x, x) q(x) g(x)dx

subject to the incentive compatibility condition (11), the individual rationality con-

straint of the issuer:

τ(x)− δψ(x, x)q(x) ≥ 0; x ∈ X ,

and the break-even constraint of the liquidity supplier:∫
X
ψ(x, x) q(x) g(x) dx ≥

∫
X
τ(x) g(x) dx.

There is no loss of generality in setting ψ(x, x̂) = x for x̂ 6= x, as the only impact of such

a change is to relax the issuer’s incentive compatibility constraint. The intuition is that

it is optimal to trade equity out of the equilibrium path, as this represents the maximal

possible punishment that can be inflicted to the issuer. A similar reasoning implies

that there is no loss in generality in setting q(x̂) = 1 for all x̂ ∈ X . Indeed, one can

redefine the security ψ so that ψ̃(x, x) = ψ(x, x)q(x) and the incentive compatibility

constraint is again relaxed by trading the maximal possible volume. It remains only
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to determine ϕ(x) = ψ(x, x) for each x ∈ X , as well as the optimal transfer τ . Let

τ = supx∈X τ(x). The functions ϕ and τ solve:

sup
τ,ϕ

(1− δ)
∫
X
ϕ(x) g(x)dx

subject to the incentive compatibility constraint:

τ(x)− δϕ(x) ≥ τ − δx; x ∈ X , (12)

the individual rationality constraint of the issuer:

τ(x)− δϕ(x) ≥ 0; x ∈ X , (13)

and the break-even constraint of the liquidity supplier:∫
X
ϕ(x) g(x) dx ≥

∫
X
τ(x) g(x) dx. (14)

It is clear from (12)-(13) that for each x ∈ X , one at least of these constraints must

be binding. It is immediate to check that, for each x ∈ X , the incentive compatibility

constraint (12) is binding if and only if x ≤ τ
δ
, and that the individual rationality

constraint (13) is binding if and only if x ≥ τ
δ
. Moreover the only value of x ∈ X where

both constraints are binding is τ
δ
.

We now prove that the optimal ϕ corresponds to the debt contract with face value

dc. The argument proceeds by showing that any pair (τ, ϕ) that solves the above

problem is dominated by a debt contract with face value τ
δ

and a constant transfer τ .

The argument is twofold. Suppose first that ϕ(x) < x for a set of values of x ≤ τ
δ

of

positive measure, and consider an alternative design ϕ̃ that coincides with ϕ for x ≥ τ
δ
,

and that satisfies ϕ̃(x) = x for x ≤ τ
δ
. Modify correspondingly τ for x ≤ τ

δ
by setting

τ̃ = τ on this interval of values of x. If feasible, this new design clearly dominates ϕ.

It is immediate that constraints (12)-(13) are preserved. Consider now (14). Since it

is satisfied under the initial contract,∫
X
ϕ(x) g(x) dx ≥

∫
X
τ(x) g(x) dx

=

∫ τ
δ

x

(τ − δx+ δϕ(x)) g(x) dx+

∫ x

τ
δ

τ(x) dx,
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where the equality follows from the fact that (12) is binding for x ≤ τ
δ
. So, in particular,

as x ≥ ϕ(x), we obtain that:∫
X
ϕ̃(x) g(x) dx =

∫ τ
δ

x

x g(x) dx+

∫ x

τ
δ

ϕ(x) g(x) dx

≥ (1− δ)
∫ τ

δ

x

ϕ(x) g(x) dx+ δ

∫ τ
δ

x

x g(x) dx+

∫ x

τ
δ

ϕ(x) g(x) dx

≥ τ G

(
τ

δ

)
+

∫ x

τ
δ

τ(x) g(x) dx

=

∫
X
τ̃(x) g(x) dx,

which implies that (14) holds under the new contract. Hence an optimal contract must

have ϕ(x) = x for all x ≤ τ
δ
. Consider now the values of x ≥ τ

δ
. We know that the

individual rationality constraint (13) is binding for such x. Therefore one must have

ϕ(x) ≤ τ
δ

by definition of τ . Suppose that ϕ(x) < τ
δ

for a set of values of x ≥ τ
δ

of positive measure. Consider an alternative design that coincides with ϕ for x ≤ τ
δ

and that satisfies ϕ̃(x) = τ
δ

otherwise. Modify correspondingly τ for x ≥ τ
δ

by setting

τ̃ = τ on this interval of values of x. If feasible, this new design clearly dominates ϕ.

