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Abstract

We examine estimation and inference on loss function parameters within classes

of loss functions. In situations where forecasts or implied forecasts are observed, a

common strategy is to examine ‘rationality’ given a loss function. Rejection of the

hypothesis is conditional on the loss function chosen. We examine this from a different

perspective - supposing that we have a family of loss functions indexed by a vector of

parameters, then given the forecasts can we back out the loss function parameters

consistent with the forecasts being rational. We establish identification and provide

estimation methods and asymptotic distributional results for classes of loss functions.

The methods are applied in an empirical analysis of IMF and OECD forecasts of budget

deficits for the G7 countries. We find that allowing for asymmetric loss can significantly

change the outcome of empirical tests of forecast rationality.
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1 Introduction

That agents are rational when they construct forecasts of economic variables is an important

assumption maintained throughout much of economics and finance. Much effort has been

devoted to empirically testing the validity of this proposition in areas such as efficient market

models of stock prices (Dokko and Edelstein (1989), Lakonishok (1980)), models of the

term structure of interest rates (Cargill and Meyer (1980), De Bondt and Bange (1992),

Fama (1975)), models of currency rates (Hansen and Hodrick (1980)), inflation forecasting

(Figlewski and Wachtel (1981), Keane and Runkle (1990), Mishkin (1981), Pesando (1975),

Schroeter and Smith (1986)) and tests of the Fisher equation (Gultekin (1983)).

Invariably the empirical literature has tested rationality of forecasts in conjunction with

the assumption that mean squared error (MSE) loss adequately represents the forecaster’s

objectives.1 Under this loss function forecasts are easy to compute through least squares

methods and they also have well established properties such as unbiasedness and lack of

serial correlation at the single-period horizon, c.f. Diebold and Lopez (1996). This makes

inference about optimality of a particular forecast series an easy exercise.

Symmetry of the loss function, albeit a widely used assumption, is, however often difficult

to justify on economic grounds and is certainly not universally accepted. Granger and

Newbold (1986, page 125), for example, argue that “An assumption of symmetry for the

cost function is much less acceptable [than an assumption of a symmetric forecast error

density].” It is easy to understand their argument. There is, for example, no reason why

the consequences of underpredicting the demand for some product (los of potential sales,

customers and reputation) should be identical to the costs of overpredicting it (added costs

of production and storage). As a second example, central banks are likely to have asymmetric

preferences, c.f. Peel and Nobay (1998).

Consequently, in economics and finance forecasting performance is increasingly evalu-

ated under more general loss functions that account for asymmetries as witnessed by recent

studies such as Christofferson and Diebold (1997), Granger and Newbold (1986), Granger

1In addition to the studies cited in the first paragraph, Hafer and Hein (1985) and Zarnovitz (1979) use

mean squared error loss or mean absolute error loss as a metric for measuring forecast accuracy.
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and Pesaran (2000) and West, Edison and Choi (1996). Frequently used loss functions in-

clude lin-lin, linex and quad-quad loss which allow for asymmetries through a single shape

parameter. Under these more general loss functions, the forecast error no longer retains the

optimality properties that are typically tested in empirical work, c.f. Granger (1999). This

raises the possibility that the many rejections of forecast optimality reported in the empirical

literature may simply be driven by the assumption of MSE loss rather than by absence of

forecast rationality as such.

This paper develops new methods for testing forecast optimality under general classes of

loss functions that include Mean absolute deviations (MAD) or MSE loss as a special case.

This allows us to separate the question of forecast rationality from that of whether MAD or

MSE loss accurately represents the decision maker’s objectives. Instead our results allow us

to test the joint hypothesis that the loss function belongs to a more flexible family and that

the forecast is optimal. This situation is very different from MSE loss where the properties of

the observed forecast error are independent of the parameters of the loss function. This may

be the reason why the empirical literature often overlooks that tests of forecast rationality

relying on properties such as unbiasedness and lack of serial correlation in forecast errors are

really joint tests.

In each case the family of loss functions is indexed by a single unknown parameter. We

establish conditions under which this parameter is exactly identified. Since first order condi-

tions for optimality of the forecast take the form of moment conditions, exact identification

corresponds to the situation where the number of moment conditions equals the number of

parameters of the loss function. When there are more moments than parameters, the model

is overidentified and the null hypothesis of rationality can be tested through a J-test.

Our approach therefore reverses the usual procedure - which conditions on a maintained

loss function and tests rationality of the forecast - and instead asks what sort of parameters

of the loss function would be most consistent with forecast rationality. We treat the loss

function parameters as unknowns that have to be estimated and effectively ‘back out’ the

parameters of the loss function from the observed time-series of forecast errors.

The plan of the paper is as follows. Section 2 outlines the conditions for optimality of
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forecasts under a general class of loss functions, including ones that are non-differentiable

at a finite number of points. Section 3 develops the theory for identification and estimation

of loss function parameters and also derives tests for forecast optimality in overidentified

models. Section 4 explores the small sample performance of our methods in a Monte Carlo

simulation experiment, while Section 5 provides an application to two international organi-

zations’ forecasts of government budget deficits. Section 6 concludes. Technical details are

provided in appendices at the end of the paper.

2 Asymmetric Loss and Optimal Properties of Fore-

casts

It is common in the literature to test for ‘rationality’ using data on forecasts. Optimal

properties (or properties of rational forecasts) can only be established jointly with, or in the

context of, a maintained loss function. Typically this is taken to be squared loss, where loss

is assumed to be symmetric in the losses. This choice is useful in practice for a number of

reasons - it provides simple optimal properties and relates directly to least squares regression

on forecast errors, so fits directly within the standard econometric toolbox. In this section

we review the optimal properties of forecasts for more general loss functions. We then

’turn the problem around’ and motivate the idea of estimating loss functions from observed

forecasts.

Consider a stochastic process X ≡ {Xt : Ω −→ Rm+1,m ∈ N, t = 1, . . . , T} defined on

a complete probability space (Ω,F ,P) where F = {Ft, t = 1, . . . , T} and Ft is the σ-field

Ft ≡ σ{Xs, s 6 t}. In what follows we partition the observed vector Xt as Xt ≡ (Yt, Z
′
t)
′,

where Yt ∈ R is the variable of interest and Zt ∈ Rm is a vector of exogenous variables.

The random variable Yt is further assumed to be continuous.2 We denote by yt and zt the

observations of the variables Yt and Zt respectively.3 The forecasting problem considered

2In standard notation the subscript t under the distribution function P (·) of Yt+1, its density p(·), and

the expectation E[·] denotes conditioning on the information set Ft.
3As a general rule, we hereafter use upper case letters for random variables, i.e. Yt and Zt, and lower

case letters for their realizations, i.e. yt and zt.
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here involves forecasting the variable Yt+h, where h is the prediction horizon of interest,

h > 1. In what follows, we set h = 1 and examine the one-step-ahead predictions of the

realization yt+1, knowing that all results developed in this case can readily be generalized to

any h > 1.

The setup used here is fairly standard in the forecasting literature: we let ft+1 be the

forecast of Yt+1 conditional on the information set Ft. In what follows we restrict ourselves to

the class of linear forecasts, ft+1 ≡ θ′Wt, in which θ is an unknown k-vector of parameters,

θ ∈ Θ, Θ compact in Rk, and Wt is an h-vector of variables that are Ft-measurable. It

is important to note that both the model M ≡ {ft+1} and the vector Wt are specified

by the agent producing the forecast (e.g., IMF, OECD, EC) and they need not be known

by the forecast user. As a general rule, Wt should include variables that are observed

at time t and which are thought to help forecast Yt+1 (e.g., a subset of the m-vector of

exogenous variables Zt, lags of Yt, and/or different functions of the above). Should Wt fail

to incorporate all the relevant information, we say that the model M = {ft+1} is wrongly

specified. Misspecification will equally occur if the form of ft+1, linear here, is wrongly

specified by the forecaster, or if the original forecasts were manipulated in order to satisfy

some institutional criterion. Keeping in mind this possibility, we do not assume that M =

{ft+1} is correctly specified, i.e. we allow for model misspecification in the construction of

the optimal forecasts.

When constructing optimal forecasts, we assume that, given Yt+1 and Wt, the forecaster

has in mind a generalized loss function L defined by

L(p, α, θ) ≡ [α + (1− 2α) · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p, (1)

where p ∈ N∗, α ∈ (0, 1), θ ∈ Θ and Yt+1 − θ′Wt corresponds to the forecast error εt+1.
4 We

let α0 and p0 be the unknown true values of α and p used by the forecaster. Hence, the loss

function in (1) is a function of not only the realization of Yt+1 and the forecast θ′Wt, but also

of the shape parameters α and p of L. Special cases of L include: (i) square loss function

L(2, 1/2, θ) = (Yt+1−θ′Wt)
2, (ii) absolute deviation loss function L(1, 1/2, θ) = |Yt+1−ft+1|,

4Note that the function L(p, α, θ) is Ft+1-measurable. In order to simplify the notations, however, we

drop the reference to the time t and use the notation L(p, α, θ) instead of Lt+1(p, α, θ).
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as well as their asymmetrical counterparts obtained when α 6= 1/2, i.e. (iii) quad-quad loss,

L(2, α, θ), and (iv) lin-lin loss, L(1, α, θ).

Given p0 and α0, the forecaster is thus assumed to constructs the optimal one-step-ahead

forecast of Yt+1, f ∗t+1 ≡ θ∗′Wt, by solving

min
θ∈Θ

E[L(p0, α0, θ)]. (2)

We let ε∗t+1 be the optimal forecast error, ε∗t+1 ≡ yt+1−f ∗t+1 = yt+1−θ∗′wt, which depends on

the unknown true values p0 and α0. Optimal forecasts have properties that follow directly

from the construction of the forecasts. In the general case, the relevant condition is the one

given in the following Proposition.

Proposition 1 (Necessary Optimality Condition) Under Assumption (A0), given (p0, α0) ∈
N∗× (0, 1), if θ∗ is the minimum of E[L(p0, α0, θ)], then θ∗ satisfies the first order condition

E[Wt · (1(Yt+1 − θ∗′Wt < 0)− α0) · |Yt+1 − θ∗′Wt|p0−1] = 0. (3)

In other words, if the optimal forecast f ∗t+1 is such that θ∗ is an interior point of Θ

(Assumption (A0)), the sequence of optimal forecast errors ε∗t+1 will satisfy the moment

condition E[Wt · (1(ε∗t+1t < 0)− α0) · |ε∗t+1|p0−1] = 0.

