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1 Introduction

Much of the trading in financial markets is done through limit order markets. In a limit order

market, traders can submit two main types of buy and sell orders. A buy market order fills

immediately at the most attractive sell price posted by previously submitted sell limit orders in the

limit order book. A buy limit order specifies a particular price, but does not guarantee that the

order will be filled. Unfilled buy limit orders enter the limit order book, where they are stored until

they are canceled or are filled against incoming sell market orders. In most limit order markets, the

traders observe a portion of the limit order book so their order submission strategies may depend

on such information.

We develop the empirical restrictions of traders’ optimal order submission strategies in a limit

order market. We test the restrictions using the order flow and the limit order book for Ericsson,

one of the most traded stocks on the Stockholm Stock Exchange. The optimal order submission

depends on the trader’s valuation for the asset, and the trade-offs between the order price, the risk

that an order fails to fill, and the risk that order fills when the underlying value of the asset has

moved against the trader. The optimal order submission strategy changes as the trade-offs change

with market conditions, and is monotone in the trader’s valuation for the asset. The monotonicity

of the optimal order submission strategy can be tested without observing the traders’ valuations

for the asset. We fail to reject the monotonicity restriction for buy orders or sell orders separately.

We reject the monotonicity restriction when we combine buy and sell orders. The expected payoffs

from submitting limit orders with a high risk that the order fails to fill are too low.

Using the order flow and the limit order book from the Paris Bourse, Biais, Hillion, and Spatt

(1995) document that traders are more likely to submit limit orders when the limit order book

contains relatively few orders, or when the distance between the best buy and sell limit order

prices in the book increases. In addition, order submissions are autocorrelated. For example, the

conditional probability of observing a limit order at a particular price is higher when the previous

order was a limit order at that same price.

A market order submitted on the New York Stock Exchange may trade with the market maker,

a floor broker, or the electronic limit order book. Handa and Schwartz (1996) use a sample of New

York Stock Exchange transaction prices to compute the average payoffs from submitting hypothet-
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ical market and limit orders, and show that the payoffs on hypothetical limit orders are at least

as high as the payoffs on hypothetical market orders. Harris and Hasbrouck (1996), Peterson and

Sirri (2001), and Lo, MacKinlay, and Zhang (2001) use actual limit and market order submissions

from the New York Stock Exchange.

Harris and Hasbrouck (1996) compute the expected payoffs from submitting market or limit

orders for two traders–one who is committed to trade and another who is indifferent. The expected

payoffs change with the limit order book and the best available prices in the market. Traders

change their order submission strategies as the limit order book and the best available prices

change, tending to submit orders with the highest expected payoffs. A marketable buy limit order

has a price that is equal to or higher than the best sell limit order in the book. Peterson and Sirri

(2001) show that a selection bias explains why previous studies find that the payoffs are lower for

marketable limit orders than for market orders. Lo, MacKinlay, and Zhang (2001) show that the

time-to-fill for limit orders can be predicted using the best available prices, the limit order price

and the lagged order flow.

The empirical findings are consistent with theoretical models of optimal order submission. Limit

orders offer a better price than market orders, but may fail to fill. The probability that a limit

order fills is called the execution probability. Cohen, Maier, Schwartz, and Whitcomb (1981) and

Parlour (1998) show how optimal order submission strategies depend on the traders’ preferences

and their subjective beliefs about the execution probabilities for limit orders. In Parlour (1998)

order submissions are autocorrelated because past order submissions have a systematic effect on

equilibrium execution probabilities.

A limit order only transacts with a newly submitted market order. If traders do not continuously

monitor their limit orders, then their limit orders may fill when the value of the asset has changed.

Copeland and Galai (1983) point out that a commitment to trade at a fixed price is equivalent to

writing a free option to the other traders in the market. The free option property of limit orders

is called picking off risk. Harris (1998) and Foucault (1999) solve for the trader’s optimal order

submission strategies in settings where limit orders may fail to fill and face picking off risk. In

Foucault (1999), the trader’s optimal order submission depends on his valuation for the asset and

the equilibrium execution probabilities and picking off risks associated with different orders.
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Biais, Martimort, and Rochet (2000), Glosten (1994), Parlour and Seppi (2001), Rock (1996),

and Seppi (1997), derive the equilibrium limit order book in single-period settings with adverse

selection, where the limit order submitters trade off the price against the execution probability and

the expected value of the asset, conditional upon filling. The models assume that the equilibrium

limit order book satisfies a zero expected profit condition. Sand̊as (2001) tests and rejects the

zero expected profit conditions for limit order submitters using a sample from the Stockholm Stock

Exchange.

What restrictions do the trade-offs impose on order submissions? Our contribution is to provide

the restrictions, and to compute a semiparametric test of them. In our model, the trader’s optimal

order submission depends on his valuation for the asset and subjective beliefs about execution

probabilities and picking off risks. The optimal order submission strategy is a monotone function

of the trader’s valuation and is formed from the trader’s subjective beliefs about the execution

probabilities and picking off risks. We use the actual order submissions, the realized order fills,

and a rational expectations assumption to form estimates of execution probabilities and picking off

risks.

A buy limit order only fills after it becomes the highest-priced unfilled limit order in the book,

and a sell market order is submitted by another trader. Consequently, traders must predict future

traders’ order submissions to determine the execution probabilities and the picking off risks asso-

ciated with alternative order submissions. In a stationary environment, the execution probabilities

and picking off risks associated with alternative order submissions have sample analogues.

Hotz and Miller (1993) and Manski (1993) suggest using nonparametric methods to estimate

agents’ conditional expectations for alternative decisions directly from the sample. The nonpara-

metric estimates are used to identify and estimate the structural parameters in discrete choice

models. Such an approach has been applied to estimate models in labor economics by Hotz and

Miller (1993), Miller and Sanders (1997), Altug and Miller (1998), and to estimate models in in-

dustrial organization by Slade (1998) and Aguirregabiria (1999). Elyakime, Laffont, Loisel, and

Vuong (1994) and Guerre, Perrigne, and Vuong (2000) use the empirical bid distribution to esti-

mate bidders’ conditional expectations to estimate structural auction models. We use our sample

to estimate the execution probabilities and picking off risks for alternative order submissions. Our
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nonparametric estimates capture the rich dynamics that arise from traders adjusting their strategies

to changing market conditions in the future.

Most market microstructure theory makes predictions about traders’ behavior. The widespread

adoption of electronic trading systems makes available, for many markets, datasets with detailed

information about the orders that traders submitted and the expected payoffs on orders that traders

could have submitted. Such datasets allow for tests of theories about trader behavior, using methods

similar to ours.

The New York Stock Exchange recently introduced NYSE OpenBook, making information

about the electronic limit order book more easily available to traders. Using data from periods

prior to the introduction of OpenBook, Harris and Panchapagesan (1999), Kavajecz (1999), Ready

(1999), Kavajecz and Odders-White (2001) report that the specialist uses information in the limit

order book in setting his price quotes and deciding which market orders to trade with. Theoretical

work by Rock (1996), Seppi (1997), Ready (1999) and Parlour and Seppi (2001) show how the

specialist’s ability to trade against incoming market orders is a source of picking off risk for the

traders submitting limit orders. Our empirical methods can be used to estimate the response of

limit order submitters to the introduction of NYSE OpenBook in the presence of a specialist.

2 Description of the Market and the Sample

In 1990 the Stockholm Stock Exchange completed the introduction of a limit order market system,

the Stockholm Automated Exchange. There are no floor traders, market makers, or specialists with

special quoting obligations or trading privileges. Trading is continuous from 10 a.m. to 2:30 p.m.

with the opening price determined by a call auction. All order prices are required to be multiples

of a fixed minimum price unit, called the tick size. When prices are below 100 SKr, the tick size

is 1/2 SKr, and when prices exceed 100 SKr, the tick size is 1 SKr. During the sample period $1

was roughly equal to 6.25 SKr. The order size must be an integer multiple of a round lot, with a

typical round lot size equal to 100 shares.

All trading is between market and limit orders. Unfilled limit orders are stored in the electronic

limit order book and automatically fill against incoming market orders. Unfilled limit orders in

the order book are prioritized first by price and then by time of submission. The prices of the sell
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limit orders in the book are called ask quotes, and the prices of the buy limit orders in the book

are called bid quotes. If an incoming market order is for a smaller quantity than the quantity at

the best quote in the book, the market order will trade in full at a price equal to the best quote.

If the market order cannot be filled completely at the best quote, it will transact against multiple

quotes in the book until either it is filled in full or the book is empty. Any unfilled portion of a

market order converts into a limit order.

A limit order can be canceled at any time at no cost. Traders can also submit hidden limit

orders, where only a portion of the order quantity is displayed in the order book. The hidden part

of a limit order has lower priority than all displayed limit orders at the same order price level.

Only exchange member firms can enter orders directly into the trading system. A member firm

trades both as a broker on behalf of customers, and as a dealer on its own behalf. Over our sample

period, there were 24 exchange member firms, including all major Swedish banks as well as most

brokerage firms that actively trade Swedish securities. We refer to the member firms as brokers.

The brokers are directly connected to the trading system and observe all quotes with the

corresponding total order quantities. The brokers’ information is updated almost instantaneously

after order submissions or cancellations. Traders who are not directly connected to the system can

obtain information about the five best bid and ask quotes and the corresponding order quantities

through information vendors such as Reuters or Telerate. Commissions are negotiable. Average

commissions were 0.5% of the value of the order over the sample period. There is a fixed exchange

fee of less than 7 SKr and a variable exchange fee of 0.004% to submit a market order, and a fixed

exchange fee of less than 6 SKr and a variable exchange fee of 0.003% to submit a limit order.

Until January 1, 1993, the Stockholm Stock Exchange was the only authorized marketplace

for equity trading in Sweden. Many of the stocks listed on the exchange were also cross listed on

foreign exchanges; trading in London on the international Stock Exchange Automated Quotation

(SEAQ) and in the United States on the National Association of Securities Dealers Automated

Quotation (NASDAQ) system accounted for a significant fraction of the trading of many Swedish

stocks. Trading abroad was attractive because of the transaction tax of 0.5% levied on equity trades

in Sweden until December 1, 1991. Our sample begins after the transaction tax was abolished.

Brokers can settle trades larger than 100 round lots outside the Stockholm Automated Exchange
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system. A trade of 100–500 round lots settled outside the system where both sides of the order are

represented by the same broker is called an internal cross. An internal cross must have a transaction

price between the best quotes in the limit order book. A trade of more than 500 round lots settled

outside the system is called a block trade and can be settled at any price.

The Stockholm Stock Exchange provided us with the order records and the trade records di-

rectly from the Stockholm Automated Exchange system for the 59 trading days between December

3, 1991, and March 2, 1992 for Ericsson. The order records is a chronological list of order submis-

sions, changes in the outstanding order quantities, and order cancellations. The trade records is a

chronological list of transactions. Each limit order receives a unique code, and subsequent changes

in the outstanding order quantity are recorded using the same code. We combine changes in the

outstanding order quantity and the transactions to determine whether a change in the order quan-

tity was caused by a trade or a cancellation. We reconstruct complete transaction and cancellation

histories for limit orders and the entire history of the order book over our sample.

We have detailed information, but there are limitations. We can only identify the broker

submitting the order and cannot distinguish the trades that a broker makes on his own behalf from

the trades that he makes on behalf of his customers. Therefore, we cannot link orders submitted

by the same traders at different times. Also, we do not observe whether or not an order includes

a hidden order quantity component. We can infer that an order must have involved some hidden

quantities only if the displayed proportion of the hidden order is executed in full. In our sample,

there are few hidden orders whose displayed portions fully execute.

There is a censoring problem in our sample; some limit orders remain unfilled at the end of our

sample period. To minimize the effects of censoring on our analysis, we do not use orders submitted

during the last two days of our sample in our empirical work. Only 2.8% of the orders remain in

the system for more than two trading days, and 62.3% of such orders are eventually canceled. We

discard orders submitted during the first three minutes of the trading day to ensure that the sample

reflects only continuous trading. The filtering rules leave us with 20,760 observations of individual

market order and limit order submissions, and their realized fills.

Table 1 reports descriptive statistics on the daily trading activity for Ericsson. The tick size

varies between 1/2 SKr and 1 SKr since the price fluctuates below and above 100 SKr. The
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average daily close-to-close return is 0.21% with a standard deviation of 3.04%. For comparison,

the table also reports statistics on close-to-close returns computed using prices of Ericsson shares

on NASDAQ from January 2, 1989, through to December 31, 1993, using data from the Center for

Research in Security Prices. The return distribution in our sample is not unusual.

