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1 Introduction

We provide a framework for inference in discrete games that involve multiple decision mak-

ers and use it to study airline market structure in the US. Generally, multiple pure strategy

equilibria are common in discrete games with a sufficiently rich environment. Making in-

ferences in the presence of multiple equilibria in complete information games is complicated

since the underlying econometric model is incomplete, i.e., for a given parameter and a given

value for the exogenous variables, the model does not predict a unique outcome. Strategies

to deal with multiplicity have involved a variety of assumptions to point identify the param-

eters of interest. A common approach to these strategies is to base inference on a unique

feature that is common to all equilibria. In 2× 2 entry games for example, Bresnahan and

Reiss (1991) show that the model predicts a unique number of players in the market which

allows one to use standard methods (like maximum likelihood) to do inference based on the

number of firms. This approach has a few shortcomings. First, it is not clear how one would

look for these unique features in general discrete games involving many players and/or large

strategy space. Second and more important, strong assumptions, such as not allowing for

player specific heterogeneity or externalities, are needed to guarantee uniqueness across all

equilibria. In this paper we take a different approach.

We make inferences directly on a “class of models” rather than looking for (point iden-

tifying) assumptions that pin down a unique model. Taking a class of models approach to

modelling in game theoretic settings, one “abandon(s) the aim of identifying some unique

equilibrium outcome. Instead, we admit some class of candidate models (each of which may

have one or more equilibria) and ask whether anything can be said about the set of out-

comes that can be supported as an equilibrium of any candidate model” (For more on this,

see Sutton (1991)). The inferential strategy that we propose in this paper implements this

approach by estimating the identified features of the class of models under consideration.

Moreover, our framework is practical and can be used in a variety of empirical games.

We apply our method to entry models and estimate profit functions of firms in the airline

industry. Following Bresnahan and Reiss (1990) and Berry (1992), we consider a two-stage

model of entry. In the first period firms decide whether or not to enter into the market.

In the second period the firms, producing a homogeneous good, compete in quantities. We

study the entry model under the following critical but plausible assumption that we impose

throughout.

Assumption 1 All entrants in a market make nonnegative profits from entry, while firms

that do not enter expect negative profits from entry.

This assumption, which represents a necessary and weak condition on behavior, is satisfied

in a class of entry models and is similar to the “viability condition” of Sutton. The question

that we ultimately answer is what can we learn about the profit function of different firms
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under this fundamental (weak but credible) assumption. A heuristic answer which the paper

elaborates on, is that given a cross section of markets or firms, the identified feature of the

model is the set of profit functions that obey our assumption and are consistent with the

empirical evidence. This approach to inference has been used in a class of English auctions

studied in Haile and Tamer (2003). Andrews and Berry (2003) provide another approach to

inference in entry models with multiple equilibria.

More generally, the paper presents a practical estimator that can be used to conduct robust

inference in parametric discrete games involving multiple decision makers. This estimator

is based on minimizing the distance between the empirical choice probabilities (which can

be consistently estimated from a cross section of markets or firms for example) and the

predicted ones defined in terms of inequality restrictions following assumption 1 and provides

a set that covers the identified feature (a set of parameters or a point) with a prespecified

probability. Tamer (2003) studied identification in a 2 × 2 game where no assumptions

were made about equilibrium selection in different markets. However, he showed that to

guarantee point identification, strong support conditions (a lot of variation in the regressors)

were needed and these conditions are not easy to obtain in general more practical games

involving many players and/or large strategy space. In this paper, we abandon this search

for point identifying assumptions and provide empirical strategies to estimate the identified

features of the game.

The airline industry is a natural choice to study entry in the presence of multiple equi-

libria. Similar markets differ in the number and identities of carriers that serve them. For

example Detroit-Pittsburgh was served by 3 airlines in 1998, while Boston-Pittsburgh was

only served by 1 airline.1 We identify the effect of technological (such as distance) and de-

mographic characteristics from the effect of airlines’ strategic behavior on market structure.

Strategic behavior is sometimes airline specific and our empirical strategy allows for a po-

tential entrants’ profits to depend on the identity of other players in the market not just the

number of competitors. This is crucial for example when dealing with airlines that follow a

unique business model, such as Southwest.

Multiple equilibria, that sometimes involve a different number of firms, are likely to occur

in the entry game for a variety of reasons. First, allowing for simple heterogeneity in the

effect each airline has on the other can result in multiple equilibria that differ in the number

of firms. For instance, major airlines contribute to the construction and maintenance of the

airports more than small airlines do, creating free-riding opportunities for low cost carriers2.

On the other hand, entrants must often sublease airport facilities from the larger airlines,

usually at higher costs than if they leased them directly from the airport ( U.S. General

1These data are from the T-100 Domestic Segment Dataset, which contains domestic non-stop segment
data for the United States (See the appendix for more information on the data).

2This is why airports and airlines sign majority in interest agreements, which we discuss in section 2 (
U.S. General Accounting Office (1989)). Major carriers are American, Continental, Delta, Northwest, TWA,
USAir, and United.
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Accounting Office (1989)). Thus major carriers can strategically accommodate new entrants,

favoring the entry of smaller carriers that have a complementary network (where small

carriers bring in passengers that use markets served by the major airlines) or make it harder

for direct competitors to enter. Second, demand for airline travel is highly nonlinear as

business travellers have different demand schedules than leisure travellers3. Third, Hendricks,

Piccione, and Tan (1997) show that there can be multiple equilibria in a game where hub-

and-spoke networks are explicitly modelled and small regional carriers have lower costs than

the major airlines.

In this paper we do not sort out which of these possible reasons give rise to multiple

equilibria. To do this, one would need to estimate simultaneously the demand and supply of

airline services, and the entry decision as in Reiss and Spiller (1989).4 Here, we contribute

to the literature started by Bresnahan and Reiss (1990) and Berry (1994) and focus on esti-

mating airline profit functions. However, rather than estimating the probability of observing

a given number of firms, we provide upper and lower probabilities on observing a particular

market structure that involves certain firms. Our approach allows us to include, for the first

time in the literature, firm specific indicator variables in the profit functions of other airlines.

We address important questions concerning the airline industry: Is the dispersion in the

number of firms across airline markets the result of the carriers’ strategic behavior? Do major

carriers behave more aggressively toward some low-cost carrier than others? These questions

have wide policy relevance as the recent report by the Transportation Board writes, “where

entry is not artificially impeded, competing services will ensure that the fares charged to

passengers are, in the long run, reflective of the full cost of efficiently providing the type of

service desired.”5

In section 2, we review the literature on entry and market structure in the airline industry.

This sheds light on heterogeneity between different airlines. We then provide a summary of

our empirical model of entry that we use and relate it to models of entry in the literature.

Our econometric framework for estimating discrete games with multiple equilibria is provided

in section 4 below. We then provide a detailed description of our data in section 5. Section

6 provides our empirical results and section 7 concludes.

2 Entry and Market Structure in the Airline Industry

With the notable exceptions of Berry (1992) and Reiss and Spiller (1989), most of the

previous literature has studied the effect of airport and route concentration on airline fares

rather than on market structure. Borenstein (1988), Evans and Kessides (1993), and Hurdle,

Johnson, Joskow, Werden, and Williams (1989) find that airport concentration is associated

3Even a simple homogeneous good oligopoly entry game can have multiple equilibria. See Tirole (1988).
4This challenging work was done for small markets and under more restrictive conditions.
5Transportation Research Board (1999), page 1-7.
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with higher fares for consumers who fly to or from the airport.6 However, omitted cost and

demand variables or selection effects could explain the observed correlations between market

concentration and fares, and these same unobservable factors could also affect entry (Reiss

and Spiller (1989)).7 To address this concern, Reiss and Spiller (1989) model simultaneously

market structure and pricing behavior in the airline industry. They estimate the probability

that a firm offers direct service conditional on the number of firms offering indirect service. In

their econometric analysis, they impose the restrictive condition that “the number of indirect

firms (does not) vary with the number of direct firms,” and “thus ensures that the likelihood

function is well defined, even for ranges of the unobservable that would otherwise make the

model’s prediction non-unique.”8 Reiss and Spiller find that entry introduces a selection

bias in equations explaining fares or quantities and that there is considerable variation in

competitive conduct both within and across routes. Their results suggest that unobservable

firm heterogeneity in different markets may be important in determining the effect of market

power on airline fares.

Berry (1992) studies the effect of market presence on entry in the airline industry. Berry

focuses on estimating the probability of observing a given number of firms, conditional on

exogenous market characteristics. The number of firms is endogenous in Berry’s analysis,

and unrestricted. Moreover, Berry models observable (and unobservable) firm heterogeneity,

which is a critical achievement in the analysis of market structure.9. Berry finds that airport

presence has an important role in determining airline profitability, providing support to the

studies that show a strong positive relationship between airport presence and airline fares.

Berry also finds that profits decline rapidly in the number of entering firms. The main

methodological innovation in Berry (1992) (and in Bresnahan and Reiss (1991)) is to avoid

the problem of multiple equilibria by providing assumptions on the model that guarantee

uniqueness of the predicted number of firms in the market rather than trying to predict which

particular firms are more likely to serve a market. By focusing on the number of firms rather

than on their identities, Berry (1992) can then study market structure in models where the

number of firms is endogenous. Mazzeo (1997) used a similar approach to study markets

where firms produce differentiated goods. Berry, Mazzeo, and Bresnahan and Reiss ensure

the uniqueness of equilibrium by assuming that the second stage Cournot game has a unique

6Bruekner (2002) estimates the effect of market concentration on delays at American airports using the
analogous approach that Borenstein and the rest of the literature has used to study the effect of market
concentration on prices.

7Borenstein (1992) instruments market concentration with the probability that potential entrants do
actually enter into the market. This identification assumption is valid only if the number and identity of
potential entrants does not depend on market fares, which is unlikely (Borenstein [1992]).

8Reiss and Spiller (1989), page 188.
9Bresnahan and Reiss (1990) model firm heterogeneity as a function of observable market specific variables

and firm specific parameters. The firm specific parameters are estimated using an assumption on the order
of entry of firms. See Bresnahan and Reiss (1990), page 549. The difference with Berry (1992) is that
Berry introduces firm heterogeneity as an observable firm specific variable, and that Berry’s method can be
extended to games with many players in a straightforward fashion
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equilibrium, and by assuming that the firms’ entry costs are independent of which firms are

in the market. Our approach avoids both assumptions.