This result implies that the first derivative of the loss function evaluated at the forecast

errors is a martingale difference sequence with respect to all information available at the time

of the forecast. When the forecasts are ‘optimal’, then any information must be correctly

included in f ∗t+1, which is orthogonal to the transformed forecast errors. This enables the

researcher to get around the problem that although they observe only the forecasts f ∗t+1

rather than the components that made up these forecasts (i.e. the form of ft+1 which would

be needed to determine Wt) since rationality implies that any variable that is useful should

be in this model, we can use variables that could have been used to construct the forecasts.5

5This means we are concerned with partial rationality, i.e. the efficient use of a particular subset of

information as opposed to full rationality that requires efficient utilization of all relevant information at the

time the forecast is produced, c.f. Brown and Maital (1981).
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Assuming that the forecast user observes a d−vector of variables Vt that would have been

available to the forecast producer. In the case of rational forecasts Vt is a subvector of Wt.

Given values for (α0, p0), the hypothesis of rational forecasts can be tested by testing that

the moment conditions

E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α0) · |Yt+1 − f ∗t+1|p0−1] = 0. (4)

hold.

In the typical case of mean square error loss, the parameter choice is (0.5, 2). This choice

simplifies the expression as −(1(Yt+1 − f ∗t+1 < 0) − α0) · |Yt+1 − f ∗t+1|p0−1
t+1 ) = εt+1 and after

dividing by -1 we have the property that the forecast errors themselves are a martingale

difference sequence with respect to all t-dated information. For this special loss function

one need work only with the forecast errors themselves, which is one of the simplification

properties mentioned above that makes this a popular assumption for the loss function. It is

this result that is typically tested in practice with data (Campbell and Ghysels (1995), Keane

and Runkle (1990), Zarnowitz (1985)). These tests on the forecast errors directly have been

split up into tests known as ‘unbiasedness’ and ‘orthogonality’ tests. Unbiasedness tests set

Vt = 1, and hence test that E[ε∗t+1] = 0. This can be undertaken by either directly testing

the mean from an observed sequence of forecast errors is zero, i.e. having observed a T × 1

time series of forecast errors
{
ε∗t+1

}T

1
the regression

ε∗t+1 = β0 + ut

is run and the test is of the hypothesis H0 : β0 = 0 versus the alternative HA : β0 6= 0.

Alternatively, this idea is extended noting that ε∗t+1 ≡ yt+1 − f ∗t+1 and the regression

yt+1 = β0 + β1f
∗
t+1 + ut+1

is run and we can consider the joint test H0 : β0 = 0, β1 = 1 versus the alternative that one

or both coefficients differ from their null values. Finally, the general idea of ‘orthogonality’

extends these ideas to other more general specifications for Vt. In the typical linear regression

we estimate

εt+1 = β′Vt + ut+1
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and test the hypothesis H0 : β = 0. This final idea of ’orthogonality’ regressions thus

includes as special cases the ’unbiasedness’ regression. This is the Mincer-Zarnowitz (1969)

regression.

However, these tests rely on the specification of the loss function as mean square error

to justify the test procedure. In a more general loss function setting it is not the forecast

errors themselves that are orthogonal to time t dated information but a transformation of

these forecast errors (i.e. the first difference of the loss function). Hence, as noted in passing

by most papers which undertake these tests, any rejection could stem from the joint nature

of the testing procedure - jointly testing rationality and the form of the loss function. It is

completely unclear when there is a rejection of any of these hypotheses as to the economic

interpretation of the rejection. It may be that power is quite high for even small deviations

from squared loss functions, resulting in rejections of rationality when all that is actually

going on is that the forecaster had a slightly different loss function to squared loss. Thus it

is reasonable to try and extend the class of loss functions for which the tests are valid.

It is this point that motivates the approach of this paper. Rather than assume an

explicit loss function, we will generalize this idea to a class of loss functions indexed by the

parameter set (α, p). We will then show that given observed forecasts and outcomes we can

estimate the parameter of the loss function (α) within the families we examine (choice of p).

Further, we are with the additional time t dated information Vt we are able to jointly test

rationality and the class of loss functions (rather than imposing a particular loss function).

The test will simply be a test of overidentification in a GMM estimation procedure.

3 Estimating Loss Function Parameters

In order to recover the shape parameters of the loss function L used by the forecaster in the

minimization problem (2) we propose to use the first order condition (3). The main idea

behind our approach is fairly simple: if for given shape parameters p0 and α0 the forecaster

uses (3) to determine θ∗, then for a given θ∗ we can reverse the problem and use the same

moment condition (3) to recover p0 and α0. It is important to note that our approach is

valid only if knowing a solution to (3) allows the forecast user to identify p0 and α0. The
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identification requirement is not easy to meet in general and we now turn to the construction

of a setup where the estimation of the loss function parameters is possible.

First, note that the first order condition (3) is merely a necessary condition for θ∗ to be

optimal, i.e. not every value θ∗ solving (3) is going to be the minimum of E[L(p0, α0, θ)] on

Θ̊ (the interior of Θ). The following result gives a set of sufficient conditions for a solution

of (3) to be a strict local minimum of E[L(p0, α0, θ)].

Proposition 2 (First Order Condition) Under Assumptions (A0)-(A2), and given (p0, α0) ∈
N∗ × (0, 1), if θ∗ ∈ Θ̊ is a solution to the first order condition (3) then θ∗ is a strict local

minimum of L(p0, α0, θ) on Θ̊, i.e. given (p0, α0) ∈ N∗× (0, 1) there exists a neighborhood V
of θ∗ such that for any θ 6= θ∗ in V we have E[L(p0, α0, θ)] < E[L(p0, α0, θ

∗)].

This is a sufficient condition for an interior point of Θ to be a local minimum of L. Note

that the first order condition does not necessarily hold if θ∗ is on the boundary of Θ, i.e. if

θ ∈ Θ\Θ̊. Also, note that the condition in Proposition 2 is slightly stronger than a necessary

condition for θ∗ ∈ Θ̊ to be a local minimum of L. Indeed θ∗ ∈ Θ̊ local minimum of L implies

that the first order condition (3) holds, and that the Hessian matrix of second derivatives

of L with respect to θ, evaluated at θ∗, is positive semidefinite. In Proposition 2, however,

Assumptions (A1)-(A2) imply that the last one is positive definite so that θ∗ is a strict local

minimum of L on Θ̊.

In order to identify and estimate α0 we need to further limit the class of loss functions

in (1), so that the loss function L is identified up to the parameter α0 ∈ (0, 1). In what

follows we consider two popular sets of loss functions: (i) the lin-lin loss function, obtained

when p0 = 1, and (ii) the quad-quad loss function obtained when p0 = 2. The lin-lin loss

function has been employed in the literature to allow for asymmetry. The quad-quad loss

function is based on the same idea however with quadratic loss. When this loss function

is symmetric it is identical to mean squared loss, hence it is a direct generalization of the

typical loss function assumed in the forecast evaluation literature.

Having fixed the parameter p0 of the loss function L in (1), we now consider the following

problem: for a given α0 ∈ (0, 1), is the optimal value θ∗, obtained as a solution to the first
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order condition (3), unique? Recall the result from Proposition 2: any θ∗ ∈ Θ̊ solution to

(3) is a strict local minimum of L in Θ̊. In other words, for a given α0 ∈ (0, 1), we may

have two or more local minima θ∗i of L in Θ̊ only one of them being the absolute minimum

θ∗ of L as defined by (2). If, given a solution θ∗i to (3) we want to identify α0 used in the

minimization problem (2), we need to make sure that θ∗i is the absolute minimum of L. One

way of solving this identification problem is to make sure that there is only one strict local

minimum of L in Θ̊. Indeed, if a solution to (3) - a local strict minimum θ∗ - is unique in Θ̊

then we know that θ∗ is the absolute minimum of L. Hence, we need to have the uniqueness

of the solution θ∗ to (3) (at least in some neighborhood of α0) if, by reversing the problem,

we want to identify α0 given p0 and θ∗.

As an illustrative example, let us first consider the case where the forecaster’s model

M = {ft+1} is correctly specified. In that case, the h-vector Wt contains all the relevant

information from Ft, so that the first order condition (3) is equivalent to

Et[(1(Yt+1 − θ∗′Wt < 0)− α0) · |Yt+1 − θ∗′Wt|p0−1|Ft] = 0. (5)

Note that for p0 = 1, 2, and conditional on Ft, the term |Yt+1− θ∗′Wt|p0−1 is strictly positive

a.s. − P so that the condition (5) can only be satisfied if 1(Yt+1 − θ∗′Wt < 0) − α0 = 0,

a.s. − P . In other words, if the forecasting model M = {ft+1} is correctly specified, then

Et[1(Yt+1 − θ∗′Wt < 0] = α0, so that the conditional α0-quantile of the optimal forecast

error ε∗t+1 ≡ Yt+1 − θ∗′Wt is exactly equal to zero. Hence, the optimal value θ∗ is unique:

θ∗′Wt =
−1

Pt(α0), where
−1

Pt is the inverse of the conditional distribution function of Yt+1.

The uniqueness property in particular allows us to compute the value of α0 used in the

construction of the cost function L, by inverting the preceding equation. Thus, we obtain

α0 = Pt(θ
∗′Wt). (6)

Let us now turn to a more realistic case where the forecaster’s model M = {ft+1} may

be misspecified. The misspecification typically occurs when Yt+1 depends on some set of Ft-

measurable variables which are not contained in Wt. In this case, the first order condition (3)

is weaker than (5) and the aforementioned property of the optimal forecast errors ε∗t+1 is no

longer true. Hence, in presence of forecaster’s model misspecification we cannot deduct from
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(3) that the conditional α0-quantile of the optimal forecast error ε∗t+1 is zero. In particular,

this implies that the unicity of θ∗ is not trivially verified, which makes the true value of the

probability level α0 more difficult to recover. Fortunately, by using the implicit function

theorem we can show that, given p0 ∈ N∗, there exists an open subset F of Θ̊ such that,

for any α0 ∈ (0, 1), the equation (3) has a unique solution θ∗ in F and that this solution

is implicitly defined as a function θp0(α0) of α0. This result is established in the following

Proposition.

Proposition 3 (Unicity) Under Assumptions (A0)-(A2), given p0 ∈ N∗, there exist an

open set F , F ⊆ Θ̊, such that, for any α0 ∈ (0, 1), the equation (3),

E[Wt · (1(Yt+1 − θ∗′Wt < 0)− α0) · |Yt+1 − θ∗′Wt|p0−1] = 0,

has a unique solution θ∗ in F . Moreover, the function θ∗ = θp0(α0) defined implicitly by (3)

is bijective and continuously differentiable from (0, 1) to F with

θ′p0
(α) =





{E[WtWt
′ · pt(θp0(α)′Wt)]}−1 · E[Wt], if p0 = 1,

{E[WtWt
′ · (α + (1− 2α) · Pt(θp0(α)′Wt))]}−1 · E[Wt · |Yt+1 − θp0(α)′Wt|], if p0 = 2,

{(p0 − 1)E[WtWt
′ · (α + (1− 2α) · 1(Yt+1 − θp0(α)′Wt < 0))

·|Yt+1 − θp0(α)′Wt|p0−2]}−1 · E[Wt · |Yt+1 − θp0(α)′Wt|p0−1],
if p0 > 2,

where Pt and pt are the distribution function and the density of Yt+1 conditional on Ft.