All 24 brokers trade shares in Ericsson at some point during the sample period. The fourth

row of Table 1 reports that on average 19 brokers make a trade on any given day. Sorting the

brokers by their trading volume, the top 3 brokers each transact 10% to 11% of the total trading

volume, and the next 7 brokers each transact 5% to 9% of the total trading volume. The numbers

are almost identical for order submissions.

The daily trading volume on the Stockholm Automated Exchange is reported on the fifth row

of Table 1. The sixth through eight rows of Table 1 report descriptive statistics for orders crossed

internally by brokers, block trades during regular trading hours, and after-hours trading. The ninth

row reports the total trading volume.

The first column of Table 2 reports the number of buy and sell market and limit orders. The

second column reports the average execution probabilities, equal to the average of the fraction of

the limit order quantity that is filled within two trading days of order submission. The execution

probabilities show the unconditional trade-off between the execution probability and the order price;

limit orders at prices farther away from the quotes have lower execution probabilities than limit

orders with prices closer to the quotes. The third column of Table 2 report the average time-to-fill

for limit orders measured in minutes from the order submission. Limit orders at prices farther away

from the quotes take longer to fill than limit orders at prices closer to the quotes. The final three

columns of Table 2 report the mean, median, and standard deviation of the order quantity.

The first six rows of Table 3 provide information on the order quantities in the limit order books.

An incoming buy market order transacts against the best ask quote, if the market order quantity is

less than or equal to the quantity available at the best ask quote. The average quantity at the best

bid or ask quote is roughly nine times the average market order quantity; only 12 market orders

in our sample are for quantities that are larger than the quantities available in the order book at

the best quote at the time of order submission. The order quantities in the limit order book are

volatile. The standard deviations of the order quantities at the three best bid or ask quote levels
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are all greater than 173 round lots. The standard deviations of the cumulative order quantities are

all greater than 294 round lots.

The last six rows of Table 3 provide information on the price quotes. The median distances

between the quotes and the mid-quotes equal 0.5, 1.5, and 2.5 ticks for the best three bid and ask

quotes. The medians are equal to the minimum values; the three best price quotes on the bid and

ask sides are spaced one tick apart for at least half of the observations.

A limit order may be completely filled, may be completely canceled, or may be partially filled

and then canceled. The top plot in Figure 1 is the sample survivor function for limit orders. The

sample survivor function evaluated at t is the probability that a limit order remains outstanding

for at least t minutes. We account for partial order fills by weighting each fill or cancellation by

the fraction of the submitted order quantity filled or canceled at that time.

Most limit orders leave the book quickly; 4.26% of the limit orders last for more than one trading

day (270 minutes), 2.84% last for more than two trading days, and 1.65% last for more than three

trading days. The bottom two plots in Figure 1 show the cumulative distribution function for order

fill and cancellation times. We use the weighting scheme described above to handle partial fills. For

all limit orders that eventually fill, 90% of the fills occur within three hours. For all limit orders

that eventually cancel, 70% of the cancellations occur within three hours.

Biais, Hillion, and Spatt (1995) document that traders’ order submissions depend on the order

book in the Paris Bourse. Griffiths, Smith, Turnbull, and White (2000) and Ranaldo (2002) use

ordered probit models to show that order submissions in the Toronto Stock Exchange and the

Swiss Stock Exchange can be predicted by the order book and the lagged order flow. To determine

if order submissions can be predicted in our sample, we estimate ordered probits for buy order

submissions and sell order submissions. Table 4 contains definitions of the conditioning variables.

We condition on two measures of the length of the order book queue, using the total number of

shares offered in the order book within one tick of the mid-quote and the total number of shares

offered in the order book within three ticks of the mid-quote. We do not condition on the bid-

ask spread, since it is relatively constant over the sample. Biais, Hillion, and Spatt (1995) report

that order submission activity in the Paris Bourse tends to be clustered in time; the execution

probability may depend upon lagged activity. We measure activity by trading volume over the
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previous ten minutes. We condition on the standard deviation of the changes in the OMX index

over the minimum of the previous sixty minutes or the number of minutes elapsed since the market’s

opening. We also condition on the log of the order quantity.

The estimated coefficients and associated standard errors are reported in Table 5. We reject

the null hypotheses that all coefficients are jointly equal to zero at the 1% level in both probits.

The ordered probits show that in our sample, buy and sell order submissions are predictable using

information in the order book and lagged order flow.

3 Model

We focus on a representative trader’s order submission decision in a limit order market. At time

t, one trader has the opportunity to submit an order. The trader is risk neutral, characterized by

his valuation for the asset, vt, and the quantity that he wishes to trade, qt.

We decompose vt into two components,

vt = yt + ut. (1)

The random variable yt is the common value of the asset at time t; one interpretation is that it is

equal to the traders’ expectations of the liquidation value of asset. The common value changes as

the traders learn new information, with

yt+1 = yt + δt+1. (2)

Innovations in the common value δt+1 satisfy

Et[δt+1] = 0, (3)

where the subscript t denotes conditioning on information available after the common value is known

at time t, but before the trader arrives at time t. The distribution of common value innovations

has bounded support. Common value innovations are drawn from a stationary process, and the

distribution of the innovations is conditioned upon the history of common value innovations through

a finite dimensional set of sufficient statistics. Conditioning on a set of sufficient statistics allows for

persistence in the higher-order moments of the innovations. For example, the current volatility of

the common value innovations may predict the future volatility of the common value innovations.
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The random variable ut is the trader’s private value for the asset. The private value is drawn

from a continuous distribution

Prt (ut ≤ u) ≡ Gt(u), (4)

where, as above, the subscript t denotes conditioning on information available after the common

value is known at time t, but before the trader arrives at time t. The distribution of the private

value has continuous density and bounded support. The private value is drawn from a stationary

process. The conditional distribution of the private value depends on the same finite dimensional

vector of sufficient statistics as the conditional distribution of common value innovations. Once a

trader arrives at the market, his private value remains constant while he has an order outstanding.

At a random time, t+τcancel, after the trader arrives at the market, the payoff from any unfilled

limit orders placed by the trader will go to zero, causing the trader to cancel any unfilled limit

orders. The trader does not know the cancellation time at time t. The conditional distribution of

the cancellation time depends upon the same finite dimensional vector of sufficient statistics as the

common value innovations. Let Υ < ∞ be the maximum possible life of the order,

Prt(τcancel ≤ Υ < ∞) = 1. (5)

Realizations of the cancellation time are independent of all other random variables in the model.

The trader’s desired order quantity, qt, is independent of the trader’s valuation, and is drawn

from a distribution with bounded support. The conditional distribution of the order quantity

depends upon the same set of sufficient statistics as the common value innovations.

At time t, the trader has a single opportunity to submit either a market order or a limit order.

The trader observes the queue of orders in the limit order book, the current common value, and

the history of common value innovations.

We use the decision indicators dsell
t,s for s = 0, 1, . . . , S, and dbuy

t,b for b = 0, 1, . . . , B to denote

the trader’s order submission at time t. If the trader submits a sell market order, then dsell
t,0 = 1,

and the order price is equal to the best bid quote. If the trader submits a buy market order, then

dbuy
t,0 = 1, and the order price equals the best ask quote. If the trader submits a sell limit order at

the price s ticks above the current best bid quote, then dsell
t,s = 1. If the trader submits a buy limit

order at the price b ticks below the current best ask quote, then dbuy
t,b = 1. If the trader does not

10



submit any order at time t, then dsell
t,s = 0 for all s and dbuy

t,b = 0 for all b. Both S < ∞ and B < ∞,

so that the trader chooses from a finite set of order prices.

The trader pays a cost of c per share to submit an order. The cost is the same for all types of

orders submitted. We can also allow for a fixed cost for order submissions and fixed and variable

costs for filling an order.

Suppose that at time t a trader with valuation vt = yt + ut submits a buy order of quantity qt,

at a price pt,b, b ticks below the current best ask quote, so that dbuy
t,b = 1. Define dQt,t+τ as the

number of shares of the order submitted at t that transact at t + τ . If the realized cancellation

time is t + τcancel, then dQt,t+τ = 0 for all τ ≥ τcancel.

The payoff that the trader receives from a transaction of dQt,t+τ shares of the security in τ

periods at price pt,b is equal to

dQt,t+τ (yt+τ + ut − pt,b) = dQt,t+τ (vt − pt,b) + dQt,t+τ (yt+τ − yt) , (6)

where yt+τ is the common value of the security in τ periods. The term dQt,t+τ (vt − pt,b) is the

surplus that a transaction of dQt,t+τ would earn upon immediate execution at price pt,b. The term

dQt,t+τ (yt+τ − yt) is equal to the number of shares transacted in τ periods multiplied by the change

in the common value. Summing over all possible fill times for the order and including the cost of

submitting the order, the realized payoff is equal to

Ut,t+Υ =
Υ∑

τ=0

dQt,t+τ (vt − pt,b) +
Υ∑

τ=0

dQt,t+τ (yt+τ − yt)− qtc. (7)

We define the execution probability as

ψbuy
t (b, qt) ≡ Et

[
Υ∑

τ=0

dQt,t+τ

qt

∣∣∣∣∣ dbuy
t,b = 1, qt

]
(8)

and the picking off risk as

ξbuy
t (b, qt) ≡ Et

[
Υ∑

τ=0

dQt,t+τ

qt
(yt+τ − yt)

∣∣∣∣∣ dbuy
t,b = 1, qt

]
. (9)

The conditional expectations in equations (8) and (9) do not depend upon the trader’s private

value. If the order is a market order, then the execution probability is one and the picking off risk

is zero.
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The trader’s expected payoff is equal to the expected value of equation (7), conditional on the

trader’s information set, which includes the current limit order book, the current common value, the

history of common value innovations, and the trader’s private value, order quantity, and decision,

Et

[
Ut,t+Υ

∣∣∣dbuy
t,b = 1, ut, qt

]
= qtψ

buy
t (b, qt) (vt − pb) + qtξ

buy
t (b, qt)− qtc. (10)

The first term in the trader’s expected payoff is equal to the expected number of shares that will

eventually transact times the current surplus per share for a certain fill at price pt,b. The second

term in the trader’s expected payoff equals the covariance of changes in the common value with

the quantity of the order that transacts. The final term in the trader’s expected payoff is the cost

of submitting the order. The expected payoff to a trader submitting a sell order for qt shares at a

price s ticks above the current best bid quote is defined similarly.

The trader submits the order that maximizes his expected payoff, conditional on his information,

private value, and order quantity qt,

max
{dsell

t,s }S

s=0
,
n

dbuy
t,b

oB

b=0

S∑

s=0

dsell
t,s Et

[
Ut,t+Υ

∣∣∣dsell
t,s = 1, ut, qt

]
+

B∑

b=0

dbuy
t,b Et

[
Ut,t+Υ

∣∣∣dbuy
t,b = 1, ut, qt

]
, (11)

subject to:

dsell
t,s ∈ {0, 1}, for s = 0, 1, . . . , S, dbuy

t,b ∈ {0, 1}, for b = 0, 1, . . . , B, (12)

S∑

s=0

dsell
t,s +

B∑

b=0

dbuy
t,b ≤ 1. (13)

Equation (13) imposes the constraint that at most one order is submitted. Let dsell∗
t (s, ut, qt) and

dbuy∗
t (b, ut, qt) be the optimal strategy, detailing the trader’s submission as a function of his beliefs

and information, private value, and order quantity.

Lemma 1 Suppose that a trader with private value u and quantity q optimally submits a buy order

at price b ≥ 0 ticks below the ask quote, so that dbuy∗
t (b, u, q) = 1.

1. A trader with private value u′ > u and quantity q submits a buy order at a price b′ ticks below

the ask quote such that the execution probability is higher at b′ than at b:

ψbuy
t (b′, q) ≥ ψbuy

t (b, q). (14)
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2. Suppose that the execution probabilities are strictly decreasing in the distance between the limit

order price and the best ask quote, ψbuy
t (b + 1, q) < ψbuy

t (b, q), for all b = 0, 1, . . . , B − 1. A

trader with private value u′ > u for q shares submits a buy order at a price b′ ticks below the

ask quote with b′ ≤ b.

Similar results hold on the sell side.

The optimal order submission depends upon the trader’s valuation. The common value is fixed

at t so that the only source of heterogeneity in the decision at t is the trader’s private value. If the

trader buys, the higher the trader’s private value, the higher the execution probability is for the

trader’s optimal buy order. If the trader sells, the lower the trader’s private value, the higher the

execution probability is for the trader’s optimal sell order.

