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1. Introduction

Consumers purportedly have a special taste for instant gratification. In popular

culture we talk about “living only for the moment.” We say that consumers “want

it now” and have a hard time postponing immediate gratification even if they will

receive significant (delayed) rewards for doing so.

Psychological and economic researchers have long noted the heightened payoffs

that are associated with immediate rewards. For example, Freud (1915) identified

a “pleasure principle” that drives people to seek out immediate pleasures even if

those pleasures are associated with large delayed costs. Even before Freud, Smith

(1759, VI.i.11) wrote about the troubling appeal of immediate gratification. Smith

“approve[s] and even applaud[s] that proper exertion of self-command, which enables

[men] to act as if their present and their future situation affected them nearly in the

same manner in which they affect an [impartial spectator].” Smith also wrote that

“we are capable, it may be said, of resolving, and even of taking measures to execute,

many things which, when it comes to the point, we feel ourselves altogether incapable

of executing.”

Nearly two centuries later Robert Strotz (1956) developed the first mathematical

model that explains the appeal of instant gratification. He suggested that discount

rates are higher in the short run than in the long run. His formulation implies that

delaying current consumption by a period produces proportionately more devaluation

than a one-period delay of future consumption. Most experimental studies on time

preference have supported Strotz’s conjecture (Ainslie 1992, Loewenstein and Read

2001), though debate continues about the shape of the discount function (Frederick,

Loewenstein, and O’Donoghue 2002).

To capture the taste for instant gratification, Laibson (1997a) adopted a discrete-

time discount function, {1, βδ, βδ2, βδ3, . . . .}, which Phelps and Pollak (1968) had
previously used to model intergenerational time preferences. With β < 1, this so

called ‘quasi-hyperbolic’ discount function captures the gap between a high short-

run discount rate and a low long-run rate. O’Donoghue and Rabin (199?) call

these “present-biased” preferences, emphasizing the heightened weight they place

on current consumption. In the last several years, the quasi-hyperbolic discount

function has been used to study a wide range of behaviors, including consumption,
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procrastination, addiction, and job search.1

However, the quasi-hyperbolic discounting model has two significant drawbacks.

First, the discount function does not have a natural generalization to continuous-time.

The model does not scale with the length of the time period. Making matters even

worse, generic continuous-time variants of the model are not analytically tractable

since they generate preferences that are not recursive.

The second drawback of the quasi-hyperbolic model arises because of strategic

considerations. Since the pathbreaking work of Strotz (1956), most researchers have

analyzed dynamically inconsistent preferences by treating the individual as a sequence

of independent selves whose choices are modelled as an intrapersonal game. Although

this game-theoretic framework has proved generally fruitful, a recurrent problem has

plagued many of these quasi-hyperbolic applications: strategic interaction among

intrapersonal selves often generates counterfactual policy functions. Hyperbolic con-

sumption functions need not be globally monotonic in wealth, and may even drop

discontinuously at a countable number of points. Numerous authors, including Laib-

son (1997b), Morris and Postlewaite (1997), O’Donoghue and Rabin (1999a), Harris

and Laibson (2001b), and Krusell and Smith (2000) have identified hyperbolic exam-

ples in which the consumption function has negatively sloped intervals or downward

discontinuities. Figure 1 plots examples of such ‘pathological’ consumption functions.

The current paper resolves all of these problems.2 We present a continuous-time

discount function that captures the taste for instant gratification, admits analytically

tractable analysis, and eliminates all of the pathologies listed above.

Our continuous-time model captures the qualitative properties of the original

discrete-time quasi-hyperbolic model. Our continuous-time model distinguishes be-

tween the ‘present’ and the ‘future’. The present is valued discretely more than

the future, mirroring the one-time drop in valuation implied by the discrete-time

1For some examples, see O’Donoghue and Rabin (1999b), Angeletos, Laibson, Repetto, Tobacman
and Weinberg (2001), and Della Vigna and Paserman (2000).

2Two other solutions to these problem have been proposed. First, Harris and Laibson (2001b)
point out that pathologies occur only when the model is calibrated in a limited region of the para-
meter space (notably when the coefficient of relative risk aversion lies well below unity). Second,
O’Donoghue and Rabin (1999a) point out that pathologies do not arise if consumers naively be-
lieve that their preferences are dynamically consistent. Any partial knowledge of future dynamic
inconsistency reinstates the pathologies.
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quasi-hyperbolic discount function (Phelps and Pollak 1998, Laibson 1997) and its

continuous-time generalizations (Barro 1999, Luttmer and Mariotti 2000). In addi-

tion, we assume that the transition from the present to the future is determined by a

constant hazard rate. This simplifying assumption enables us to reduce our problem

to a system of two differential equations that characterize present and future value

functions.

We show that our continuous-time model has a limit case that is analytically

tractable and psychologically relevant. This is the case in which the present is van-

ishingly short. By focusing on this psychologically important limit case, we take the

phrase ‘instant gratification’ literally. We analyze a model in which individuals prefer

gratification in the present instant discretely more than consumption in the momen-

tarily delayed future. This model is a useful benchmark that captures the essence of

neighboring models in which the present is short, but not precisely instantaneous.

Third, we show that the instantaneous-gratification model, which is dynamically

inconsistent, shares the same value function as a related dynamically consistent opti-

mization problem with a wealth-contingent utility function. Using this partial equiv-

alence, we can show both existence and uniqueness of the hyperbolic equilibrium.

However, our economy is not observationally equivalent to the related dynamically

consistent optimization problem. The partial equivalence applies to the value func-

tions but not to the policy functions.

We also show that the equilibrium consumption function of the hyperbolic problem

is continuous and monotonic in wealth. The monotonicity property relies on the

condition that the long-run discount rate is weakly greater than the interest rate.

When this inequality is satisfied, all of the pathological properties of discrete-time

hyperbolic models are eliminated by our continuous-time model.

Two other sets of authors have analyzed hyperbolic preferences in continuous time.

Barro (1999) analyzes the choices of hyperbolic agents with constant relative risk aver-

sion. He focuses on the general equilibrium implications of hyperbolic discounting

and the ways in which hyperbolic economies may be observationally equivalent to ex-

ponential economies. Luttmer and Mariotti (2000) analyze the choices of agents with

arbitrary discount functions, constant relative risk aversion, and stochastic asset re-

turns. Luttmer-Mariotti generalize Barro’s observational-equivalence result, but also
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identify particular endowment processes for which the hyperbolic model has interest-

ing new asset-pricing implications (e.g., an elevated equity premium). Luttmer and

Mariotti work with general discount functions and consider numerous special cases.

They have independently identified some properties of the particular case in which

the present is vanishingly short. However, their findings do not overlap with ours.

Barro and Luttmer-Mariotti both restrict their analysis to linear policy rules. The

existence of a linear equilibrium depends on special preference assumptions (constant

relative risk aversion) and market assumptions (complete markets enabling sales of

future labor income). We do not make restrictive assumptions of this kind: we work

with a broad class of preferences; and we introduce the constraint that consumers

may not borrow against future labor income. We pursue these generalizations for

greater realism. Our problem does not admit a linear equilibrium. We have to

contend with the pathologies that arise in our general setting, but do not arise under

the Barro/Luttmer-Mariotti simplifying assumptions in either discrete or continuous

time.

Our results also differ from Barro and Luttmer-Mariotti in that we are able to

prove uniqueness of Markov equilibrium in the class of all policy rules. This is a

desirable and unexpected result, since the hyperbolic model is a dynamic game, and

can therefore generate non-uniqueness. For example, Krusell and Smith (2000) have

shown that hyperbolic Markov equilibria are not unique in a deterministic discrete-

time setting. In the current paper, we provide two uniqueness results. First, we prove

uniqueness in a class of continuous-time models with stochastic asset returns. Second,

we propose a refinement that uses the unique equilibrium in the stochastic setting

to select a sensible unique equilibrium in the deterministic setting. This refinement

takes the natural approach of selecting the limiting equilibrium obtained as the noise

in the asset returns vanishes.

The rest of the paper formalizes these claims. In Section 2 we present our gen-

eral continuous-time model and formulate some of the properties of this model. In

Section 3 we present the consumption model that will provide the principal applica-

tion of the paper. In Section 4 we describe an important limit case of our model.