The methods that we use are complementary to those proposed by Bresnahan and Reiss

(1991), Berry (1992), and Mazzeo (1997). Rather than estimating the probability of ob-

serving a given number of firms, we will provide upper and lower probabilities on observing

a particular market structure that involves certain firms.10. Furthermore, we include firm

specific indicator variables in the profit function of each other airline. An early attempt to

investigate market structure considering the identity of firms was made by Morrison and

Winston (1990). They ran a probit specification where the dependent variable was whether

or not American Airlines serves a market. In their analysis, independent variables included

the number of enplanements of American and of its competitors at the endpoints of the

market, which Morrison and Winston assumed to be exogenous. However, as we know from

Reiss and Spiller (1989) and Berry (1992), entry selection most likely biases Morrison and

Winston (1990)’s estimates. We will show that this is actually the case in our empirical

analysis.

3 Empirical Models of entry

Following Reiss and Spiller (1989), Bresnahan and Reiss (1990), Berry (1992), Toivanen and

Waterson (2000), and Mazzeo (1997), we consider a two-stage model of entry and assume

that a pure strategy equilibrium exists. We assume that a reduced form of the profit for firm

i in market m can be written as:

ln π∗im � αi0 + αiX lnXm +
∑
j �=i

δjidjm + εim.

where Xm are exogenous determinants of demand. εim is the part of firms’ profits that we

cannot measure but that firms observe and act on. A market is a route, or spoke, between

two airports. We are specially interested in the estimation of δji, the effect that the presence

of one of the other airlines has on the probability of observing firm i in the same market.

For example, the parameters δji could measure a particular aggressive behavior of one airline

(e.g. American) against another airline (e.g. Southwest), or could measure cost externalities

among airlines at airports. δji captures the effect that the entry by airline j has on i’s

unobserved profits. In this way we capture the possibility that the unobserved part of the

firms’ profits might change with the number and identity of entrants. We show that δji
can be positive, exactly as Bresnahan and Reiss (1990) found in the study of their “Model

3”. Bresnahan and Reiss found that if they did not constrain their parameters so that the

duopoly profits were smaller than the monopoly profits, then they would find that the event

10Assuming an order of entry it is possible to estimate the probability of observing a particular market
structure that involves certain firms. We do not assume any order of entry. See Berry [1992], page 916
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of higher duopoly profits than monopoly profits would take on positive probability for some

range of market sizes. With our new estimation methodology we do not need to impose that

duopoly profits are smaller than the monopoly profits. Our method is flexible enough to

allow us to estimate the duopoly and monopoly profits for each firm only using Assumption

1.

Firm i enters market m if:

αi0 + αiX lnXm +
∑
j �=i

δjidjm + εim ≥ 0. (1)

This leads into the following statistical model:

P (dim = 1) = P (πim ≥ 0) = P

(
αi0 + αiX lnXm +

∑
j �=i

δjidjm + εim ≥ 0

)
.

We now show that the econometric models used by Bresnahan and Reiss (1990) and Berry

(1992) are special cases of the specification above.

3.1 Bresnahan and Reiss (1992): Unobservable heterogeneity in
a simultaneous move entry game

Bresnahan and Reiss assume that players’ profits are the same except for a mean zero

unobserved heterogeneity variable that we denote here by εim. Therefore firm i enters into

the market if:

α0 + αX lnXm + δNm + εim ≥ 0,

where no firm specific variables enter the observed profit function (β = 0 and δ = δji for all i

and j). Bresnahan and Reiss show that even this simple model leads to multiple equilibria.

To see why, consider a simple 2x2 entry game, where the payoff for player i (i = 1, 2) is

yi = 1[∆iy3−i + εi ≥ 0] (2)

∆i represents the change in player i′s profits from having player 3− i enter the market. We

omit regressors for simplicity. BR assume that duopoly profits are lower than monopoly

profits, ∆i < 0, i = 1, 2. Here, multiple equilibria in the identity, but not number, of firms

arise when 0 ≤ εi ≤ −∆i for i = 1, 2. This can be seen in Figure 1. The shaded center

region of the figure contains payoff pairs where either firm could enter as a monopolist in the

simultaneous-move entry game. This implies that the model predicts only upper and lower

probabilities on the outcomes (0, 1) and (1, 0). To deal with this, BR transform the model

into one that predicts the number of entrants in the market. However as our new empirical

model and results show, different equilibria can exist with different number of players in richer

games. Heuristically, in 3-player games where one is a large firm and the other two are small
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Figure 1: Prediction of the Bivariate Model for ∆1 < 0 and ∆2 < 0

firms, there can be multiple equilibria where one equilibrium includes the large firm as a

monopolist, while in the other the smaller two firms enter as duopolists (more on this in the

empirical section). This is common in games where the effect of one firm (“its ∆”) is allowed

to be different than the effect (the ∆’s) of other firms. This type of heterogeneity is not

allowed in the Bresnahan and Reiss (1990) and the Berry (1992) settings. Another source

of multiple equilibria are the externalities that can exist among entrants because airlines

share airport costs and because carriers can strategically accommodate new entrants. The

relevance of externalities can be represented in the simple 2x2 discrete game, illustrated in

figure 2. In this case where ∆i > 0 for i = 1, 2, we have that for −∆i ≤ εi ≤ 0 both players

enter or no player enters. Here, a player benefits from having the other player entering the

market. We can again use BR’s approach and estimate the probability of the outcome (1, 0),

of the outcome (0, 1), and of the outcome “either (1, 1) or (0, 0).”

The presence of heterogeneity and the externalities among firms can explain the reason

why we see a large variation in the number of airlines serving otherwise similar markets (See

Table 3). We show that this variation is not explained solely by technological and/or demo-

graphic differences across markets. The class of models that we consider under assumption

1 above contains models that allow for heterogeneity and externalities to arise.
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Figure 2: Prediction of the Bivariate Model for ∆1 > 0 and ∆2 > 0
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3.2 Berry (1994): Observable heterogeneity in sequential-move
entry game.

Berry proposes a method to add observable firm heterogeneity to Bresnahan and Reiss’s

framework while allowing one to examine games with many players. 11

In particular, firm i enters into the market if:

α0 + αX lnXm + δNm + β lnZim + εim ≥ 0,

The crucial difficulty with this approach when using standard econometric techniques is to

estimate β. Berry shows that with an order of entry assumption, one can estimate β using

(simulated) method of moments. In particular Berry either adds a dynamic element to the

analysis using information from previous periods to identify incumbents, or he assumes that

the order of entry follows the rank of profitability of the firms. While intuitive from an

economic point of view, the main drawback of Berry’s approach is that it is not necessary

that the firms that enter first are the ones that make the highest profits (e.g. face the lowest

fixed costs). In addition, the model above does not allow the fixed costs to depend on other

players in the market nor does it allow for inference on the identity of the firms without an

assumption on the order of entry.

11As we discuss in footnote 9, Bresnahan and Reiss also model firm heterogeneity, but in their context
it is a function of observable market characteristics and firm specific parameter. We introduce observable
heterogeneity in a companion paper Ciliberto and Tamer (2003).
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As Sutton (1998) suggests, one does not know the specific form of entry process and we

are better off beginning with a general class of multistage games. In particular, one can

think of a multistage game where each firm decides whether to enter at some date t ≤ T ,

its date of arrival in the market. By the final date T , one can summarize the outcome of

the entry process by describing the characteristics of the entrants and modelling the form

of competition. The firms have reached a long-run equilibrium that one uses to infer their

functions.

Other models of entry are Mazzeo (2002), who allows for firm types, and Seim (2002), who

changes the informational structure of the game by transforming it into one of incomplete

information.

4 Estimating Discrete Response Models with Multiple

Equilibria

Simultaneity in binary response models is an important topic in econometrics which dates

back at least to the work of Heckman (1978). It is also examined in chapter 5 of Maddala

(1983). There, a class of dummy endogenous models was studied and coherency conditions

were imposed to ensure that the likelihood is well defined (see Tamer (2003) for more detail).

In the case where the model is a representation of a discrete game with two decision makers,

imposing the coherency conditions eliminates simultaneity, an essential feature the model

is trying to capture. Tamer (2003) studied an incomplete simultaneous discrete response

model that is written as a set of inequality restrictions on regressions. His inference method,

which requires point identification of the parameters using support conditions in a bivariate

game, does not extend in a simple way to larger games with many players and/or large

strategy space. In this paper, we take a slightly different approach. We do not look for

point identification conditions, but focus on the identified features of the set of inequality

restrictions on regressions that are derived from the necessary conditions that define the set

of models we consider. This allows us to study general games with many players and a large

strategy space without making any equilibrium selection assumptions or other assumptions

limiting the type of heterogeneity allowed. Most importantly, this strategy is practical and

can be implemented. It uses a modified minimum distance estimator that heuristically

minimizes the distance between the vector of (conditional) empirical choice probabilities

(the empirical evidence or the data) and the region of feasible choice probabilities predicted

by the model. The method relies on one being able to derive analytically the inequality

restrictions. We highlight our method first in a simple 2× 2 binary game.
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4.1 A Bivariate 2× 2 game example:

Consider the 2× 2 game studied in Section 3.1:

yi = 1[∆iy3−i + εi ≥ 0] (3)

where we omit the observable regressors for simplicity. In the case where ∆1 < 0 and ∆2 < 0
the model (see figure 1) does not predict a unique pure strategy equilibrium when (ε1, ε2)
falls in the middle square. Here, either firm 1 is a monopolist or firm 2 is a monopolist. As we

Figure 3: Upper and Lower probability Bounds on the Pr(0, 1) :

ε1 
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0,0 
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(0,1) 

(0,0) 
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(0,0) 

(1,0) 

(0,1) 
(1,1) 

(1,0) 
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The shaded area in the graph on the right hand side represents the region for (ε1, ε2) that would predict
the outcome (0, 1) uniquely. The shaded region in the graph on the left hand side represents the region
where (0, 1) would be predicted if we always select (0,1) to be the equilibrium in the region of multiplicity.
The probability of the epsilons falling in the respective regions provide an upper and a lower bound on the
probability of observing (1,0).

can see from figure 3, the model predicts upper and lower probabilities (as opposed to exact)
on the probability of the (1,0) and (0,1) outcomes. Hence, one can then calculate explicitly
the bounds on the choice probability. In particular, let the probability of the middle square
in figure 1 be H(θ) = H(∆1,∆2,Ω) where Ω is the variance covariance matrix of (ε1, ε2).
Let:

H1(θ) = Pr(ε1 ≤ 0; ε2 ≤ −∆2) + Pr(ε1 ≤ ∆1; ε2 ≥ −∆2) (4)
H(θ) = Pr(0 ≤ ε1 ≤ −∆1; 0 ≤ ε2 ≤ −∆2) (5)

The model predicts the following set of equality and inequality restrictions on the conditional
regressions:

Pr((1, 1)) = Pr(ε1 ≥ −∆1, ε2 ≥ −∆2)
Pr((0, 0)) = Pr(ε1 ≤ 0; ε2 ≤ 0)

H1(θ) ≤ Pr(1, 0) ≤ H1(θ) +H(θ) (6)
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The objective of the new method is to minimize the distance between the observed empirical

choice probabilities and the predicted choice probabilities regions defined in 6. 12

4.2 Inference in Discrete Games: the General Case

We base our inferential approach in this paper directly on the inequality restrictions that the

model provides (for example those are inequalities (6) in the 2×2 game above). The identified

feature of the model is the set of parameter values that satisfy these inequality restrictions.