Lemma 1 and the discrete price grid imply that we can partition the set of valuations into

intervals. All traders wishing to trade the same quantity whose valuations lie within the same

interval make the same order submission. Define threshold valuation θbuy
t (b, b′, q) as the valuation

of a trader who is indifferent between submitting a buy order at price pt,b and a buy order at price

pt,b′ ,

θbuy
t

(
b, b′, q

)
= pt,b +

(
pt,b − pt,b′

)
ψbuy

t (b, q) +
(
ξbuy
t (b′, q)− ξbuy

t (b, q)
)

ψbuy
t (b, q)− ψbuy

t (b′, q)
. (15)

The threshold valuation for a buy order at price pt,b and not submitting an order is

θbuy
t (b, NO, q) = pt,b +

ξbuy
t (b, q) + c

ψbuy
t (b, q)

. (16)

The threshold valuation for a sell order at price pt,s and a sell order price pt,s′ is

θsell
t

(
s, s′, q

)
= pt,s −

(
pt,s′ − pt,s

)
ψsell

t (s′, q) +
(
ξsell
t (s, q)− ξsell

t (s′, q)
)

ψsell
t (s, q)− ψsell

t (s′, q)
. (17)

The threshold valuation for a limit sell order at price pt,s and not submitting any order is

θsell
t (s,NO, q) = pt,s − ξsell

t (s, q) + c

ψsell
t (s, q)

. (18)

The threshold valuation for a sell order at price pt,s and a buy order at price pt,b is

θt (s, b, q) = pt,s +
(pt,b − pt,s) ψsell

t (s, q)−
(
ξsell
t (s, q)− ξbuy

t (b, q)
)

ψsell
t (s, q) + ψbuy

t (b, q)
. (19)
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Let B∗t (q) index the set of buy order prices that are optimal for some trader who wishes to trade

q shares at time t,

B∗t (q) ≡
{

b
∣∣∣dbuy∗

t (b, u, q) = 1 for some u
}

, (20)

with elements b∗i,t(q), for i = 1, . . . , I, ordered by the execution probabilities.

ψbuy
t (b∗i,t(q), q) > ψbuy

t (b∗i+1,t(q), q). (21)

Let S∗t (q) index the set of sell order prices that are optimal for some trader who wishes to trade q

shares at time t, with elements s∗j,t(q), for j = 1, . . . , J , ordered by the execution probabilities.

Lemma 2

θbuy
t

(
b∗1,t(q), b

∗
2,t(q), q

)
> θbuy

t

(
b∗2,t(q), b

∗
3,t(q), q

)
> . . . > θbuy

t

(
b∗I−1,t(q), b

∗
I,t(q), q

)
, (22)

θsell
t

(
s∗J−1,t(q), s

∗
J,t(q), q

)
> θsell

t

(
s∗J−2,t(q), s

∗
J−1,t(q), q

)
> . . . > θsell

t

(
s∗1,t(q), s

∗
2,t(q), q

)
, (23)

θbuy
t

(
b∗I−1,t(q), b

∗
I,t(q), q

)
> θt

(
s∗J,t(q), b

∗
I,t(q), q

)
> θsell

t

(
s∗J−1,t(q), s

∗
J,t(q), q

)
. (24)

To describe the optimal decision rule, define the marginal thresholds for sellers and buyers as

θbuy
t (Marginalt(q), q) = max

(
θt

(
s∗J,t(q), b

∗
I,t(q), q

)
, θbuy

t

(
b∗I,t(q), NO, q

))
,

θsell
t (Marginalt(q), q) = min

(
θt

(
s∗J,t(q), b

∗
I,t(q), q

)
, θsell

t

(
s∗J,t(q),NO, q

))
. (25)

If the marginal threshold for the buyers is equal to the marginal threshold for the sellers then all

traders find it optimal to submit an order. Otherwise, there are traders who find it optimal not to

submit any order.

Lemma 3 The optimal order submission strategy is

dbuy∗
t (b, u, q) = 1, if





b = b∗1,t(q) and
θbuy
t (b∗1,t(q), b

∗
2,t(q), q) ≤ yt + u < ∞,

b = b∗i,t(q) for i = 2, ..., I − 1 and
θbuy
t (b∗i+1,t(q), b

∗
i,t(q), q) ≤ yt + u < θbuy

t (b∗i (q), b
∗
i−1,t(q), q),

b = b∗I,t(q) and
θbuy
t (Marginalt(q), q) ≤ yt + u < θbuy

t (b∗I,t(q), b
∗
I−1,t(q), q),

(26)
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dsell∗
t (s, u, q) = 1, if





s = s∗1,t(q), and
−∞ ≤ yt + u < θsell

t (s∗1,t(q), s
∗
2,t(q), q),

s = s∗j,t(q), for some j = 2, . . . , J − 1 and
θsell
t (s∗j−1,t(q), s

∗
j,t(q), q) ≤ yt + u < θsell

t (s∗j,t(q), s
∗
j+1,t(q), q),

s = s∗J,t(q), and
θsell
t (s∗J−1,t(q), s

∗
J,t(q), q) ≤ yt + u < θsell

t (Marginalt(q), q),

(27)

otherwise,

dbuy∗
t (b, u, q) = dsell∗

t (s, u, q) = 0. (28)

The proof of the lemma provides a construction of B∗t (q) and S∗t (q).

Define Vt(yt +u, q) to be the indirect utility function for a trader at t with valuation yt +u and

quantity q. The indirect utility function is computed by substituting the optimal decision rule in

equations (26) through (28) into the trader’s objective function, equation (11).

Lemma 4 Vt(yt + u, q) has the following properties.

1. Vt(yt + u, q) is a positive, convex function of yt + u.

2. Suppose that dbuy∗
t (b, u, q) = 1 for some (b, u, q). Then for u′ > u, Vt(yt +u′, q) > Vt(yt +u, q).

3. Suppose that dsell∗
t (s, u, q) = 1 for some (s, u, q). Then for u′ < u, Vt(yt+u′, q) > Vt(yt+u, q).

Figure 2 plots Vt(yt +u, q) computed using a set of execution probabilities and picking off risks.

Here, q = 1, S∗t (1) = {0, 1, 2} and B∗t (1) = {0, 1, 2} . Market buy and sell orders, one tick and two

tick limit buy and sell orders are optimal for a trader with some valuation, with order quantity

equal to one share. The expected payoffs as a function of the trader’s valuation from submitting

different sell orders are plotted with dashed lines and the expected payoffs from submitting different

buy orders are plotted with dashed-dotted lines. From equation (10), the trader’s expected payoff

from submitting any particular order is a linear function of his valuation, with slope equal to the

execution probability for that order.

A change in the order entry cost, c, leads to a parallel shift in the expected payoff from submit-

ting any particular order. A change in the picking off risk for any particular order leads to a parallel

shift in the expected payoff from submitting that particular order, while keeping unchanged the

expected payoff from submitting any other order. A change in the execution probability for any

15



particular order leads to a shift in the slope in the expected payoff from submitting that particular

order, while keeping unchanged the expected payoff from submitting any other order.

Geometrically, the thresholds are the valuations for which the expected payoffs intersect. For

example, the threshold for a market sell and a limit sell at one tick from the best bid quote is

θsell
t (0, 1, 1); a trader with a valuation less than θsell

t (0, 1, 1) submits a market sell order. The

thresholds associated with submitting any particular order and submitting no order are the val-

uations where the expected payoffs cross the horizontal axis. Here, θsell
t (2,NO, 1) < θt (2, 2, 1) ,

and θbuy
t (2,NO, 1) > θt (2, 2, 1) , so that if the trader’s valuation is between θsell

t (2, NO, 1) and

θbuy
t (2,NO, 1), the trader does not submit any order.

Consider increasing the order entry cost, c. The expected payoffs for submitting any order

decrease, with all payoff curves shifting down by the same amount. As a consequence, only the

thresholds associated with submitting an order and submitting no order change. The thresholds

associated with submitting any order and submitting no order will increase on the buy side and

decrease on the sell side, as a consequence of increasing the order entry cost.

Consider increasing the picking off risk for the one tick sell limit order. The expected payoffs for

submitting a one tick sell order decreases, and the expected payoffs for any other order submissions

do not change. The expected payoffs for a one tick sell order make a parallel outward shift, implying

that the threshold for the one tick sell order and market order increases, and the threshold for the

one tick sell order and the two tick sell order decreases. The payoff curve for a market order is steeper

than the payoff curve for the two tick sell order; the threshold associated with the market order

increases by less than the threshold associated with the two tick order decreases as a consequence

of increasing the picking off risk.

Consider increasing the execution probability for the one tick sell order. The expected payoffs for

submitting a one tick sell order increase, and the expected payoffs for any other order submissions

do not change, implying that the threshold for the one tick sell order and market order decreases,

and the threshold for the one tick sell limit order and the two tick sell limit order increases.

The indirect utility function Vt(yt + u, 1) is plotted with a thick solid line in the figure. The

indirect utility function is the upper envelope of the payoffs associated with the different order

submissions. The indirect utility function is higher for traders with more extreme private values
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than for traders with less extreme private values.

Using the optimal submission submission strategy in equation (28), the probability of a trader

submitting a sell order at a price s∗1,t(q) ticks above the current best bid quote, conditional on the

arrival of a trader who wishes to trade q shares, is

Prt

(
dsell∗ (

s∗1,t(q), ut, q
)

= 1
∣∣∣ q

)
= Prt

(
yt + ut ≤ θsell

t

(
s∗1,t(q), s

∗
2,t(q), q

)∣∣ q
)

= Gt

(
θsell
t

(
s∗1,t(q), s

∗
2,t(q), q

)− yt

)
. (29)

The last line follows from the definition of Gt in equation (4) and because the quantity and the

private value are independent random variables. Similarly, for j = 2, . . . , J − 1

Prt

(
dsell∗

t

(
s∗j,t(q), ut, q

)
= 1

∣∣∣ q
)

= Gt

(
θsell
t

(
s∗j,t(q), s

∗
j+1,t(q), q

)− yt

)

−Gt

(
θsell
t

(
s∗j−1,t(q), s

∗
j,t(q), q

)− yt

)
, (30)

and

Prt

(
dsell∗

t

(
s∗J,t(q), ut, q

)
= 1

∣∣∣ q
)

= Gt

(
θsell
t (Marginalt(q), q)− yt

)

−Gt

(
θsell
t

(
s∗J−1,t(q), s

∗
J,t(q), q

)− yt

)
. (31)

Similar expressions to equations (29) through (31) hold for buy orders.

Equations (29) through (31) show that there are two reasons for order submissions to be au-

tocorrelated. First, the threshold valuations may be autocorrelated through autocorrelation in the

expected payoffs from different order submissions. Second, innovations in the common value yt are

correlated to current order submissions, and have a permanent affect on the level of the common

value.

Equations (29) through (31) show that the conditional probabilities of observing different order

submission conditional on the arrival of a trader form an ordered qualitative response model, as

defined by Amemiya (1985). A standard ordered qualitative response model is the ordered probit.

An ordered probit formulation of the order submission decision is

Prt

(
dsell∗

t

(
s∗j,t(q), ut, q

)
= 1

∣∣∣ q
)

= Φ
(
Γsell

j − x′tΓ
)
− Φ

(
Γsell

j−1 − x′tΓ
)

, (32)

where Φ(·) is the cumulative normal distribution, xt an observable vector of conditioning variables,

Γ is a coefficient vector and Γsell
j and Γsell

j−1 are fixed constants, similarly for any buy order. From
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equations (29) through (31), our model is consistent with an ordered probit formulation for order

submissions only if the private value is normally distributed, and the thresholds are of the form

θsell
t

(
s∗j,t(q), s

∗
j+1,t(q), q

)− yt = Γsell
j − x′tΓ. (33)

In the ordered probit formulation, a change in the conditioning variables affects all the threshold

valuations in the same direction and by the same amount.

Consider a shock to the conditioning variables that leads to a change in the picking off risk for

a one tick sell limit order. Either the the shock does not change the picking off risks or execution

probabilities of other orders, or the shock changes the picking off risk or execution probability for

at least one other order. In the first case, the shock will cause the threshold associated with the

market order to increase and the threshold associated with the two tick sell limit order to decrease.

A probit formulation requires all the thresholds to move by the same amount when the conditioning

variables change. A probit formulation is therefore inconsistent with the first case. For the ordered

probit formulation to be consistent with the second case, the shock must change the picking off

risks and execution probabilities for all orders so that all thresholds change by same amount.

Figure 3 plots the optimal order submission strategy corresponding to the indirect utility func-

tion in Figure 2. The distribution of private values Gt is a mixture of three normal distributions.

The horizontal axis in the figure is the trader’s private value and the vertical axis is the cumulative

probability distribution of the private values. The probability of various order submissions is deter-

mined by the thresholds, the common value, and the distribution of private values Gt by equations

(29) through (31).

For example, the probability of a trader submitting a sell market order is Gt

(
θsell
t (0, 1, 1)− yt

)
.