We call this limit case the instantaneous-gratification model. In Section 5 we show

that the instantaneous-gratification model has the same value function as a partic-
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ular dynamically consistent optimization problem. We call this latter problem the

‘equivalent problem’, but note that it is not observationally equivalent to the hy-

perbolic problem. The instantaneous-gratification model shares the same long-run

discount rate as the equivalent problem, but the two problems have different in-

stantaneous utility functions and different equilibrium policy functions.3 In Section

6, we use our partial equivalence result to derive several important properties of

the instantaneous-gratification problem, including equilibrium existence, equilibrium

uniqueness, consumption-function continuity, and consumption-function monotonic-

ity. In Section 6 we also derive the deterministic version of the instantaneous-

gratification model, and provide a complete analysis of the case of constant relative

risk aversion. In Section 7 we further generalize our results in Section 8 we conclude.

2. Intertemporal Preferences

2.1. The Basic Model of Preferences. In the standard discrete-time formula-

tion of quasi-hyperbolic time preferences, it is natural to divide time into two subpe-

riods: the present period and all future periods. All future periods are valued less

than the present period by a uniform factor β < 1. In addition, the agent discounts

all periods exponentially. In total, a period n ≥ 1 steps into the future is discounted
with the overall discount factor βδn (Phelps and Pollak 1968, Laibson 1997).

This model can be extended to continuous-time and generalized in two ways. First,

instead of having the present last for exactly one period, the present can last for an

arbitrary duration τ . Second, the duration τ can be random. Consider an economic

self born at date t0. The preferences of this agent is divided into two subperiods. A

‘present’, which lasts from t0 to t0 + τ 0, and a future that lasts from date t0 + τ 0 to

∞. Think of the present as the period of control and the future as the period after

which the self has passed control to the next self. The length of the present, τ 0, is

stochastic with an exponential distribution parameterized by λ ∈ [0,+∞). Hence, λ
represents the arrival rate of transitions from the present to the future.

When self t0 enters its future at t0 + τ 0, a new self is born and takes control of

decision-making. Call this self t1 = t0 + τ 0. The preferences of this new self can

3By contrast, see Barro (1999), Laibson (1996), and Luttmer and Mariotti (2000) for the special
case – log utility and no liquidity constraints – in which observational equivalence of the policy
functions does hold.
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also be divided into subperiods. Self t1 has a present that lasts from date t1 to date

t1 + τ 1, and a future that lasts from t1 + τ 1 to ∞. Extending this idea, we assume
that at each juncture of present and future a new self is born, yielding a sequence

of selves born at dates {t0, t1, t2, ...}, with respective present subperiods of duration
{τ0, τ 1, τ 2, ...}. This structure generates countable generations of selves.
We assume that all selves discount exponentially at rate γ > 0. In addition, they

value the future discretely less than the present. For example, consider a self with

birth at date t and present of duration τ . This self’s preferences are given by

Et

·Z τ

0

e−γsu(c(t+ s))ds+ α

Z ∞

τ

e−γsu(c(t+ s))ds

¸
, (1)

where α ∈ (0, 1], and u represents a utility function. Because the transition date t+τ

is stochastic, self t has a stochastic discount function,

D(s) =

(
e−γs if s ∈ [0, τ)
αe−γs if s ∈ [τ ,∞)

)
.

D(s) decays exponentially at rate γ up to time t+τ , drops discontinuously at t+τ to a

fraction α of its level just prior to t+τ , and decays exponentially at rate γ thereafter.

Hence, self t discounts all flows in the ‘future’ – i.e., flows that come after time t+ τ

– with an extra factor of α. This continuous-time formalization is close to some of

the deterministic discount functions used in Barro (1999) and Luttmer and Mariotti

(2000). However, we assume that the duration of the present, τ , is stochastic. Figure

2 plots a single realization of this discount function, with t = 0 and τ = 3.4.

As λ → 0 our discount function reduces to the standard exponential discount

function, namely

lim
λ→0

D(s) = e−γs for all s ∈ [0,∞).
As λ → ∞ the discount function converges to a deterministic jump function with a

jump at s = 0, namely

lim
λ→∞

D(s) =

(
1 if s = 0

αe−γs if s ∈ (0,∞)

)
.
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We shall return to this case below.

2.2. An Alternative Interpretation of Preferences. The arguments in this

paper are consistent with a second interpretation of the time preferences described

above. In particular, one can assume that a new self is born every instant, and that

each self has a deterministic discount function equal to the expected value of the

stochastic discount function described above. Specifically, this expectation is given

by

D(s) ≡ ED(s) = e−λse−γs + (1− e−λs)αe−γs.

The instantaneous discount rate is the rate of decline of the deterministic discount

function D(s):

−D
0
(s)

D(s)
= γ +

Pr(s < τ)λ (1− α)D(s|s < τ)

D(s)
(2)

Note that Pr(s < τ) represents the probability that s is less than an exponentially

distributed random variable τ with density f(τ) = λ exp(−λτ). The right-hand-side
of equation (2) contains two terms. The first term is just the long-run (exponen-

tial) discount rate. The second term reflects the additional discounting that arises

from the fact that D(s) will eventually drop at date τ . Note that Pr(s < τ)λ is

the unconditional instantaneous hazard of a drop in D (s) at horizon s. Finally,

(1− α)D(s|s < τ) is the size of the drop in D(s), if it occurs at horizon s.

Two special cases should be emphasized. First, in the immediate present (s→ 0)

the instantaneous discount rate converges to

lim
s→0
−D

0
(s)

D(s)
= γ + λ (1− α) > 0.

By contrast as the horizon goes to infinity the discount rate converges to

lim
s→∞
−D

0
(s)

D(s)
= γ.

Figure 3 plots D(s) for a set of λ values: λ ∈ {0, 0.1, 1, 10,∞}.
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2.3. Comparison of the two interpretations. The “basic” and “alternative”

models described respectively in subsections 2.1 and 2.2 at first appear to be quite

distinct. After all, the basic model uses a stochastic discount function with a present

of expected duration 1
λ
, while the alternative model uses a deterministic discount

function with a present of zero measure. Likewise, the basic model implies a countable

number of selves while the alternative model implies a continuum of selves. However,

we will show that the two approaches turn out to be essentially equivalent.

We principally emphasize the basic model because it requires no ancillary assump-

tions. Under the basic model the selves make choices that have a non-negligible

impact on utility, enabling us to pin down those choices with standard optimality

conditions. Under the alternative model the selves make choices that have a zero

measure impact on utility, requiring that we impose a standard optimality condition

– e.g., the envelope property (cf. subsection 3.4) – to pin down behavior.

3. A Continuous-Time Consumption Model

The consumer is modeled as a sequence of autonomous selves. Each self controls con-

sumption in the ‘present’ and cares about but does not directly control consumption

in the ‘future.’

3.1. Dynamics. Our consumption dynamics incorporate liquidity constraints, an

important qualitative feature of consumers’ planning problems (cf. Deaton 1991,

Carroll 1992, 1997).

At a point in time t ∈ [0,∞), the consumer has stock of wealth x ∈ [0,∞) and
receives a flow of labor income y ∈ (0,∞). If x > 0, then the consumer is not

liquidity constrained and may choose a consumption flow c ∈ (0,∞). In other words,
since wealth is a stock and consumption is a flow, she is free to choose any level of

consumption she wishes. If x = 0, then she may only choose a consumption flow

c ∈ (0, y]. In other words, since she has no wealth, she cannot consume more than
her labor income. In particular, she may never borrow.

Whatever the consumer does not consume is invested in an asset, the returns

on which are distributed normally with mean µdt and variance σ2 dt, where µ ∈
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(−∞,+∞) and σ ∈ (0,+∞). The change in her wealth at time t is therefore

dx = (µx+ y − c) dt+ σ x dz,

where z is a standard Wiener process.

We could easily generalize this framework by adding a stochastic source of labor

income. For example, stochastic increments of labor income could follow a Poisson

arrival process. We do not pursue this generalization, since it would not qualitatively

change the analysis that follows.

3.2. Equilibrium. Suppose that c : [0,+∞) → (0,+∞) is a consumption func-
tion. Then we may then define the continuation-value function v : [0,+∞) → R by
the formula

v(x0) = E

·Z +∞

0

e−γ t u(c(x(t))) dt
¸
,

where x is the timepath of wealth starting at x0 when the consumption function is c;

and we may define the current-value function w : [0,+∞)→ R by the formula

w(x0) = E

·Z τ

0

e−γ t u(c(x(t))) dt+ α e−γ τ v(x(τ))
¸
.