Without loss of generality, we consider a k-player binary game where the strategy of player

i is yi = 1 or 0 depending on whether the i’s utility crosses a threshold. For player i, this

can be written as

yi = Πi(xi,y−i, θ, εi) ≥ 0 (7)

where y−i is the k − 1 binary zero-one vector of other players’ strategies, xi is a vector in

Rd of regressors, and εi is the part of player i’s utility that is unobserved to the analyst.

Here, for simplicity, we do not have market specific subscripts. We assume in this paper

that the observed part of utility Π() is known up to the finite dimensional parameter θ and

that the unobserved part of the profit function (the ε’s) is independent of x. The following

assumptions summarizes the model.

Assumption 2 We observe a random iid sample of observations (yi,xi) for i = 1, . . . , N .

Let the model defined in (7) hold. Moreover, let ε = (ε1, . . . , εk) be a mean zero random

variable, independent of x ∈ Rd, and has a known (up to a finite dimensional parameter Ω)

distribution FΩ that is absolutely continuous on Rk. The parameter space Θ is a compact

subset of Rl.

Given the decision rule in (7) and assumption 2, the model provides inequality restrictions

on regressions:

H1(x, θ) ≤ Pr(y|x) ≤ H2(x, θ) (8)

where Pr(y|x) is a 2k vector of of choice probabilities that can be consistently estimated

using the data. The H’s are functions of θ and the distribution function FΩ. For example,

these functions were derived analytically in the 2 × 2 game above. In general games, it is

not possible to derive these functions since obtaining these functions entails solving for the

equilibria of the game, a task that can be very complicated. We provide below a simulation

procedure that can be used to obtain an estimate of these functions for a given x and a given

parameter value.

12Identification in this 2 × 2 game is studied in Tamer (2002) where identification in the case where
∆1 ×∆2 < 0 is also studied. This is a case where the game admits, for some values of ε’s, no pure strategy
equilibria (only equilibria in mixed strategies).
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4.2.1 Identification

The approach we take to identification in this paper is as follows. The class of economic

models we study provides the inequality restrictions in (8) above. Heuristically, the identified

set is the set of parameter values that obey these restrictions for all x almost everywhere and

represents the set of economic models that is consistent with the empirical evidence. Next

we formally define the identified set.

Definition 1 Let ΘI be such that

ΘI = {θ ∈ Θ s.t. inequalities (8) are satisfied at θ ∀x a.s.} (9)

We say that ΘI is the identified set of interest.

The definition above can be generalized naturally to games with many players and/or large

strategy space. In those games, the set θI is not a singleton and it is hard to characterize

it since the inequality restrictions are nonlinear. In some games, the richer the support

of x the “smaller” the set ΘI is. For example, in a bivariate game with binary strategies,

Tamer (2002) showed that the set ΘI shrinks to a singleton (point identification) with enough

variation in the regressors

4.2.2 A Minimum Distance Sharp Estimator of ΘI

In this section, we provide a modified minimum distance estimator that uses the inequality

restrictions in (8) to estimate the set ΘI . This estimator only requires that one is able to

obtain (or solve for) explicitly the functions H1 and H2.

A cross- section of markets allow us to identify the conditional choice probabilities. Heuris-

tically, for a given parameter value, the estimator is based on minimizing the distance be-

tween this vector of choice probabilities and the set of predicted probabilities. On the set

ΘI , this distance is minimized. The estimator is a sharp two step minimum distance esti-

mator: in the first step we estimate non-parametrically the conditional choice probabilities,

and in the second stage we obtain an estimate of the set ΘI . This sharp set contains all the

possible parameter values that are consistent with the set of economic models that obey our

fundamental assumption.

First, we define the probability set G(t;x) as the set of all feasible predicted probability

distributionsd for a given value of t ∈ Θ and x.

Definition 2 Let t ∈ Θ and x ∈ Rl. Let the set of predicted choice probabilities be defined

as

G(t;x) =

g = (g1, . . . , g2k) ∈ [0, 1]2
k

;
2k∑
i=1

gi = 1
∣∣∣∣∣∣ H1(x, t) ≤ g ≤ H2(x, t)


13



This set contains all the feasible choice probabilities that are predicted by the model for a

given choice of the parameter vector t . For all x and t this set is nonempty. Moreover,

in games with no multiple equilibria, this set shrinks to a singleton (i.e. the case where

G = {g = H1 = H2}). The estimator of the identified set ΘI is based on the following

proposition.

Proposition 3 Let θ ∈ Θ. Define the following function

Q(θ) =

∫
d [Pr(y|x), G(θ;x)] dFx (10)

where d[p, G] is an appropriate distance function between the vector p and the set G such

that d[p, G] = 0 if and only if p ∈ G, otherwise d[p, G] > 0. We have that for all θ ∈ Θ,

Q(b) ≥ 0. Moreover, Q(b) = 0 if and only if θ ∈ ΘI .

One can for example use the following distance function d in the above

d (Pr(y|x), G(t;x)) = min
g∈G(t;x)

‖Pr(y|x)− g‖

First, for a given t, the inequalities in (6) above provide a feasible set of choice probabil-

ities that are predicted by the model. Usually, if this set is a singleton, one then mini-

mizes the distance between the predicted probability and the observed one (which is Pr(y|x)
and hence “observed” here is used to mean “can be consistently estimated.”). This is the

minimum distance method. In the case where for a given θ the model provides a set of

predicted probabilities G(θ;x), the estimator minimizes the distance between the observed

choice probability and this set. This distance is minimized on the set ΘI where for all x,

d(Pr (y|x),G(x,θ) = 0) for all θ ∈ ΘI .

To estimate the set ΘI , we minimize a feasible sample analog of Q(t). To do that, we first

replace Pr(y|x) by a consistent nonparametric estimator PN(x). Then, Θ̂I the estimate of

the set ΘI is defined as

Θ̂I =

{
t ∈ Θ | Qn(t) ≤ min

t∈Θ
Qn(t) + εN

}
(11)

where εN is a nonnegative real number that goes to zero as N → ∞, and

Qn(t) =
1

N

N∑
i=1

dn[Pn(x), G(t,xi)]

=
1

N

N∑
i=1

min
g∈G(t;xi)

‖PN(xi)− g‖

14



Notice that Θ̂I is the set of parameter values that are ε away from minimizing the objective

function. This guarantees that the distance between the set Vn and V goes to zero as the

sample size increases. To guarantee this, we need to drive ε to zero at a slow enough rate

(the exact rate is in Theorem 1) . The results are stated in the next theorem.

Theorem 4 (Consistency) Let assumptions 1 and 2 above hold. Let N → ∞. Suppose

that PN(x) →a.s. P (x) uniformly in x. Moreover, let

sup
t

‖Qn(t)−Q(t)‖ = op(εn) = op(n−α) (12)

where α > 0. Then

ρ(Θ̂I ,ΘI) ≡ sup
t∈Θ̂I

inf
t′∈ΘI

|t− t′| →a.s. 0

ρ(ΘI , Θ̂I) ≡ sup
t∈ΘI

inf
t′∈Θ̂I

|t− t′| →a.s. 0

Under standard uniform convergence conditions and consistency of the first step nonparamet-

ric estimation of the conditional choice probabilities, the theorem asserts that the Hausdorff

distance between the set ΘI and the estimated set Θ̂I converges in probability to zero. The

set Θ̂I is constructed by taking all the parameter values that are within εn from minimizing

the sample objective function Qn where as we see above εn = O(n−α) and hence Θ̂I is a

particular level set of the objective function. This theorem is similar to theorem 5 in Manski

and Tamer (2002).

4.3 Simulating H1 and H2

The game has 2k potential outcomes yl = (y1l, ..., ykl) where yjl ∈ {0, 1}, for l = 1, ..., 2k, and

j = 1, ..., k. The observed data in this model identifies the 2k dimensional choice probability

vector Pr(y|x) = [Pr(y1|x), ...,Pr(y2k|x)]. The model provides the following restrictions

H1(x, θ) =

H
1
1 (x,θ)
...

H2k

1 (x,θ)

 ≤

Pr(y1|x)
...

Pr(y2k |x)

 ≤

H
1
2 (x,θ)
...

H2k

2 (x,θ)

 = H2(x, θ) (13)

where the inequalities are to be interpreted element by element. The presence of simultaneity

in the model makes the derivation of the H1 and H2 complicated. One basically needs to

“solve” for the equilibrium of the game for every θ and x. This is a difficult task in general

especially if the game involves many players and/or a large strategy space. Moreover, these

two functions depend on whether we allow for mixed strategy equilibria to occur. For

simplicity, we restrict ourselves in this paper to pure strategy equilibria and leave the topic

of mixed strategies to future papers. Essentially, the problem is that with many players it

is hard to obtain the equivalent of the bounds we obtained in (6) above for the 2× 2 game.
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To deal with this, we propose a procedure to simulate H1 and H2. Simulation procedures in

discrete choice models are well known in econometrics. The simulation estimators are usually

used to approximate choice probability in multivariate probit models. These probabilities

are expectations of indicator functions over the joint multivariate normal distribution of the

unobserved random variables. The simulation procedure to obtain H1 and H2 is summarized

below.

Procedure to obtain predicted probability bounds for a given t and x

Set Ĥ1(x, t) = Ĥ2(x, t) = 0.

• Step 1:
Simulate a random draw from the joint distribution of (εr1, . . . , ε

r
k) with covariance

matrix specified in t.

• Step 2:
Using the profits functions in 7 above, calculate

Π(yl,x, t, εr) = [Π1(y−1,x, t, εr1), ...,Πk(y−k,x, t,εrk)]

for all l = 1, ..., 2k.