It is immediate that constraints (12)-(13) are preserved. Consider now (14). Since it

is satisfied under the initial contract, and since τ(x) = τ for all x ≤ τ
δ
,∫

X
ϕ(x) g(x) dx ≥

∫
X
τ(x) g(x) dx

= τ G

(
τ

δ

)
+ δ

∫ x

τ
δ

ϕ(x) g(x) dx,

where the equality follows from the fact that (13) is binding for x ≥ τ
δ
. So, particular,

as τ
δ
≥ ϕ(x) and ϕ(x) = x for x ≤ τ

δ
, we obtain that:∫

X
ϕ̃(x) g(x) dx =

∫ τ
δ

x

x g(x) dx+

(
1−G

(
τ

δ

))
τ

δ

≥
∫ τ

δ

x

x g(x) dx+ (1− δ)
∫ x

τ
δ

ϕ(x) g(x) dx+

(
1−G

(
τ

δ

))
τ
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≥ τ G

(
τ

δ

)
+

(
1−G

(
τ

δ

))
τ

= τ ,

which implies that (14) holds under the new contract. Combining this with the earlier

result, we obtain that ϕ is a debt contract with face value τ
δ
. At an optimum, we must

have τ
δ

= dc by Proposition 8. Thus we can state the following proposition:

Proposition 8 If the issuer can design a menu of securities from which she selects

which security to trade at time t, with a competitive liquidity supplier the equilibrium

allocations and the traded security are the same as in the basic model.

Furthermore, this shows that the monotonicity is imposed without loss of generality

in the basic model. In particular, “live or die” contracts in the spirit of Innes (1990)

are never optimal.

5.2. Oligopolistic Screening

So far, we have focused on the case where the issuer designs the trading mechanism, or

where there is a single liquidity supplier who acts as a monopolist. We now turn to the

case where N > 1 liquidity suppliers offer simultaneously non–exclusive price-quantity

schedules {Ti}i=1,...,N . Consistently with previous models of multiprincipal mechanism

design (see, e.g., Stole (1990), Martimort (1992), or Biais, Martimort and Rochet

(2000)), this can be seen as a situation of competition between trading mechanisms in

which each principal cannot contract on the quantitities that are sold to his competitors.

This corresponds to many situations observed in practice in financial markets where

individual trades cannot be made contingent on the quotes or trades made by others.

In this context, we show that when the issuer designs a debt contract with face value dc,

there exists an equilibrium of this game that decentralizes the competitive allocation

described in Section 4.

The Trading Game. The extensive form of the game is similar to that described in Sec-

tion 2, except that i) the N liquidity suppliers simultaneously post trading mechanisms

Ti : [0, 1] → R, i ∈ {1..., N}, for the sale of any fraction qi ∈ [0, 1] of the securitized

asset, and ii) if the issuer accepts the trading mechanisms {Tj}j∈J , J ⊂ {1, ..., N}, she

trades volumes {qj}j∈J of the security,
∑

j∈J qj ≤ 1, for which she obtains transfers

{Tj(qj)}j∈J .
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For a given security F , we focus on perfect Bayesian equilibria of this screening

game. In these equilibria, liquidity suppliers post transfer schedules that are best

response to the strategies of the other liquidity suppliers, given the behavior of the

issuer in the subsequent stage of the game.

Our goal is not to give a full characterization of the perfect Bayesian equilibria of the

trading game. Rather, our aim is to construct an equilibrium that implements the same

allocation and transfers than in the competitive case, i.e.,
∑

i qi = 1 and
∑

i Ti = δf cF .7

To do so, let us introduce the following candidate equilibrium strategies:

Ti(qi) = δf cF qi; qi ∈ [0, 1] (15)

for each of the liquidity suppliers. That is, each liquidity supplier offers the issuer to

buy an arbitrary volume of her securities at the competitive price δf cF . To check that

these strategies form an equilibrium, suppose that all liquidity suppliers i ∈ {2, . . . , N}
offer this schedule, while the first liquidity supplier offers an alternative schedule T̃1.