The continuation-value function v discounts utility flows exponentially, with discount

rate γ. The current-value function w discounts utility flows up to the stochastic tran-

sition time τ exponentially, again with discount rate γ. It discounts the continuation-

value function v obtained after τ by the composite discount factor α e−γ τ . The com-

ponent α reflects the one-time discounting that arises from the transition from the

“present” to the “future”. The component e−γ τ is the standard exponential discount

factor.

Using this notation, we can define equilibrium as follows.

Definition 1. A consumption function c : [0,+∞) → (0,+∞) is an equilibrium
iff:

1. For all consumption functions ec : [0,+∞)→ (0,+∞) and all x0 ∈ [0,+∞), we
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have

w(x0) ≥ E
·Z τ

0

e−γ t u(ec(ex(t))) dt+ α e−γ τ v(ex(τ))¸ ,
where ex is the timepath of wealth starting at x0 when the consumption function
is ec.

2. For all x0 ∈ [0,+∞), we have v(x0) ≥ 1
γ
u(y).

The first condition in this definition of equilibrium reflects our assumption that

the current self maintains control of the consumption decision for the duration of the

present — i.e., until the next stochastic transition date τ periods in the future. The

second condition requires that equilibrium continuation-payoff functions be bounded

below by the payoff function associated with the myopic policy “always consume

deterministic labor income y”. This requirement rules out equilibria supported by

policy functions that generate expected utility of −∞. Such infinitely bad policy
functions can in general be equilibria since no single self has an incentive to deviate.4

3.3. Characterization of Equilibrium. Since the current self controls con-

sumption over the non-trivial interval [0, τ), equilibrium can be characterized in the

usual way using dynamic programming. We begin this subsection with a heuristic

derivation of the Bellman system for our economy. There are three parts to this Bell-

man system: an equation for the continuation-value function of the current self, an

equation for the current-value function of the current self, and a first-order condition

determining the consumption chosen by the current self.

We begin with the equation for the continuation-value function v. Suppose that

future selves use the consumption function c, and let the current state be x. Then

v(x) has two components: the current payoff u(c(x)) dt, and the expected discounted

continuation payoff E [exp(−γ dt) v(x+ dx)]. We therefore have

v(x) = u(c(x)) dt+E [exp(−γ dt) v(x+ dx)] . (3)

4Our equilibrium concept is essentially perfect equilibrium in stationary Markov strategies. How-
ever, we depart from the usual definition in only allowing deviations to stationary Markov strategies.
(The standard definition allows deviations to arbitrary non-stationary and history-dependent strate-
gies.) We do this for expositional convenience. (It should be intuitively clear that the set of equilibria
is unaffected by this departure.)
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Multiplying through by exp(γ dt) and subtracting v(x) from both sides, we obtain

(exp(γ dt)− 1) v(x) = exp(γ dt)u(c(x)) dt+E [v(x+ dx)− v(x)] .

Now

exp(γ dt) = 1 + γ dt+O(dt2)

and

E [v(x+ dx)− v(x)] = ((µx+ y − c(x)) v0(x) + 1
2
σ2 x2 v00(x)) dt+O(dt2)

(cf. Itô’s Lemma). Hence, dropping terms of order dt2 and higher, dividing through

by dt and suppressing the arguments of v and c,

γ v = u(c) + (µx+ y − c) v0 + 1
2
σ2 x2 v00. (4)

The term γ v represents the expected value of instantaneous changes in v arising

from exponential discounting at rate γ; the term u(c) represents the instantaneous

value of the consumption flow; the term (µx + y − c) v0 represents the expected

value of instantaneous changes in v arising from the deterministic component of the

returns process; and the term 1
2
σ2 x2 v00 represents the expected value of instantaneous

changes in v arising from the stochastic component of the returns process.

An analogous derivation can be used to obtain the equation for the current-

value function w. We decompose w(x) into the current payoff u(c(x)) dt, the ex-

pected discounted continuation payoff E [exp(−γ dt)w(x+ dx)] and the expected

change in welfare associated with the possibility of a transition from present to fu-

ture λdt (αv(x) − w(x)). Only this last term is new relative to the decomposition

in equation 3 above. The new term represents the expected value of instantaneous

changes in w arising from the stochastic arrival (with hazard rate λ) of a transition

between the “present”, with current value w, and the “future”, with continuation

value αv. Proceeding as above, we obtain

γ w = u(c) + (µx+ y − c)w0 + 1
2
σ2 x2w00 + λ(αv − w). (5)
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Equation (5) is analogous to equation (4).

Finally, we turn to derivation of the equilibrium policy function c. Consumption

is chosen by the current self, so:

c(x) = argmax
c

u(c) + (µx+ y − c)w0 + 1
2
σ2 x2w00 + λ(αv − w).

Hence, when x > 0, c is unconstrained and

u0(c) = w0.

This is just a statement of the envelope theorem. When x = 0, c may be constrained

and so we write

u0(c) = max {w0, u0(y)} .
When x > 0, consumption is chosen so as to equate the marginal utility of consump-

tion to the marginal value of saving. When x = 0, consumption cannot exceed y.

Hence the marginal utility of consumption must be at least u0(y).

Drawing all of the conditions together, we have the system of equations that define

the equilibrium in our economy.

Definition 2. The Bellman system of the finite-λ model is the system

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c), (6)

0 = 1
2
σ2 x2w00 + (µx+ y − c)w0 − γ w + u(c)− λ (w − αv), (7)

where

u0(c) =

(
w0 if x > 0

max {w0, u0(y)} if x = 0

)
. (8)

3.4. The Alternative Interpretation of Equilibrium. We can also derive

an equivalent Bellman system for the alternative model with deterministic discount

function D(s) (cf. subsection 2.2). Since the analysis of this subsection simply

recovers the results above, many readers will wish to jump immediately to the next

section.
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To derive the Bellman System for the alternative model, consider the (discounted)

value function, z(x, s), that represents the discounted continuation value to the self

at date t of having cash on hand x at date t+ s. Using standard methods (cf. Ito’s

Lemma), one can show that the associated Bellman Equation is

0 = 1
2
σ2 x2 zxx + (µx+ y − c) zx + zs +Du(c)

This Bellman Equation is satisfied when

z(x, s) = e−λse−γsw(x) + (1− e−λs)αe−γsv(x)

where v(x) and w(x) respectively satisfy equations 6 and 7. Hence, the value function

z(x, s) is simply a weighting of e−γsw(x) and αe−γsv(x), where the associated weights,

e−λs and 1− e−λs, represent the respective probabilities of being in the present or in

the future in the basic model.

In addition, note that zx(x, 0) = w0(x). This alternative model then yields iden-

tical results to the basic countable-self model as long as we close the alternative

model with the heuristic equilibrium condition u0(c) = zx(x, 0): marginal utility of

consumption equals the marginal value of wealth.

4. The Instantaneous-Gratification Model

The continuous-time consumption model presented in the last subsection has an im-

mediate advantage over its discrete-time analogue: equilibrium consumption func-

tions are everywhere continuous. However, the principal pathology of the discrete-

time hyperbolic consumption model remains: there may be intervals on which the

consumption function is downward sloping.5

Fortunately, we need not be interested in the general case of the continuous-time

consumption model. The urge for “instantaneous gratification” suggests that the

present — i.e. the interval [t, t + τ) during which consumption is highly valued — is

very short. Since the arrival rate of τ is λ, this is the same as saying that λ is very

5The jumps that can occur in equilibrium consumption functions of the discrete-time model are
always downward. As such, they are simply mathematically extreme versions of downward slopes.
The Brownian noise in the continuous-time model eliminates the mathematical pathology of jumps,
but fails to eliminate the economic pathology of downward slopes.
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large. We are therefore led to consider the limiting case λ → +∞. We refer to this
case as the instantaneous-gratification case, or IG case for short.

Suppose that the triple (vλ, wλ, cλ) solves the Bellman system of the finite-λmodel.