• Step 3:
This step finds the equilibria of the game:

1. For all l ∈ {1, ..., 2k} such that Π(yl,x, t, ε) ≥ 0, set Ĥ l
2 = Ĥ l

2 + 1.

2. If there is an l ∈ {1, ..., 2k} such that U(yl,x, t) ≥ 0 uniquely, i.e., there
is no l′ �= l such that U(yl′ ,x, t, ε) ≥ 0, then Ĥ l

1 = Ĥ l
1 + 1 .

3. If neither (1) or (2) above holds then for this value of the parameter, the
game does not have a pure strategy equilibrium.

Repeat steps 1-3 above R times to obtain the simulation estimators

1
R
Ĥ2(x, t) and

1
R
Ĥ1(x, t)

Comments on the simulation procedure: First fix x and t. In step 1 above, we simulate

a draw from a multivariate random normal. In step 2, we obtain the “profits” for every player

i as a function of other players’ strategies. IfΠ(yl,x, b) ≥ 0 for some l ∈ {1, ..., 2k}, then yl is

an equilibrium of that game. If this equilibrium is unique, then we add 1 to the lower bound

probability for outcome yl and add 1 for the upper bound probability. If the equilibrium is

not unique, then we add a 1 only to the upper bound of each of the multiple equilibria’s

upper bound probabilities. To illustrate, consider the game in figure 1 above. If (ε1, ε2) lies

in the upper right hand side corner, then (1, 1) is the unique equilibrium of the game and

Ĥ
(1,1)
1 = Ĥ

(1,1)
1 + 1 and Ĥ

(1,1)
2 = Ĥ

(1,1)
2 + 1. On the other hand, if (ε1, ε2) lies in the middle
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square, then Ĥ
(1,0)
2 = Ĥ

(1,0)
2 + 1 and Ĥ

(0,1)
2 = Ĥ

(0,1)
2 + 1. This way we see that since (1, 1) is

a unique equilibrium for this game, then Ĥ
(1,1)
2 = Ĥ

(1,1)
1 and the left hand side probability

bound is equal to the right hand side. We repeat the above procedure R times to obtain a

simulation based estimator of the upper and lower bounds on the outcome of interest. For

example, the upper bound on the outcome probability Pr(1, ..., 1|x) is

Ĥ2k

2 (x, θ) =
1

R

R∑
j=1

1
[
Π1(x1, θ;y

2k

−1, ε
j
1) ≥ 0, . . . ,Π2k(x2k , θ;y2k

−2k , ε
j
2k) ≥ 0

]
where 1[∗] is equal to one if the logical condition ∗ is true. One can use methods developed

by McFadden (1989) and Pakes and Pollard (1989) to show that Ĥ@(x, θ) converges almost

surely uniformly in θ and x to H2(x, θ) as the number of simulations increases.

4.4 Practical Estimator and Confidence Regions (Preliminary):

In this section, we provide a slight variant of the estimator (10) above that is more easily

implementable especially in the case where we have a rich set of regressors x. Consider the

following modified objective function

Q′(t) =
∫ [‖ (P (x)−H1(x, t))− ‖+ ∥∥(P (x)−H2(x, t))+

∥∥] dFx

where (A)− = [a11[a1 ≤ 0], . . . , a2k1[a2k ≤ 0]] and similarly for (A)+ for a 2k vector A and

where ‖.‖ is the Euclidian norm. It is easy to see that Q′(t) ≥ 0 for all t ∈ Θ and that

Q′(t) = 0 if and only if t ∈ V , the identified set in definition 1 above. Then, Θ̂′
I the estimate

of the set ΘI based on an empirical analog of Q′ is defined as

Θ̂′
I =

{
t ∈ Θ | Q′

n(t) ≤ min
t∈Θ

Q′
n(t) + εN

}
(14)

where εN is a nonnegative real number that goes to zero as N → ∞, and

Q′
n(t) =

1

N

N∑
i=1

[∥∥∥∥(PN(xi)− Ĥ1(xi, t)
)
−

∥∥∥∥+ ∥∥∥∥(PN(xi)− Ĥ2(xi, t)
)

+

∥∥∥∥] (15)

and ∥∥∥∥(PN (xi)− Ĥ1(xi, t)
)
−

∥∥∥∥ = (
P 1
N (xi)− Ĥ1

1 (xi, t)
)2

−
+ . . .+

(
P 2k

N (xi)− Ĥ2k

1 (xi, t)
)2

−

We summarize our set consistency result in the next theorem.
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Theorem 5 (Consistency) Let assumptions 1 and 2 above hold. Let N → ∞. Suppose

that PN(x) →a.s. P (x) uniformly in x. We have that for εn > 0 and εn → 0 such that

supt ‖Q′
n(t)−Q′(t)‖
εn

→p 0 (16)

Then

ρ(Θ̂′
I ,ΘI) ≡ sup

t∈Θ̂′
I

inf
t′∈ΘI

|t− t′| →a.s. 0

ρ(ΘI , Θ̂
′
I) ≡ sup

t∈ΘI

inf
t′∈Θ̂′

I

|t− t′| →a.s. 0

Here, we will assume that the regressors x have a discrete support, i.e., x ∈ {x1, . . . , xK}.
This is meant to facilitate obtaining confidence regions for the identified set. In this case,

PN(x = xk) =
1

N

∑
i

1[xi = xk]

The above method does not deliver a confidence region for the set ΘI . We describe a

method to construct such a region in the appendix. This method is based on recent results

on constructing confidence regions for set identified models obtained in Chernozhukov, Hong,

and Tamer (2002). Basically, we look for a set Θ̂I that covers the identified set ΘI with a

prespecified probability α as sample size increases:

lim
n→∞

Pr(ΘI ⊆ Θ̂I) = α (17)

The confidence regions are appropriately constructed level sets similar to those in (14) where

an appropriate ‘εn” is provided that guarantees coverage. This subsampling based procedure

provides a cutoff level where the corresponding level set obeys condition (17) above. This

subsampling procedure is described in the appendix.

5 The Data

We use the T-100 Domestic Segment Dataset, which contains domestic non-stop segment

data by aircraft type and service class for passengers transported, freight and mail trans-

ported, available capacity, scheduled departures, departures performed, and aircraft hours.

The dataset is publicly available at TransStats, the Intermodal Transportation Database

prepared by the Bureau of Transportation Statistics. 13

The definition of the market is an important issue. Berry (1992) defines a market as

the market for air passenger travel between two cities, irrespective of intermediate transfer

13We choose the month of May of 1998 because data on gate leases at airports are available from TRB
[1999] for that year. We use these data in Ciliberto and Tamer (2003).
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points. This approach, however, ignores the fact that some segments of the consumer demand

can have strong preferences between airports in the same city. Following Borenstein [1989],

we assume that flights to different airports are in separate markets. In one of our specifica-

tions our econometric procedure allows for spatial correlation among markets between the

same two cities, for example ORDCLE and MDWCLE. This will result in larger parameter

bounds. We restrict the analysis to forty major airports, which are listed in the Appendix.

Furthermore, our dataset permits to define the market as as the non-stop market (the route,

or spoke) between two airports. This definition of the market takes into account the fact

that the critical element of the entry decision is whether to commit assets like planes and

lease facilities at airports. This decision concerns the non-stop service between two airports.

In our data set there are 23 carriers. Table 1 presents the airlines’ characteristics in terms

of their number of markets served (a measure of the size of the network). One important

Table 1: Carrier Characteristics

Carrier
Code

Name
Carrier

(Network Size)

Number
Markets

HA Hawaiian 1
YX Midwest Express 2
XJ Mesaba 4
FF Tower 4
KP Kiwi 4
NK Spirit 4
QQ Reno 6
EV Atlantic Southeast 7
9N Trans States 8
NJ Vanguard 9
TZ ATA 9
F9 Frontier 10
FL AirTran 14
AS Alaska 16
TW TWA 48
HP America West 56
WN Southwest 69
CO Continental 91
NW Northwest 92
US USAir 106
AA American 112
UA United 125
DL Delta 151

issue is how to treat regional airlines that operate through code-sharing with national airlines.

We assume that the decision to serve a spoke is made by the regional carrier, which then

signs code-share agreements with the national airlines. As long as the regional airline is
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independently owned, we treat it separately from the national airline. 14

There are 766 markets in the dataset, of which 200 are not served by any airline. The

maximum number of airlines serving a non-stop route is 8.15 We have classified markets

by the log of the product of the populations of the connected cities. Population determines

the potential demand for air travel between two cities (Berry (1992)). The relevant issue in

presenting the descriptive statistics is whether market size alone determines market structure

(Bresnahan and Reiss (1990)).

The first row of table 2 shows the average number of carriers in each market by potential

demand size, which is very similar across city pairs of different population size. Looking

at the standard deviation in the first rows one notices that there is some variation in the

number of firms across markets and this variation is only slightly decreasing with market

size.

Table 2: Market Characteristics

Served

All
Markets

Large
Markets

Medium-Large
Markets

Medium
Small
Markets

Small
Markets

Variable Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean(s.d.) Mean (s.d.)

# of Carriers
1.24
(1.03)

1.38
(1.16)

1.26
(1.08)

1.17
(0.94)

1.15
(0.89)

Log Distance
6.89
(0.72)

6.87
(0.87)

6.95
(0.68)

6.94
(0.61)

6.79
(0.69)

Log Population
30.34
(1.08)

31.77
(0.53)

30.68
(0.21)

29.94
(0.21)

29.00
(0.43)

N 766 191 190 193 192

The secopnd row presents the log distance in nonstop miles, which does not differ across

markets. In fact, the average of the log of the product of the populations of the connected

cities does not vary much across the four quartiles. In short, demographic and technological

characteristics do not seem to vary much among markets.

To further investigate the variation in the number of firms across markets Table 3 provides

the distribution of the number of firms by potential demand size. Table 3 shows that the

variation in the number of firms across markets cannot be explained by the size of the

potential demand alone.

14For example, Atlantic Southeast Airlines joined the program Delta Connection on May 1, 1984. In 1986,
Delta bought some shares of ASA. Only in 1999, however, Delta acquired ASA. Trans State Airlines provides
service today for AA and USAir. In the past TSA provided service also for NW, DL, Alaska, TWA. We
code TSA and ASA as independent firms. Since this decision affects less than 2 percent of the markets, the
results are unchanged if we code the three regional carriers as part of the national airlines. See Appendix
for a discussion on small regional and independent airlines.