A trader with valuation between θsell
t (1, 2, 1)−yt and θsell

t (0, 1, 1)−yt places a sell limit order at one

tick from the bid quote. The probability of a trader submitting a sell limit order one tick from the

bid quote is Gt

(
θsell
t (1, 2, 1)− yt

) − Gt

(
θsell
t (0, 1, 1)− yt

)
. A trader with a private value between

θsell
t (2, NO, 1) and θbuy

t (2, NO, 1) does not submit any order, and the probability of such an event

is

Prt (NO|q) = Gt

(
θbuy
t (2, NO, 1)− yt

)
−Gt

(
θsell
t (2,NO, 1)− yt

)
. (34)

Given that a trader may find it optimal to submit no order, the probability of observing a sell
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market order, conditional on observing any order submission, is equal to

Prt

(
dsell∗

t

(
s∗0,t(q), ut, q

)
= 1

∣∣∣ q, order submission
)

=
Gt

(
θsell
t (0, 1, 1)− yt

)

1− Prt (NO |q) . (35)

The model can be tested without estimating Gt(u). Lemma 2 provides a basis for an empirical

test of the model, as illustrated by the following example. Conditional on observing an order

submission, the probability of observing each of the following buy orders is strictly positive: a buy

market order, a one tick buy limit order, and a two tick buy limit order. The best ask quote is

equal to 100, and the tick size is 1. The execution probabilities for buy orders are ψbuy
t (0, 1) = 1,

ψbuy
t (1, 1) = 0.7 and ψbuy

t (2, 1) = 0.6. For simplicity, the picking off risk for all buy limit orders is

zero. The order quantity is equal to one. Observing such data implies that the model is false.

Figure 4 plots the payoffs for a trader submitting the three different buy orders against the

trader’s valuation. The dashed line is the expected payoff from submitting a buy market order, the

light solid line is the expected payoff from submitting a one tick buy limit order, and the dashed-

dotted line is the expected payoff from submitting a two tick buy limit order. There is no valuation

for which the one tick buy limit order is optimal; the expected payoff from submitting a one tick

buy limit order is always lower than the payoffs from submitting a market order or a two tick limit

order. The threshold valuations are equal to

θbuy
t (0, 1, 1) = 100 +

(1)(0.7)
(1.0− 0.7)

= 102.33,

θbuy
t (1, 2, 1) = 99 +

(1)(0.6)
(0.7− 0.6)

= 105.00. (36)

In the example, θbuy
t (1, 2, 1) > θbuy

t (0, 1, 1); the threshold valuations violate the monotonicity

restriction. Since traders submit one tick limit orders with positive probability, the observed order

submissions are not the outcome of the optimization in equations (11) through (13). Computing

the threshold valuations requires only the execution probabilities for the orders that are actually

submitted. It does not require knowledge of the traders’ valuations, nor knowledge of the execution

probabilities and picking off risks of orders not submitted by the traders.

The example is not a knife-edge case. Hold the execution probability for a buy market order

equal to one and the execution probability for a two tick buy limit order equal to 0.6. With

execution probabilities for a one tick buy limit order between 0.6 and 0.75, the model is inconsistent
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with traders submitting a one tick limit order with strictly positive probability. With execution

probabilities for a one tick buy limit order between 0.75 and 1.00, the model is consistent with

traders submitting a one tick buy limit order with strictly positive probability.

4 Empirical Evidence

We test the monotonicity restrictions in Lemma 2 in our sample. To form a test, we need to

establish two auxiliary empirical results. First, we need to identify orders chosen with strictly

positive probability. Second, we need to rank the orders chosen with strictly positive probability

according to their execution probabilities. Once we establish the auxiliary results, we form a test

of the monotonicity restrictions in Lemma 2.

We assume that the traders have rational expectations, and that their conditioning information

can be captured by a vector of conditioning variables. Given that the model imposes weak functional

form restrictions on the execution probabilities and picking off risks, we estimate the traders’

expectations using nonparametric regressions of the realized fill history of each of the orders onto a

set of conditioning variables. Ideally, we would include the entire limit order book and the variables

that predict the distribution of the common value innovations, the distribution of private values

and the cancellation times in the conditioning set, as well as the order quantity. It is impractical to

do so. As such, we limit ourselves to the same conditioning variables used in the probits reported

earlier. Let Xt denote the conditioning information. Table 4 contains definitions of the conditioning

variables.

4.1 Test of Strictly Positive Conditional Choice Probabilities

Let

B̈(Xt) =
{

b
∣∣∣Pr

(
dbuy

b,t = 1
∣∣∣Xt

)
> 0

}
(37)

index buy order prices that are chosen with strictly positive probability in our sample conditional

upon Xt, with a similar definition for S̈(Xt). Order B̈(Xt) by the distance from the best ask quote

and order S̈(Xt) by the distance from the best bid quote.

An order is in B̈(Xt) or S̈(Xt) for all Xt, if it has strictly positive conditional choice probability

for all Xt. Suppose that buy orders at n, n + 1, . . . , N and sell orders at o, o + 1, . . . , O all have
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conditional choice probabilities greater than or equal to LB, where LB is strictly greater than zero.

Let z++
t be a vector of strictly positive measurable functions of the vector Xt, and let ⊗ be the

Kronecker product. Define

PC = E







dbuy
t,n − LB

dbuy
t,n+1 − LB

...
dbuy

t,N − LB

dsell
t,o − LB

dsell
t,o+1 − LB

...
dsell

t,O − LB




⊗ z++
t




. (38)

Using the law of iterated expectations, the conditional choice probabilities greater than or equal to

LB, implies the null hypothesis

H0 : PC > 0. (39)

We use the sample moment analogue P̂CT to form an an estimator for PC. Under standard

conditions,
√

T
(
P̂CT − PC

)
converges in distribution to a normal random variable, with asymp-

totic variance-covariance matrix, APC . The asymptotic covariance matrix is estimated using the

Newey and West (1987) procedure.

Wolak (1989) derives a test statistic for a local test of H0,

MPC = min
{a|a≥0}

T (P̂CT − a)A−1
PC(P̂CT − a)′, (40)

and shows that under H0, MPC converges in distribution to the weighted sum of χ2 variables,

Pr(MPC ≥ r) =
dim(APC)∑

k=0

Pr[χ2
k ≥ r]w(dim(APC), dim(APC)− k,APC), (41)

where χ2
k is a χ2 variable with k degrees of freedom, dim(APC) is the rank of the asymptotic

variance covariance matrix and w(dim(APC), dim(APC)−k,APC), k = 0, . . . , dim(APC) are a set

of weights that depend on the asymptotic variance-covariance matrix. Wolak (1989) describes a

Monte Carlo method for calculating the weights.

Table 6 reports the results for the tests that the conditional choice probabilities are greater than

0.02. The tests are computed for the one tick limit order, the two tick limit orders, and the three

tick limit orders, for both the buy and sell sides. Table 2 reports that in our sample, approximately

50% of the orders submitted are market orders, and so we do not include market orders in the test.
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Each row reports the point estimates of the unconditional differences in decision indicators and

0.02 multiplied by positive instruments, standard errors, and p-values for the null of monotonicity of

the execution probabilities for different order submissions.1 Each column corresponds to a different

positive instrument. The final row of the table reports the MPC test described above for each

instrument and all submissions, and the final column of the table reports the test statistic across

the instruments. All of the point estimates are strictly positive and none of the tests reject the null

hypothesis of monotonicity of the execution probabilities; the p-values are all greater than 0.98.

4.2 Test of Monotonicity of the Execution Probabilities

The execution probabilities are computed as a nonparametric regression of realized fills on infor-

mation known at the time of order submission. Let K be a multidimensional kernel function and

hT a bandwidth associated with each argument. The nonparametric estimate of ψsell(s̈, Xt) is

ψ̂sell(s̈, Xt) ≡
∑T

t′ 6=t

(
dsell

s̈,t′
∑Υ

τ=1

dQt′,t′+τ

qt′

)
K (

h−1
T (Xt′ −Xt)

)
∑T

t′ 6=tK
(
h−1

T (Xt′ −Xt)
) , (42)

for s̈ ∈ S̈(Xt), with a similar definition on the buy side. From the definition of S̈(Xt), ψ̂sell(s̈, Xt)

is well defined. Since almost all limit orders remain in the limit order book for less than two days

in our sample, we set the maximum life of the order, Υ in equation (42), equal to two days.

Elements of B̈(Xt) are ordered by the distance from the best quotes. If the execution prob-

abilities are monotone in the distance from the best quotes, then ordering the thresholds by the

distance from the best quotes is equivalent to ordering by the execution probabilities.

To test monotonicity of the execution probabilities, define

DF ≡ E




I(Xt ∈ X̄)




ψbuy(b̈1, Xt)− ψbuy(b̈2, Xt)
ψbuy(b̈2, Xt)− ψbuy(b̈3, Xt)

...
ψsell(s̈1, Xt)− ψbuy(s̈2, Xt)
ψsell(s̈2, Xt)− ψsell(s̈3, Xt)

...




⊗ z++
t




, (43)

where I(Xt ∈ X̄) is a trimming indicator for the set X̄ in the interior of the support of Xt. The

trimming indicator is used to simplify the asymptotic distribution. See Ahn and Manski (1993)
1The standard errors are computed with 50 lags with the Newey and West (1987) procedure. The empirical results

are robust to changes in the lag length. The asymptotic p-values for the monotonicity tests are computed using 10,000
Monte Carlo simulation trials.
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for details. Applying the law of iterated expectations, monotonicity of the execution probabilities

implies the null hypothesis

H1 : DF > 0. (44)

We use the sample moment analogue of DF to form the estimator D̂F T , using the nonparametric

estimators of the execution probabilities. In Appendix C, we provide regularity conditions under

which
√

T
(
D̂F T −DF

)
converges in distribution to a normal random variable, and we provide the

asymptotic variance-covariance matrix, ADF . We form a similar test statistic to MPC in equation

(40) above as a test of H1.

Table 7 reports the results of the monotonicity tests of the execution probabilities. The tests

are computed using the execution probabilities for market and one tick limit order, the one and

two tick limit orders, and the two and three tick limit orders, for both the buy and sell orders.

Each row reports the point estimates of the unconditional differences in execution probabilities

multiplied by positive instruments, standard errors, and p-values for the null of monotonicity of

the execution probabilities for different order submissions.2 Each column corresponds to a different

positive instrument. The final row of the table reports the MDF test described above for each

instrument and all submissions, and the final column of the table reports the test statistic across

each choice. All of the point estimates are strictly positive and none of the tests reject the null

hypothesis of monotonicity of the execution probabilities; the p-values are all greater than 0.98.

Together, the test statistics reported in Table 6 and Table 7 fail to reject that market orders,

one tick, two tick and three tick limit buy orders are in B̈(Xt), and similarly for the sell orders,

and that ordering the orders by the distance from the quotes is that same as ordering them by the

execution probabilities. As such, we compute the associated threshold valuations, and a test for

monotonicity of them.

4.3 Test of Lemma 2

Computing the threshold valuations requires estimates of the picking off risks. Estimates of the

picking off risks requires estimates of changes in the common value. From equation (3), the common
2The standard errors are computed with 50 lags using the method described in Appendix C to capture the overlap

in the errors in the execution probabilities between orders submitted at different times. The empirical results are
robust to changes in the lag length. The asymptotic p-values for the monotonicity tests are computed using 10,000
Monte Carlo simulation trials.
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value is integrated of order one, or I(1). We assume that there is an I(1) vector of factors, ft, such

that

yt = βft, (45)

with β a parameter.

The best bid quote is observed when there are buy limit orders outstanding in the order book.

Accordingly, denote by t′ a time period where there are outstanding buy limit orders in the book.

We provide conditions in Appendix B so that the best bid quote is is co-integrated with the common

value,

psell
0,t′ = yt′ + εt′

= βft′ + εt′ , (46)

where psell
0,t′ is the best bid quote at time t′ and εt′ is I(0). Let β̂T ′ denote the least squares estimate

of β obtained by regressing psell
0,t′ on ft′ . We form an estimate of the common value as

ŷt = β̂T ′ft. (47)

We used minute-by-minute observations of the value of the OMX index as our factor series. The

OMX index is a value-weighted index of the 30 most traded companies on the Stockholm Stock

Exchange. We also experimented with including the daily sampled US/SKr exchange rate and daily

sampled Swedish interest rates as factors. The first column of Table 8 reports a Dickey-Fuller test

statistics for the null hypothesis of unit root in the OMX index, the bid quote, and the ask quote;

the test fails to reject the null. The final two columns of Table 8 report the results from estimating

a cointegrating regression between the OMX index and the bid, and the ask. We do not reject the

null hypotheses that the bid and the ask are cointegrated with the OMX index.