Suppose further that (vλ, wλ, cλ)→ (w, v, c) as λ→ +∞. Then, letting λ→ +∞ in

equation (6), we obtain

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c). (9)

In other words, v is the expected present discounted value obtained when the dis-

count rate is γ, and when consumption is chosen according to the exogenously given

consumption function c. Next, dividing equation 7 through by λ and rearranging, we

obtain

wλ − α vλ =
1
λ

¡
1
2
σ2 x2w00λ + (µx+ y − cλ)w

0
λ − γ wλ + u(cλ)

¢
.

Hence, letting λ→ +∞,
w − αv = 0. (10)

This reflects the fact that, as λ → +∞, the discount function drops essentially
immediately to a fraction α of its initial value, and that the current-value function

w is therefore α times the continuation-value function v. Finally, letting λ→ +∞ in

equation (8), we obtain

u0(c) =

(
w0 if x > 0

max {w0, u0(y)} if x = 0

)
. (11)

In other words, consumption is chosen optimally by the current self.

This derivation motivates the following definition:

Definition 3. The Bellman equation of the IG model is the equation

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c), (12)

where

u0(c) =

(
α v0 if x > 0

max {α v0, u0(y)} if x = 0

)
. (13)
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Equation (12) is identical to equation (9). Equation (13) is obtained by expressing

w in terms of v using equation (10), (i.e., replacing w with αv).

Further understanding of the Bellman equation of the IG model can be obtained

by comparing it with the Bellman equation of the exponential model, i.e. the Bellman

equation that would be obtained if the consumer were dynamically consistent.

Definition 4. The Bellman equation of the exponential model is the equation

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c), (14)

where

u0(c) =

(
v0 if x > 0

max {v0, u0(y)} if x = 0

)
. (15)

As this definition makes clear, the Bellman equation of the exponential model is

simply the special case of the Bellman equation of the IG model obtained by putting

α = 1.

In general, the consumer applies a discount factor α < 1 to the shadow value of

saving. Since u is concave, this means that, for any given shadow value of saving,

the IG consumer will consume more than the exponential consumer. This increase in

consumption drives a wedge between the value functions of the two problems.

5. Value-Function Equivalence

In the present section we show that the value function v of the IG consumer with

the original utility function u is also the value function of an exponential consumer

with a new utility function bu. More explicitly, we show that the Bellman equation
of the IG model with utility function u is identical to the Bellman equation of the

exponential model with utility function bu.
5.1. Assumptions. We shall need the following assumptions:

A1 u : (0,+∞)→ R is three times continuously differentiable;

A2 u0(c) > 0 for all c ∈ (0,+∞);

A3 there exist 0 < ρ ≤ ρ < +∞ such that ρ ≤ −c u00(c)
u0(c) ≤ ρ for all c ∈ (0,+∞);
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A4 there exist −∞ < π ≤ π < +∞ such that π ≤ −c u000(c)
u00(c) ≤ π for all c ∈ (0,+∞);

A5 α+ ρ− 1 > 0;

A6 (2− α) ρ− (1− α)π > 0;

A7 γ > maxρ∈[ρbu,ρbu](1− ρ)(µ− 1
2
ρ σ2), where

ρbu = (α+ ρ− 1) ρ
(2− α) ρ− (1− α)π

and ρbu = (α+ ρ− 1) ρ
(2− α) ρ− (1− α)π

.

Assumption A1 is technical. Assumption A2 is self-explanatory. Assumption A3

means that the consumer has bounded relative risk aversion, or BRRA for short.

Assumption A4 means that the consumer has bounded relative prudence. Assump-

tions A5 and A6 ensure that a utility function bu with the necessary properties exists.
Assumption A7 ensures that, in the exponential model with utility function bu, the
discount rate γ exceeds the rate at growth of the utility of wealth when wealth grows

at the risk-adjusted rate of return µ− 1
2
ρ σ2.

Assumptions A1-A7 can be dramatically simplified if the consumer has constant

relative risk aversion ρ. In that case we have: ρ = ρ = ρ; π = π = ρ + 1; and

ρbu = ρbu = ρ. Hence Assumptions A1-A7 reduce to:

B1 ρ > 0;

B2 α+ ρ− 1 > 0;

B3 γ > (1− ρ)(µ− 1
2
ρ σ2).

Assumption B1 is self-explanatory. Assumption B2 will usually be satisfied in prac-

tice: empirical estimates of the coefficient of relative risk aversion ρ typically lie

between 1 and 5; and the short-run discount factor α is typically thought to be at

least 0.5.6 However, for completeness, we discuss the case α+ ρ− 1 < 0 in Section 7.
Assumption B3 simply means that the discount rate γ exceeds the rate at growth of

the utility of wealth when wealth grows at the risk-adjusted rate of return µ− 1
2
ρσ2.

6See Laibson et al (1998) and Ainslie (1992).
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5.2. Reduced Form of the Bellman Equations. The first step in the proof of

the value-function equivalence theorem is to eliminate consumption from the Bellman

equations of the exponential model and the IGmodel. In this way we obtain a reduced

form of the two equations that is ideally suited for our analysis.

Let the functions f+ : (0,+∞)→ (0,+∞) and f0 : (−∞,+∞)→ (0, y] be defined

implicitly by the equations

u0(f+(φ)) = φ,

u0(f0(φ)) = max {φ, u0(y)} .

In other words, let them be the functions obtained by inverting the first-order condi-

tions for x > 0 and x = 0 respectively. Also, let the functions h+ : (0,+∞)→ (0,+∞)
and h0 : (−∞,+∞)→ (0,+∞) be defined by the formulae

h+(φ) = u(f+(φ))− f+(φ)φ,

h0(φ) = u(f0(φ))− f0(φ)φ.

Then the Bellman equation of the exponential model becomes

0 = 1
2
σ2 x2 v00 + (µx+ y − c) v0 − γ v + u(c)

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + u(c)− c v0

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + u(f+(v

0))− f+(v
0) v0

= 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + h+(v

0) (16)

for x ∈ (0,+∞), with boundary condition

0 = (y − c) v0 − γ v + u(c)

= y v0 − γ v + u(c)− c v0

= y v0 − γ v + u(f0(v
0))− f0(v

0) v0

= y v0 − γ v + h0(v
0) (17)

at x = 0.
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Next, let the functions bh+ : (0,+∞) → (0,+∞) and bh0 : (−∞,+∞) → (0,+∞)
be defined by the formulae

bh+(φ) = u(f+(αφ))− f+(αφ)φ,bh0(φ) = u(f0(αφ))− f0(αφ)φ.

Then a similar derivation shows that the Bellman equation of the IG model becomes

0 = 1
2
σ2 x2 v00 + (µx+ y) v0 − γ v + bh+(v0) (18)

for x ∈ (0,+∞), with boundary condition

0 = y v0 − γ v + bh0(v0) (19)

at x = 0.

Comparing equations (16-17) with equations (18-19), we see that the only differ-

ence between the Bellman equation of the exponential model and the Bellman equa-

tion of the IG model is that the former involves the functions h+ and h0, whereas the

latter involves the functions bh+ and bh0.
5.3. Equivalence of the Two Equations in the Interior. The second step

in the proof of the value-function equivalence theorem is to show that, for a suitable

choice of utility function bu+, equation (18) with utility function u is identical to

equation (16) with utility function bu+.
Note first that, by construction, f+(φ) is the unique maximizer over c ∈ (0,+∞)

of the expression u(c)− φ c. Hence

h+(φ) = max
c∈(0,+∞)

u(c)− φ c.

In other words, h+ is the dual — in the sense of convex analysis — of u. In order to

establish that equation (18) with utility function u is identical to equation (16) with
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utility function bu+, it therefore suffices to choose bu+ in such a way that
bh+(φ) = maxbc∈(0,+∞) bu+(bc)− φbc.

In other words, it suffices to choose bu+ in such a way that bh+ is the dual of bu+.
At this point it is obvious what to do: we need to let bu+ be the dual of bh+. In

other words, we need to define bu+ : (0,+∞)→ R by the formula

bu+(bc) = min
φ∈(0,+∞)

bh+(φ) + bc φ.
Duality will then ensure that bh+ is also the dual of bu+.
In order to verify that this approach works, we need two lemmas.

Lemma 5. We have:

1. bh+ : (0,+∞)→ R is twice continuously differentiable;

2. bh0+(φ) < 0 for all φ ∈ (0,+∞);
3. ρ−1bu ≤ −φbh00+(φ)bh0+(φ) ≤ ρ−1bu for all φ ∈ (0,+∞).