15The route is: LASLAX. The airlines are: American, Delta, Hawaiian, America West, Reno Air, United,
Southwest.
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Table 3: Distribution of the Number of Carriers by Market Size

Number of
Firms Large Medium Large Medium Small Small Total

0 49 50 55 46 200
1 60 66 67 88 281
2 54 57 56 43 210
3 20 13 14 14 61
4 4 3 1 1 9
5 4 0 0 0 4
8 0 1 0 0 1

Total 191 190 193 192 766

6 Empirical Results

The main objective of this paper is to provide a method to estimate a system of simultaneous

discrete choice equations where, for a given set of parameters, the model does not predict

a unique distribution for the outcomes. It seems natural to compare the results that we

find using the method developed in Section 4 with the results that we would find when the

firms’ decisions are assumed to be strategically independent. This is analogous to the case

when we compare the results from the estimation of a system of simultaneous equations to

the results that we would find if we were to run each equation separately. The next section

provides simple probit results that ignore endogeneity.

6.1 Simple Probits

In order to show how striking the difference in the results can be when we allow for strategic

dependence, we allow the probability of a firm being in the market to depend on the iden-

tity of the other firms in the market. In particular, we (separately) estimate the following

regressions:

yim = 1

α0 + αX lnXm +
∑

j∈Ĩm\{i}
δjyjm + εim ≥ 0

 .
where Ĩ = {AA,DL,WN,OL,OS}. This includes American, Delta, and Southwest. It also

includes an index OL which is equal to 1 if there is another large carrier in the market after

counting American, Delta, and Southwest. For example, OL = 1 if United is in the market.

To reduce the computational burden we use OL and not a categorical variable for each firm.

This should not be a big problem since only 11.10% of the markets have more than one of

the other large firms. We also use an index OS to indicate whether there is at least one

small low-cost carrier in the market. In this case also, only about 0.78% of the markets have
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more than one small low cost carrier. Table 4 presents the results of the estimation.16

Table 4: Simple Probit Results

LHS
RHS

AA DL WN Another Large At Least One Small

AA x 0.64 (0.15) -0.85 (0.33) 0.43 (0.14) 0.01 (0.18)
DL 0.62 (0.14) x -0.14 (0.18) -0.47 (0.12) 0.43 (0.14)
WN -0.91 (0.35) -0.05 (0.19) x -0.35 (0.17) 0.02 (0.20)

Another Large 0.36 (0.13) -0.41 (0.11) -0.35 (0.15) x -0.01 (0.13)
At Least One Small -0.02 (0.18) 0.47 (0.15) 0.03 (0.20) -0.04 (0.15) x

LogPop 0.34 (0.06) -0.15 (0.05) -0.16 (0.07) 0.02 (0.04) 0.18 (0.06)
Log Distance -0.06 (0.06) -0.17 (0.54) -0.57 (0.08) -0.31 (0.05) -0.40 (0.06)
Constant -2.13 (0.25) -0.27 (0.20) 0.50 (0.28) 0.96 (0.17) -0.86 (0.24)
Nobs 766 766 766 766 766

Log-Likelihood -280.67 -351.02 -191.81 -491.06 -247.34

Every column provides the equation by equation probit estimates. So the second column provides
estimates from a probit regression of AA on the rest of the variables in the first column (except AA).

Each column presents the results of a separate probit regression for each carrier. For

example, the first column presents the results of a probit regression where we study the

probability of observing AA in a market conditional on observing the other airlines, and on

the other control variables. The second column estimates the probability of observingDL in

a market. We find that at the mean values, having DL in a market increase the probability

of observing AA by 14.8 percent.17 The presence of one small firm (OS) decreases the

probability of observing AA in the market by less than 1 percent.

An eyeball study of the table Probit suggests that there is perfect symmetry in the es-

timation results, in the sense that if WN decreases the probability of observing AA in a

market, then AA decreases the probability of observing WN in the market. The reason for

this finding is that the probit estimation only reports simple correlation patters between

the airline entry, but does not account for the fact that the entry decisions are strategically

related.

These results are puzzling. We would expect that the presence of a large carrier decreases

the probability of observing another large carrier in the market. Next, we investigate whether

the unintuitive sign of the coefficients is explained by the fact that we do not control for the

strategic dependance among carriers.

16We find almost identical results if we consider a dataset of the largest 50 metropolitan statistical areas.
17A table of the marginal effects of the variables in the probit estimation is available on request from the

authors. We present the coefficient estimates for sake of comparison with the results in the next section.
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6.2 Main Results

In this section, we estimate systems of discrete response models involving many decision

makers. We start with a specification where we allow for example Southwest to have a

different effect on American than on Delta.

6.2.1 Specification with heterogeneous impacts

The first model we estimate is:

(Gen. Spec.)



yAA,m = 1
[
αAA + αAA lnXm +

∑
j∈Ĩm/{AA} δ

AA
j yjm + εAA,m ≥ 0

]
yDL,m = 1

[
αDL + αDL lnXm +

∑
j∈Ĩm/{DL} δ

DL
j yjm + εDL,m ≥ 0

]
yWN,m = 1

[
αWN + αWN lnXm +

∑
j∈Ĩm/{WN} δ

WN
j yjm + εWN,m ≥ 0

]
yOL,m = 1

[
αOL + αOL lnXm +

∑
j∈Ĩm/{OL} δjy

OL
jm + εOL,m ≥ 0

]
yOS,m = 1

[
αOS + αOS lnXm +

∑
j∈Ĩm/{OS} δ

OS
j yjm + εOS,m ≥ 0

]
.

In this model the effect of firms on each other are allowed to be different. For example,

we want to let American have a different effect on Delta than it has on a low cost carrier.

Notice that the dummies introduce a measure of heterogeneity, as they capture how each

firm affects the entry decision of the other five firms. Table 5 resents our results from the

estimator above.18

We can compare this table to the probit results of table 4. The second column in Table

5, denoted AA, reports the set estimates for the first equation in the general specification

(See the footnote to Table 5 for more on the estimates). For example, δAA, which captures

the effect of Delta on American being in the market, is in [1.817, 13.636]. The other bounds

should be interpreted similarly.

The row “Correct Predictions” of Table 5 reports the percentage of outcomes that were

observed in the data and that the we would predict them as possible equilibria using the

parameter vector θ where the distance function Q′
n(.) is minimized. This means that 28.12

percent of the observed outcomes were one of the equilibria predicted by the estimated model

in each market. The last row reports the value of the distance function at the parameter

values where it is minimized.

First, Table 5 shows that firms benefit from the presence of other firms. We estimate

several of the δ’s to be positive. For example, the presence of Delta in a market does

increase, on average, the probability of observing American as well.

Second, Table 5 shows that there is still considerable symmetry in the table and that the

signs of the coefficients are generally similar. There are some cases where simmetry does not

18The optimization was done using simulated annealing and its adaptive version. This is helpful since
genetic algorithms, although slow, scan the surface of the function and thus allows us to obtain the level sets
needed to construct our set estimates.
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Table 5: The General Specification

AA DL WN Another Large At Least One Small
AA x [1.817,13.636] [-19.999,-0.182] [1.203,6.518] [-0.866,0.360]
DL [1.559,2.310] x [0.987,2.653] [-7.531,-5.755] [2.687,3.430]
WN [-19.972,-0.885] [12.247,14.056] x [5.117,6.873] [-19.894,-0.653]

Another Large [1.662,1.930] [-14.046,-13.198] [1.538,1.945] x [2.018,2.514]
At Least One Small [-0.672,0.082] [13.651,14.573] [-19.932,-1.653] [5.898,7.744] x

Log Pop [0.178,0.268] [-0.297,-0.119] [-0.262,-0.080] [0.052,0.121] [-0.056,0.125]
Log Distance [-0.123,0.022] [-0.209,-0.111] [-0.586,-0.269] [-0.288,-0.231] [-0.389,-0.181]
Constant [-3.460,-3.179] [-0.305,0.018] [-2.174,-1.699] [0.552,0.727] [-3.461,-2.974]
Nobs 766

Correct predictions 0.2812
Function Value 58.363

This table provides estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

hold: the effect of Delta on the entry decision of Another Large is much weaker than the

reverse. Also the effect of Another Large’s presence on the entry decision of Southwest is

much weaker than the effect of Southwest entry on Another Large’s decision to enter. These

results suggest that firms’ behavior is not symmetric.

Third, Table 5 shows that the probit estimates are biased. For example, in Table 4 we

find that the coefficient of the effect of Delta on American is equal to 0.62 but Table 5

shows that the coefficient is included in [1.559, 2.310]. Also, we find that the coefficient of

Another Large in the regression for Southwest (Column 4, Table 4) is −0.35 while in Table

6 we get [1.538, 1.945], confirming that simple probit regressions inconsistently estimate the

parameters of the model.

Finally, Table 5 shows that American and Delta display different strategic behaviours.

Entry of Southwest has a positive effect on Delta’s decision to enter but a negative effect on

American’s decision. On the contrary, the presence of Another Large carrier decreases the

probability of observing Delta, but increases the probability of American being in the market.

Small carriers do not affect American’s decision to enter, and viceversa. But entry by small

carriers positively affects the decision of Delta to enter into the market. We conclude that

American and Delta display different strategic behaviors.19

To examine the existence of multiple equilibria, we simulate results where for every market

(the only market specific variables in this specification are logdistance and logpop) in the

following way. We draw 1000 times from the joint distribution of the errors and calculate the

number of multiple pure strategy equilibria observed. Doing this, we get a lot of multiple

19We further investigate the airlines’ different strategic behaviors in Ciliberto and Tamer (2003).
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equilibria under this specification. In fact in 67.85% of the markets, there are multiple

equilibria and in 57.07% of these markets there are multiple equilibria in the number of

firms. This critical result suggests that either airlines behave differently with each other, or

that there exist externalities among airlines which depend on their identities.

The estimated coefficient bounds provide information on the effect of airlines on each

other, but from an economic standpoint we are mostly interested in estimating the probability

of each outcome.

To estimate the probability that an equilibrium occurs, we proceed as follows. We take

the parameter vector θ where the distance function Q′
n(.) is minimized. We then compute

the lower and upper bound of the probabilities on the 32 possible equilibria for each of

1000 random draws from the joint distribution of the errors. We finally take the average

of these 1000 lower and upper bounds as estimates of the actual lower and upper bound of

each possible equilibrium. Table 6 presents the results in terms of probabilities of observing

different equilibria for all markets.20

Table 6 provides information on the probability of industry configurations. For example,

the estimated probability of observing American, Delta, Southwest, another large carrier,

and a small low-cost carrier (this equivalent to the first row (1, 1, 1, 1, 1) in the table) is null.