Now consider an issuer with type f ∈ [f, f cF ]. Then, whatever the volume q1 of her

securities that she sells to the first liquidity supplier, she will sell the remaining fraction

1− q1 to the other liquidity suppliers, since the price δf cF at which she can sell to them

is higher than her retention cost δf . Hence, her problem can be written as:

UF (f) = sup
q1∈[0,1]

T̃1(q1) + δf cF (1− q1)− δf. (16)

The remarkable fact about (16) is that the set of its solutions does not depend on f .

This follows from the fact that all types of the issuer stands ready to sell their securities

at the competitive price. Therefore we can assume that, out of the equilibrium path,

the deviating liquidity supplier will face the same issuer distribution than the non-

deviating ones, and that all types of the issuer sell the same volume of securities q1 to

him. If this is so, then the only way that the deviating liquidity supplier can attract

the issuer is by offering a transfer T̃1(q1) ≥ δf cF q1, thereby obtaining a profit:(∫ fcF

f

fg(f) df + (1−G(dc))f cF −
T̃1(q1)

q1

)
q1

which is less or equal than what he would get by offering the competitive schedule, i.e.,

zero. It follows that the candidate strategies form an equilibrium. In this equilibrium,

7For simplicity we neglect the case where a constant transfer τ c0 is allocated to the issuer even if
she does not trade.
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the issuer is able to sell all of her securities to the liquidity suppliers. Hence, we have

proved the following decentralization result.

Proposition 9 There exists a perfect Bayesian equilibrium of the non-exclusive trad-

ing game that implements the competitive allocation.

The basic logic of this result is that of Bertrand competition: competition among

liquidity suppliers allows to implement a constrained efficient allocation. We stress

that the non-exclusivity clause plays a crucial role in the above argument, in that it

ensures that no cream-skimming deviation is possible from the competitive schedule:

any deviation that would attract some type of the issuer would also attract the other

types. As a result, the transfer schedule (15) is entry-proof in the sense of Rothschild

and Stiglitz (1976): no liquidity supplier can deviate by offering an alternative schedule

without losing money. It should be noted that, in contrast with other models of

competition in trading mechanisms such as Biais, Martimort and Rochet (2000), this

result does not require a large number of liquidity suppliers. This follows from linearity

of the issuer’s preferences.

6. Conclusion

This paper analyzes the links between the characteristics of securities and their liquid-

ity. Our theoretical analysis is in the line of the insightful recent paper by DeMarzo and

Duffie (1999). One difference is that we compare strategic and competitive liquidity

supply. Furthermore, we take a mechanism design approach to characterize both the

optimal security and the optimal trading mechanism.

Similarly to Duffie and DeMarzo (1999), and in line with Myers and Majluf (1984),

we find that the optimal security is debt. In the case where liquidity suppliers are

competitive, the intuition is that this is the less information sensitive security, and thus

minimizes the consequences of adverse selection. Moreover, debt optimally copes with

the market power of the liquidity supplier. In contrast with the signalling equilibrium

analyzed by Duffie and DeMarzo (1999), in the optimal mechanism we characterize,

the optimal debt contract is perfectly liquid: all issuer types sell 100% of their holdings

of this security. Consequently, debt issuance does not convey a negative signal to the

market, and, correspondingly, has no price impact. This is in line with the results

of several empirical studies (see, e.g., Dann and Mikkelson (1984), Eckbo (1986), and

Mikkelson and Partch (1986)).
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Our main results are robust to relaxing two assumptions of our basic model (which

also were made by Duffie and DeMarzo, 1999). In the competitive liquidity supply

case, the optimal security and trades are unchanged if one allows the issuer to design a

menu of securities, instead of a single security. Furthermore, for this result to hold, no

monotonicity assumptions need to be imposed. This points at the qualitative difference

between our analysis of the optimality of debt – which does not rely upon monotonicity

restrictions – and that of Innes (1990) whereby, without these restrictions, the optimal

contract allocates all the cash flows to the outside financier up to a given threshold,

and all the cash flow to the inside manager above that threshold.