In particular: bh0+(0+) = −∞; bh0+(+∞) = 0; and bh+ is BRRA.
Proof. See Appendix A.1.

Remark 6. It is Assumption A5 which ensures that bh0+ < 0, and Assumption A6

which ensures that bh00+ > 0.

Lemma 7. We have:

1. bu+ : (0,+∞)→ R is twice continuously differentiable;

2. bu0+(bc) > 0 for all bc ∈ (0,+∞);
3. ρbu ≤ −bc bu00+(bc)bu0+(bc) ≤ ρbu for all bc ∈ (0,+∞).
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In particular: bu0+(0+) = +∞; bu0+(+∞) = 0; and bu+ is BRRA.
Proof. See Appendix A.2.

We can now prove:

Theorem 8. For all φ ∈ (0,+∞), we have bh+(φ) = maxbc∈(0,+∞) bu+(bc)− φbc.
Proof. Application of Fenchel’s convex duality Theorem (cf Rockafellar 1970,

section 31).

5.4. Equivalence of the Two Equations on the Boundary. The third step

in the proof of the value-function equivalence theorem is to show that, for a suitable

choice of utility function bu0, equation (19) with utility function u is identical to

equation (17) with utility function bu0.
Proceeding as before, we note that

h0(φ) = max
c∈(0,y]

u(c)− φ c.

We therefore need to choose bu0 in such a way that
bh0(φ) = maxbc∈(0,y] bu0(bc)− φbc.

To achieve this, we define bu0 : (0, y]→ R by the formula

bu0(bc) = min
φ∈(0,+∞)

bh0(φ) + bc φ.
Duality will then ensure that bh0 is also the dual of bu0.
In order to verify that this approach works, we again need two lemmas.

Lemma 9. We have:

bh0(φ) = ( u(y)− φ y if φ ∈ ¡0, 1
α
u0(y)

¤
bh+(φ) if φ ∈ £ 1

α
u0(y),+∞¢

)
.

Moreover bh00( 1α u0(y)−) ≤ bh00( 1α u0(y)+).



INSTANTANEOUS GRATIFICATION 22

In other words: bh0 is affine on ¡0, 1α u0(y)¤ with slope −y; bh0 coincides with bh+ on£
1
α
u0(y),+∞¢; and the slope of bh0 either jumps up or remains constant at 1α u0(y). In

particular, bh0 is strictly decreasing and convex.
Proof. See Appendix A.3.

Lemma 10. We have

bu0(bc) = ( bu+(bc) if bc ∈ (0, ψ y]bu+(ψ y) + (bc− ψ y) bu0+(ψ y) if bc ∈ [ψ y, y]

)
,

where

ψ =
α+ ρ(y)− 1

ρ(y)
.

Moreover bu0(y) = u(y).

In other words: bu0 coincides with bu+ on (0, ψ y]; bu0 is affine on [ψ y, y] with slopebu0+(ψ y); and bu0 coincides with u at y. In particular, bu0 is strictly increasing and
concave.

Proof. See Appendix A.4.

We can now prove:

Theorem 11. For all φ ∈ (0,+∞), we have bh0(φ) = maxbc∈(0,y] bu0(bc)− φbc.
Proof. Application of Fenchel’s convex duality Theorem (cf Rockafellar 1970,

section 31).

5.5. The Equivalent Exponential Problem. Combining Theorems 8 and 11,

we see that the Bellman equation of the IG model with utility function u is identical

to the Bellman equation of the exponential model with utility function bu given by
the formula bu(bc, bx) = ( bu+(bc) if x > 0 and bc ∈ (0,+∞)bu0(bc) if x = 0 and bc ∈ (0, y]

)
.

In particular, the value function v of the hyperbolic consumer of the IG model is

also the value function of an equivalent exponential consumer whose wealth evolves
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according to the same dynamics as in the original problem, but whose preferences are

given by

Et

·Z +∞

t

e−γ (s−t) bu(bc(s), bx(s)) ds¸ .
In other words, the equivalent exponential consumer uses a standard discount function

that decays exponentially at rate γ, but uses a non-standard utility function bu that
depends on her wealth.

Remark 12. We denote consumption and wealth in the equivalent problem by bc
and bx in order to emphasize the fact that the consumption choices of the equivalent
exponential consumer are different from those of the original hyperbolic consumer.

In other words, the equivalent exponential problem is not observationally equivalent

to the original hyperbolic problem.

Figure 4 shows bu and bu0 in the special case in which u(c) takes the form 1
1−ρ c

1−ρ

with ρ 6= 1 (i.e. u has constant relative risk aversion ρ). For this special case, we

have the closed-form solutions

bu+(bc) = ψ
α
u( 1

ψ
bc)

and bu0(bc) = ( ψ
α
u( 1

ψ
bc) if bc ∈ (0, ψ y]

ψ
α
u(y) + 1

α
(bc− ψ y)u0(y) if bc ∈ [ψ y, y]

)
,

where

ψ =
α+ ρ− 1

ρ
∈ (0, 1).

We also have

h+(φ) = − 1
1−ρ−1 φ

1−ρ−1,bh+(φ) = ψ
α
h+(αφ).

Hence bf+(φ) = −bh0+(φ) = −ψ h0+(αφ) = ψ f+(αφ).
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In particular, when x > 0,

c(x) = 1
ψ
bc(x).

When x = 0, there are two cases. If α v0(0) ≥ u0(y), then

bc(0) = bc(0+),
c(0) = c(0+) = 1

ψ
bc(0+).

If αv0(0) < u0(y), then

c(0) = bc(0) = y.

Moreover it can be shown that

bc(0+) = ψ y > y,

c(0+) = 1
ψ
bc(0+) = 1

ψ
ψ y,

where ψ is the larger of the two solutions of the equation bu+(bc)+(1−bc) bu0+(bc) = u(1).

Remark 13. This example can easily be extended to the cover the case ρ = 1.

6. Some Features of the IG Model

In the present section, we exploit the value-function equivalence result of Section 5

to investigate the IG model in more detail. We establish the existence and unique-

ness of equilibrium, the continuity of the consumption function in the interior of the

wealth space, a sufficient condition for the monotonicity of the consumption function,

and a generalized Euler equation governing the evolution of the marginal utility of

consumption. Assumptions A1-A7 will be in force throughout the section.

6.1. Existence and Uniqueness of Equilibrium.

Theorem 14. The Bellman equation of the IG model has a unique solution (v, c).

Proof. The equivalence result of Section 5 shows that (v, c) solves the Bellman

equation of the IG model iff: (i) v solves the Bellman equation of the equivalent

exponential problem; (ii) c = f+(αv
0) when x > 0; and (iii) c = f0(αv

0) when x = 0.

Moreover standard considerations show that the Bellman equation of the equivalent

exponential problem possesses a unique solution.
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6.2. Continuity of the Consumption Function.

Theorem 15. We have:

1. c is continuous when x > 0;

2. there exists µcrit ∈ (−∞,+∞) such that

(a) if µ < µcrit then c(0) < c(0+), and

(b) if µ ≥ µcrit then c(0) = c(0+).

Proof. Note first that c is continuous in the interior because c = f+(α v
0) there.

Secondly, c(0) = f0(α v
0(0)) = min {f+(α v0(0)), y} ≤ f+(α v

0(0)) = c(0+). Hence

c(0) ≤ c(0+), with equality iff v0(0) ≥ 1
α
u0(y). Thirdly, let ev be the value function of

the restricted version of the equivalent consumption problem in which the consumer

has utility function bu+ instead of bu0 when her wealth is 0. It can be shown that
v0(0) ≥ 1

α
u0(y) iff ev(0) ≥ 1

γ
u(y). Moreover: ev(0) is strictly increasing in µ; ev(0) =

1
γ
bu(y) < 1

γ
u(y) for all µ sufficiently small; and ev(0)→ +∞ as µ→ +∞.

Remark 16. In the case µ < µcrit, the consumer dissaves when her wealth is low,

spends all her wealth in finite time, and experiences a discontinuous drop in consump-

tion when her wealth runs out. In the case µ ≥ µcrit, asset returns are high enough

to induce the consumer to save when her wealth is low.

6.3. Monotonicity of the Consumption Function.

Theorem 17. Suppose that γ ≥ µ. Then c0 > 0 when x > 0.