We can use Table 6 to understand which market configurations are equilibria and which

are not. We can thus infer whether a combination of firms, such as American and Southwest,

can be in equilibrium. This has critical implications both from a positive standpoint, as we

can predict whether a firm can successfully enter a market, and from a normative standpoint,

as we can assess whether American behaves differently towards low cost carriers than towards

Southwest Airline.

Only 12 configurations can be equilibria. Among the equilibria, there are some that have

low probability of occurring. For example, it is very unlikely to observe Delta, Southwest and

a Another Large in the same market. Southwest is only in markets where it is a duopolist

with another large airline. Small airlines are sometimes in markets with a large airline, but

most likely they are in markets that are highly competitive. American is the only large

airline that is never a monopolist. Finally, there is a large probability that markets are not

served by any airline.

The last column reports the empirical probabilities of market structures. For example,

the market structure with no firms serving a market occurs 26.11 percent of the times in

the dataset. We estimate the probability of observing a market with no firms to be included

20Using probit regressions to estimate the model (we know this is inconsistent), we might get parameter
estimates that are close to the bounds obtained using our estimator. For prediction purposes though, it
is not clear, without using our intuition, how one would predict market structure since the model (probit)
is incomplete. One can use the (inconsistent) probit estimates to derive upper and lower probabilities on
the outcomes of interest. We compared these “probit predictions” to our own in the general specification
(Gen. Spec.) above and found that the probit predictions, not reported here, were very different from those
presented in Table 6.
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Table 6: Predicted Outcome Probabilities for General Specification

Equilibrium
AA DL WN OL OS Lower Bound IID Upper Bound IID LB Perfect Corr UB Perfect Corr LB Corr UB Corr Empirical Probability
1 1 1 1 1 0 0 0 0 0.0000 0.0363 0.0013
1 1 1 1 0 0 0 0 0 0 0.1508 0
1 1 1 0 1 0 0 0 0 0.0000 0.0000 0
1 1 1 0 0 0 0 0 0 0 0.0205 0
1 1 0 1 1 0.0076 0.5679 0 0.3328 0 0.3191 0.0091
1 1 0 1 0 0 0 0 0 0 0 0.0170
1 1 0 0 1 0 0 0 0 0.0000 0.2918 0.0013
1 1 0 0 0 0.0001 0.1275 0 0.2116 0.0000 0.3132 0.0196
1 0 1 1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0.0064 0
1 0 1 0 1 0 0 0 0 0 0 0.0013
1 0 1 0 0 0 0 0 0 0 0.0013 0
1 0 0 1 1 0 0 0 0 0 0.0366 0.0026
1 0 0 1 0 0.0003 0.1352 0 0.1506 0 0.1863 0.0718
1 0 0 0 1 0 0 0 0 0 0 0.0078
1 0 0 0 0 0 0 0 0 0 0.0523 0.0144
0 1 1 1 1 0 0 0 0.0069 0.0000 0.1277 0.0013
0 1 1 1 0 0.0002 0.0204 0 0.0279 0.0000 0.2600 0.0065
0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0.0020 0.0824 0 0.0710 0 0.1270 0.0117
0 1 0 1 1 0.0033 0.0511 0 0.6672 0 0.1283 0.0196
0 1 0 1 0 0 0 0 0 0 0 0.0379
0 1 0 0 1 0.0028 0.0481 0 0 0 0.3661 0.0091
0 1 0 0 0 0.0190 0.1005 0 0.3641 0 0.2019 0.0627
0 0 1 1 1 0 0 0 0 0 0 0.0039
0 0 1 1 0 0.0067 0.0654 0 0.1157 0 0.1283 0.0339
0 0 1 0 1 0 0 0 0 0 0 0.0078
0 0 1 0 0 0 0 0 0 0 0 0.0222
0 0 0 1 1 0.0080 0.0428 0 0 0 0.1646 0.0366
0 0 0 1 0 0.1525 0.4284 0 0.4544 0.0292 0.5013 0.3211
0 0 0 0 1 0 0 0 0 0 0 0.0183
0 0 0 0 0 0.1190 0.3432 0 0.3512 0.0088 0.4272 0.2611
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in [0.1190, 0.3432]. Hence, the observed probability is included in the estimated probability

bounds. The same consideration is valid for almost all of the equilibria that have non-null

probability.

Table 6 provides the results at the parameter value in the estimated region at which the

sample objective function is minimized. Next, we check whether the results in that table are

robust to using other parameters in the estimated region. Figure 4 shows the probability

bounds for four market outcomes when we compute the probability bounds at 100 randomly

chosen parameter values included in the coefficient bounds presented in Table 5. The bounds

are shown to be very stable for various choices of coefficient vectors.

Figure 4: Bounds on Equilibria for Four Equilibria in the Baseline Specification
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These figures provide bound estimates on the probability of the (0,1,0,0,0),
(1,1,0,1,1), (0,0,0,1,0), and (0,0,0,0,0)outcomes. Every cross is a bound: the x-axis
is the lower bound and the y-axis is the upper bound. For every parameter in the set
estimate (the level set of the objective function), we plot a cross which represents a
bound on the probability of observing the outcome. So, every graph is a map between
the set estimates of the parameters and upper and lower bounds on the probabilities
of the four outcomes.

6.3 Perfectly Correlated Unobservable Profits

So far the unobservable part of the profits has been assumed to be independent and identically

distributed across firms and markets. This is equivalent to assume, for example, that the
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unobservable fixed costs of American between two airports are independent of the fixed costs

of Delta between the same two airports. This is clearly very restrictive since both American

and Delta use the same two airports and their fixed costs are likely to be correlated. As a

first step we consider the case when the unobservable airline profits are perfectly correlated

across firms within each market. This is equivalent to assume that the unobservable profits

of American and Delta, for example, are identical in each market. This specification is

specially useful to compare our methodology with Bresnahan and Reiss (1990) “Model 3”.

Bresnahan and Reiss’s “Model 3” is the specification where the unobservable profits are

perfectly correlated among firms in a market but the error faced by a monopolist is different

than the error faced by a duopolist. In this part of the paper, we also assume that the

unobservable profits are perfectly correlated and that the unobservable profits might change

with the identity and number of firms. In particular, we continue to include δ’s in our

regressions. δ’s exactly capture the unobservable part of the profits that change with the

identity and number of firms.

Table 7 presents the results of this estimation:

Table 7: Perfectly Correlated Unobservables

AA DL WN Another Large At Least One Small
AA x [-1.335,12.341] [-19.947,-1.094] [-1.185,5.477] [-10.232,2.150]
DL [1.681,3.011] x [1.075,2.709] [-9.499,-3.574] [3.171,16.593]
WN [-19.994,-2.611] [10.411,12.746] x [1.370,7.228] [-19.872,-3.946]

Another Large [2.068,2.250] [-14.854,-12.657] [1.437,1.877] x [2.360,12.951]
At Least One Small [-4.146,0.297] [13.874,19.982] [-19.976,-0.237] [5.951,19.974] x

Log Pop [0.193,0.235] [-0.220,0.119] [-0.164,0.046] [-0.050,0.040] [-1.481,0.980]
Log Distance [-0.176,-0.088] [-0.513,-0.109] [-0.532,-0.334] [-0.304,-0.254] [-3.281,0.180]
Constant [-3.549,-3.381] [0.575,1.556] [-1.812,-1.445] [1.040,1.131] [-14.430,-3.645]
Nobs 766

Correct Predictions 0.3227
Function Value 63.525

This table provides estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

First, the value of the function at the minimum is somewhat higher in this specification

than in the general specification. However, this specification gives a higher percentage of

“Correct Predictions” than the general specification discussed in Table 5. We will return

on the fit of the specifications to the data later, when we discuss the case of (not perfectly)

correlated unobservables.

Second, the coefficient bounds overlap with those that we estimated under the assumption

of iid unobservables, and in general the bounds from the two specifications are very close to
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each other. The results concerning the effect of market size are relevant at this point. With

the exception of the positive effect of market size on American’s decision to enter, the effect

on the decisions of the other firms is ambiguous: the coefficient bounds include zero as a

possible value for the market size parameter. For example, we find that the effect of market

size on the presence of Southwest is now included in [−0.164, 0.046], while in Table 5 it was

included in [−0.262,−0.080]. The other exception to the equality of bounds across Table 5

and Table 7 concerns the effect of Delta on American, which now is not statistically different

from zero.

We find, as we did in Table 5, that some δ’s are positive. In their investigation of this

specification without firm specific indicators, Bresnahan and Reiss (1990) found that the

event of higher duopoly profits than monopoly profits could take on positive probability for

some range of market sizes, and had to constrain the parameters of the model to avoid such

occurrence. We do find that monopoly profits can be lower than oligopoly profits, but our

methodology does not require any restriction on the parameters to be estimated.

We also compute the bounds for the probability that equilibria occur, and we show them

in Table 6 (“LB Perfect Corr” and “UB Perfect Corr”). We notice that the equilibria of the

game that have nonnegative probability are those that we also found in the case of iid errors.

The probability bounds are larger.

6.4 Correlated Unobservable Profits

We now consider the case when the unobservable profits are correlated among firms in a

market. This consists of estimating a variance-covariance matrix of the errors. This is

equivalent to allow the unobservable profits of American and Delta to be correlated in the

airline markets: for example, in markets where American faces high fuel costs, Delta also

faces high fuel costs. Another possibility is that there are unobservable characteristics of a

market that we are unable to observe and that affect American and Southwest differently, so

that when American enters, Southwest does not, and vice versa. Table 8 presents the results

of this estimation:

The value of the distance function is much lower in this specification than in the specifi-

cations with perfectly correlated or iid unobservables. Moreover, the bounds are generally

tighter and the percentage of correct predictions is higher in this specification than in the

previous two. Hence, we conclude that this is the best specification in terms of fitting the

data.