We now turn to the problem of estimating the true value α0 used in the loss function

L minimization problem (2). As previously, we are interested in recovering α0 by assuming

that the value of p0 is already known by the forecast user. Recall that the forecast user need

not know the forecasting model M = {ft+1} used to construct the forecasts. In other words,

the components of the h-vector Wt need not be known and/or available in their entirety. We

assume here that the forecast user knows and observes a sub-vector of Wt, whose dimension

d is less than h and which we denote by Vt. As noted earlier, Vt being a sub-vector of Wt,

the moment conditions (3) in particular imply that

E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α0) · |Yt+1 − f ∗t+1|p0−1] = 0. (7)
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The following lemma will be useful in the construction of an estimator for α0.

Lemma 4 Under Assumptions (A0)-(A3), given p0 ∈ N∗ and given f ∗t+1 = θ∗′Wt where θ∗

is the solution to (3), the true value α0 ∈ (0, 1) is the unique minimum of a quadratic form

Q0(α) ≡ E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1]′ ·
W · E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1] ,

i.e.

α0 =
E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1]

E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · |Yt+1 − f ∗t+1|p0−1]
(8)

where Vt is a sub-vector of Wt and W is a positive definite weighting matrix.

If we observe the sequence of optimal one-step-ahead forecasts f ∗t+1 ≡ θ∗′Wt provided by

the forecaster, we can estimate α0 directly from equation (8). In practice however, we only

observe the sequence {f̂t+1} where f̂t+1 ≡ θ̂
′
twt where θ̂

′
t is an estimate of θ∗ obtained by

using the data up to the date t. Let n + 1 be the total number of periods available. There

are n − τ + 1 ≡ T forecasts available, starting at t = τ + 1 and ending at n + 1 = T + τ .

The first one-step-ahead forecast f̂τ+1 of the random variable Yτ+1 is constructed as follows:

the data from s = 1 to s = τ , i.e. (y2, w
′
1, . . . , yτ , w

′
τ−1)

′, is used to compute an estimate θ̂τ

of θ∗. The corresponding forecast of yτ+1 is then given by f̂τ+1 = θ̂
′
τwτ . The second forecast

f̂τ+2 is obtained by computing θ̂τ+1 using the data available from s = 1 to s = τ + 1, i.e.

(y2, w
′
1, . . . , yτ+1, w

′
τ ), and then forming f̂τ+2 = θ̂

′
τ+1wτ+1. By repeating the same procedure,

for t = n, an estimate θ̂
′
n of θ∗ is obtained by using the data (y2, w

′
1, . . . , yn, w′

n−1)
′, and

the corresponding one-step-ahead forecast of yn+1 is given by f̂n+1 = θ̂
′
nwn. To recap, the

forecaster provide a sequence of T = n − τ + 1 forecasts, {f̂t+1}τ6t<T+τ , where for each t,

τ 6 t < T + τ , the forecasts are constructed as f̂t+1 = θ̂
′
twt and where θ̂t is an estimate of

θ∗ that relies on the data from period t and earlier, i.e. (y2, w
′
1, . . . , yt, w

′
t−1)

′.

Having observed the sequence {f̂t+1}τ6t<T+τ provided by the forecaster, we now construct

an estimator for α0 based on equation (8). Given the T observations (v′τ , . . . , v
′
T+τ−1)

′ of the
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Figure 1: Description of the available data

d-vector Vt, we consider a linear Instrumental Variable (IV) estimator of α0, α̂T , defined as

α̂T ≡ [T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]′ · Ŝ−1 · [T−1
∑T+τ−1

t=τ vt(1(yt+1 − f̂t+1 < 0)|yt+1 − f̂t+1|p0−1]

[T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]′ · Ŝ−1 · [T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]
,

(9)

where Ŝ is some consistent estimate of S ≡ E[VtV
′
t ·(1(Yt+1−f̂t+1 < 0)−α)2·|Yt+1−f̂t+1|2p0−2].

The consistency result for α̂T is as follows.

Proposition 5 (Consistency) Given p0 = 1, 2, let α̂T be the linear IV estimator defined in

(9). Under Assumptions (A0)-(A6), α̂T exists with probability approaching one and α̂T
p→ α0.

In other words, even with the domain of α0 not being compact, the linear IV estimator

exists with probability approaching one and is moreover consistent for the true value α0.

Note that this result is particularly interesting since the construction of α̂T does not require

the full knowledge of the h-vector Wt used by the forecaster. Indeed, by considering some

publicly available sub-vector Vt of Wt, the forecast users can still consistently estimate the

true value α0 used in the loss function minimization problem (2).
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Proposition 6 (Asymptotic Normality) Given p0 = 1, 2, let α̂T be the linear IV estima-

tor defined in (9). Under Assumptions (A0)-(A4), (A5’) and (A6), α̂T exists with probability

approaching one and

T 1/2(α̂T − α0)
d→ N (0, (h′0 · S−1 · h0)

−1),

where S ≡ E[VtV
′
t ·(1(Yt+1−f̂t+1 < 0)−α)2·|Yt+1−f̂t+1|2p0−2] and h0 ≡ E[Vt·|Yt+1−f ∗t+1|p0−1].

In other words, the linear IV estimator α̂T is asymptotically normal, with asymptotic

variance which does not depend on neither Wt nor θ∗, which are a priori unknown to the

forecast user. Indeed, the asymptotic variance of α̂T is identical to the one obtained with a

standard GMM-type estimator. It is interesting to note that this result stems from the fact

that θ̂t, for τ 6 t < T , and α̂T are obtained as solutions to the same first order condition

(7), which moreover is linear in α. Were θ̂t, τ 6 t < T , and α̂T obtained with different loss

functions, they would no longer satisfy the same first order condition. Hence, the uncertainty

of parameter estimates θ̂t, τ 6 t < T , would in that case affect the asymptotic variance of

α̂T and make it substantially more complicated.6

In practice, the computation of the linear IV estimator α̂T is done iteratively. According

to equation (9), α̂T depends on a consistent estimator of S−1. For example, S can be

consistently estimated by replacing the population moment by a sample average and the

true parameter by its estimated value, so that Ŝ(ᾱT ) = T−1
∑T+τ−1

t=τ vtv
′
t(1(yt+1 − f̂t+1 <

0) − ᾱT )2|yt+1 − f̂t+1|2p0−2, where ᾱT is some consistent initial estimate of α0, or by using

some heteroskedasticity and autocorrelation robust estimator, such as Newey and West’s

(1987) estimator. The computation of α̂T is then carried out by first choosing a d × d

identity weight matrix S = Id×d and using (9) to compute the corresponding α̂T,1. The

resulting new weight matrix Ŝ−1(α̂T,1) is more efficient than the previous one, which when

plugged into (9) leads to a new estimator α̂T,2. The last two steps can then be repeated until

α̂T,j equals its previous value α̂T,j−1.

6For general results on asymptotic inference in presence of parameter uncertainty see, e.g., West, 1996,

West and McCracken, 1998. Note that the assumptions placed on the forecast method differ from those

examined here.
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Finally, we can use the moment conditions to test the hypothesis that the forecasts are

rational with respect to available information within the class of loss functions (i.e. without

specifying a value for α). We note that if indeed the forecasts are rational, then Vt is a

subvector of Wt. Thus all moment conditions must hold (which is how we obtain estimates

for α above). A different question that can be asked is that given Vt, does there exist some

value for α for which the forecasts are rational? The usual test for overidentification of the

overidentified IV estimation (so long as d>1) tests this proposition. One degree of freedom

is used in the estimation of the loss parameter, so the resultant test statistic, i.e.

J = T−1

(
[
T+τ−1∑

t=τ

vt(1(yt+1 − f̂t+1 < 0− α̂T )|yt+1 − f̂t+1|p0−1]′Ŝ−1

[
T+τ−1∑

t=τ

vt(1(yt+1 − f̂t+1 < 0− α̂T )|yt+1 − f̂t+1|p0−1]

)

The test, from the results of Proposition 6, is distributed χ2
d−1 and rejects for large

values as usual. The typical testing assumption of assuming mean square error loss then

is closely related to this test when p0 is chosen to be equal to 2. The difference is that

if indeed α0 = 0.5, the typical test imposes this whereas here the test uses a consistent

estimate. However, if α0 were different from 0.5 then the typical test would have power in

this direction - here the use of the consistent test avoids this problem, size will be controlled

if the forecasters have chosen a different value for α. Asymptotically there is no loss from

relaxing this parameter value, however there is clearly a gain in terms of directing power in

the desired direction.

4 Simulation Results

We examine aspects of the methods derived above in a Monte Carlo experiment. Psuedo

data were generatedby the model given by

yt+1 = θ′wt + ut

where the vector wt = [1, w1t, w2t] where w1t˜N(1, 1), w2t˜N(−1, 1), θ = [1, 0.5, 0.5] and

ut˜N(0, 0.5). Experiments were undertaken for differnent numbers of initial values avail-
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able for estimating θ recursively (such data are available to the forecaster before the initial

recorded forecast is made), denoted n0, and for different numbers of data available for esti-

mation of α and testing, denoted nf (for number of forecasts). For p = 1 recursive forecasts

are made using quantile regression methods and for p = 2 the nonlinear least squares method

of estimation in Newey and Powell (1987) is used to estimate θ recursively.

Table 1 examines, for various samples sizes and values of α, the size of t-tests testing

α̂ = α0 (i.e. the true value) against two sided alternatives with size 5%. Results for p = 1

(Lin-Lin) are in the first panel and for p = 2 (Quad-Quad) in the second panel. In all cases

we have not used any instruments other than the constant term, i.e. Vt = 1. Size is fairly

well controlled overall, less so when α is far from one half (on average). The reason for this

is straightforward, for the asymmetric models the ’errors’ are less well balanced above and

below the true value, hence we obtain asymmetric small sample distributions and require a

larger n for the central limit theorem to provide a good approximation (this is identical to

the usual result in applying the central limit theorem to the bernoulli distributed outcomes).

Size is less well controlled for the Quad-Quad loss function. More observations (either in or

out of sample) tend to help with size control.