Proof. Note first that c = f+(α v
0) in the interior. Hence c is continuously differen-

tiable there, and c0 = f 0+(αv
0)α v00. Hence c0 > 0 iff v00 < 0. Secondly, differentiating

equation (18) with respect to x, we obtain

1
2
σ2 x2 v000 + (µx+ y) v00 − γ v0 + σ2 x v00 + µv0 + bh0+(v0) v00 = 0

or

v000 =
2

σ2 x2
((γ − µ) v0 − ((µ+ σ2)x+ y + bh0+(v0)) v00).



INSTANTANEOUS GRATIFICATION 26

In particular, if v00 = 0, then

v000 =
2

σ2 x2
(γ − µ) v0 ≥ 0.

Hence, if there exists x1 ∈ (0,+∞) such that v00(x1) ≥ 0, then v00 ≥ 0 on (x1,+∞).
Thirdly, if there exists x1 ∈ (0,+∞) such that v00(x1) ≥ 0 on (x1,+∞), then v grows
at least linearly; and this contradicts the fact that ρbu ≥ ρbu > 0. Overall, then, we

must have v00 < 0 on (0,+∞).
Remark 18. Theorem 23 below shows that, if γ < µ, then it may happen that c0 < 0

at some wealth levels.

6.4. The Generalized Euler Equation. Since u0(c) may have a discontinuity

at 0, we cannot use Itô’s Lemma to study its dynamics. We can, however, use Itô’s

Lemma to study the dynamics of m = α v0. These dynamics are very closely related

to those of u0(c). Indeed, we have u0(c) = m for x > 0. Moreover:

1. if c(0+) = c(0), then the dynamics of m are identical to those of u0(c);

2. if c(0+) > c(0) and x(0) ∈ (0,+∞), and if T is the first time that x hits 0, then
the dynamics of m are identical to those of u0(c) on the interval (0, T ); and

3. if c(0+) > c(0) and x(0) = 0, then the dynamics of m are identical to those of

u0(c).

The two dynamics only differ if c(0+) > c(0) and x(0) ∈ (0,+∞), in which case u0(c)
jumps up at T (whereas m does not jump down).

Theorem 19. We have:

dm

m
=

µ
γ − µ+ σ2 ρ(c)

x c0

c
+ (1− α) c0

¶
dt− σ ρ(c)

x c0

c
dz

if either x > 0 or x = 0 and c(0+) = c(0); and

dm

m
= 0

if x = 0 and c(0+) > c(0).
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This theorem gives an exact expression for the rate of growth of m. The equation

includes deterministic terms (i.e. the terms which include dt) and a stochastic term

(i.e. the final term, which includes dz). The stochastic term captures the negative

effect that positive wealth shocks have on marginal utility.

The term γ dt implies that marginal utility rises more quickly the higher the long-

run discount rate γ. The term −µdt implies that marginal utility rises more slowly
the higher the rate of return µ. The term σ2 ρ(c) x c

0
c
dt captures two separate effects.

First, asset income uncertainty σ2 affects the savings decision. Second, since marginal

utility is non-linear in consumption, asset income uncertainty affects the average value

of future marginal utility. The net impact of these two effects is always positive. The

term (1−α) c0 dt captures the effect of hyperbolic discounting. Naturally, when α = 1,
this effect vanishes and the model coincides with the standard exponential discounting

case.

Proof. See Appendix A.5.

6.5. The Deterministic IG Model. Up to now we have assumed that the stan-

dard deviation of asset returns σ > 0. In other words, we have been focussing on

the stochastic IG model. In the present section, we investigate the case σ = 0. In

other words, we focus on the deterministic IG model. We show that, by viewing the

deterministic IG model as a limiting case of the stochastic IG model, we are able to

pinpoint a unique value function for the deterministic IG model. More precisely, we

have the following theorem. The proof, which follows standard lines, is omitted.

Theorem 20. Let vσ be the value function of the stochastic IG model. Then:

1. there is a continuous function v : [0,+∞)→ R such that vσ → v uniformly on

compact subsets of [0,+∞) as σ → 0+;

2. v is the unique viscosity solution7 of the Bellman equation

0 = (µx+ y) v0 − γ v + bh+(v0) (20)

7See Crandall et al (1992) for a “user’s guide” to viscosity solutions.



INSTANTANEOUS GRATIFICATION 28

for x ∈ (0,+∞), with boundary condition

0 = y v0 − γ v + bh0(v0) (21)

at x = 0.

We refer to equation (20) as the Bellman equation of the deterministic IG model,

and to equation (21) as the boundary condition of the deterministic IG model.

The equilibrium consumption function c of the deterministic IG model can be

determined from the value function v using the first-order condition. More precisely,

we have

u0(c) =

(
α v0 if x > 0

max {α v0, u0(y)} if x = 0

)
.

In other words, by letting σ → 0+ in the stochastic IG model, we select a unique

sensible equilibrium of the deterministic IG model.

Remark 21. Krusell and Smith (2000) consider a deterministic discrete-time hy-
perbolic consumption model. They show that equilibrium is indeterminate in their

model. Our results suggest that this indeterminacy could be resolved by a refinement

analogous to the one that we have used here.

Remark 22. The Bellman equation of the deterministic IG model is simpler than

than that of the stochastic IG model: it is a first-order ordinary differential equation,

whereas the latter is a second-order ordinary differential equation.

6.6. The Deterministic IG Model when u is CRRA. In the present section,

we shall investigate the deterministic IG model in the case that u is CRRA. More

precisely, we shall make the following assumptions:8

C1 σ = 0;

C2 u(c) takes the form 1
1−ρ c

1−ρ with ρ 6= 1;
8Assumptions C1-C3 are made in addition to the standing assumptions A1-A7. The latter

accordingly reduce to Assumptions B1-B3.
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C3 µ > 0.

Under these assumptions, the Bellman equation possesses a symmetry that allows

us to transform it from a non-autonomous ordinary differential equation into an au-

tonomous ordinary differential equation. We are therefore able to provide a complete

analysis of equilibrium in this case.

In the deterministic IG model, total income is µx + y. If c is the equilibrium

consumption function, we therefore put

APC(x) =
c(x)

µx+ y
.

We then have:

Theorem 23. Suppose that Assumptions C1-C3 hold. Then there exists γ ∈ (µ,+∞)
such that:

1. If γ ∈ ((1 − ρ)µ, α µ), then APC is constant and strictly less than 1. In

particular, c is strictly increasing and affine.

2. If γ ∈ (αµ, µ), then there exists x1 ∈ (0,+∞) such that APC jumps up at 0, is
strictly decreasing and strictly greater than 1 on (0, x1), jumps down at x1, and

is constant and strictly greater than 1 on (x1,+∞). Moreover c jumps up at
0, is strictly decreasing on (0, x1), jumps down at x1, and is strictly increasing

and affine on (x1,+∞).

3. If γ ∈ (µ, γ), then APC jumps up at 0, and is strictly decreasing and strictly

greater than 1 on (0,+∞). Moreover c jumps up at 0, and is strictly increasing
on (0,+∞).

4. If γ ∈ (γ,+∞), then APC jumps up at 0, and is strictly increasing and strictly
greater than 1 on (0,+∞). Moreover c jumps up at 0, and is strictly increasing
on (0,+∞).

In particular, the condition γ ≥ µ used in the proof of monotonicity of the con-

sumption function is necessary.

Proof. See Appendix A.6



INSTANTANEOUS GRATIFICATION 30

Remark 24. The analysis of this section can easily be extended to the cover the
case ρ = 1.

Remark 25. There is a unique solution to the dynamics even when γ ∈ (αµ, µ).
Indeed, in this case we have APC > 1, and x therefore decreases strictly with time.

7. Derivation of the IG Model Revisited

7.1. A Limit Theorem. Our derivation of the IG model from the finite-λ model

in Section 4 was deliberately heuristic. The relationship between the two models can,

however, be made rigorous. The following theorem, which we state without proof,

gives the flavor of the link between the two models.