Table 8 shows that now American’s entry has a negative effect ([−3.222,−0.167]) on the

decision of small firms to enter into the market. In Table 5 we found that the entry decision

of American and One Small airlines were not statistically significant. An explanation for

the difference in the results is provided by a close look at Table 9, where we observe that

the correlation between the unobservables of American and One Small carrier is included in

[0.299, 1]. The positive correlation implies that there are unobservable factors that encourage
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Table 8: Correlated Unobservables

AA DL WN Another Large At Least One Small
AA x [0.058,4.635] [-6.055,-0.136] [2.021,3.610] [-3.222,-0.167]
DL [2.155,5.505] x [3.589,7.679] [-9.823,-3.925] [2.934, 7.426]
WN [-7.001,-1.085] [11.483,19.427] x [2.044,9.995] [-8.142,-0.469]

Another Large [1.423,2.385] [-19.059,-12.607] [3.249,5.521] x [1.998,4.078]
At Least One Small [-3.827,-1.019] [12.736,19.953] [-10.456,-1.276] [2.400,9.340] x

Log Pop [0.135,0.454] [-0.426,0.464] [-0.761,0.282] [-0.108, 0.037] [-0.431,0.427]
Log Distance [-0.310,-0.007] [-0.548,0.060] [-1.038,0.094] [-0.274,-0.179] [-0.760,0.118]
Constant [-3.899,-2.927] [-1.900,0.599] [-5.852,-2.953] [0.439,0.817] [-5.509,-2.093]
Nobs 766

Correct Predictions 0.3516
Function Value 37.983

This table contains estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

both American and One Small entry. Interestingly, the correlation between American and

Southwest unobservables is also positive. On the contrary the unobservables of One Small

and Southwest are negatively correlated with the unobservables of Delta and Another Large.

This suggests that American follows a different entry strategy than Delta and other large

carriers.

As usual, we compute the probability bounds for this specification and we present them

in Table 6 (“LB Corr” and “UB Corr”). More outcomes can occur with positive probability

now. For example, the outcome (1, 1, 1, 1, 1) which in the data is observed 0.0013 percent

of the time, is not estimated to occur with a probability included in [0.0000, 0.0363]. On

the other hand, outcomes that never occur in the data have now a nonnull probability of

realization. Clearly, we are unable to conclude whether we do not observe them because this

is just a sample, or because the parameters are not perfectly estimated.

6.5 Spatial Correlation

One of the main concerns when studying market structure and measuring market power

in the airline market is that many large cities have more than one airport. For example,

it is possible to fly from San Francisco to Washington on nine different routes. Following

Borenstein [1989], we have assumed that flights to different airports are in separate markets.

This makes sense because some segments of the demand, especially the business travelers,

should put a strong preference for airports that are closer to the city21 (DCA is few minutes

21More precisely here, cities refer to MSA’s (Metropolitan Statistical Area).
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Table 9: The Variance-Covariance Matrix

Correlation
σAADL [-0.998,-0.320]
σAAWN [-0.012,0.998]
σAAAL [-0.998,-0.615]
σAAOS [0.299,1]
σDLWN [-0.997,0.344]
σDLAL [0.289,0.998]
σDLOS [-0.998,-0.059]
σWNAL [-0.978,-0.176]
σWNOS [-0.077,1]
σALOS [-0.997,-0.360]

This table provides estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

from downtown Washington, while BWI is in Baltimore). On the other hand, other segments

of the demand are probably willing to drive many miles to save several hundred dollars.

One way to address this concern is by allowing the firms’ unobservables to be correlated

across markets between the same two cities. For example, American decides to enter in

the Miami-Cleveland market (CLEMIA) because, given its strategic interaction with the

other firms in the market and give its CLEMIA specific unobservables, American makes a

nonnegative profit. Among the unobservables there could be the international network to

the Caribbean and to South America that America controls from Miami. American also

serves Fort Lauderdale (FLL), but American only provides very few international flights

from FLL. AA’s CLEMIA specific unobservables should then be correlated with the AA’s

CLEFLL specific unobservables. Table 10 shows the coefficient bounds when we estimate

the general specification allowing for spatial correlation. In practice we proceed as follows.

Whenever a market is included in the subsample that we draw to construct the parameter

bounds, we also include any other market between the same two cities. For example, if the

market CLEMIA is included in the subsample to compute the parameter bounds,’ then we

also include the market CLEFLL in the subsample.

The results of Table 10 should be compared with those of Table 8. The unit of observation

is no longer an airport pair market, but a city pair market. As expected, the bounds are

larger, since the number of independent observations that we use is smaller. As a result,

few effects that were statistically different from zero in Table 8, are now not different from

it. For example, we estimate the effect of American’s entry on Delta’s decision to enter to

be now in [−0.111, 4.635], while before we found it to be in [0.058, 4.635]. Otherwise, the

results are very similar in Table 10, and Table 822.
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Table 10: Spatial Correlation

AA DL WN Another Large At Least One Small
AA x [-0.111,4.635] [-6.055,0.146] [2.021,3.610] [-3.222,-0.136]
DL [2.148,5.531] x [3.589,7.950] [-10.121,-3.572] [2.508,7.615]
WN [-7.001,-1.085] [6.374,19.427] x [1.689,10.123] [-8.142,-0.469]

Another Large [1.401,2.385] [-19.059,-12.607] [3.249,5.521] x [1.998,4.078]
At Least One Small [-3.827,-0.606] [12.488,19.953] [-10.456,-0.977] [2.400,9.366] x

Log Pop [0.135,0.455] [-0.426,0.464] [-0.761,0.282] [-0.129,0.062] [-0.431,0.447]
Log Distance [-0.310,0.014] [-0.603,0.060] [-1.038,0.094] [-0.293,-0.165] [-0.760,0.189]
Constant [-3.899,-2.927] [-1.900,0.812] [-5.852,-2.953] [0.352,0.902] [-5.727,-2.093]
Nobs 766

Correct Predictions 0.3516
Function Value 37.983

This table contains estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

7 Estimates with Equilibrium Selection Rules

Our analysis does not assume any equilibrium selection rule. Bresnahan and Reiss (1990) and

Berry (1992) assume that firms enter in a particular sequential order to introduce observable

and unobservable heterogeneity in their estimation. For example, Bresnahan and Reiss

assume that General Motors always enters into a market before Ford. Berry assumes that

firms enter into markets in their order of profitability. In this final section, we consider two

different selection rule, and compare the results with our previous findings.

The first selection rule is based on Berry (1992): whenever we have multiple outcomes

that can be equilibria of the entry game, we choose that equilibrium where there is the firm

that makes the highest profit. The idea is that the most profitable firms enter first.

The second selection rule is intended to provide a simple welfare comparison to the prob-

ability estimates in Table 5: whenever we have multiple outcomes that can be equilibria of

the entry game, we choose that equilibrium where the sum of the profits of the entrants is

the largest.

The analysis that follows assumes that the unobservables are iid among firms.

22Similar conclusions hold for the variance-covariance matrix estimates, which we do not present here for
sake of brevity.

32



7.1 Selection Rule 1: The Firm Making Highest Profit Always
Moves First

Probably the most intuitive equilibrium selection rule is the one that has the firms entering

according to their order of profitability. The first firm to enter is the firm that makes the

highest profit. For example, consider a market where there are two possible outcomes that

can be an equilibrium. The first outcome is Delta as a monopolist, and the second outcome

are American and Southwest as duopolists. Suppose that Delta makes the highest profit

among the three in the two possible outcomes. Then the selection rule would tell that the

chosen equilibrium is the one with Delta as a monopolist.

Table 11 presents the results of this estimation:

Table 11: firm with highest profit

AA DL WN Another Large At Least One Small
AA x 0.906 1.039 0.601 0.300
DL -0.033 x -0.004 -0.031 0.003
WN -0.664 -0.043 x 0.883 -6.730

Another Large -0.326 -0.874 -0.522 x -0.525
At Least One Small 0.015 0.533 -0.759 0.148 x

Log Pop 0.095 -0.172 -0.324 -0.011 0.011
Log Distance -0.169 -0.261 -0.016 -0.224 -0.435
Constant -0.360 0.317 -0.695 0.591 0.164
Nobs 766

Correct Predictions 0.2105
Function Value 233.608

This table provides estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

We immediately observe that the value of the distance function is much larger now than in

Table 5. We also observe that the percentage of correct predictions is down to 21.05 percent

from 28.12 percent. The best way to verify whether the selection rule describes the true

firms’ behavior is comparing the point identified parameters in Table 11 with the parameter

bounds in Table 5.

Ideally, if it is true that the most profitable firm always moves first, then the point

identified parameters in Table 11 should fall within the bounds in Table 5. This is not the

case. Take, for example, the parameter estimate of the effect of Delta on American: In Table

11 the parameter is estimated to be equal to −0.033, while in Table 5 we found the parameter
to be included in [1.559, 2.310]. This is true for almost all the estimated parameters. Thus,

the selection rule that picks the firm with the highest profit does not appear to be supported
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by the data.

7.2 Selection Rule 2: The Equilibrium with the Highest Aggre-
gate Profit is Selected

Consider now the selection rule that among the outcomes that can be an equilibrium in one

market, we choose the one where the sum of the profits of the firms is the highest. This

selection rule provides an interesting welfare implication, since it is the one that maximizes

the firms’ wealth.

Table 12 presents the results of this estimation:

Table 12: market with largest sum of profits

AA DL WN Another Large At Least One Small
AA x 6.290 -0.049 5.064 -0.666
DL 1.236 x 1.453 -5.665 2.351
WN -2.046 12.922 x 5.284 -0.158

Another Large 1.482 -13.304 1.655 x 1.975
At Least One Small -0.244 14.536 -1.657 9.507 x

Log Pop 0.228 -0.143 -0.127 0.034 0.035
Log Distance -0.022 -0.170 -0.437 -0.289 -0.614
Constant -2.995 -0.152 -1.713 0.712 -4.409
Nobs 766

Correct Predictions 0.2219
Function Value 259.344

This table provides estimates of the 8-dimensional cube that contains the set estimates. These set
estimates are appropriately constructed level sets of the sample objective function that cover the sharp
identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) for more
details). The estimates in this table are the max and the min taken for every parameter.

We again observe that the value of the distance function is much larger now than in Table

5, and as it was the case for the Selection Rule 1, we also observe that the percentage of

correct predictions is down to 22.19 percent from 28.12 percent. As before, the best way to

verify whether the selection rule describes the true firms’ behavior is comparing the point

identified parameters in Table 12 with the parameter bounds in Table 5. The results are

now extremely interesting. Most of the parameter estimates are very close to the bounds or

are within the bounds presented in Table 5. This finding is interesting for two reasons.

First, it appears that a theory of equilibrium selection where firms maximize the total

firm wealth cannot be rejected as a plausible selection rule. To explain how firms end up

selecting this maximum aggregated wealth equilibrium is, however, beyond the scope of this

paper. Second, and more generally, it seems clear that Selection Rule 2 can be used as a

critical benchmark in the application of this methodology to the airline industry. Policy
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analysis based on the above rule will provide sharper predictions than ones done using the

more general model with no specific selection mechanism.