Table 2 repeats the exercise in Table 1 but now employs the two available instruments,

i.e. Vt = wt. The use of the extra instruments results in larger size distortions across the

board. The probelm is again more of an issue for the Quad-Quad case than the Lin-Lin

loss function. As we expect, this is less of a problem when there are both more in sample

and out of sample observations available. As before, more out of sample observations help

more than more in sample observations in controlling size. Problems are again greater the

further is α from one half.

We examine the tests for overidentification in Table 3. These tests examine whether

or not the moment conditions are compatible with some α, left unspecified in the testing

procedure. We report size of the tests under the null for the same cases as the previous two

tables. For these tests, size is well controlled. The tests tend to be undersized rather than

oversized, again the size departing from nominal size (of 5%) more when α is further from

one half. When α is at one half, the sizes are very close to nominal size for all sample sizes.
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Increasing the sample size helps, with adding more out of sample observations appearing to

be more useful.

5 Government Deficit Forecasts

In this section we apply our estimation methods and tools for inference to forecasts of

government budget deficits for the G7 countries produced by two international organizations,

namely the IMF and the OECD. This data set is well suited to demonstrate our methods

since, as pointed out by Artis and Marcellino (2001) fiscal forecast errors are likely to be

particularly sensitive to political pressures and “the political context in which fiscal deficit

forecasts emerge may well be one in which the costs of forecast misses are not symmetric.”

(Artis and Marcellino, page 20). This point is echoed by Campbell and Ghysels (1995) in

the context of an analysis of federal budget projections.

The data that we use is identical to that considered in Artis and Marcellino (2001) and

comprises budget deficit forecasts, reported as a percentage of GDP, for the G7 countries.7

The data is reported as budget surpluses so that a budget deficit takes a negative value.

Following standard practice forecast errors are defined as realizations minus predicted val-

ues. Since almost all realizations and predictions are negative, a positive forecast error

corresponds to a larger predicted deficit than actually occurred. We refer to this as an

overprediction of the budget deficit (underprediction of the budget surplus).

For the OECD, sufficient data was only available on four of these countries, namely

France, Germany, Italy and the UK. In both cases the data comprises current year (published

in May each year) and year-ahead forecasts (published in October of year t for year t + 1).

The IMF sample goes from 1976 to 1995 and thus has 20 observations. The OECD data

contains between 18 and 21 data points. Clearly these are not large samples, so caution

should be exercised in the interpretation of the statistical results.

7We are grateful to Massimiliano Marcellino for providing this data. The data source is the IMF’s World

Economic Outlook and the OECD’s Economic Outlook. Artis and Marcellino (2001) also consider forecasts

from the European Commission, but this data set is very short (14 observations) so we decided not to include

it here.
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Table 4 presents summary statistics for the forecast errors. The mean forecast error

suggests that overpredictions of budget deficits is the typical situation, although there are

also some countries, most notably Canada, with underpredictions. For some countries there

are strong imbalances between the number of positive (n+) and negative (n−) forecast

errors, particularly in the case of current-year IMF forecasts for Italy, Japan, UK and the

US, where 15 or 17 of 20 forecast errors are positive. While most countries produce a

majority of positive forecast errors, Canada is the exception with a majority of negative

forecast errors. The current year RMSE values vary from 0.53 (France) to 2.14 (Italy), while

the range goes from 0.83 to 2.33 for the 1-year ahead forecasts. For all countries the RMSE

values are higher at the 1-year ahead horizon than at the current-year horizon.

The previous sections show how to test forecast optimality in conjunction with the as-

sumption that the loss function belongs to a particular class. In our empirical tests we adopt

the strategy of first assuming that the loss function is lin-lin. Authors such as Granger and

Newbold (1986) have argued that lin-lin loss approximate other classes of asymmetric loss

functions: “The linear cost function may well provide a good approximation to nonsymmet-

ric cost functions that arise in practice” (Granger and Newbold (1986), page 126). However,

as a robustness check of our results we subsequently conduct empirical tests under the as-

sumption of quad-quad loss.

5.1 Evidence of Asymmetric Loss

Under the assumption that the loss function is piecewise linear (lin-lin), Table 5 presents

the estimated asymmetry parameter (α̂) along with its standard error and p-values for tests

of the null hypothesis of symmetric loss, i.e. α = 0.5. The parameter estimates and test

results are of separate economic interest since they may suggest the type of objectives the

forecaster was operating under.

To explore the robustness of our results with respect to the number and type of instru-

ments, we report results for four separate sets of instruments: (i) a constant; (ii) a constant

and the lagged (real time) forecast error; (iii) a constant and the lagged budget deficit; (iv)

a constant, the lagged forecast error and the lagged budget deficit. Given the small sample
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size, we do not consider more than three instruments.

First consider the current-year IMF results when the model is exactly identified and a

constant is the only instrument. Five of seven countries generate α-estimates below one-half,

one country (France) has an estimate of exactly one-half and another country (Canada) has

an alpha estimate of 0.65. The null of symmetry is very strongly rejected for Italy, Japan,

UK and the US. Similar results are obtained for the year-ahead IMF predictions, where the

α-estimates are statistically significantly different from one-half for Japan, UK and the US.

In the overidentified models with two or three instruments the current-year results tend

to be even stronger since the standard errors of α̂ tend to decline. Hence, the null of

symmetric loss is rejected with p-values less than 0.01 for Italy, Japan, the UK and the US.

In each case the point estimates for these four countries are at or below 0.25, thus suggesting

economically strong evidence of asymmetry. At the year-ahead horizon the null of symmetric

loss continues to be rejected at or below the 5% level for Japan, UK and the US. The null

is marginally rejected for Italy for two of the four sets of instruments.

Turning to the OECD data, for the current year predictions, three out of four countries

generate estimates of α below one half. Irrespective of the set of instruments used, the null of

symmetric loss is rejected at the five percent significance level for Germany and Italy, while

it is rejected at the 10 percent significance level for France. The evidence of asymmetric loss

is somewhat weaker at the 1-year-ahead horizon, where the null is only rejected for Germany.

These results suggest that international organizations such as the IMF and the OECD

systematically overpredict government losses and forecast budget deficits larger than they

turn out to be. This is consistent with a loss function that penalizes underpredictions more

heavily than overpredictions and our parameter estimates quantify the extent to which this

is the case. Indeed, the point estimates of α suggest very strong asymmetries in the loss

function both from an economic and a statistical point of view.

5.2 Tests of Forecast Rationality

Ultimately we are interested in testing whether the IMF and OECD forecasts are rational.

We first conduct our tests under the assumption of symmetric loss. This is the null hypothesis
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that has been maintained throughout the literature, so it seems a natural starting point for

our analysis. In our context we can test this hypothesis by imposing α = 1/2 and examining

the J-test which follows a χ2
d−distribution under this restriction.

The outcome of the joint tests of rationality and α = 1/2 is reported in Table 6. Overall,

there are 36 cases where the null hypothesis is rejected at or below the 5% level. In the IMF

data there is very strong evidence against the composite null hypotheses for Italy, Japan,

the UK and the US, while the OECD data leads to rejections of the null for Germany.

Notice that this is the same list of countries for which we found overwhelming evidence of

asymmetric loss in Table 2.

Since the rejection of symmetric loss and forecast rationality may well be due to the

symmetry assumption, we next test whether forecast rationality gets rejected once we allow

for asymmetric loss. To investigate this possibility, Table 7 reports outcomes from adopting

the J-test to our forecast data when α is not constrained to take a particular value.

The results are very interesting and in complete contrast to those found in Table 6.

There is only very weak evidence against the null hypothesis of forecast rationality. Overall

there are only seven cases where the null gets rejected at the 5% significance level. None of

the J−tests associated with the current-year forecasts are statistically significant at the five

percent level. At the 1-year horizon the IMF results for the UK, US and France indicate

absence of optimality but it appears that the rejections of the composite null hypothesis of

symmetric loss and optimal forecasts can be ascribed to asymmetric loss in the case of Italy

and Japan.

5.3 Robustness to the Shape of the Loss Function

To check the robustness of our findings with respect to the assumed shape of the loss function

and to consider a family of loss functions that embeds MSE loss, Tables 8-10 report results

for the quad-quad loss function.

First consider the evidence of asymmetries in the quad-quad loss function. In the current

year IMF forecasts there continues to be strong evidence against symmetric loss for Italy,

Japan the UK and the US, all of which produce estimates of α below one-half. Interestingly,
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there is now also significant evidence of asymmetric loss for Canada, albeit with an α-

estimate above one-half. At the 1-year forecast horizon Canada, France, Italy and Japan all

produce strong evidence of asymmetric loss. In the OECD data there is strong evidence of

asymmetric loss for Germany and, in the case of current-year predictions, also for Italy.

Turning next to the question of forecast rationality, Table 9 shows the outcome of tests

of the joint hypothesis of MSE loss and rationality. In the current-year IMF forecasts this

null hypothesis is strongly rejected for Canada, Japan and the UK and for Germany and

Italy in the case of the OECD forecasts. There is some evidence in both data sets of loss

asymmetry also for Italy. At the 1-year horizon the evidence against the null hypothesis is

even stronger and the null gets rejected in the IMF data for Canada, France, Italy, Japan

and the UK and, in the OECD data, for Germany and (for two out of four tests) the UK.

Overall, the null is rejected at the 5 percent level in 40 cases.

Allowing for asymmetric quadratic loss, as we do in Table 10, the evidence against ratio-

nality is far weaker. In no case does the null get rejected at the 5% level for the current-year

data. At the 1-year horizon, the null is strongly rejected only by the IMF predictions for the

UK and, to some extent, France. Overall the null is only rejected at the 5% level in seven

cases in Table 10.

Overall our conclusions thus appear to be very robust with respect to the assumed class

of loss functions. This is fortunate since, in the absence of a more detailed analysis of the

political pressures facing the international organizations, it is difficult to choose one over the

other. Consistent with our findings under lin-lin loss, the tests for forecast rationality are

significantly changed once we allow for asymmetric loss. While the joint null hypothesis of

MSE loss and forecast rationality is strongly rejected in a large number of cases, there is far

weaker evidence against this null once asymmetric quadratic loss is considered.

Artis and Marcellino (2001) perform a related exercise in which they first back out the

asymmetry parameter of a quad-quad loss function and then, conditional on this estimate

test whether the resulting forecast errors are serially correlated and uncorrelated with the

forecast. Conditional on their first-stage parameter estimate they reject the null that the

IMF forecasts are efficient for France, Germany, Italy, Japan and the US. Unfortunately the
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standard errors used in the second step of their analysis do not account for the first-stage

estimation of the asymmetry parameter which introduces a generated regressor problem.

In a sample as small as that considered here, this could be a major concern. In fact, our

results are very different and shows that it is only really for the UK and France that there

is evidence against forecast rationality and quad-quad loss.