Theorem 26. Suppose that Assumptions A1-A7 hold. Then there exists λ0 ∈
(0,+∞) such that, for all λ ∈ [λ0,+∞), the finite-λ model possesses a unique equilib-
rium cλ. If wλ is the current-value function associated with cλ, then wλ is continuous

on [0,+∞). Moreover 1
α
wλ converges uniformly on compact subsets of [0,+∞) as

λ→ +∞ to a limit function v, which is the unique viscosity solution9 of the Bellman

equation (16) for x ∈ (0,+∞), with boundary condition (17) at x = 0.
7.2. A Complementary Theorem. Theorem 26 covers the case in which u has

constant relative risk aversion ρ > 1− α. It is also possible to prove a limit theorem

that covers the case in which u has constant relative risk aversion ρ < 1 − α. In

order to formulate such a theorem, we introduce the following assumptions, which

complement Assumptions A5 and A6:

A50 α+ ρ− 1 < 0;

A60 (2− α)ρ− (1− α)π < 0.

The theorem, which we state without proof, is then as follows.

Theorem 27. Suppose that Assumptions A1-A4, A50, A60 and A7 hold. Then there
exists λ0 ∈ (0,+∞) such that, for all λ ∈ [λ0,+∞), the finite-λ model possesses a
unique equilibrium cλ. If wλ is the current-value function associated with cλ, then wλ

is continuous on [0,+∞). Moreover 1
α
wλ → 1

γ
u(y) uniformly on compact subsets of

[0,+∞) as λ→ +∞.
9See Crandall et al (1992) for a “user’s guide” to viscosity solutions.
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This theorem reflects the following behavior. For large λ, the consumer quickly

consumes all her wealth. Thereafter, she consumes her labor income. Because her

utility function has the property that 1
c
u(c)→ 0 as c→ +∞, the initial consumption

binge does not contribute much to the expected present discounted value of her con-

sumption flow. It is the subsequent consumption of her labor income that matters.

The expected present discounted value of this consumption is of course simply 1
γ
u(y).

This behavior arises because, when ρ < 1−α, the utility function is not sufficiently
bowed to dampen the feedback effects that arise in hyperbolic models. Instead, these

feedback effects drive consumption to infinity. In effect, the current self knows that

subsequent selves are going to consume at a very high rate, and therefore chooses to

consume at a very high rate herself in order to preempt the consumption by the later

selves.

7.3. A Stronger Limit Theorem. Finally, note that Theorem 26 continues to

hold when Assumptions A5 and A6 are replaced by the following, significantly weaker,

assumptions:

A500 α+ lim infc→+∞ ρ(c)− 1 > 0;

A600 (2− α) lim infc→+∞ ρ(c)− (1− α) lim supc→+∞ π(c) > 0.

These assumptions ensure that bh+ is decreasing and convex near 0. This is enough
to ensure that consumption remains bounded as λ → +∞. These assumptions are,
however, consistent with bh+ being increasing or concave away from 0. In other words,
for some BRRA utility functions, the IG problem is not value-function equivalent to

any exponential consumption problem.

8. Conclusions

We have described a continuous-time model of hyperbolic discounting. Our model

allows for a general class of preferences, includes liquidity constraints, and places

no restrictions on equilibrium policy functions. The model is also psychologically

relevant. We take the phrase “instantaneous gratification” literally. We analyze

a model in which individuals prefer gratification in the present instant discretely

more than consumption in the momentarily delayed future. In this simple setting,
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equilibrium is unique and the consumption function is continuous. When the long-

run discount rate weakly exceeds the interest rate, the consumption function is also

monotonic. All of the pathologies that characterize discrete-time hyperbolic models

vanish.
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A. Appendix

A.1. Proof of Lemma 5. Note first that

bh+(φ) = u(f+(αφ))− f+(αφ)φ

= u(f+(αφ))− α f+(αφ)φ− (1− α) f+(αφ)φ

= h(αφ)− (1− α) f+(αφ)φ.

Hence

bh0+(φ) = αh0 − (1− α) f+ − (1− α)α f 0+ φ

= −αf+ − (1− α) f+ − (1− α)αf 0+ φ

= −f+ − (1− α) f 0+ αφ

= −f+
µ
1 + (1− α)

f 0+ αφ
f+

¶
= −f+

µ
1 + (1− α)

u0(f+)
f+ u00(f+)

¶
= −f+

µ
1− 1− α

ρ(f+)

¶
=
−(α+ ρ(f+)− 1) f+

ρ(f+)
,

where we have suppressed the dependence of h and f+ on αφ. Assumption A5

therefore implies that bh0+ < 0.

Second, as shown above, we have

bh0+(φ) = −f+ − (1− α) f 0+ αφ.
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Hence

bh00+(φ) = −α f 0+ − (1− α) f 0+ α− (1− α)αf 00+ αφ

= −α f 0+
µ
1 + (1− α)

µ
1 +

f 00+ αφ
f 0+

¶¶
=

−α
u00(f+)

µ
1 + (1− α)

µ
1− u000(f+)u0(f+)

u00(f+)2

¶¶
=

−α
u00(f+)

µ
1 + (1− α)

µ
1− π(f+)

ρ(f+)

¶¶
=

−α
u00(f+) ρ(f+)

((2− α) ρ(f+)− (1− α)π(f+)) .

Assumption A6 therefore implies that bh00+(φ) > 0.
Third, using the final expressions obtained above for bh0+(φ) and bh00+(φ), we have

−φbh00+(φ)bh0+(φ) =
(2− α) ρ(f+)− (1− α)π(f+)

(α+ ρ(f+)− 1) ρ(f+) .

Hence

ρ−1bu ≤ −φ
bh00+(φ)bh0+(φ) ≤ ρ−1bu ,

as required.

A.2. Proof of Lemma 7. Put

bg+(bc) = argminφ∈(0,+∞) bh+(φ) + bc φ.
Then bu0+(bc) = bg+(bc), bu00+(bc) = −1bh00+(bg+(bc))
and

−bc bu00+(bc)bu0+(bc) =
bh0+(bg+(bc))

−bg+(bc)bh00+(bg+(bc)) .
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We may therefore apply part 3 of Lemma 5 to conclude that

ρbu ≤ −bc bu00+(bc)bu0+(bc) ≤ ρbu,
as required.

A.3. Proof of Lemma 9. The first statement is immediate from the definition

of bh0. It implies that
bh00( 1α u0(y)+) = bh0+( 1α u0(y)) = −(α+ ρ(f+(u

0(y)))− 1) f+(u0(y))
ρ(f+(u0(y)))

= −
µ
α+ ρ(y)− 1

ρ(y)

¶
y ≥ −y = bh00( 1α u0(y)−).

This completes the proof of the lemma.

A.4. Proof of Lemma 10. We have

bh0(φ) = ( u(y)− φ y if φ ∈ ¡0, 1
α
u0(y)

¤
bh+(φ) if φ ∈ £ 1

α
u0(y),+∞¢

)

and

bh00(φ)

= −y if φ ∈ ¡0, 1

α
u0(y)

¢
∈ [−y,−ψ y] if φ = 1

α
u0(y)

= bh0+(φ) if φ ∈ ¡ 1
α
u0(y),+∞¢

 .

Hence

min
φ∈(0,+∞)

bh0(φ) + bc φ =

minφ∈(0,+∞) bh+(φ) + bc φ if bc ∈ (0, ψ y)bh+( 1α u0(y)) + 1

α
bc u0(y) if bc ∈ [ψ y, y]

−∞ if bc ∈ (y,+∞)
 .

Moreover

min
φ∈(0,+∞)

bh+(φ) + bc φ = bu(bc)
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and

bh+( 1α u0(y)) + 1
α
bc u0(y) = bh+( 1α u0(y)) + 1

α
ψ y u0(y) + 1

α
(bc− ψ y)u0(y)

= bu+(ψ y) + (bc− ψ y) bu0+(ψ y).

Finally, bh+( 1α u0(y)) + 1
α
y u0(y) = u(y)− 1

α
y u0(y) + 1

α
y u0(y) = u(y).

This completes the proof of the lemma.

A.5. Proof of Theorem 19. We begin by applying Itô’s Lemma to m to obtain

dm = (1
2
σ2 x2m00 + (µx+ y − c)m0)dt+ σ xm0 dz.