Our estimator for ξsell(s̈, Xt) is

ξ̂sell(s̈, Xt) =

∑T
t′ 6=t

(
dsell

s̈,t′
∑Υ

τ=0

dQt′,t′+τ

qt′
(ŷt′+τ − ŷt′)

)
K (

h−1
T (Xt′ −Xt)

)
∑T

t′ 6=tK
(
h−1

T (Xt′ −Xt)
) , (48)

where ŷt is the estimator of the common value in (47), and s̈ ∈ S̈(Xt). We form a similar estimator

for buy order picking off risks.
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We estimate the threshold valuations by

θ̂sell(s̈, s̈′, Xt) = ps̈,t −
(
ps̈′,t − ps̈,t

)
ψ̂sell(s̈′, Xt) +

(
ξ̂sell(s̈, Xt)− ξ̂sell(s̈′, Xt)

)

ψ̂sell(s̈, Xt)− ψ̂sell(s̈′, Xt)
, (49)

with a similar estimator for the buy side. If ψsell(s̈, Xt) − ψsell(s̈′, Xt) > 0, then θsell(s̈, s̈′, Xt)

is a continuous function of the execution probabilities and picking off risks. Consistency of the

estimators for the execution probabilities and picking off risks then implies that θ̂sell(s̈, s̈′, Xt) is a

consistent estimator.

We use our estimators for the threshold valuations, equation (49), to form a test statistic for

the monotonicity restrictions in equation (22) of Lemma 2. If

{0, 1, 2, 3} ⊂ S∗(Xt), and {0, 1, 2, 3} ⊂ B∗(Xt), (50)

then Lemma 2 implies that

θbuy (0, 1, Xt) > θbuy (1, 2, Xt) > θbuy (2, 3, Xt) , (51)

θsell (2, 3, Xt) > θsell (1, 2, Xt) > θsell (0, 1, Xt) , (52)

and

θbuy (2, 3, Xt) > θsell (2, 3, Xt) . (53)

Define

Dθ ≡ E




I(Xt ∈ X̄)




θbuy (0, 1, Xt)− θbuy (1, 2, Xt)
θbuy (1, 2, Xt)− θbuy (2, 3, Xt)
θsell (1, 2, Xt)− θsell (0, 1, Xt)
θsell (2, 3, Xt)− θsell (1, 2, Xt)
θbuy (2, 3, Xt)− θsell (2, 3, Xt)



⊗ z++

t




. (54)

Inequalities (51) through (53) and the law of iterated expectations imply the null hypothesis,

H2 : Dθ > 0. (55)

We use the sample moment analogue of Dθ to form the estimator D̂θT , using the nonpara-

metric estimators for the threshold valuations. In Appendix C, we provide conditions under which
√

T
(
D̂θT −Dθ

)
converges in distribution to a normal random variable and provide the asymptotic

variance-covariance matrix. We form a similar test statistic to MPC in equation (40) above as a

test of H2.
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Table 9 reports estimates of the average threshold valuation differences. The first panel reports

the average of the differences for buy orders multiplied by positive instruments; reported below each

estimate are associated asymptotic standard errors and p-values for the null that the differences

are positive.3 Each column uses a different positive instrument. The final column reports the MDθ

statistic for each difference for all the instruments jointly, with asymptotic p-values reported in

parentheses.

The point estimates of the threshold valuation differences are positive for all buy order thresholds

and the tests do not reject the null hypothesis of monotonicity, either individually for each pair of

threshold valuations and instrument, or jointly across all instruments.

The second panel reports estimates of the differences for sell orders. The point estimates of the

differences between the threshold valuation for a two tick and a three tick sell limit order and the

threshold valuation for a one tick and a two tick sell limit order are negative for all the instruments,

except the close depth. The formal tests, however, fail to reject the null hypothesis of monotonicity,

with the lowest p-value being 0.47. The point estimates of the differences between the threshold

valuations for one tick and a two tick sell limit order and the threshold valuations for a sell market

order and one tick sell limit order are strictly positive. The test fails to reject the null hypothesis

of monotonicity, with all p-values being close to one.

The third panel reports estimates of the differences between the threshold valuation for a two

tick and a three tick buy limit order and the threshold valuation for a two and a three tick sell

limit order. The point estimates are negative for all instruments. The associated tests all reject

the null hypothesis of monotonicity at the 5% level. The joint test across all instruments reported

in the last column rejects the null hypothesis at the 1% level.

The bottom panel of Table 9 reports the joint tests for the buy threshold valuation differences,

the sell threshold valuation differences, and the buy and sell threshold valuations together with

asymptotic p-values reported below the point estimates. For all instruments, we fail to reject the

null hypothesis of monotonicity for the buy and the sell thresholds separately. The final two rows

of the table test the monotonicity of all thresholds simultaneously, and the tests all reject the null
3The standard errors are computed as described in Appendix C using the Newey and West (1987) procedure with

50 lags, and the asymptotic p-value for the MDθ statistic is computed using the simulation method given in Wolak
(1989) with 10,000 Monte Carlo simulation trials. The results are robust to changes in the lag length.
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hypothesis at the 1% level.

5 Interpretation of the Evidence

Figure 5 plots the estimated payoffs for buy and sell market, one, two and three tick limit orders,

evaluated at the observation in the sample where the conditioning variables are closest to their

sample averages. The estimated payoffs for traders with valuations equal to the threshold valuations

are computed by substituting estimates of the threshold valuations, the execution probabilities, and

picking off risks, and the order quantity into equation (10), and dividing by the order quantity. The

order entry cost per share, c, is set equal to zero. The estimated payoffs for traders with valuations

between the threshold valuations lie on the linear segment between the estimated payoffs at the

threshold valuations. The top plot is the expected payoffs for the sell orders and the bottom plot

is the expected payoffs for the buy orders. The horizontal axis is the trader’s valuation and the

vertical axis is the expected payoff. The thick solid line is the maximum obtainable payoffs, if the

traders were constrained to submit sell orders or buy orders only.

On the sell side, the threshold valuations do not satisfy the monotonicity restriction; there is

no valuation for which a two tick sell order is optimal. On the buy side, the threshold valuations

do satisfy the monotonicity restrictions. The threshold valuations do not satisfy the monotonicity

restrictions for the buy and sell orders jointly.

Suppose that traders were restricted to submit buy orders only. The optimal buy order for

a trader with a valuation equal to 115 would be to submit a two tick buy limit order. But if

such a trader were allowed to submit a sell order, he would obtain a higher expected payoff from

submitting a one tick sell limit order. Suppose that traders were restricted to submit sell orders

only. The optimal sell order for a trader with valuation equal to 116 would be to submit a three

tick sell limit order. But if such a trader were allow to submit a buy order, he would obtain a

higher expected payoff from submitting a one tick buy limit order. The situations illustrated in

Figure 5 are common enough in our sample for the the model to be rejected.

As a further diagnostic, Table 10 reports the sample averages of the execution probabilities,

picking off risks, and the average estimated payoffs per share for traders with valuations equal to the

six threshold valuations used in computing the monotonicity test. The second column of Table 10
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reports the average of the estimated picking off risks. On average, buy orders away from best bid

quote and sell orders away from the best ask quote face a larger picking off risk than orders closer

to the quotes. The exception is the three tick sell limit order, which has smaller a picking off risk

than the picking off risk for the two tick sell limit order.

The third column of Table 10 reports the average estimated payoffs for traders with valuations

equal to the threshold valuations. For buy orders, the estimated payoffs are increasing the closer the

order submission is to the quotes. There are two reasons that the estimated payoffs change across

order submissions. First, the price, the execution probabilities, and the picking off risks change

across order submissions. Second, the estimated valuations of the trader submitting the order

changes across order submissions. The monotonicity of the estimated payoffs is consistent with the

monotonicity of the indirect utility function in Lemma 4. The average estimated payoffs for three

tick buy limit orders is negative. The average estimated payoffs for two tick sell limit orders is less

than that for three tick sell limit orders, although the difference is small. The estimated payoffs

further illustrate how the model fails.

By construction, the threshold valuations for two order submissions involve a comparison of

the payoffs from submitting the orders; costs that enter both expected payoffs do not affect the

threshold valuations. Fixed or variable costs of submitting orders that are the same across order

types do not change the threshold valuations, and so such costs cannot explain the rejections.

Fixed or variables costs of filling an order that are common across order types enter the threshold

valuations additively and do not affect the difference between two threshold valuations, and so such

costs also cannot explain the rejections.

The threshold valuations are the valuations where the expected payoffs from submitting two

orders are equal. We reject the model because the thresholds for the two versus three tick buy

limit order is lower than the thresholds for the two versus three tick sell limit order. How might

we modify the model so that it is not rejected?

A decrease in the expected payoffs of the two tick buy limit order, an increase in the expected

payoffs of the three tick buy limit order, or a combination of the two would lead to an increase in

the threshold for the two versus three tick buy limit order. Similar changes for sell orders would

lead to a decrease in the threshold for the two versus three tick sell limit order. Such changes could
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pull the thresholds apart.

We also find the two versus three tick sell limit threshold is approximately equal to the two versus

one tick sell limit threshold. To pull the thresholds apart, the expected payoffs from submitting

two tick sell limit orders must increase relative to the one tick sell limit orders.

Adding costs of monitoring outstanding limit orders would lower the payoffs of all limit orders,

and lower the payoffs more for orders with lower execution probabilities. Orders with lower execu-

tion probabilities remain in the limit order book for a longer time than orders with higher execution

probabilities. As a consequence, the monitoring costs will be higher for orders with lower execution

probabilities; monitoring costs alone would not pull the thresholds apart. Similarly, risk aversion is

likely to reduce the expected payoffs more for limit orders with lower execution probabilities than

for orders with higher execution probabilities. As a consequence, risk aversion would not pull the

thresholds apart.

Consider allowing the traders to resubmit orders if their initial limit orders fail to fill. The

expected payoff from resubmitting a order is only important when the original order is canceled

and the trader chooses to resubmit. The value of the option to resubmit would likely make limit

orders with lower execution probabilities relatively more attractive than limit orders with higher

execution probabilities. Allowing the traders to resubmit may pull the thresholds apart.

Three tick sell limit orders lead to higher payoffs than two tick or three tick buy limit orders.

Traders submit both two tick and three tick buy limit orders in our sample. Perhaps there is a

higher cost for submitting sell orders than for submitting buy orders. Such a cost could reduce

the payoffs for submitting sell orders relative to the payoffs for submitting buy orders. A natural

candidate is a short selling cost.

6 Conclusions

We characterize the optimal order submission strategy for traders in a limit order market facing

the trade-off between order price, execution probabilities, and picking off risks. The optimal order

strategy is a monotone function of a trader’s unobserved valuation for the asset. We develop and

compute a semiparametric test of the monotonicity restriction. We fail to reject the monotonicity

restriction for buy orders or sell orders separately. We reject the monotonicity restriction when we
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combine buy and sell orders. We find that the expected payoffs from submitting buy and sell limit

orders away from the quotes are too low.

We consider a one-shot order submission problem, without allowing for the possibility of re-

submissions and cancellations in the traders’ order submission strategies. Extending our model

and empirical approach to allow for cancellations and resubmissions is a useful direction for future

work.
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A Proofs

Proof of Lemma 1. Assume that u′ > u. Given dbuy∗
t (b, u, q) = 1,

qψbuy
t (b, q) (yt + u− pb,t) + qξbuy

t (b, q)− qc ≥ qψbuy
t (b′, q)

(
yt + u− pb′,t

)
+ qξbuy

t (b′, q)− qc, (A1)

and dbuy∗
t (b′, u′, q) = 1,

qψbuy
t (b′, q)

(
yt + u′ − pb′,t

)
+ qξbuy

t (b′, q)− qc ≥ qψbuy
t (b, q)

(
yt + u′ − pb,t

)
+ qξbuy

t (b, q)− qc. (A2)

Subtracting inequality (A2) from inequality (A1) and dividing by q,
(
ψbuy

t (b, q)− ψbuy
t (b′, q)

) (
u− u′

) ≥ 0. (A3)

Since u′ > u, equation (A3) implies that ψbuy
t (b′, q) > ψbuy

t (b, q). If the execution probability is
monotone in distance from the best ask quote, then equation (A3) implies that b′ ≤ b. The proof
for the sell side is symmetric.