6 Conclusion

This paper provided theory for identification and estimation of parameters of loss functions

applicable to situations where time-series data on forecasts is available. We also provided

test statistics that can be used when testing whether information is used efficiently in the

computation of the forecasts. In applications our methods suggest that there is systematic

evidence that international organizations such as the IMF and the OECD have asymmetric

loss and that the composite hypothesis of symmetric loss and forecast rationality is rejected

for many countries in our sample. Once we allow for asymmetric loss, there is far weaker

evidence against forecast rationality.

Although our theory was derived in the context of commonly used loss functions, it can

be adopted in many areas where data is observed on variables that are the outcome of an

optimizing agent’s actions. One example is investors’ portfolio weights in asset classes such

as stocks and, bonds and other asset classes. It is commonly assumed that investors’ utility

belongs to a certain family such as mean-variance or power utility. For each utility specifi-

cation, one would of course have to verify that the primitive assumptions in our paper are

satisfied. Provided that this could be done, it should be possible to back out the investor’s

risk aversion parameters from the observed portfolio weights and time-series on the underly-

ing asset returns and any instruments used by the investors to model the conditional return

distribution.
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7 Appendix A: Assumptions

(A0) θ∗ is interior to Θ, i.e. θ∗ ∈ Θ̊;

(A1) the h-vector Wt (with the first component 1) is such that, given p0 ∈ N∗, for all θ ∈ Θ̊,

E[Wt · |Yt+1− θ′Wt|p0−1] 6= 0, E[Wt · 1(Yt+1− θ′Wt < 0) · |Yt+1− θ′Wt|p0−1] 6= 0, and E[WtW
′
t ]

exists and is positive definite;

(A2) the density of Yt+1 conditional on Ft is strictly positive, i.e. pt(y) > 0, for every y ∈ R;

(A3) the d-vector Vt is a sub-vector of the h-vector Wt (d 6 h) with the first component 1

and there exists a constant m > 0 such that ||Wt||2 = W ′
tWt 6 m, a.s.−P ;

(A4) for every t, τ 6 t < T + τ , θ̂t is a consistent estimate of θ∗ and θ∗ ∈ F ;

(A5) the stochastic processes Yt and Wt are stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ N∗, there exist some δf > 0 and ∆f > 0

such that E[(Yt+1 − f̂t+1)
(2+δf )(p0−1)] 6 ∆f < ∞ and some δW > 0 and ∆W > 0 such that

E[||Wt||2+δW ] 6 ∆W < ∞;

(A5’) the stochastic processes Yt and Wt are stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ N∗, there exist some δf > 0 and ∆f > 0

such that E[(Yt+1 − f̂t+1)
(4+δf )(p0−1)] 6 ∆f < ∞ and some δW > 0 and ∆W > 0 such that

E[||Wt||4+δW ] 6 ∆W < ∞;

(A6) the density of Yt+1 conditional on Ft is bounded, i.e. there exist some M > 0 such

that, supy∈R pt(y) 6 M < ∞;

8 Appendix B: Proofs

Proof of Proposition 1. We know that if θ∗ is the minimum of L in Θ̊, i.e. if θ∗ is the

solution to the minimization problem

min
θ∈Θ

E{[α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0} ≡ Σ(θ),

with Σ(θ) continuously differentiable on Θ, and θ∗ ∈ Θ̊ (Assumption (A0)), then θ∗ satisfies

the first order condition ∇θΣ(θ∗) = 0 (see, e.g., Theorem 3.7.13 in Schwartz, 1997, vol 2,
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p 168). Let Σt+1(θ) ≡ [α0 + (1 − 2α0) · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0 . The function

Σt+1(θ) is continuously differentiable on Θ\At+1 where At+1 ≡ {θ ∈ Θ : Yt+1 = θ′Wt}. Let

∇θΣt+1(θ) be the gradient of Σt+1(θ) on Θ\At+1. We have

Σ(θ) = E[Σt+1(θ)] = E{Et+1[Σt+1(θ)]},

so that

∇θΣ(θ) = E{∇θEt+1[Σt+1(θ)]}
= E{∇θEt+1[Σt+1(θ) · 1(θ ∈ Ac

t+1)]}+ E{∇θEt+1[Σt+1(θ) · 1(θ ∈ At+1)]}
= E{∇θΣt+1(θ) · Et+1[1(θ ∈ Ac

t+1)]}+ E{∇θΣt+1(θ) · Et+1[1(θ ∈ At+1)]},

where Et+1[1(θ ∈ Ac
t+1)] = P(Ac

θ) with Ac
θ ≡ Ω\Aθ and Aθ ≡ {ω ∈ Ω : Yt+1(ω) − θ′Wt(ω)}.

Hence, Et+1[1(θ ∈ Ac
t+1)] = 1 and Et+1[1(θ ∈ At+1)] = 0. Σ(θ) is therefore continuously

differentiable on Θ and we have

∇θΣ(θ) = −α0E{Wt · [1− 2 · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0−1}
+(1− 2α0)E[∇θ1(Yt+1 − θ′Wt < 0) · |Yt+1 − θ′Wt|p0 ]

−(1− 2α0)E{1(Yt+1 − θ′Wt < 0) ·Wt · [1− 2 · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0−1},

so that

∇θΣ(θ) = E[Wt · (1(Yt+1 − θ′Wt < 0)− α0) · |Yt+1 − θ′Wt|p0−1]

+(1− 2α0)E[∇θ1(Yt+1 − θ′Wt < 0) · |Yt+1 − θ′Wt|p0 ].

Note that

∇θ1(Yt+1 − θ′Wt < 0) = Wt · δ(θ′Wt − Yt+1)

where δ represents the Dirac function, i.e. for all x ∈ R∗, δ(x) = 0 and
∫
R δ(x)dx = 1.

Knowing that for any real function ϕ : R→ R we have
∫
R ϕ(x)δ(x)dx = ϕ(0), we obtain

E[Wt · δ(θ′Wt − Yt+1) · |Yt+1 − θ′Wt|p0 ] = 0,

since p0 ∈ N∗. Thus,

∇θΣ(θ) = E[Wt · (1(Yt+1 − θ′Wt < 0)− α0) · |Yt+1 − θ′Wt|p0−1].
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Given the values of p0 and α0 if θ∗ is the minimum of Σ(θ) then θ∗ is a solution to ∇θΣ(θ∗) =

0, i.e. we have

E[Wt · (1(Yt+1 − θ′Wt < 0)− α0) · |Yt+1 − θ′Wt|p0−1] = 0,

which completes the proof of Proposition 1.

Proof of Proposition 2. We derive the set of sufficient conditions for θ∗ ∈ Θ̊ to be a

solution to the minimization problem

min
θ∈Θ

E{[α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0} ≡ Σ(θ).

We know that θ∗ is a strict local minimum of Σ(θ) on Θ̊ if ∇θΣ(θ∗) = 0 and ∆θθΣ(θ∗)

positive definite (see, e.g., Theorem 3.7.13 in Schwartz, 1997, vol 2, p 169). Recall that,

∇θΣ(θ) = E[Wt · (1(Yt+1 − θ′Wt < 0)− α0) · |Yt+1 − θ′Wt|p0−1],

so if θ∗ satisfies the moment condition (3) then ∇θΣ(θ∗) = 0. Note that by Assumption (A1),

we know that E[Wt ·|Yt+1−θ′Wt|p0−1] 6= 0 and E[Wt ·1(Yt+1−θ′Wt < 0)·|Yt+1−θ′Wt|p0−1] 6= 0

so that ∇θΣ(θ) is not identically equal to zero for all θ ∈ Θ̊. We now need to show that θ∗

is a strict minimum of Σ(θ). Note that we have

∆θθΣ(θ) = E[WtWt
′ · δ(θ′Wt − Yt+1) · |Yt+1 − θ′Wt|p0−1]

−(p0 − 1) · E {WtWt
′ · [1(Yt+1 − θ′Wt < 0)− α0]

·[1− 2 · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0−2}
= E[WtWt

′ · δ(θ′Wt − Yt+1) · |Yt+1 − θ′Wt|p0−1]

+(p0 − 1) · E{WtWt
′ · [α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)] · |Yt+1 − θ′Wt|p0−2}
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where δ : R→ R is the Dirac function i.e. δ(x) = 0 if x 6= 0 and
∫
R δ(x)dx = 1. Thus

∆θθΣ(θ) = E[WtWt
′ · δ(θ′Wt − Yt+1) · |Yt+1 − θ′Wt|p0−1]

+(p0 − 1)E[WtWt
′ · (α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)) · |Yt+1 − θ′Wt|p0−2]

= 1(p0 = 1) · E[WtWt
′ · δ(θ′Wt − Yt+1)]

+1(p0 > 1) · {E[WtWt
′ · δ(θ′Wt − Yt+1) · |Yt+1 − θ′Wt|p0−1]

+(p0 − 1)E[WtWt
′ · (α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)) · |Yt+1 − θ′Wt|p0−2]}

= 1(p0 = 1) · E{WtWt
′ · Et[δ(θ

∗′Wt − Yt+1)]}+ 1(p0 > 1)·
(p0 − 1)E{WtWt

′ · Et[(α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)) · |Yt+1 − θ′Wt|p0−2]}
= 1(p0 = 1) · E[WtWt

′ · pt(θ
∗′Wt)]

+1(p0 = 2) · E[WtWt
′ · (α0 + (1− 2α0) · Pt(θ

′Wt))]

+1(p0 > 2) · (p0 − 1)E[WtWt
′ · (α0 + (1− 2α0) · 1(Yt+1 − θ′Wt < 0)) · |Yt+1 − θ′Wt|p0−2],

where Pt and pt are the distribution function and the density of Yt+1 conditional on Ft. We

need to ensure that ∆θθΣ(θ∗) is positive definite. Consider the following two cases separately:

p0 = 1 and p0 > 1.

CASE p0 = 1: note that in that case for any ϕ ∈ Rk we have

ϕ′∆θθΣ(θ)ϕ = E[ϕ′WtWt
′ϕ · pt(θ

′Wt)],

where pt is the density of Yt+1 conditional on Ft. By imposing the strict positivity of the

conditional density pt (Assumption (A2)), we have that

ϕ′∆θθΣ(θ)ϕ = 0 ⇒ ϕ′WtWt
′ϕ = 0, a.s.−P ⇒ ϕ′E[WtWt

′]ϕ = 0,

which, by Assumption (A1), in turn implies ϕ = 0. Hence, for any θ ∈ Θ̊ the matrix ∆θθΣ(θ)

is positive definite, therefore it is positive definite at θ∗ which is then a strict local minimum

of Σ(θ) on Θ̊.