Next, we put ec = f(m). Then, differentiating equation (9) with respect to x, we have

1
2
σ2 x2m00 + (µx+ y − ec)m0 − γ m+ σ2 xm0 + µm− ec0m+ αu0(ec)ec0 = 0

when x > 0. Moreover this equality extends by continuity to the case x = 0. Hence

1
2
σ2 x2m00 + (µx+ y − c)m0 = 1

2
σ2 x2m00 + (µx+ y − ec)m0 + (ec− c)m0

= γ m− σ2 xm0 − µm+ ec0m− αu0(ec)ec0 + (ec− c)m0

= γ m− σ2 xm0 − µm+ ec0m− αmec0 + (ec− c)m0

= (γ − µ+ (1− α)ec0)m− (σ2 x− (ec− c))m0

and

dm

m
=

µ
γ − µ+ (1− α)ec0 − σ2 x

m0

m
+ (ec− c)

m0

m

¶
dt+ σ x

m0

m
dz

=

µ
γ − µ+ (1− α)ec0 + σ2 ρ(ec) xec0ec − (ec− c) ρ(ec) ec0ec

¶
dt− σ ρ(ec) xec0ec dz

since
m0

m
=

u00(ec)ec0
u0(ec) =

ec u00(ec)
u0(ec) ec0ec = −ρ(ec) ec0ec .

In particular, we have the first statement of the Theorem.
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As for the second statement, note that if x = 0 and c(0+) > c(0) then c(0) = y.

Wealth therefore remains constant at 0 forever, m = u0(y) forever and dm = 0.

A.6. Proof of Theorem 23. We proceed in steps. First, put X = log(µx+ y),

v(x) = (µx+ y)1−ρ V (X), c = log(y) and, in a slight abuse of notation,

bh0(φ, y) = ( u(y)− φ y if φ ∈ ¡0, 1
α
u0(y)

¤
bh+(φ) if φ ∈ £ 1

α
u0(y),+∞¢

)
.

Then

0 = (µx+ y) v0 − γ v + bh+(v0)
(using the Bellman equation of the deterministic IG model, namely (20))

= (µx+ y)1−ρ (µV 0 + (1− ρ)µV − γ V ) + bh+((µx+ y)−ρ (µV 0 + (1− ρ)µV ))

(since v0 = (µx+ y)−ρ (µV 0 + (1− ρ)µV ))

= (µx+ y)1−ρ
³
µV 0 + (1− ρ)µV − γ V + bh+(µV 0 + (1− ρ)µV )

´
(because bh+ is homogeneous of degree 1− 1

ρ
). Also

0 = y v0(0)− γ v(0) + bh0(v0(0))
(using the boundary condition of the deterministic IG model, namely (21))

= y1−ρ (µV 0(c) + (1− ρ)µV (c)− γ V (c)) + bh0(y−ρ (µV 0(c) + (1− ρ)µV (c)), y)

(since v0(0) = y−ρ (µV 0(c) + (1− ρ)µV (c)))

= y1−ρ
³
µV 0(c) + (1− ρ)µV (c)− γ V (c) + bh0(µV 0(c) + (1− ρ)µV (c), 1)

´
.

Hence v is the value function of the deterministic IG model iff V satisfies the Bellman

equation

0 = µV 0 + (1− ρ)µV − γ V + bh+(µV 0 + (1− ρ)µV ) (22)
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for X ∈ (c,+∞) with boundary condition

0 = µV 0 + (1− ρ)µV − γ V + bh0(µV 0 + (1− ρ)µV, 1) (23)

at X = c.

Second, put ζ = µV 0 + (1 − ρ)µV . Then equation (22) determines a curve C+
in (V 0, V )-space parametrized by ζ ∈ (0,+∞). If ρ < 1, then: for ζ ∈ (0, bu0+(1)), V 0

is increasing in ζ and V is decreasing in ζ; and, for ζ ∈ (bu0+(1),+∞), both V 0 and V

are increasing in ζ. If ρ > 1, and if we put

a =
γ − (1− ρ)µ

(ρ− 1)µ > 1,

then: for ζ ∈ (0, bu0+(a)), both V 0 and V are decreasing in ζ;10 for ζ ∈ (bu0+(a), bu0+(1)),
V 0 is increasing in ζ and V is decreasing in ζ; and, for ζ ∈ (bu0+(1),+∞), both V 0 and

V are increasing in ζ.

Third, V is minimized when ζ = bu0+(1), at which point V = bu+(1). Hence there
are two points on C+ at which V = u(1) > bu+(1). We denote the corresponding
values of ζ by bu0+(ψ) and bu0+(ψ).11 It is easy to verify that

ψ =
α+ ρ− 1

ρ
< 1 < ψ,

but there is no closed-form expression for ψ.

Fourth, equation (23) determines a curve C0 in (V 0, V )-space parametrized by

ζ ∈ (−∞,+∞). For ζ ∈ (−∞, bu0+(ψ)), V 0 is increasing in ζ and V is constant and

equal to u(1); and, for ζ ∈ (bu0+(ψ),+∞), C0 coincides with C+ (in particular, both

V 0 and V are increasing in ζ).

Fifth, there is a unique point on C+ at which V 0 = 0. We denote the corresponding

value of ζ by bu0+(b). It is easy to verify that
b =

γ − (1− ρ)µ

ρµ
.

10Since V, V 0 → 0− as ζ → 0+, we have V 0 < 0 for ζ ∈ (0, bu0+(A)).
11The points ψ and ψ are the two solutions of the equation bu+(bc) + (1− bc) bu0+(bc) = u(1).
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It can also be shown that V 0 = γ−αµ
γ µ

bu0+(ψ) when ζ = bu0+(ψ), V 0 = γ−µ
γ µ
bu0+(1) when

ζ = bu0+(1), V 0 = γ−(1−ρ)µ−ρµψ
γ µ

bu0+(ψ) when ζ = bu0+(ψ), and, if ρ > 1, then V 0 =
γ−(1−ρ)µ
γ (1−ρ)µ bu0+(a) < 0 when ζ = bu0+(a).12
Sixth, it is easy to verify that b is increasing in γ. Moreover there exists γ ∈

(µ,+∞) such that: b ∈ (0, ψ) iff γ ∈ ((1 − ρ)µ, α µ); b ∈ (ψ, 1) iff γ ∈ (αµ, µ);
b ∈ (1, ψ) iff γ ∈ (µ, γ); and b ∈ (ψ,+∞) iff γ ∈ (γ,+∞).13
Seventh, we complete the analysis of APC using a phase diagram. Equation (22)

is a first-order autonomous ordinary differential equation. A one-dimensional phase

diagram (in V -space) would therefore appear to be appropriate. However, there may

be upward jumps in V 0.14 It is therefore preferable to work with a two-dimensional

phase diagram (in (V 0, V )-space). The phase curve corresponding to the equilibrium

starts on the curve C0, is confined to the curve C+, and converges to the steady state

V 0 = 0 as X → +∞.
Eighth, we complete the analysis of c by noting that, when x > 0: the first-order

condition of the equivalent exponential problem gives bu00+(bc)bc0 = v00; and the Bellman

equation of the deterministic IG model gives 0 = (µx + y − bc) v00 − (γ − µ) v0. We

therefore have bc0 = (γ − µ) v0

(µx+ y) (1−[APC) bu00+(bc) ,
where [APC = bc

(µx+y)
.

12These values of V 0 are found from the formula V 0 = γ−(1−ρ)µ−ρ µ bc
γ µ bu0+(bc). The corresponding

values of V can be found from the formula V = 1−ρ+ρ bcbc bu+(bc).
13The critical value of γ can be found by solving the equation γ

αµ =
³
γ−(1−ρ)µ

ψ ρµ

´ρ
. This equation

has two solutions, αµ and γ.
14There are no downward jumps. Intuitively speaking, this is because V is the upper envelope of

smooth functions, and can therefore have convex kinks but not concave kinks.
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Figure 1: Consumption functions for β ∈ {0.1,0.2,...,0.7}*

β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.5
β = 0.6
β = 0.7

*These consumption functions are taken from discrete time simulations in Harris and Laibson (2001b).  These simulations assume iid income, a risk-free asset, and CRRA.                        
The short-run discount factor is βδ.  The long-run discount factor is δ=.95.  The plotted consumption functions are shifted upward (in increments of .1) so they do not overlap. 
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Figure 2: Realization of discount function (α=0.7, γ=0.1)
D

is
co

un
t f

un
ct

io
n

Present Future

Realization 
of  T 

Time to discounted period 



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Figure 3: Expected value of discount function for λ ∈ {0,0.1,1,10,∞}
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λ = 0 (exponential discounting)
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Figure 4: Utility functions for equivalent problem (α=.7, ρ=2)
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