Finally, the constrained efficient allocation reached in the competitive liquidity

supply case, where the issuer designs the trading mechanism, can be decentralized in a

very natural way by allowing multiple liquidity suppliers to offer non-exclusive transfer

schedules – as in financial markets where liquidity suppliers compete in limit orders to

buy, or bid prices.
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Appendix

Proof of Lemma 1. Part (i) follows from the fact that UF is the maximum of a family of affine

functions, as is easily seen from (3). As a convex function, UF is a.e. differentiable (see, e.g., Rockafellar

(1970, Theorem 25.5)). Part (ii) then immediately follows from the envelope theorem. �

Proof of Proposition 1. Fix a security F . Using the incentive constraint for types f, f̃ ∈ F of

the issuer, it is easy to check that:

−δ(f̃ − f)q(f) ≤ UF (f̃)− UF (f) ≤ −δ(f̃ − f)q(f̃); (f, f̃) ∈ F2.

Since q is bounded, this implies that UF is Lipschitzian, hence absolutely continuous on F . As

U̇ = −δq a.e. on F , this implies that for all f ∈ F , UF (f) = δ
∫ f
f
q(φ) dφ+UF (f). In the competitive

case, we may substitute this in the binding participation constraint of the liquidity supplier:

UF (f) =
∫
F

(
(1− δ)fq(f)− δ

∫ f

f

q(φ) dφ

)
dGϕ(f).

Using the fact that Gϕ is a right-continuous function of bounded variation, we may integrate by parts

(see, e.g., Dellacherie and Meyer (1982, Theorem VI.90)) to obtain:∫
F

∫ f

f

q(φ) dφ dGϕ(f) =
∫
F
Gϕ(f−)q(f) df,

where f 7→ Gϕ(f−) is the left-continuous regularization of Gϕ, which satisfies Gϕ(x−) = 0 by conven-

tion. Hence the issuer’s problem is to maximize:

(1− δ)
∫
F
fq(f) dGϕ(f)

with respect to q non-increasing and taking its values in [0, 1], and subject to:∫
F

(1− δ)fq(f) dGϕ(f)− δ
∫
F
Gϕ(f−)q(f) df ≥ 0.

The Lagrangian for this problem is:∫
F

(1 + λ)(1− δ)fq(f) dGϕ(f)− λδ
∫
F
Gϕ(f−)q(f) df =

∫
F
q(f) dHλ(f),

where, for any λ ≥ 0, Hλ : f 7→
∫ f
f

(1+λ)(1−δ)φdGϕ(φ)−
∫ f
f
G(φ−) dφ is a right-continuous function

of bounded variation. It is immediate to see that an optimal q must be left-continuous. Hence, we

may integrate by parts to obtain:∫
F
q(f) dHλ(f) =

∫
F

(Hλ(f)−Hλ(f)) d(1− q)(f+),
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where f 7→ q(f+) is the right-continuous regularization of q. For any fixed λ ≥ 0, the maximum of the

Lagrangian is obtained by putting all the weight of the measure with distribution f 7→ 1− q(f+) on a

maximum fλ of the function Hλ. This implies that the optimal quantity schedule qc has the required

bang-bang property. When λ > 0, the threshold fcF is determined as the largest solution in fλ to:∫ fλ

f

(1− δ)f dGϕ(f)−
∫ fλ

f

Gϕ(f) df = 0,

i.e., the complementary slackness condition for the Lagrangian at the optimum. In the monopolistic

case, we have UF (f) = 0, and the liquidity supplier’s objective becomes:∫
F

(
(1− δ)fq(f)− δ

∫ f

f

q(φ) dφ

)
dGϕ(f).

Along the same lines as above, we find that the liquidity supplier’s problem is to maximize:∫
F

(1− δ)fq(f) dGϕ(f)− δ
∫
F
Gϕ(f−)q(f) df

with respect to q non-increasing and taking its values in [0, 1]. The result follows again from the

linearity of this objective with respect to q and the constraint that q be non-increasing. That fcF ≥ fmF
follows from a direct comparison of the isssuer’s and the liquidity supplier’s objectives. Finally, suppose

that τ c0 > 0 while fcF < f . Then the liquidity supplier’s break-even constraint yields:

τ c0 =
∫ fcF

f

(f − δf cF ) dGϕ(f),

while the issuer’s expected rent is given by:

(1− δ)
∫ fcF

f

f dGϕ(f).