Proof of Lemma 2. If it is optimal for a trader with private value u to submit a buy order, then
it is also optimal for traders with private values u′ > u to submit buy orders. Let s be an arbitrary
sell order, and suppose that dbuy

t (b, u, q) = 1. After dividing by q we have

ψbuy
t (b, q)

(
yt + u′ − pb,t

)
+ ξbuy

t (b, q)− c > ψbuy
t (b, q) (yt + u− pb,t) + ξbuy

t (b, q)− c

≥ ψsell
t (s, q) (ps,t − yt − u)− ξsell

t (s, q)− c

≥ ψsell
t (s, q)

(
ps,t − yt − u′

)− ξsell
t (s, q)− c. (A4)

The first line follows because u′ > u; the second line follows because it is optimal for a trader
with private value u to submit a buy order at b; the third line follows because u′ > u. Sym-
metric arguments hold for sellers. Thus, there exists ut ≥ ut such that all traders with private
values u > ut find it optimal to submit buy orders, and all trader with private values u < ut find
it optimal to submit sell orders. Monotonicity of the associated thresholds follows from Lemma 1.

Proof of Lemma 3. We start with a construction of B∗t (q). Let b̆ be an arbitrary buy order, and
define the functions,

b̄t(b̆, q) = arg max
b

θbuy
t (b̆, b, q), subject to ψbuy

t (b, q) ≤ ψbuy
t (b̆, q), (A5)

θ̄buy
t (b̆, q) = θbuy

t (b̆, b̄t(b̆, q), q), (A6)

θ̄sell
t (b̆, q) = max

s
θt(s, b̆, q), (A7)

and
θ̄t(b̆, q) = max

(
θ̄buy
t (b̆,q), θ

buy
t (b̆,NO, q), θ̄sell

t (b̆, q)
)

. (A8)

Here, θ̄buy
t (b̆, q) is the highest possible threshold valuation for a buy order at b̆ and a buy order with

a lower execution probability with b̄t(b̆, q) the associated buy order, and θ̄sell
t (b̆, q) is the highest

possible threshold valuation for a buy order at b̆ and any sell order. Finally, θ̄t(b̆, q) is the highest
possible threshold for a buy order at b̆, any buy order with lower execution probability, no order,
or a sell order.
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Let ḃt(q) be the buy order with the highest possible expected execution probability.

ḃt(q) ≡ arg max
b

ψbuy
t (b, q). (A9)

Compute θ̄(ḃt(q), q). Let ū be the highest possible value for the private value. If

θ̄(ḃt(q), q)− yt ≤ ū, (A10)

then set
b∗1,t(q) = ḃt(q). (A11)

If inequality (A10) does not hold, then ḃt(q) is not an optimal order for a trader with any
possible private value. If inequality (A10) does not hold, and

θ̄buy
t (ḃt(q), q) 6= θ̄t(ḃt(q), q), (A12)

then either no order or a sell order leads to the highest threshold valuation associated with ḃt(q).
In this case,

B∗t (q) = ∅. (A13)
If inequality (A10) does not hold, and

θ̄buy
t (ḃt(q), q) = θ̄t(ḃt(q), q), (A14)

then a buy order leads to the highest threshold valuation associated with ḃt(q). In this case, set
ḃt(q) equal to b̄t(ḃt(q), q), and perform the same computations described above, until either b∗1,t(q)
is found or B∗t (q) = ∅. By assumption, there is a finite number of potential buy prices; one of the
two conditions will be met.

Once b∗1(q) is found, the following recursive procedure is used to find the remaining optimal
prices. Let b∗j,t(q) be given. Compute θ̄buy

t (b∗j,t(q), q), θ̄sell
t (b∗j,t(q), q) and θ̄t(b∗j,t(q), q). If

θ̄buy
t (b∗j,t(q), q) = θ̄t(b∗j,t(q), q), (A15)

then
b∗j+1,t(q) = b̄t(b∗j,t(q), q). (A16)

If
θ̄buy
t (b∗j,t(q), q) 6= θ̄t(b∗j,t(q), q), (A17)

then there are no more elements in B∗t (q).
The set of optimal sell prices is constructed similarly.
We now show that equations (26) through (28) in Lemma 3 provide the optimal submission

strategy. Let ut satisfy

θbuy
t (b∗j+1,t(q), b

∗
j,t(q), q) ≤ yt + ut < θbuy

t (b∗j (q), b
∗
j−1,t(q), q), (A18)

so that according to equation (26), b∗j,t(q) is the optimal order submission.
Suppose that a buy order at b leads to a higher payoff for the trader with private value ut than

an order at bj,t(q). Then after dividing by q,

ψbuy(b∗j,t(q), q)(yt +ut−pb∗j,t(q)
)+ ξbuy(b∗j,t(q), q)− c < ψbuy(b, q)(yt +ut−pb)+ ξbuy(b, q)− c. (A19)

Assume that the execution probability for an order at b is higher than the execution probability
at b∗j,t(q). Then, inequality (A19) implies that for u > ut,

ψbuy(b∗j,t(q), q)(yt +ut−pb∗j,t(q)
)+ ξbuy(b∗j,t(q), q)− c < ψbuy(b, q)(yt +ut−pb)+ ξbuy(b, q)− c, (A20)
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Evaluating inequality (A20) at θbuy
t (b∗j (q), b

∗
j+1(q), q) contradicts equation (A16).

Assume that the execution probability for an order at b is lower than the execution probability
at b∗j,t(q). Then, inequality (A19) implies that for u > ut,

ψbuy(b∗j,t(q), q)(yt + ut − pb∗j,t(q)
) + ξbuy(b∗j,t(q), q)− c−

(
ψbuy(b, q)(yt + ut − pb) + ξbuy(b, q)− c

)
,

(A21)
is decreasing in u. Therefore,

θbuy(b, b∗j,t(q), q) > θbuy(b∗j−1,t(q), b
∗
j,t(q), q), (A22)

contradicting the definition of b∗j−1,t in equation (A16). Similar arguments hold if either a sell order
or no order leads to higher payoffs for the trader with valuation ut than b∗j,t.

Similar arguments hold for sell orders.

Proof of Lemma 4.

1. Vt(ut, q) ≥ 0, since the trader can always submit no order and earn a zero payoff. To show
convexity, consider two private values, u and u′. Let 0 < λ < 1 and let uλ = λu + (1− λ)u′.
Suppose dbuy∗

t (b, uλ, q) = 1,

Vt(yt + u, q) ≥ qψbuy
t (b, q)(yt + u− pb,t) + qξbuy(b, q)− qc, (A23)

and
Vt(yt + u′, q) ≥ qψbuy

t (b, q)(yt + u′ − pb,t) + qξbuy(b, q)− qc. (A24)

Taking the convex combination of inequalities (A23) and (A24) and using the definition of
uλ,

λVt(yt + u, q) + (1− λ)Vt(ut + u′, q) ≥ qψbuy
t (b, q)(yt + uλ − pb,t) + qξbuy(b, q)− qc

= Vt(yt + uλ, q). (A25)

The proof is similar if it is optimal for the trader with private value uλ to submit a sell order
or to submit no order.

2. Let dbuy
t (b, u, q) = 1 and u′ > u.

Vt(yt + u′, q) ≥ qψbuy
t (b, q)(yt + u′ − pb,t) + qξbuy

t (b, q)− qc

> qψbuy
t (b, q)(yt + u− pb,t) + qξbuy

t (b, q)− qc

= Vt(yt + u, q). (A26)

3. The proof for sellers is symmetric to that in part 2 above.
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B Cointegration Results

We assume that there is a strictly positive minimum tick size. Therefore, feasible order prices are
elements of a countable set, with a lower bound of zero. Order the set of feasible prices from lowest
to highest, so that Pi < Pi+1. Let Qij,t be the order quantity outstanding at the ith price at time t,
submitted at time t− j, with Qij,t > 0 denoting buy quantities, Qij,t < 0 denoting sell quantities,
and Qij,t = 0 denoting that no order quantity is outstanding.

The rules of the trading mechanism imply that there cannot be both buy and sell orders out-
standing at the same price at the same time.

Let the common value at time t equal yt. Define the feasible relative prices at time t as the
elements of the set of feasible prices minus yt. The relative order book at time t is

Ht = (Pi − yt, Qij,t) for i = 1, 2, 3, . . . ,∞, and j = 1, 2, 3, . . . ,∞. (B1)

We make the following assumptions.

CI1 The maximum life of each limit order is some finite integer Υ < ∞.

CI2 Suppose a limit order is submitted to the limit book at time t. The conditional probability
that the order is canceled at time t + τ for τ < Υ depends on a finite dimensional vector
of variables, Rt+τ . The conditional probabilities are uniformly bounded below by a strictly
positive constant.

CI3 The process (Rt, δt) is a Markov process and satisfies Condition M of Stokey and Lucas (page
348, 1989).

CI4 The conditional distribution of δt, ut, qt only depends on Rt and δt, ut, qt are conditionally
independent.

CI5 The random variables δt, ut, qt each have uniformly bounded support.

CI6 Assume that traders only condition on the order book relative to the common value, Ht and
Rt when making order submissions at t.

CI7 The cost per share of entering orders, c, is strictly positive.

Lemma 5 Under assumptions CI1-CI7, Ht is characterized by a finite number of elements, each
of which is a bounded random variable.

Proof of Lemma 5. We show that at most a finite number of relative prices have order quantities
at any time.

Let [u, u] be the support for the private value, let [δ, δ] be the support for common value
innovations, let [0, q] be the support for sell order quantities and let [0, q] be the support for buy
order quantities.

Let pt be the price of the order submission at time t. A buyer never submits an order than
leads to a negative surplus with probability one, and The highest possible valuation that a buyer
could have is his valuation at the time of filling, which is bounded by assumption. Therefore,

pt ≤ yt+Υ + u

≤ yt + Υδ + u. (B2)

Similarly for sellers,
pt ≥ yt + Υδ + u. (B3)

With a cost per share for order entry, no buyer would every submit an order that has a zero
execution probability. Since a limit buy order only transacts with a future sell order and the longest
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that a limit order lasts is Υ, for a buy order to have a positive probability of being filled, it must
satisfy

pt ≥ yt+Υ + Υδ + u

≥ yt + Υδ + Υδ + u

= yt + 2Υδ + u. (B4)

Combining inequalities (B2) and (B4),

yt + 2Υδ + u ≤ pt ≤ yt + Υδ + u, (B5)

or
2Υδ + u ≤ pt − yt ≤ Υδ + u. (B6)

A similar result holds for sell orders. Therefore, the relative prices in the relative order book are
all bounded at the time of entry,

2Υδ + u ≤ pt − yt ≤ 2Υδ + u. (B7)

Since orders last for up to Υ periods, there can be at most Υ orders outstanding at any time,
and so the relative prices of all orders in the relative order book are bounded. Since there is a finite
price grid, there are a finite number of relative prices satisfying the bound.

By assumption, order quantity is bounded.

From Lemma 5, there are finite number of relative prices that could have outstanding orders at
any time. Let that finite number be M. Therefore, the relative order book can be represented by

Ht = (Pi,t − yt, Qij,t) for i = 1, 2, 3, . . . ,M, and j = 1, 2, 3, . . . ,Υ. (B8)

Here, P1,t is the lowest price satisfying the bound in equation (B7) and PM,t is the highest.

Lemma 6 Under assumptions CI1- CI7, (Ht, Rt, δt) is a stationary Markov process, with a unique
ergodic set.

Proof of Lemma 6. By assumption, new order submissions depend upon the relative order book
Rt and the trader’s private value. The conditional distribution of Ht+1 depends upon Ht, new
order submissions, cancellations and innovations in the common value. By assumption, (Rt, δt) is
Markov, and the distribution of qt depends only on Rt. Therefore, the process (Ht, Rt, δt) is also
Markov.

The hazard rates for cancellation are bounded below by a strictly positive number; there is a
strictly positive probability that all orders will cancel from any state, leaving all the quantities in
the book zero. The conditional distribution of relative prices depends δt. By assumption, (Rt, δt)
satisfies Condition M. Therefore, (Ht, Rt, δt) also satisfies Condition M. Theorem 11.12 of Stokey
and Lucas (1989) then applies and so (Ht, Rt, δt) is a stationary process with unique ergodic set.

Define the random variable

ε̇t =

{
maxi=1,...,M

{
Pi,t − yt|

∑
j Qij,t > 0

}
if some Qij,t > 0,

0 else.
(B9)

The random variable ε̇t is the difference between the best bid quote and the common value, if there
are buy orders in the relative book, or zero if there are no buy orders in the book

Lemma 7 Under assumptions CI1−CI7, ε̇t is stationary.
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Proof of Lemma 7. The random variable ε̇t is a mapping of (Ht, Rt, δt). Under assumptions
CI1-CI7 (Ht, Rt, δt) is a stationary Markov process with a unique ergodic set.

The best bid quote does not exist if there are no outstanding buy order in the relative book.
The ergodic set for the relative order book contains the states where there are no orders in the
book. The next assumption guarantees that the ergodic set also contains books with limit buy
orders in the book.

CI8 Suppose that there are no orders in the book at time t. Then, the probability that a buy
order is submitted is uniformly strictly positive, for all possible value of Rt.

Lemma 8 Under assumptions CI1-CI8, the best bid price and the common value are cointegrated.