CASE p0 > 1: note that in that case we have

ϕ′∆θθΣ(θ)ϕ = (p0−1)E{ϕ′WtWt
′ϕ·Et[(α0+(1−2α0)·1(Yt+1−θ′Wt < 0))·|Yt+1−θ′Wt|p0−2)]},

and, conditional on Ft, the conditional expectation on the right hand side of the previous

equality is strictly positive, a.s.−P , for any (α0, θ) ∈ (0, 1)×Θ. Therefore, we again have

ϕ′∆θθΣ(θ)ϕ = 0 ⇒ ϕ′WtWt
′ϕ = 0, a.s.−P ⇒ ϕ′E[WtWt

′]ϕ = 0,
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so that by Assumption (A1) ϕ = 0. Hence, for every θ ∈ Θ̊ the matrix ∆θθΣ(θ) is positive

definite, and θ∗ is a strict local local minimum of Σ(θ) on Θ̊. This completes the proof of

Proposition 2.

Proof of Proposition 3. Given p0 = 1, 2, let the function hp0 : (0, 1) × Θ → Rk be

defined as

hp0(α, θ) ≡ E[Wt · (1(Yt+1 − θ′Wt < 0)− α) · |Yt+1 − θ′Wt|p0−1], (10)

so that the first order condition (3) is equivalent to hp0(α0, θ
∗) = 0. In order to show that

the results from Proposition 3 hold, we use the implicit function theorem (see, e.g., Theorem

3.8.5. in Schwartz, 1997, vol 2, p 185). In order to do so, we need to show that (i) the

function hp0 : (0, 1)×Θ → Rk is continuously differentiable on (0, 1)×Θ, and (ii) for every

α0 ∈ (0, 1), the Rk×Rk-matrix ∂hp0/∂θ(α0, θ
∗) is nonsingular, i.e. [∂hp0/∂θ(α0, θ

∗)]−1 exists.

According to equation (10) the function hp0 is linear in α and we have

hp0(α, θ) = E[Wt · 1(Yt+1 − θ′Wt < 0) · |Yt+1 − θ′Wt|p0−1]− αE[Wt · |Yt+1 − θ′Wt|p0−1].

The differentiability of hp0(·, θ) : (0, 1) → Rk is therefore trivially verified and, for every

θ ∈ Θ, we have
∂h

∂α
(α, θ) = −E[Wt · |Yt+1 − θ′Wt|p0−1],

which is independent of α. Therefore, the function ∂hp0/∂α(·, θ) : (0, 1) → Rk is continuous

on (0, 1). We now turn to the study of hp0(α, ·) : Θ → Rk. Note that
∂hp0

∂θ
(α, θ) = ∆θθΣ(θ)

where Σ(θ) is defined as in (??), so that

∂hp0

∂θ
(α, θ) = 1(p0 = 1) · E[WtWt

′ · pt(θ
∗′Wt)]

+1(p0 = 2) · E[WtWt
′ · (α + (1− 2α) · Pt(θ

′Wt))]

+1(p0 > 2) · (p0 − 1)

·E[WtWt
′ · (α + (1− 2α) · 1(Yt+1 − θ′Wt < 0)) · |Yt+1 − θ′Wt|p0−2],

where Pt and pt are the distribution function and the density of Yt+1 conditional on Ft. The

function ∂hp0/∂θ(α, ·) : Θ → Rk × Rk being an integral it is clearly continuous on Θ. We

have therefore shown that (i) is verified, i.e. h : (0, 1)×Θ → Rk is continuously differentiable
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on (0, 1)×Θ.

We know, from the previous proof that Σ(θ) is positive definite (by Assumptions (A1)-(A2)),

therefore nonsingular for every (p0, α0, θ) ∈ N∗ × (0, 1)×Θ.

Hence, for any p0 ∈ N∗, we conclude that [∂hp0/∂θ(α0, θ
∗)]−1 exists for every α0 ∈ (0, 1),

which verifies the condition (ii). We can now apply the implicit function theorem (Theorem

3.8.5. in Schwartz, 1997, vol 2, p 185) to show that for every α0 ∈ (0, 1) there exist an open

interval E0 containing α0 and an open set F0 containing θ∗, F0 ≡ {θ ∈ Θ̊ : ||θ − θ∗|| < δ0}
with δ0 > 0, such that for every α ∈ E0, the equation hp0(α, θ) = 0 has a unique solution θ in

F0, and that the function θ = θp0(α) defined implicitly by hp0(α, θp0(α)) = 0 is continuously

differentiable from E0 to F0 with

θ′p0
(α) = −[

∂hp0

∂θ
(α, θp0(α))]−1 · ∂hp0

∂α
(α, θp0(α)),

i.e.

θ′p0
(α) =





{E[WtWt
′ · pt(θp0(α)′Wt)]}−1 · E[Wt], if p0 = 1,

{E[WtWt
′ · (α + (1− 2α) · Pt(θp0(α)′Wt))]}−1 · E[Wt · |Yt+1 − θp0(α)′Wt|], if p0 = 2,

{(p0 − 1)E[WtWt
′ · (α + (1− 2α) · 1(Yt+1 − θp0(α)′Wt < 0))

·|Yt+1 − θp0(α)′Wt|p0−2]}−1 · E[Wt · |Yt+1 − θp0(α)′Wt|p0−1], if p0 > 2.

(11)

It is important to note that we can extend the previous implicit function argument by

continuity to the entire open interval (0, 1). Let F ≡ ⋃
α0∈(0,1) F0. F being a union of

open sets, F is an open subset of Θ̊. Hence, we have shown that given p0 ∈ N∗, for every

α0 ∈ (0, 1), the equation hp0(α0, θ) = 0 has a unique solution θ∗ in F and the implicit

function θ∗ = θp0(α0) is continuously differentiable from (0, 1) to F with θ′p0
(α) as given in

(11). We now show that θp0(α) is bijective from (0, 1) to F . It is surjective by construction,

so we only need to show that it is injective on (0, 1), i.e. α1 6= α2 implies θp0(α1) 6= θp0(α2).

This last implication is equivalent to: θp0(α1) = θp0(α2) implies α1 = α2. If θp0(α1) = θp0(α2)

then

0 = E[Wt · (1(Yt+1 − θp0(α1)
′Wt < 0)− α1) · |Yt+1 − θp0(α1)

′Wt|p0−1]

−E[Wt · (1(Yt+1 − θp0(α2)
′Wt < 0)− α2) · |Yt+1 − θp0(α2)

′Wt|p0−1]

= (α2 − α1)E[Wt · |Yt+1 − θp0(α2)
′Wt|p0−1],
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which, by Assumption (A1), implies α1 = α2. Hence for a given θ∗ ∈ F there is a unique

α0 ∈ (0, 1) such that θ∗ = θp0(α0). This completes the proof of Proposition 3.

Proof of Lemma 4. We first show that α0 is a minimum of the quadratic form

Q0(α) ≡ E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1]′

·W · E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1],

where Vt is a sub-vector of Wt and W is a positive definite weighting matrix. Note that

Q0(α) = c− 2bα + aα2 with

a ≡ E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · |Yt+1 − f ∗t+1|p0−1],

b ≡ E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1],

c ≡ E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1].

The weighting matrix W being positive definite, we know that a > 0 so that Q0(α) is a

concave function of α. Any solution to the first order condition

0 = b− αa

= E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1](12)

is therefore a minimum of Q0(α). We know that if Vt is a sub-vector of Wt (Assumption

(A3)) then E[Vt · |Yt+1 − f ∗t+1|p0−1] 6= 0 (Assumption (A1)). Moreover, W is nonsingular, so

that the equality (12) implies E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1] = 0. Hence,

any solution to the moment condition E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1] = 0

is a minimum of Q0(α). We know from the condition (3) that this is the case for α0, so α0

is a minimum of Q0(α).

We now need to show that Q0(α) has a unique minimum and that this minimum is in (0, 1).

We know that a > 0 so that Q′
0(α) is not identically equal to zero on (0, 1), i.e. Q0(α) is not

a constant nor a linear function of α. It therefore has a unique minimum at α∗ = −b/a,

α∗ =
E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]

E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · |Yt+1 − f ∗t+1|p0−1]
. (13)
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We now need to verify that α∗ defined in (13) is in (0, 1). First, we show that α∗ ∈ (0, 1)

holds if all the elements of the d-vector Vt are strictly positive, i.e. Vt > 0d, a.s.−P , where

0d is a d-vector of zeros. In that case we have

0 6 Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1 6 Vt · |Yt+1 − f ∗t+1|p0−1, a.s.− P ,

so that

0 6 E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1] 6 E[Vt · |Yt+1 − f ∗t+1|p0−1].

Using Assumption (A1) we know that 0 < E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1] since

Vt is a sub-vector of Wt. Knowing that W is positive definite, we have

0 < E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]

6 E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1]

6 E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · |Yt+1 − f ∗t+1|p0−1],

i.e. 0 < c 6 b 6 a. Hence α∗ > 0. We also know that for all α ∈ (0, 1) Q0(α) > 0 so that

the reduced discriminant ∆ = b2 − ac < 0. Hence, b <
√

ac 6 a so that α∗ < 1. So, if

Vt > 0d, a.s. − P then α∗ ∈ (0, 1). Now consider a case where the first element of Vt is a

constant 1 and that there exists some constant c > 0 such that Vt > −c · 1d, a.s.−P , where

1d is a d-vector of ones. Note that this inequality is implied by the Assumption (A3), which

ensures that ||Vt|| 6 ||Wt|| 6 m so that the components of Vt are necessarily bounded by

some constant c. Now, consider the rotation of the d-vector Vt,

V̄t = KVt =


 1 0

c Id−1


 Vt,

where now V̄t = KVt > 0, a.s.−P (Id−1 is a (d− 1)× (d− 1) identity matrix ). Notice that

K is positive definite and that (K−1)′ ·W ·K−1 is positive definite if W is positive definite.

Now, note that

α∗ =
E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]

E[Vt · |Yt+1 − f ∗t+1|p0−1]′ ·W · E[Vt · |Yt+1 − f ∗t+1|p0−1]

=
E[V̄t · |Yt+1 − f ∗t+1|p0−1]′ · (K−1)′WK−1 · E[V̄t · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1]

E[V̄t · |Yt+1 − f ∗t+1|p0−1]′ · (K−1)′WK−1 · E[V̄t · |Yt+1 − f ∗t+1|p0−1]
,
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so that if α∗ is the minimum of Q0(α) then α∗ is also a minimum of the quadratic form

Q̄(α), with

Q̄(α) ≡ E[V̄t · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1]′

·K−1W (K−1)′ · E[V̄t · (1(Yt+1 − f ∗t+1 < 0)− α) · |Yt+1 − f ∗t+1|p0−1].