It is then clear that the issuer could strictly gain by decreasing slightly the lump-sum tax τ c0 and

increasing the threshold fcF while still preserving the break-even constraint, a contradiction. �

Proof of Proposition 2. We can assume w.l.o.g. that fcF < x. In that case, we have τ c0 = 0

and the price at which equity is traded is δf cF . The result then follows from saturating the liquidity

supplier’s break-even constraint. �

Proof of Proposition 3. Ignoring first the convexity constraint on UE , and proceeding as in the

proof of Proposition 1, the liquidity supplier’s objective can be expressed, after an integration by

parts, as: ∫
F

(
(1− δ)fq(f)− δ

∫ x

f

q(φ) dφ

)
g(f) df =

∫
F

(
(1− δ)f − δ G(f)

g(f)

)
q(f) g(f) df.
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Pointwise maximization with respect to q implies that q = 1 on the set of f ∈ X such that 1−δ
δ f ≥ G(f)

g(f)

and q = 0 elsewhere. Assumption (9) ensures that this set is an interval. Hence the associated rent

UE(f) = δ(fmE − f)χ{f≤fmE } is convex in f , which implies the result. �

Proof of Proposition 4. Suppose w.l.o.g. that fcE < x, so that an equity contract would imply

some shut-down on the part of issuer. If d < fcE , then the issuer does not want to shut-down any

type f ∈ [x, d], for otherwise she would like to lower the shut-down threshold from fcE when she offers

equity. Suppose now that d = fcE . By the above reasoning, if the issuer shut-downs some types below

fcE , she obtains at most:

(1− δ)
∫ fcE

f

fg(f) df.

This is clearly less than what she obtains if she does not shut-down any type and saturate the liquidity

supplier’s break-even constraint, i.e.,

(1− δ)

(∫ fcE

f

fg(f) df + (1−G(fcE))fcE

)
.

By continuity, it is clear that for any d ∈ [fcE , d
c] , the issuer will not shut-down any type when

the traded contract is a standard debt contract with face value d, while still preserving the liquidity

supplier’s break-even constraint. �

Proof of Proposition 5. Suppose w.l.o.g. that fmE < x, so that an equity contract would imply

some shut-down on the part of the liquidity supplier. If d < fmE , then the liquidity supplier does not

want to shut-down any type f ∈ [x, d], for otherwise he would like to lower the shut-down threshold

from fmE when the issuer offers an equity contract. Suppose now that d = fmE . By the above reasoning,

if the liquidity supplier shut-downs some types below fmE , he obtains at most:∫ fmE

x

fg(f) df − δfmE G(fmE )

since (9) holds. If fmE < x so that G(fmE ) < 1, then, since δ < 1, this is clearly less than what he

obtains if he does not shut-down any type, i.e.,∫ fmE

x

fg(f) df + fmE (1−G(fmE ))− δfmE .

By continuity, it is clear that for any d ∈ [fmE , d
m], the liquidity supplier will not shut-down any type

of the issuer when the traded contract is a standard debt contract with face value d. �

Proof of Lemma 3. In the competitive case, this follows at once from the fact that the issuer

maximizes the gains from trade. In the monopolistic case, let us suppose that F is an optimal design
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such that ϕ(x) < x. Then, given (MR), there exists ε > 0 such that ϕ(x) < x − ε for all x ∈ X .

Consider the design Fε defined by ϕε = ϕ+ ε. By Proposition 1, given this new design, the liquidity

supplier chooses a shut-down threshold f̃ so as to maximize his expected profit:∫ f̃

f+ε

(f − δf̃) dGϕε(f) =
∫ f̃−ε

f

(f − δ(f̃ − ε)) dGϕ(f) + (1− δ) εGϕ(f̃ − ε).