Proof of Lemma 8. By assumption, yt is I(1). From Lemma 7, ε̇t is stationary and ergodic and
is equal the difference between the best bid price and yt when there are buy orders on the relative
book. The ergodic set contains books with no orders. Assumption CI8 implies that books with
buy orders also in the ergodic set, and the random variable equal to the indicator function equal
to one when buy orders are in the book and zero otherwise is stationary and ergodic. Therefore,
the process εt′ formed by sampling the process ε̇t when there are buy orders on the book is also
stationary.

C Econometrics Appendix

In this appendix, we briefly describe the asymptotic properties for the estimators used in the
monotonicity tests. Our data consists of observations of the vector of M conditioning variables,
Xt, the decision indicators, dsell

s̈,t , for s̈ ∈ S̈(Xt), dbuy

b̈,t
, for b̈ ∈ B̈(Xt), the realized fills for each

order, and the realized product of the fills and the changes in the estimated common value for each
order. Let wt be the vector of variables whose conditional expectations we compute. Define the
conditional expectation functions

Csell
s̈ (Xt) ≡ E[w|dsell

s̈,t = 1, Xt], (C1)

Cbuy

b̈
(Xt) ≡ E[w|dbuy

b̈,t
= 1, Xt] (C2)

for ∀s̈ ∈ S̈ and ∀b̈ ∈ B̈, and let

C(Xt) ≡
(
Csell

s̈1
(Xt), Csell

s̈2
(Xt), . . . , C

buy

b̈2
(Xt), C

buy

b̈1
(Xt)

)
(C3)

be the vector of conditional expectations. The object to be estimated depends on the vector valued
function ρ(C(Xt), Xt). Define

% ≡ E
[
I(Xt ∈ X̄)ρ(C(Xt), Xt)

]
, (C4)

where I(Xt ∈ X̄) is a trimming indicator for the set X̄ in the interior of the support of Xt. Our
estimator for % is

%̂T ≡ 1
T

T∑

t=1

I(Xt ∈ X̄)ρ(Ĉ(Xt), Xt), (C5)

where Ĉ(Xt) is estimated using a nonparametric kernel regression. For example,

Ĉsell
s̈ (Xt) ≡

∑T
t′ 6=t wt′d

sell
s̈,t′K

(
h−1

T (Xt′ −Xt)
)

∑T
t′ 6=tK

(
h−1

T (Xt′ −Xt)
) , (C6)
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where hT is a bandwidth and K is a multi-dimensional kernel function.
For the tests described in the text, the vector of conditional expectations is equal to

C(Xt) ≡
(
ψsell(s̈1, Xt), ξsell(s̈1, Xt), . . . , ψbuy(b̈1, Xt), ξbuy(b̈1, Xt)

)
. (C7)

For testing monotonicity of the execution probabilities,

ρ(C(Xt), Xt) ≡




ψbuy(b̈1, Xt) − ψbuy(b̈2, Xt),
ψbuy(b̈2, Xt) − ψbuy(b̈3, Xt),

...
ψsell(s̈2, Xt) − ψsell(s̈3, Xt)
ψsell(s̈1, Xt) − ψsell(s̈2, Xt)



⊗ z++

t , (C8)

where z++
t are strictly positive measurable functions of the vector Xt, and ⊗ is the Kronecker

product. For testing monotonicity of the thresholds, we define the composite function

ρ(θ(C(Xt), Xt), Xt) ≡




θbuy(b̈1, b̈2, Xt) − θbuy(b̈2, b̈3, Xt)
θbuy(b̈2, b̈3, Xt) − θbuy(b̈3, b̈4, Xt)

...
θsell(s̈1, s̈2, Xt) − θsell(s̈2, s̈3, Xt)
θsell(s̈2, s̈3, Xt) − θsell(s̈1, s̈2, Xt)

...




⊗ z++
t , (C9)

and
θ(C(Xt), Xt) ≡

(
θbuy(b̈1, b̈2, Xt;C(Xt)), . . . , θsell(s̈1, s̈2, Xt;C(Xt))

)
, (C10)

with

θsell(s̈1, s̈2, Xt; C(Xt)) = ps̈1,t − (ps̈2,t − ps̈1,t)ψsell(s̈2, Xt) + (ξsell(s̈1, Xt)− ξsell(s̈2, Xt))
ψsell(s̈1, Xt)− ψsell(s̈2, Xt)

. (C11)

Under the regularity conditions provided below, the results in Robinson (1989) and Ahn and
Manski (1993)4 imply that

√
T (%̂T − %) converges in distribution to a normal random vector with

covariance matrix defined in equation (C24) below.

EC1 Xt, wt, d
sell
s̈,t , dbuy

b̈,t
, are absolutely regular and the beta-mixing coefficient is o(j−ν). Also,

sup
X∈X̄

‖ρ(C(X), X)‖ϕ < ∞, (C12)

where ν > 1 + 2
ϕ−2 . For a definition of absolute regularity and the beta-mixing coefficient,

see Robinson (1989).

EC2 (a) The distribution of Xt has Lebesgue density π(·) that is bounded and at least M+1 times
differentiable, with the first M+1 derivatives bounded.

(b) The realized fills and picking off risks have bounded support.

(c) Csell
s̈ (Xt) and Cbuy

b̈
(Xt) are M+1 times differentiable with bounded derivatives.

4Ahn and Manski (1993) consider an environment with i.i.d. data. The uniform consistency results from Collomb
and Härdle (1986) regarding the kernel estimators applied in Ahn and Manski (1993) continue to apply in our
time-series environment.
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(d) The conditional choice probabilities,

αsell
s̈ (Xt) = Prob(dsell

s̈ = 1|Xt) (C13)

are M+1 times differentiable with bounded derivatives. A similar restriction holds on
the buy side. The function π(X)αsell

s̈ (X) satisfies

inf
X∈X̄

π(X)αsell
s̈ (X) > 0 (C14)

for ∀s̈ ∈ S̈, similarly for the buy side.

EC3 (a) The partial derivatives satisfy

sup
Xt∈X̄

∥∥∥∥
∂ρ(C(Xt), Xt)

∂C(Xt)

∥∥∥∥ < ∞. (C15)

(b) There is an F < ∞ such that the cross partial derivatives satisfy

sup
Xt∈X̄

∥∥∥∥
∂2ρ(C(Xt), Xt)
∂C(Xt)∂C(Xt)′

∥∥∥∥ < F. (C16)

EC4 Define the matrix of expected derivatives as

µ(X) ≡ E

[
∂ρ(C(X), X)

∂C(X)

∣∣∣∣X

]
, (C17)

with generic element µij(X), that satisfies

µij(X)
αsell

s̈ (X)
< ∞, (C18)

and is M+1 times differentiable with bounded derivatives.

EC5 Define the vector of error terms

εsell
s̈,t = dsell

s̈,t [wt − Csell
s̈ (Xt)], (C19)

with a similar definition for εbuy

b̈,t
, and define

εt =
∑

s̈∈S̈

εsell
s̈,t +

∑

b̈∈B̈

εbuy

b̈,t
. (C20)

There exists a positive semi-definite matrix C such that

sup
Xt∈X̄

lim
LL→∞

LL∑

ll=−LL

E[εt−llε
′
t+ll|Xt] < C. (C21)

EC6 (a) The bandwidth sequence is such that Th
2(M+1)
T → ∞, T 1−2κh2M

T → 0 as T → ∞ for
some κ > 0.

(b) The kernel function K is bounded and symmetric around zero,
∫ K(z)dz = 1, and∫ |z|2(M+1)K(z)dz < ∞. There exists γ > 0 and c < ∞ such that K satisfies the

Lipschitz condition that |K(z)−K(z′)| ≤ c|z − z′|γ for all z, z′ ∈ RM .
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(c) The first M moments of K(·) are zero.

Define
ηt = ρ(C(Xt), Xt)− % (C22)

and the vector

et ≡

 εsell

s̈1,t

αsell
s̈1,t(Xt)

, . . . ,
εsell
s̈K

, t

αsell
s̈K ,t(Xt)

,
εbuy

b̈1,t

αbuy

b̈,t
(Xt)

, . . . ,
εbuy

b̈L,t

αbuy

b̈L,t
(Xt)


 . (C23)

Then,

A = lim
LL→∞

LL∑

ll=−LL

E
[
(ηt−ll + µ(Xt−ll)′et−ll)(ηt+ll + µ(Xt+ll)′et+ll)′

]
. (C24)

We estimate ηt with ρ(Ĉ(Xt), Xt) − %̂T . We estimate et using the kernel estimators in equations
(C19) and (C20) and using kernel estimators for the conditional choice probabilities in equation
(C13). We use a Newey and West (1987) procedure to form an estimator for A.

The thresholds are linear in β, and so the super-consistency of the cointegrating regression
implies that the asymptotic distribution is unaffected by pre-estimating β. See De Jong (2001) for
details.

Following Altug and Miller (1998) and Hotz and Miller (1993), and the simulation evidence in
Robinson (1989, pp. 521-522) we use independent Gaussian product kernels in forming estimates
of the conditional expectations. We use bandwidths equal to

4× 1.06× σ̂(Xit)T
1

2×5+2 . (C25)

Here, Xt = (X1t, . . . , X5t) are the conditioning variables, with σ̂(Xit) the associated sample stan-
dard deviations. For the monotonicity tests discussed in the text, we trim the outer 5% of the
observations according to

(Xt − X̄)cov(Xt)−1(Xt − X̄)′, (C26)

where cov(Xt) is the covariance matrix of the conditioning information and X̄ is the sample mean,
leaving us with 19,732 observations.

41



Table 1: Daily Trading Activity

Mean Std. Dev. Min. Max.
Daily closing mid-quote (Skr) 110.15 9.19 89.00 127.00
Daily close-to-close return (percent) 0.21 3.04 -6.31 11.44
Daily close-to-close return (percent) 0.10 2.45 -16.95 13.69
on NASDAQ, January 2, 1989–December 31, 1993

Number of active brokers per day 19.28 2.28 14.00 23.00

Daily trading volume in millions of SKr
Stockholm Automated Exchange 38.77 19.53 11.58 114.88
Internal crosses 12.20 9.04 1.48 57.51
Block trades 0.39 0.92 0.00 5.45
After-hours trades 4.66 6.15 0.00 28.26
Total trading volume 56.02 29.52 13.06 201.28

Daily number of Stockholm Automated Exchange orders, 10:03 a.m.–2:30 p.m.
All orders 364.23 141.13 128.00 733.00
Limit orders 212.18 77.58 73.00 408.00
Market orders 152.04 67.14 55.00 330.00

The table reports summary statistics on the daily trading activity of Ericsson. The daily close-
to-close returns are calculated using the mid-quotes. The daily close-to-close returns for Ericsson
shares traded on NASDAQ are calculated using daily data from the Center for Research in Security
Prices. The number of active brokers per day is defined as the number of brokers who made at
least one trade on a given trading day.
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Table 2: Order Flow

Order Number of Execution Time-to-fill Order quantity
submissions probability Mean Median Std. Dev.