¿From the results above we then know that α∗ ∈ (0, 1) since V̄t > 0, a.s.−P . Hence, under

Assumptions (A0)-(A3), we know that Q0(α) is uniquely minimized at α∗ defined in (13)

and that α∗ ∈ (0, 1). Therefore, we conclude that α0 = α∗, which completes the proof of

Lemma 4.

Proof of Proposition 5. We impose the following conditions, in addition to Assump-

tions (A0)-(A3):

(A4) for every t, τ 6 t < T + τ , θ̂t is a consistent estimate of θ∗ and θ∗ ∈ F ;

(A5) the stochastic processes Yt and Wt are stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ N∗, there exist some δf > 0 and ∆f > 0

such that E[(Yt+1 − f̂t+1)
(2+δf )(p0−1)] 6 ∆f < ∞ and some δW > 0 and ∆W > 0 such that

E[||Wt||2+δW ] 6 ∆W < ∞;

(A6) the density of Yt+1 conditional on Ft is bounded, i.e. there exist some M > 0 such

that, supy∈R pt(y) 6 M < ∞;

Recall that form (9) we have

α̂T ≡ [T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]′ · Ŝ−1 · [T−1
∑T+τ−1

t=τ vt1(yt+1 − f̂t+1 < 0)|yt+1 − f̂t+1|p0−1]

[T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]′ · Ŝ−1 · [T−1
∑T+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1]
.

In order to show that α̂T
p→ α0 it is sufficient to show that: (i) T−1

∑T+τ−1
t=τ vt|yt+1 −

f̂t+1|p0−1 p→ E[Vt · |Yt+1 − f ∗t+1|p0−1], (ii) T−1
∑T+τ−1

t=τ vt1(yt+1 − f̂t+1 < 0)|yt+1 − f̂t+1|p0−1 p→
E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1], and (iii) S positive definite. Then, by using

Lemma 4, the consistency of Ŝ, the positive definiteness of S (thus of S−1), the Assumptions

(A1) and (A3) which ensure that E[Vt · |Yt+1 − f ∗t+1|p0−1] 6= 0 and E[Vt · 1(Yt+1 − f ∗t+1 <

0) · |Yt+1 − f ∗t+1|p0−1] 6= 0, and the continuity of the inverse function (away form zero), we

will have that α̂T
p→ α0. Note that an alternative way to prove the same result would be
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to work with the quadratic form Q0(α) and then use the results of Theorem 2.7 in Newey

and McFadden (1994, p 2133), for example. Here however, we use the fact that we know the

exact analytic form of α0 which considerably simplifies the consistency proof.

First, let us show that S is positive definite. Recall that, given p0 ∈ N∗, we have

S ≡ E[VtV
′
t · (1(Yt+1 − f̂t+1 < 0)− α)2 · |Yt+1 − f̂t+1|2p0−2],

so that for every ϕ ∈ Rd we have ϕ′Sϕ = E[ϕ′VtV
′
t ϕ · (1(Yt+1 − f̂t+1 < 0) − α)2 · |Yt+1 −

f̂t+1|2p0−2]. Note that (1(Yt+1 − f̂t+1 < 0)− α)2 · |Yt+1 − f̂t+1|2p0−2 > 0, a.s.− P , so that

ϕ′Sϕ = 0 ⇒ ϕ′VtV
′
t ϕ = 0, a.s.−P ⇒ ϕ′E[VtV

′
t ]ϕ = 0.

Now, note that the positive definiteness of E[WtW
′
t ] implies that all upper-left submatrices

of E[WtW
′
t ] have strictly positive determinant. By rearranging (if necessary) the elements of

Wt, we can easily show that E[VtV
′
t ] is an upper-left d× d submatrix of E[WtW

′
t ]. Therefore

det E[VtV
′
t ] > 0. Together with the fact that E[VtV

′
t ] is positive semi-definite (for every

ϕ ∈ Rd, we have ϕ′E[VtV
′
t ]ϕ = E[ϕ′VtV

′
t ϕ] = E[(ϕ′Vt)

2] > 0), this implies that E[VtV
′
t ] is

positive definite. Therefore ϕ′E[VtV
′
t ]ϕ = 0 implies ϕ = 0, which shows that S is positive

definite. We can therefore use the results of Lemma 4.

We now show that conditions (i) and (ii) hold. Given p0 ∈ N∗ and for every t, τ 6 t < T +τ ,

let

gt ≡ vt1(yt+1 − f̂t+1 < 0)|yt+1 − f̂t+1|p0−1,

ĝT ≡ T−1

T+τ−1∑
t=τ

gt,

g0 ≡ E[Vt · 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|p0−1],

g∗ ≡ E[Vt · 1(Yt+1 − f̂t+1 < 0) · |Yt+1 − f̂t+1|p0−1],

and let

ht ≡ vt|yt+1 − f̂t+1|p0−1,

ĥT ≡ T−1

T+τ−1∑
t=τ

ht,

h0 ≡ E[Vt · |Yt+1 − f ∗t+1|p0−1],

h∗ ≡ E[Vt · |Yt+1 − f̂t+1|p0−1].
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We now check that the conditions (i)-(ii) hold: by triangle inequality we have ||ĝT − g0|| 6
||ĝT−g∗||+||g∗−g0|| and ||ĥT−h0|| 6 ||ĥT−h∗||+||h∗−h0||. We first show that ||ĝT−g∗|| p→ 0

and ||ĥT − h∗|| p→ 0 by using a law of large numbers (LLN) for stationary and α-mixing

sequences (e.g., Corollary 3.48 in White 2001). By Assumption (A5), the Cauchy-Schwartz

inequality, and using E[||Vt||2] 6 E[||Wt||2], we know that, for δ = min(δf , δW )/2 > 0,

E[||ht||1+δ] 6 (E[||Vt||2+2δ])1/2 · (E[(Yt+1 − f̂t+1)
2(1+δ)(p0−1)])1/2

6 max(1, ∆
1/2
W ) ·max(1, ∆

1/2
f ) < ∞.

Similarly,

E[||gt||1+δ] 6 (E[||Vt · 1(Yt+1 − f̂t+1 < 0)||2+2δ])1/2 · (E[(Yt+1 − f̂t+1)
2(1+δ)(p0−1)])1/2,

and, since V ′
t Vt · 1(Yt+1 − f̂t+1 < 0) 6 V ′

t Vt, a.s.−P , so that E[||Vt · 1(Yt+1 − f̂t+1 < 0)||2] 6
E[||Vt||2], by same reasoning as previously, we get E[||gt||1+δ] < ∞. Hence, both ĝT and ĥT

converge in probability to their expected values. Next we need to show that the same holds

for ||g∗ − g0|| p→ 0 and ||h∗− h0|| p→ 0. We treat the two cases p0 = 1 and p0 = 2 separately.

CASE: p0 = 1: note that in that case h∗ = h0 and that by triangular and Cauchy-Schwartz

inequalities, we have

||g∗ − g0||2 6 ||E[Vt · (1(Yt+1 − f̂t+1 < 0)− 1(Yt+1 − f ∗t+1 < 0))]||2

6 E[||Vt||2] · E[(1(Yt+1 − f̂t+1 < 0)− 1(Yt+1 − f ∗t+1 < 0))2].

Note that for every t, τ 6 t < T + τ , we have

E{[1(Yt+1 − f̂t+1 < 0)− 1(Yt+1 − f ∗t+1 < 0)]2}
= E{[1(f ∗t+1 6 Yt+1 < f̂t+1)− 1(f̂t+1 6 Yt+1 < f ∗t+1)]

2}
= E[1(f ∗t+1 6 Yt+1 < f̂t+1) + 1(f̂t+1 6 Yt+1 < f ∗t+1)]

= E{Et[1(f ∗t+1 6 Yt+1 < f̂t+1) + 1(f̂t+1 6 Yt+1 < f ∗t+1)]},

where

Et[1(f ∗t+1 6 Yt+1 < f̂t+1) + 1(f̂t+1 6 Yt+1 < f ∗t+1)] = | ∫ θ̂
′
tWt

θ∗′Wt
pt(y)dy|

6 |θ̂′tWt − θ∗′Wt| · supy∈R pt(y)

6 ||θ̂t − θ∗|| · ||Wt|| · supy∈R pt(y).
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Hence, by Assumption (A3) and (A6) we have

||g∗ − g0||2 6 E[||Vt||2] · E[||θ̂t − θ∗||] ·m ·M.

Therefore, by using Assumptions (A3) and (A5), ||g∗−g0||2 6 max(1, ∆W )·m·M ·E[||θ̂t−θ∗||]
which shows that when θ̂t is a consistent estimate of θ∗ (Assumption (A4)), ||g∗ − g0|| p→ 0.

Hence, when p0 = 1, we have shown that α̂T
p→ α0.

CASE p0 = 2: we now have

||h∗ − h0|| 6 ||E[Vt · (|Yt+1 − f̂t+1| − |Yt+1 − f ∗t+1|)]||
6 ||E[Vt · |f ∗t+1 − f̂t+1|]||
6 E[||Vt|| · ||Wt|| · ||θ̂t − θ∗||]
6 m2 · E[||θ̂t − θ∗||],

so that by same argument as previously, ||h∗ − h0|| p→ 0. Finally, note that

||g∗ − g0||2 6 ||E[Vt · (1(Yt+1 − f̂t+1 < 0) · |Yt+1 − f̂t+1| − 1(Yt+1 − f ∗t+1 < 0) · |Yt+1 − f ∗t+1|)]||2

6 ||E[Vt · (1(f ∗t+1 6 Yt+1 < f̂t+1) · |Yt+1 − f̂t+1| − 1(f̂t+1 6 Yt+1 < f ∗t+1) · |Yt+1 − f ∗t+1|)]||2

6 E[||Vt||2] · E[(1(f ∗t+1 6 Yt+1 < f̂t+1) · |Yt+1 − f̂t+1| − 1(f̂t+1 6 Yt+1 < f ∗t+1) · |Yt+1 − f ∗t+1|)2].

As previously,

E[(1(f ∗t+1 6 Yt+1 < f̂t+1) · |Yt+1 − f̂t+1| − 1(f̂t+1 6 Yt+1 < f ∗t+1) · |Yt+1 − f ∗t+1|)2]

= E[1(f ∗t+1 6 Yt+1 < f̂t+1) · (Yt+1 − f̂t+1)
2] + E[1(f̂t+1 6 Yt+1 < f ∗t+1) · (Yt+1 − f ∗t+1)

2],

so that by Assumptions (A3), (A5) and (A6) we have ||g∗−g0||2 6 max(1, ∆
5/2
W )·max(1, ∆f )·

M · m · E||θ̂t − θ∗||] and so ||g∗ − g0|| p→ 0 when θ̂t
p→ θ∗ (Assumption (A4)). Hence, for

p0 = 2 we have α̂T
p→ α0, which completes the proof of Proposition 5.