The first term on the right-hand side of this equation is maximized by setting f̃ = fmF + ε, where fmF
is the liquidity supplier’s optimal shut-down threshold for security F . Since the second term is non-

decreasing in f̃ , this implies that the optimal shut-down threshold fmFε for the new design is greater

or equal than fmF + ε. It is then easy to check that the issuer’s expected rent under the design Fε is

at least as large as under F . �

Proof of Proposition 7. We first consider the competitive case. Suppose that F is a security sold

at a price δf cF for which fcE < f . To show that this cannot be optimal, we show that there exists

an alternative security and transfer which Pareto dominates F . Consider the design F defined by

ϕ = min{ϕ, fcF } with price δf cF + ε for some ε > 0. By construction, issuers with ϕ(x) < f cF are still

willing to trade. Issuers with ϕ(x) = fcF are ready to trade since by doing so their informational rent

is ε instead of zero. Consider now the liquidity suppliers. Their expected profit under F is:∫ fcF

f

(f − δf cF ) dGϕ(f),

while their expected profit under F is:∫ fcF

f

(f − δf cF ) dGϕ(f) + (1− δ)(1−Gϕ(fcF ))− ε.

Since Gϕ(fcF ) < 1, they are strictly better off under the new design for ε small enough. Consider now

the monopolistic case. Suppose by way of contradiction that F is an optimal security such that the

liquidity supplier shut-downs the types above fmF < f , thereby obtaining a profit:∫ fmF

f

(f − δfmF ) dGϕ(f).

Consider the design Fε defined by ϕε = min{ϕ, fF + ε} for ε > 0. Since fmF < f , ϕ is continuous,

and the density g is positive on X , one can choose ε such that Gϕ(fmF + ε−) < 1. If the liquidity

supplier decides to shut-down some types below fmF + ε given this new design, the optimal way to do

so is to set fmFε = fmF , for a profit equal to that which obtains under F . However, if he decides not to

shut-down any type, the liquidity supplier obtains:∫ fmF +ε

f

(f − δ(fmF + ε)) dGϕε(f),
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which can be rewritten as:∫ fmF

f

(f − δ(fmF + ε)) dGϕ(f) +
∫ fmF +ε−

fmF

(f − δ(fmF + ε)) dGϕ(f) + (1− δ)(fmF + ε)(1−Gϕ(fmF + ε−)).

The first term converges to
∫ fmF
f

(f − δfmF ) dGϕ(f) as ε goes to 0. Moreover, for ε small enough, the

second term in this expression is positive. Since the last term is positive and bounded away from zero

for ε small enough, the liquidity supplier obtains strictly more by not shutting down any type. It is

then immediate to check that the issuer’s expected rent under the design Fε,

δ

∫ fmF +ε

f

(fmF + ε− f) dGϕε(f) = δ

∫ fmF +ε−

f

(fmF + ε− f) dGϕ(f),

is strictly larger than under F . Hence F cannot be an optimal security, which implies the result. �

Proof of Proposition 8. For any fixed λ > 0, we study the problem of maximizing L(ϕ, λ) with

respect to ϕ ∈ Φ. We treat this as an optimal control problem with state variable ϕ and control

variable ϕ̇, with the additional restriction that 0 ≤ ϕ̇ ≤ 1. The Hamiltonian can be written as:

H(x, ϕ(x), p(x), v) = −(1 + λ− δ)vG(x) + p(x)v

where v is the control variable and p the co-state variable. By Pontryagin’s maximum principle, a

necessary condition for (ϕ, v) to be optimal is that v maximizes pointwise the Hamiltonian for some

p that satisfies the Hamilton-Jacobi equation:

ṗ(x) = −∂H
∂ϕ

(x, ϕ(x), p(x), v(x)) = 0

at all points of continuity of v. Since the boundary x is free, the transversality condition yields

p(x) = (1− δ)(1 +λ) so that p is constant and equal to (1− δ)(1 +λ). Substituting this back into the

Hamiltonian, we find that an optimal control is:

v(x) = χ{−(1+λ−δ)G(x)+(1−δ)(1+λ)≥0}.

Since the Hamiltonian is linear in (ϕ, v), Mangasarian’s sufficiency conditions are satisfied, so v is

indeed optimal. Note that since the mapping x 7→ −(1 +λ− δ)G(x) + (1− δ)(1 +λ) is decreasing, the

corresponding ϕ is a debt contract with face value d satisfying −(1 + λ− δ)G(d) + (1− δ)(1 + λ) = 0.

Thus provided that G(dc) > 1− δ, ϕ = min{IdX , dc} maximizes L(ϕ, λ) whenever:

λ =
(1− δ) (1−G(dc))
G(dc)− (1− δ)

.