8 Conclusions

In this paper, we have provided a framework for inference in discrete games that involve

multiple decision makers and use it to study airline market structure in the US. We have

made inferences on a “class of models” rather that looking for point identifying assumptions

that pin down a unique model. We have estimated the profit functions of the players (airlines)

under the assumption that their unobservables are iid; perfectly correlated; or correlated

according to a variance-covariance matrix that we have estimated. We have also allowed for

spatial correlation in the sample.

We find that there are multiple equilibria in the number and identity of firms in most

markets. We also find that firms follow different entry strategies. In particular, American

is less likely to be in market where Southwest or a small low cost carrier is also present.

American’s entry is positively related to the entry of Delta and other large carriers. On

the contrary, Delta enters in markets where Southwest is present, and where one small low

cost carrier is also present. Interestingly, Southwest and other low cost carriers avoid to be

present in the same markets, suggesting that there is normally only space for one low cost

carrier in each market.

We have also considered whether the evidence is consistent with two equilibrium selection

rules. The first selection rule assumes that the firm making highest profit always moves

first. The evidence rejects this selection rule. The second selection rule assumes that the

equilibrium with the highest aggregate profit is selected. The evidence does not reject this

selection rule, and we conclude that this selection rule can be used as a useful benchmark for

policy analysis. More generally, our framework allows us to test among different equilibrium

selection rules. This provides for example a set of equilibrium selection rules that is consistent

with the model and the observed data. These set of consistent or allowable models can then

be used to sharpen policy analysis.
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9 Appendix [Preliminary]

10 Proof of theorem 5:

Here assume that x has discrete support (this is not essential not essential for the proof
of the present theorem. It will be needed later when constructing confidence regions.). In
particular, let x take K values x1, . . . , xK . Hence, the sample objective function we consider
is

Qn(t) =
1
N

N∑
i=1

(PN (xi)− Ĥ1(xi, t))21[PN (xi) ≤ Ĥ1(xi, t)] + (PN (xi)− Ĥ2(xi, t))21[PN (xi) ≥ Ĥ2(xi, t)]

=
1
N

N∑
i=1

(PN (xi)− Ĥ1(xi, t))2− + (PN (xi)− Ĥ2(xi, t))2+

=
K∑
j=1

nj

n
(PN (xj)− Ĥ1(xj , t))2− + (PN (xj)− Ĥ2(xj , t))2+

where nj =
∑

i 1[xi = xi], u
2
− = u21[u ≤ 0] and similarly for u2

+. Also, we are considering

scalar vectors H1 and H2 for simplicity. This consistency theorem is similar to the theorem 5

in Manski and Tamer (2002). Hence what we need essentially, is to show that the objective

function QN(t) converges to its expectation uniformly in t. For this it is sufficient to show

that

Sup
t

∥∥∥nj

n
(PN(xj)− Ĥ2(xj, t))

2
+ − pj(P (xj)−H2(xj, t))

2
+

∥∥∥ = op(1) (18)

where
nj

n
→ pj as n→ ∞ (the case for H1 is similar. We have∥∥∥nj

n
(PN (xj)− Ĥ2(xj , t))2+ − pj(P (xj)− H2(xj , t))2+

∥∥∥ ≤
∥∥∥nj

n

(
(PN (xj)− Ĥ2(xj , t))2+ − (P (xj)− Ĥ2(xj , t))2+

)∥∥∥
+
∥∥∥nj

n
(P (xj)− Ĥ2(xj , t))2+ − pj(P (xj)− H2(xj , t))2+

∥∥∥
= (1) + (2)

(19)

First, consider (1)

(1) ≤ nj

n

∥∥∥(PN(xj)− Ĥ2(xj, t))
2 − (P (xj)− Ĥ2(xj, t))

2
∥∥∥ 1[(PN(xj) ≥ Ĥ2(xj, t);P (xj) ≥ Ĥ2(xj, t)]

+ (PN(xj)− Ĥ2(xj, t))
21[PN(xj) ≥ Ĥ2(xj, t) ≥ P (xj)]

+ (P (xj)− Ĥ2(xj, t))
21[P (xj) ≥ Ĥ2(xj, t) ≥ PN(xj)]

= (1a) + (1b) + (1c)

we have
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(1a) =
nj

n

∥∥∥(PN (xj)− P (xj)− 2Ĥ2(xj , t))((PN (xj)− P (xj))2
∥∥∥ 1[(PN (xj) ≥ Ĥ2(xj , t);P (xj) ≥ Ĥ2(xj , t)]

≤ nj

n
M((PN (xj)− P (xj))2 = op(1)

where M ≤ ∞ since (PN(xj)− P (xj)− 2Ĥ2(xj, t)) is bounded by definition. Moreover,

(1c) ≤ ((PN(xj)− P (xj))2 = op(1)

since (1c) is constrained to be on the set 1[PN(xj) ≥ Ĥ2(xj, t) ≥ P (xj)] and similarly for

(1b) which is constrained on the set 1[PN(xj) ≥ Ĥ2(xj, t) ≥ P (xj)]. Consider (2’),

(2′) =
1

n

∑
n

(P (xi)− Ĥ2(xi, t))
2
+ − E(P (xi)− Ĥ2(xi, t))

2
+ (20)

Here, one can use a uniform law of large number similar to the one used in Pakes and Pollard

(1989) to show that the above converges to zero uniformly in t. Moreover,

E(P (xi)− Ĥ2(xi, t))
2
+ − E(P (xi)−H2(xi, t))

2
+ = op(1)

uniformly in t as sample size increases. This combined with (20) shows that (2) = op(1)

uniformly in t.

11 Constructing confidence regions:

We describe a practical method, based on Chernozhukov, Hong, and Tamer (2002) (CHT),

that delivers a confidence region for the identified set. This confidence region is an appro-

priately constructed level set of the objective function similar to confidence regions based on

inverting a likelihood. First assume that we have a sample objective function, such as Qn(t)

in (15) above that obeys the conditions of Theorem 2.5, i.e., that uniformly converges to

an objective function Q(.) that is minimized on a set ΘI (this set can be a singleton). Our

confidence regions are level sets of the form

Θ̂I =
{
θ ∈ Θ : n

(
Qn(θ)−min

t
Qn(t)

)
≤ c

}
The results in CHT are derived for the case the the estimated set converges to the identified

set at the parametric rate. To guarantee this, we assume that our data has finite points of

support. First, define the coverage index ρ(c) as follows:

ρ(c) = c− sup
θ∈ΘI

n (Qn(θ)− qn)
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where qn = mintQn(t). The coverage index ρ is convenient to use because events such as

whether ΘI ⊆ Cn(c) or not is determined by the sign of this index. For example, for θ ∈ ΘI

such that θ /∈ Cn(c), we have n(Qn(θ)− qn) > c which implies that ρ(c) < 0. Next, we state

the main result from CHT where basically the appropriate confidence region is the one based

on a level set derived at a particular quantile of the statistic

Cn = sup
θ∈ΘI

n (Qn(θ)− qn)

where

lim
n→∞

P
{
ΘI ⊆ Cn(ĉα) ≡ Θ̂I

}
= α

and ĉα → cα and cα is the α-quantile of C where Cn →d C. We use a subsampling procedure

that provides an estimate of cα. This subsampling procedure is as follows. First, we construct

all subsets Bn of size b << n. We take b to be equal to n/4.23 We then compute

Ĉi,b,n,c0 = sup
θ∈Cn(c0)

b(Qb(θ)−Qb)

for each i-th subset, i ≤ Bn where we take c0 to be an appropriate chisquared critical value.

We then compute the α-quantile of the numbers Ĉi,b,n,c0 which will get us the appropriate ε at

which we obtain our level set which has the appropriate coverage properties (asymptotically).

12 Data Construction

Data are from the Web site http://itdb.bts.gov/, managed by the Bureau of Transportation

Statistics.

We limit the analysis to the continental USA, because routes in Alaska and Hawaii are

heavily subsidized by the federal government (e.g. for postal transportation). We consider

40 airports. These are ATL (Atlanta), AUS (Austin), BOS (Boston), BWI (Baltimore), CLE

(Cleveland), CLT (Charlotte), CVG (Cincinnati), DAL (Dallas Lovie Field), DCA (Washing-

ton Reagan), DEN (Denver), DFW (Dallas Fort Worth), DTW (Detroit), EWR (Newark),

FLL (Fort Lauderdale), HOU (Houston Hobby), IAD (Washington Dulles), IAH (Houston

International), JFK (New York Kennedy), LAS (Las Vegas), LAX (Los Angeles), LGA (New

York’s La Guardia), MCI (Kansas City), MCO (Orlando), MDW (Chicago Midway), MEM

(Memphis), MIA (Miami), MSP (Minneapolis), OAK (Oakland), ORD (Chicago O’Hare),

PDX (Portland), PHL (Philadelphia), PHX (Phoenix), PIT (Pittsburgh), SAN (San Diego),

SEA (Seattle), SFO (San Francisco), SJC (San Jose in California), SLC (Salt Lake City),

STL (Saint Louis), TPA (Tampa).

23There is not general theory of picking a subsample size. See Politis, Romano, and Wolf (1999) for more
on this. However, trying different b′s in this paper led to similar results.
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We exclude markets between airports in the same Metropolitan Statistical Area, such

as between Fort Lauderdale and Miami, or between Chicago Midway and Chicago O’Hare.

Even when people are transported between airports in the same city, these are likely coding

errors.

We exclude from the dataset markets that had less than four departures scheduled or

performed at the origin airport and at the destination airport. For example, AUSPHL had

only 1 departure scheduled in the month of May 1998 from PHL to AUS. We code the market

AUSPHL as being not served on a non-stop basis by any airline.

The following table provides summary comments on the regional and small independent

carriers.

Table 13: Regional and Independent Carriers

Name Comments
Trans State Operates today as an independent carrier with AA and US.

In 1998 it operated also with other airlines, e.g. TWA.

Atlantic Southeast Airlines Independent until 1999 when bought by Delta.
Previously serving as DL Connection.

Mesaba NW tried to buy it in 2001 but gave up. Still today is independent.
Frontier
Tower Air Ceased in 2000
Airtran
Kiwi Intl.
Vanguard
Spirit
Reno Independent until 1999 then bought by American
ATA

Midwest
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