Proof of Proposition 6. In addition to Assumptions (A0)-(A4) and (A6) we assume

the following:

(A5’) the stochastic processes Yt and Wt are stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ N∗, there exist some δf > 0 and ∆f > 0

34



such that E[(Yt+1 − f̂t+1)
(4+δf )(p0−1)] 6 ∆f < ∞ and some δW > 0 and ∆W > 0 such that

E[||Wt||4+δW ] 6 ∆W < ∞;

Note that the Assumption (A5’) is identical to the Assumption (A5), except for the moment

conditions which are stronger than previously. We now show that T 1/2(α̂T − α0) is asymp-

totically normal:

using the previous notation we know that α̂T solves the first order condition

ĥ′T · Ŝ−1 · (ĝT − ĥT · α̂T ) = 0.

Using the fact that the previous equation is linear in α we can easily expand it around α0

so that

0 = ĥ′T · Ŝ−1 · (ĝT − ĥT · α0)− ĥ′T · Ŝ−1 · ĥT · (α̂T − α0). (14)

The idea then is to show that

ĥ′T · Ŝ−1 · (ĝT − ĥT · α0) = h̄′T · Ŝ−1 · (ḡT − h̄T · α0) + op(1), (15)

where we use the following notation:

ḡt ≡ vt1(yt+1 − f ∗t+1 < 0)|yt+1 − f ∗t+1|p0−1,

ḡT ≡ T−1

T+τ−1∑
t=τ

ḡt,

and

h̄t ≡ vt|yt+1 − f ∗t+1|p0−1,

h̄T ≡ T−1

T+τ−1∑
t=τ

h̄t.

We now show that the development (15) holds: note that by the triangle inequality we have

||ĥ′T · Ŝ−1 · (ĝT − ĥT · α0)− h̄′T · Ŝ−1 · (ḡT − h̄T · α0)|| 6 ||ĥ′T · Ŝ−1 · (ĝT − ḡT )||
+||(ĥT − h̄T )′ · Ŝ−1 · ḡT ||
+||(ĥT − h̄T )′ · Ŝ−1 · ĥT · α0||
+||h̄′T · Ŝ−1 · (ĥT − h̄T ) · α0||
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so that

||ĥ′T · Ŝ−1 · (ĝT − ĥT · α0)− h̄′T · Ŝ−1 · (ḡT − h̄T · α0)|| 6 ||ĥ′T · Ŝ−1|| · ||ĝT − ḡT ||
+ (||Ŝ−1 · ḡT ||+ α0||Ŝ−1 · ĥT ||+ α0||h̄′T · Ŝ−1||) · ||ĥT − h̄T ||.

Now note that ||ĝT − ḡT || 6 ||ĝT − g0|| + ||ḡT − g0||. From the previous proof we have that

||ĝT − g0|| p→ 0 if Assumption (A4) holds. Moreover, by the LLN we have ||ḡT − g0|| p→ 0 so

that ||ĝT − ḡT || p→ 0 if θ̂t is consistent (Assumption (A4)). By the same type of argument, we

show that ||ĥT−h̄T || p→ 0. Therefore, by using the fact that ||Ŝ−1 ·ĥT || < ∞, ||Ŝ−1 ·h̄T || < ∞
and ||Ŝ−1 · ḡT || < ∞ we show that (15) holds.

Now we use central limit theorem (CLT) for α-mixing sequences (e.g., Theorem 5.20 in

White 2001) to show that T 1/2(ḡT − h̄T · α0)
d→ N (0, S): the Cauchy-Schwartz inequality

and Assumption (A5’) imply that

E[||Vt · (1(Yt+1 − f ∗t+1 < 0)− α0) · |Yt+1 − f ∗t+1|p0−1||2+δ] 6 E[||Vt||2+δ · (Yt+1 − f ∗t+1)
(2+δ)(p0−1)]

6 E[||Vt||4+2δ]1/2 · E[(Yt+1 − f ∗t+1)
(4+2δ)(p0−1)]1/2

6 max(1, ∆
1/2
W ) ·max(1, ∆

1/2
f ) < ∞

for δ = min(δW , δf )/2 > 0. The CLT then ensures T 1/2(ḡT − h̄T · α0)
d→ N (0, S) so that

T 1/2[h̄′T · Ŝ−1 ·(ḡT − h̄T ·α0)]
d→ N (0, h′0 ·S−1 ·h0). Together with (15) this implies (by Slutzky

theorem)

T 1/2[ĥT · Ŝ−1 · (ĝT − ĥT · α0)]
d→ N (0, h′0 · S−1 · h0). (16)

The remainder of the asymptotic normality proof is similar to the standard case: the positive

definiteness of S−1, Ŝ
p→ S and ĥT

p→ h0, together with Assumptions (A1) and (A3), ensure

that h′0 · S−1 · h0 6= 0 and ĥ′T · Ŝ−1 · ĥT 6= 0 with probability one, so that the expansion (14)

is equivalent to T 1/2(α̂T − α0) = [ĥ′T · Ŝ−1 · ĥT ]−1T 1/2[ĥ′T · Ŝ−1 · (ĝT − ĥT · α0)]. We then use

the limit result in (16) and the Slutzky theorem to show that

T 1/2(α̂T − α0)
d→ N (0, (h′0 · S−1 · h0)

−1),

which completes the proof of Proposition 6.

36



References

[1] Artis, M. and M. Marcellino, 2001, Fiscal forecasting: The track record of the IMF,

OECD and EC. Econometrics Journal 4, S20-S36.

[2] Bonham, C. and R. Cohen, 1995, Testing the rationality of price forecasts: Comment.

American Economic Review 85, 284-289.

[3] Brown, B.Y. and S. Maital, 1981, What do economists know? An empirical study of

experts’ expectations. Econometrica 49, 491-504.

[4] Campbell, B. and E. Ghysels, 1995, Federal budget projections: A nonparametric as-

sessment of bias and efficiency. Review of Economics and Statistics, 17-31.

[5] Cargill, T.F. and R.A. Meyer, 1980, The Term Structure of Inflationary Expectations

and Market Efficiency. Journal of Finance 35, 57-70.

[6] De Bondt, W.F.M. and M.M. Bange, 1992, Inflation Forecast Errors and Time Variation

in Term Premia. Journal of Financial and Quantitative Analysis 27, 479-496.

[7] Christoffersen, P.F. and F.X. Diebold, 1997, Optimal prediction under asymmetric loss.

Econometric Theory 13, 808-817.

[8] Diebold, F.X. and J.A. Lopez, 1996, Forecast Evaluation and Combination. Ch. 8 in

G.S. Maddala and C.R. Rao, eds., Handbook of Statistics, Vol. 14.

[9] Dokko, Y. and R. H. Edelstein, 1989, How Well do Economists Forecast Stock Market

Prices? A study of the Livingston Surveys. American Economic Review 79, 865-871.

[10] Fama, E.F., 1975, Short-Term Interest Rates as Predictors of Inflation. American Eco-

nomic Review 65, 269-82.

[11] Figlewski, S. and P. Wachtel, 1981, The Formation of Inflationary Expectations. Review

of Economics and Statistics 63, 1-10.

[12] Granger, C.W.J., 1999, Outline of Forecast Theory Using Generalized Cost Functions.

Spanish Economic Review 1, 161-173.

37



[13] Granger, C.W.J., and P. Newbold, 1986, Forecasting Economic Time Series, Second

Edition. Academic Press.

[14] Granger, C.W.J. and M.H. Pesaran, 2000, Economic and Statistical Measures of Fore-

cast Accuracy. Journal of Forecasting 19, 537-560.

[15] Gultekin, N.B., 1983, Stock Market Returns and Inflation Forecasts. Journal of Finance

38, 663-673.

[16] Hafer, R.W. and S.E. Hein, 1985, On the Accuracy of Time-series, Interest Rate, and

Survey Forecasts of Inflation. Journal of Business 58, 377-398.

[17] Hansen, L.P. and R.J. Hodrick, 1980, Forward Exchange Rates as Optimal Predictors

of Future Spot Rates: An Econometric Investigaion. Journal of Political Economy 88,

829-853.

[18] Keane, M.P. and D.E. Runkle, 1990, Testing the Rationality of Price Forecasts: New

Evidence from Panel Data. American Economic Review 80, 714-735.

[19] Lakonishok, J., 1980, Stock Market Return Expectations: Some General Properties.

Journal of Finance 35, 921-931.

[20] Mincer, J. and V. Zarnowitz, 1969, The Evaluation of Economic Forecasts. In J. Mincer,

ed., Economic Forecasts and Expectations. National Bureau of Economic Research, New

York.

[21] Mishkin, F.S., 1981, Are Markets Forecasts Rational? American Economic Review 71,

295-306.

[22] Newey, W. and D. McFadden, 1994, Large Sample Estimation and Hypothesis Testing.

In R.F.Engel and D.L.McFadden eds. Handbook of Econometrics, volume 4, Elsevier:

Amsterdam.

[23] Newey, W. and West, K., 1987, A Simple, Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix. Econometrica, 55, 703-708.

38



[24] Peel, D.A. and A.R. Nobay, 1998, Optimal Monetary Policy in a Model of Asymmetric

Central Bank Preferences. FMG discussion paper 0306.

[25] Pesando, J.E., 1975, A Note on the Rationality of the Livingston Price Expectations.

Journal of Political Economy 83, 849-858.

[26] Schroeter, J.R. and S.L. Smith, 1986, A Reexamination of the Livingston Price Expec-

tations. Journal of Money, Credit and Banking 18, 239-246.

[27] Schwartz, L., 1997, Analyse. Hermann: Paris.

[28] West, K.D., 1996, Asymptotic Inference about Predictive Ability. Econometrica 64,

1067-84

[29] West, K.D. and M.W. McCracken, 1998, ”Regression-Based Tests of Predictive Ability”,

International Economic Review 39, 817-840.

[30] West, K.D., H.J. Edison and D. Cho, 1993, A Utility-based Comparison of Some Models

of Exchange Rate Volatility. Journal of International Economics 35, 23-46.

[31] White, H., 2001, Asymptotic Theory for Econometricians, 2nd edition, Academic Press,

San Diego: California.

[32] Zarnowitz, V., 1979, An Analysis of Annual and Multiperiod Quarterly Forecasts of

Aggregate Income, Output, and the Price Level. Journal of Business 52, 1-33.

[33] Zarnowitz, V., 1985, Rational Expecations and Macroeconomic Forecasts. Journal of

Business and Economic Statistics 3, 293-311.

39