It is easy to check that the optimal debt contract from the liquidity supplier’s point of view satisfies

G(d) = 1−δ. Hence G(dc) > 1−δ as required. Since for this contract we have
∫
X ϕ(x) g(x) dx = δϕ(x),

the conclusion follows directly from Luenberger (1969, §8.3, Theorem 1). �
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Proof of Lemma 4. Suppose by way of contradiction that ϕ̃ guarantees the issuer a higher payoff

than ϕ,

δ

∫
X

(ϕ̃(x)− ϕ̃(x)) g(x) dx > δ

∫
X

(ϕ(x)− ϕ(x)) g(x) dx,

while satisfying the no shut-down condition:∫
X

(ϕ̃(x)− δϕ̃(x)) g(x) dx ≥
∫ x̃

x

(ϕ̃(x)− δϕ̃(x̃)) g(x) dx; x̃ ∈ X .

The no shut-down condition on ϕ̃, together with the fact that Λ defines a positive measure on X ,

implies: ∫
X

(∫
X

(ϕ̃(x)− δϕ̃(x)) g(x) dx−
∫ x̃

x

(ϕ̃(x)− δϕ̃(x̃)) g(x) dx

)
dΛ(x̃) ≥ 0.

But then, since:∫
X

(∫
X

(ϕ(x)− δϕ(x)) g(x) dx−
∫ x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

)
dΛ(x̃) = 0,

we would get that L(ϕ̃,Λ) > L(ϕ,Λ), a contradiction. �

Proof of Lemma 5. For any fixed λ > 1, we study the problem of maximizing L(ϕ,Λλ) with respect

to ϕ ∈ Φ. Re-arranging the expression of L(ϕ,Λλ), we obtain:

L(ϕ,Λλ) = δ

∫ fmE

x

ϕ̇(x)G(x) dx+
∫ x

fmE

((1− λ)δϕ̇(x)G(x) + λ(1− δ)ϕ(x)g(x)) dx.

Since λ > 0, it is clear that it is optimal to set ϕ(x) = x on [x, fmE ]. We are thus left with the problem

of maximizing: ∫ x

fmE

((1− λ)δϕ̇(x)G(x) + λ(1− δ)ϕ(x)g(x)) dx

with respect to functions ϕ on [fmE , x] satisfying (LL)–(M)–(MR). We treat this as an optimal control

problem with state variable ϕ and control variable ϕ̇, with the additional restriction that 0 ≤ ϕ̇ ≤ 1.

The Hamiltonian can be written as:

H(x, ϕ(x), p(x), v) = (1− λ)δvG(x) + λ(1− δ)ϕ(x)g(x) + p(x)v

where v is the control variable and p the co-state variable. By Pontryagin’s maximum principle, a

necessary condition for (ϕ, v) to be optimal is that v maximizes pointwise the Hamiltonian for some

p that satisfy the Hamilton-Jacobi equation:

ṗ(x) = −∂H
∂ϕ

(x, ϕ(x), p(x), v(x)) = −λ(1− δ)g(x)
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at all points of continuity of v. Since the boundary x is free, the transversality condition yields

p(x) = 0, so that p = λ(1 − δ)(1 − G). Substituting this back into the Hamiltonian, we find that a

candidate optimal control is:

v(x) = χ{(δ−λ)G(x)+λ(1−δ)≥0}.

Since the Hamiltonian is linear in (ϕ, v), Mangasarian’s sufficiency conditions are satisfied, so v is

indeed optimal. Note that since the mapping x 7→ (δ − λ)G(x) + λ(1− δ) is decreasing as λ > 1 > δ,

the corresponding ϕ is to a debt contract with face value d satisfying (δ − λ)G(d) + λ(1 − δ) = 0.

Thus, provided that G(dm) > 1− δ, ϕ = min{IdX , dm} maximizes L(ϕ,Λλ) whenever:

λ =
δG(dm)

G(dm)− (1− δ)
.

It is easy to check that the optimal debt contract from the liquidity supplier’s point of view satisfies

G(d) = 1− δ. Hence G(dm) > 1− δ, which concludes the proof as λ > 1 whenever dm < x. �
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