Buy orders
market 6031 1.00 0.00 19.72 6.00 39.21
1 tick limit 4225 0.68 24.55 25.14 10.00 37.60
2 tick limit 992 0.33 73.94 29.63 10.00 44.58
3 tick limit 893 0.12 172.33 14.65 4.00 32.38

Sell orders
market 4044 1.00 0.00 30.73 11.00 48.90
1 tick limit 3212 0.63 18.31 36.08 20.00 49.48
2 tick limit 800 0.28 84.21 37.08 20.00 44.87
3 tick limit 563 0.13 170.95 23.73 10.00 91.29

The table reports descriptive statistics for the order flow in Ericsson by order. The execution
probability is defined as the fraction of the order quantity that fills within two trading days of
the order submission. The time-to-fill is the number of minutes elapsed from the order submission
until the order filling. When there are multiple fills we weight each fill according to the fraction of
the order quantity that is filled. Fills that occur later than two trading days after the order was
submitted are ignored. The order quantity is measured in 100’s of shares. There are a total of
20,760 orders.
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Table 3: Order Books

Average Median Std.Dev. Min. Max.
Order quantities (100’s of shares)

3rd Ask 169.8 105.0 175.9 1.0 1061.1
2nd Ask 260.8 214.0 203.0 1.0 1161.0
1st Ask 200.9 147.0 194.1 1.0 1314.0
1st Bid 185.9 143.0 173.8 1.0 1504.2
2nd Bid 242.9 190.0 217.7 1.0 1504.2
3rd Bid 167.9 115.0 190.9 1.0 1355.2

Cumulative order quantities (100’s of shares)
1st+2nd+3rd Ask 631.5 564.0 368.8 13.0 1935.6
1st+2nd Ask 461.7 401.0 294.9 2.0 1809.0
1st+2nd Bid 428.8 359.0 310.2 5.0 2176.9
1st+2nd+3rd Bid 596.8 505.5 396.0 15.0 2730.4

Distance between quotes and the mid-quote
(absolute value of the distance measured in ticks)

3rd Ask 2.7 2.5 0.6 2.5 9.5
2nd Ask 1.6 1.5 0.3 1.5 6.5
1st Ask 0.5 0.5 0.1 0.5 3.0
1st Bid 0.5 0.5 0.1 0.5 3.0
2nd Bid 1.6 1.5 0.3 1.5 9.0
3rd Bid 2.7 2.5 0.7 2.5 19.0

Descriptive statistics for the order books. The statistics in the table are computed for each order
book observed in the market immediately prior to an order submission. There are a total of 20,760
observations.
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Table 4: Description of the Conditioning Variables

Conditioning variable Description
Order Quantity The logarithm of the number of shares of the

order submitted at t.
Close Depth The logarithm of the total number of shares offered in

the order book within one tick of the mid-quote.
Far Depth The logarithm of the total number of shares offered in

the order book within three ticks of the mid-quote.
Lagged Volume The logarithm of the cumulative number of shares

transacted during the time interval [t− 10 minutes, t).
Index Volatility The logarithm of one plus the standard deviation

of the OMX index returns over the minimum of
60 minutes and the number of minutes since
the opening. The standard deviation is normalized
by multiplying by the square root of the number
of minutes per trading day.
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Table 5: Ordered Probit Models

Order Close Far Lagged Index
Quantity Depth Depth Volume Volatility

Buy orders (12,141 observations)
-0.04 0.07 0.05 0.03 -0.09
(0.00) (0.00) (0.02) (0.01) (0.03)

χ2
5 = 569.88, p-value = 0.00

Sell orders (8,619 observations)
0.02 -0.08 0.12 -0.02 0.18
(0.01) (0.00) (0.03) (0.01) (0.03)

χ2
5 = 386.09, p-value = 0.00

Estimation results from an ordered probit model for buy and sell order submissions. The estimated
coefficients and standard errors are reported on the first two rows of each panel. The third row
reports a χ2

5 test of the null hypothesis that all coefficients are jointly equal to zero, with the
corresponding p-value.
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Table 6: Test of Strictly Positive Conditional Choice Probabilities

Instruments Joint
Order Order Close Far Lagged Index MPC

Constant Quantity Depth Depth Volume Volatility statistic
Buy limit orders

1 tick 0.18 1.27 1.77 2.12 1.63 0.12 0.00
(0.01) (0.03) (0.05) (0.06) (0.04) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.98

2 tick 0.03 0.20 0.21 0.31 0.25 0.02 0.00
(0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.99

3 tick 0.02 0.13 0.20 0.25 0.20 0.02 0.00
(0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.98

Sell limit orders
1 tick 0.13 1.00 1.31 1.57 1.21 0.09 0.00

(0.01) (0.03) (0.04) (0.05) (0.03) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.98

2 tick 0.02 0.15 0.13 0.21 0.18 0.01 0.00
(0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.99

3 tick 0.01 0.04 0.05 0.08 0.07 0.01 0.00
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
1.00 1.00 1.00 1.00 1.00 1.00 0.98

Joint MPC statistic
All limit orders 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.99 0.99 0.99 0.99 0.99 1.00

The top panels of the table report the average differences of the order choices and 0.02, multiplied by
positive instruments. Below each point estimate are the asymptotic standard errors in parentheses
and the p-values. The rightmost column and the bottom part of the table report joint MPC test
statistics across the instruments, the order prices, and across instruments and order prices, with
p-values reported below each test statistic. We ensure that all instruments are strictly positive by
replacing them with 0.00001 if they are zero.
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Table 7: Test of Monotonicity of the Execution Probabilities

Instruments Joint
Execution probability Order Close Far Lagged Index MDF

difference Constant Quantity Depth Depth Volume Volatility statistic
Buy orders

market 0.32 2.24 3.21 3.67 2.90 0.21 0.00
- 1 tick limit (0.01) (0.10) (0.15) (0.16) (0.13) (0.01)

1.00 1.00 1.00 1.00 1.00 1.00 0.98

1 tick limit 0.36 2.48 3.59 4.14 3.28 0.23 0.00
- 2 tick limit (0.02) (0.15) (0.23) (0.26) (0.20) (0.02)

1.00 1.00 1.00 1.00 1.00 1.00 0.99

2 tick limit 0.21 1.38 2.02 2.38 1.92 0.14 0.00
- 3 tick limit (0.02) (0.16) (0.25) (0.28) (0.22) (0.02)

1.00 1.00 1.00 1.00 1.00 1.00 0.98
Sell orders

market 0.36 2.55 3.66 4.16 3.27 0.23 0.00
- 1 tick limit (0.01) (0.10) (0.15) (0.17) (0.13) (0.01)

1.00 1.00 1.00 1.00 1.00 1.00 0.98

1 tick limit 0.42 2.84 4.22 4.88 3.88 0.28 0.00
- 2 tick limit (0.02) (0.14) (0.21) (0.23) (0.18) (0.02)

1.00 1.00 1.00 1.00 1.00 1.00 0.99

2 tick limit 0.11 0.78 1.13 1.32 1.06 0.08 0.00
- 3 tick limit (0.02) (0.15) (0.22) (0.24) (0.20) (0.02)

1.00 1.00 1.00 1.00 1.00 1.00 0.98
Joint MDF statistic

All orders 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.98 0.98 0.98 0.98 0.98 0.98 1.00

The top panels of the table report the average differences of the execution probability for different
order prices multiplied by positive instruments. Below each point estimate are reported the asymp-
totic standard errors in parentheses and the p-values. The rightmost column and the bottom part
of the table report joint MDF test statistics across the instruments, the order prices, and across
instruments and order prices, with p-values reported below each test statistic. We ensure that all
instruments are strictly positive by replacing them with 0.00001 if they are zero.
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Table 8: Common Value Estimation

Unit root test Cointegrating regression
Coefficient Cointegration test

OMX index -0.89
(0.79)

Bid quote -1.11 0.37 -3.67
(0.71) (0.00) (<0.03)

Ask quote -1.08 0.36 -3.62
(0.72) (0.00) (<0.03)

The first column reports unit root tests for the best bid quote, best ask quote, and the OMX
index. All series are demeaned. There are 20,760 observations. The unit root test is an augmented
Dickey-Fuller t-test with 10 lags, and p-values are reported below each t-statistic in parentheses.
The cointegrating regression results are reported for the best bid quote and the best ask quote in the
second column. The estimated coefficient on the demeaned OMX index is reported for each quote
series with the standard error in parentheses. The lag length is 10. An augmented Engle-Granger
test for cointegration is reported in the third column with p-values in parentheses.
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Table 9: Test of Monotonicity of the Threshold Valuations

Threshold Instrument Joint
valuation Order Close Far Lagged Index MDθ

difference Constant Quantity Depth Depth Volume Volatility statistic
Buy threshold valuations

θbuy(0, 1, Xt) 2.45 2.98 2.48 1.07 2.71 0.79 0.00
−θbuy(1, 2, Xt) (0.16) (0.21) (0.29) (0.11) (0.25) (0.08)

1.00 1.00 1.00 1.00 1.00 1.00 0.81

θbuy(1, 2, Xt) 1.17 1.42 1.10 0.51 1.42 0.37 0.00
−θbuy(2, 3, Xt) (0.17) (0.20) (0.16) (0.10) (0.31) (0.07)

1.00 1.00 1.00 1.00 1.00 1.00 0.79
Sell threshold valuations

θsell(1, 2, Xt) 2.39 2.90 2.86 1.08 2.65 0.77 0.00
−θsell(0, 1, Xt) (0.14) (0.19) (0.37) (0.09) (0.20) (0.07)

1.00 1.00 1.00 1.00 1.00 1.00 0.83

θsell(2, 3, Xt) -0.03 -0.04 0.10 -0.01 -0.01 -0.02 0.01
−θsell(1, 2, Xt) (0.55) (0.71) (0.68) (0.36) (0.75) (0.22)

0.48 0.48 0.56 0.50 0.49 0.47 0.76
Buy and sell threshold valuations

θbuy(2, 3, Xt) -1.37 -1.66 -1.15 -0.59 -1.64 -0.42 7.84
−θsell(2, 3, Xt) (0.50) (0.65) (0.64) (0.34) (0.70) (0.21)

0.01 0.01 0.04 0.03 0.01 0.02 0.01
Joint MDθ statistic

Buy thresholds 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.81 0.79 0.78 0.81 0.79 0.81 0.98

Sell thresholds 0.00 0.00 0.00 0.00 0.00 0.01 0.01
0.78 0.80 0.77 0.81 0.81 0.75 0.98

Buy and sell 86.84 80.69 60.82 61.09 39.03 52.10 96.17
thresholds 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The top panels of the table report the average differences of threshold valuations for different order
prices multiplied by positive instruments. Below each point estimate are reported the asymptotic
standard errors in parentheses and the p-values. The rightmost column and the bottom part
of the table report joint MDθ test statistics across the instruments, the order prices, and across
instruments and order prices, with p-values reported below each test statistic. We ensure that all
instruments are strictly positive by replacing them with 0.00001 if they are zero.
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Table 10: Average Estimated Payoffs for Different Order Submissions

Order Execution Picking off Estimated
probability risk payoff

Buy orders
1 tick limit 0.68 0.01 1.98

(0.01) (0.02) (0.12)

2 tick limit 0.33 -0.11 0.33
(0.02) (0.05) (0.06)

3 tick limit 0.11 -0.18 -0.05
(0.01) (0.08) (0.04)

Sell orders
1 tick limit 0.63 0.01 1.61

(0.01) (0.02) (0.10)

2 tick limit 0.23 0.14 0.10
(0.02) (0.06) (0.06)

3 tick limit 0.11 0.10 0.11
(0.02) (0.06) (0.14)

The table reports unconditional averages of the execution probabilities, the picking off risks, and
estimated payoffs for traders with valuations equal to threshold valuations for the market and one
tick, one tick and two tick, and two tick and three tick buy and sell orders. The estimated payoffs for
traders with valuations equal to the threshold valuations are computed by substituting estimates
of the threshold valuations, the execution probabilities, and the picking off risks, and the order
quantity into equation (10), and dividing by the order quantity. The order entry cost of c per share
is set equal to zero. Asymptotic standard errors are reported in parentheses, and are computed
using 50 lags.
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Figure 1: The top graph plots the survivor function for limit orders. The survivor function evaluated
at t is defined as the probability that a limit order is outstanding t minutes after it was submitted.
The middle and the bottom graphs plot the cumulative distribution functions for the limit order fill
and cancellation times. All three functions are computed for orders submitted between 10:03 a.m.
and 2:30 p.m. There are a total of 11,760 limit orders submitted. The survivor and distribution
functions are calculated by assigning a weight to each observation equal to the fraction of the order
quantity filled or canceled. Limit orders submitted during the last two trading days in our sample
are not used in these calculations.
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Figure 2: The graph provides an example of the indirect utility function. The order quantity is set
equal to one. The horizontal axis is the trader’s valuation, and the vertical axis is the expected
payoff from alternative order submissions. Sell orders are plotted with dashed lines (- - -) and buy
orders are plotted with dashed-dotted lines (-.-.). The indirect utility function is plotted with the
dark solid line (—).
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Figure 3: The graph illustrates the optimal order submission strategy. The probabilities of observ-
ing different order submissions are determined by the threshold valuations and the distribution of
private valuations. The threshold valuations are computed using equations (15) through (18). The
distribution of the private valuations Gt is a mixture of three normal distributions.
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Figure 4: The figure illustrates a situation in which the threshold valuations do not satisfy the
monotonicity condition: θbuy

t (0, 1, 1) < θbuy
t (1, 2, 1). The execution probabilities for limit orders are

monotonically decreasing in the distance between the limit order price and the best quote. The
execution probabilities are ψbuy

t (0, 1) = 1, ψbuy
t (1, 1) = 0.7, ψbuy

t (2, 1) = 0.6; the tick size is 1; the
best ask quote is 100; and the picking off risks are equal to zero. The indirect utilities for a trader
submitting a buy market order (- - -), a one tick buy limit order (—), and a two tick buy limit
order(-.-.) are plotted as a function of the trader’s valuation.
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Figure 5: The figure plots the estimated payoffs as a function of the trader’s valuation. The
estimated payoffs are evaluated at the sample observation with conditioning variables closest to
their sample averages. The horizontal axis gives the trader’s valuation and the vertical axis the
payoffs for alternative order submissions. The top plot is for sell orders and the bottom plot is for
buy orders.
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