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ABSTRACT 
 

This paper uses semiparametric techniques to estimate a nonlinear model and compare it to a 
parametric LSTAR specification of exchange rate determination. In both cases the nonlinearities are 
modeled as part of the conditional mean of the process, rather than of its variance, thus providing an 
alternative approach to recent ARCH-type estimations of the same issue. Using a panel data set for five East 
European countries for years 1993 - 2001, it results that the non parametric data-driven estimates perform a 
little better but actually support the LSTAR specification. The dependence of current on lagged exchange 
rates is confirmed to be non linear, with marginal effects that become very significant and negative for 
abnormal values of the lagged variable. The PPP hypothesis, that is reflected in a ECM component included 
in the specification, is not rejected by the data. 
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INTRODUCTION 
 

It has been shown in the literature that the process that generates exchange rates contains 

significant non linearities. Among others, Pagan,Ullah, 1988 and Gallo, 2000 tend to identify the 

non linearity as a risk component and specify ARCH-type models to test their hypothesis. In a 

recent paper, Sitzia et al. (2000), propose an alternative LSTAR (Logistic Smooth Transition Auto 

Regressive)specification to model the existing non linearities in exchange rates series, for five East 

European Countries currencies against the Euro. The estimated model is actually a combination of 

an ECM mechanism  and an LSTAR component: the lagged level values of the exchange rate and 

of the price differential that are included in the specification, stand for the equilibrium long run path 

of exchange rates and price differentials in the assumption that the Purchasing Power Parity (PPP) 

hypothesis holds. Short run fluctuations in exchange rates are due to changes in the US$ - EURO 

exchange rate, to inflation differentials between each East European country and the EURO area, 

and to the LSTAR mechanism that lets differentials in interest rates trigger variations in the current 

exchange rate only when past changes of the exchange rate itself are “big enough” . 

 
This paper takes Sitzia et al.’s model of exchange rates formation and uses Pagan’s and Ullah’s 

semiparametric approach to check for and estimate the non linearities in the process. It seems 

interesting to use for this purpose a non parametric, entirely data-driven, procedure instead of a-

priori imposing the LSTAR parametric form, a restriction that might even lead to inconsistent 

estimates of the parameters of the linear part of the model, in particular of the ECM component. 

Section 1 deals with the theory of Semiparametric estimation for panel data and Section 2 

presents its empirical application to the model of exchange rates together with the results. In Section 

3 the non parametric non linear (NPNL) component will be tested agains the LSTAR mechanism. 

More in depth analyses of the joint effects on exchange rates of interest spreads and of the lagged 

values of the endogenous variable as they result from the estimated NPNL component will also be 

performed. 

Conclusions will close the paper. 

 

1. The Theory of Semiparametric Estimation: the case of panel data. 

For completeness and presentation purposes it is worthwhile to outline here the theory of 

semiparametric estimation, when the available data are in panel form. The notation, the description 
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of the estimation procedure and of the properties of the estimators closely follow the paper by Ullah 

and Roy (1998), who discuss non parametric fixed effect panel estimators. In fact, as in Sitzia et al., 

our model of exchange rate formation will be estimated on data for five East European countries, 

using monthly observations from january 1993 through september 2001. Remember also that the 

model specified in Sitzia et al. may be split into a linear and a nonlinear part, so that it may be 

written in compact form as: 
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where xit and zit are a px1 and a dx1 vectors of explanatory variables respectively, and g(.) is the 

unknown nonlinear function within the model.  

Using Robinson’s procedure, (see Pagan and Ullah, 1999, chapter 5, Ullah and Roy 1998, 

p.592), take the conditional expectation of equation 1.1 with respect to z and obtain: 

 

[2] )()()|()()'|()|( ititxiitititititiitit zgzmzuEzgzxEzyE ++=+++= αβα  

 

Subtract 2 from 1.1: 

 

[3] ititititxititititit uxuzmxzyEyy +=+−=−= ββ *'))'(()|(*  

 

3 is a linear equation in the transformed variables yit* and xit*, that can be estimated with OLS 

(no fixed effects) to get consistent estimates, b, of β, the parameters in the linear part of the model. 

The next step consists in estimating the nonlinear function g(z) in the regression: 

 

[4] ititiititit uzgbxyy ++=−= )('** α  

 

 

1.1 The Local Linear Kernel Estimator 

The suggestion in the nonparametric literature, in particular in Ullah and Roy 1998, is to 

perform pooled local linear Kernel (nonparametric) regressions to estimate ai+g(zit) as well as the 
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conditional means E(yit|zit) and E(xit|zit) in equation 3. Setting for a moment aside the estimation of 

the ai, consider the nonlinear function  

 

[5] ititit uzmy += )(  

 

and its linear approximation through a Taylor series expansion around z: 
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Then, apply Weighted Least Squares to 6 to get to an estimate of θ(z), namely: 
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Note that through this procedure, you jointly estimate the mean, m(z), and the gradient, δ(z), of 

the conditional expectation function in the neighborhood of z. That is, for a neighborhood of width 

h around each value of z, you fit a regression line with constant m(z) and slope δ(z), that can be 

interpreted as the values of the nonlinear function computed at z and of the response parameters of y 

with respect to the regressors, respectively. 

It is proved that if the Kernel function satisfies some smoothness conditions, if h goes to zero as 

n tends to infinity, and if some other conditions on y and z are satisfied, the estimated parameters 

converge to normality, more precisely (see Ullah and Roy, 1998, p 586), 
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This result allows to estimate standard errors for the parameters, and draw inference from the 

results. 

h, the window width, is estimated using the formula: )2/(1 dl
jj

opt
j nh +−= σψ , where ψj is an 

unknown constant, σj is the variance of zj, l is the order of the kernel and d is the number of 

variables in the joint density being estimated. N © (J. Racine 2001) performs a data driven 

estimation of the scale factor, ψj, based on the Least Squares Cross Validation “leave-one-out” 

method described in Pagan and Ullah, 1999, p.119. This procedure minimizes with respect to h the 

mean of the Estimated Prediction Error: ( )( )( )∑ −= − 21 ~))(( ii zmynEhEPEE , where ( )izm~  is the 

estimated regression line or non parametric conditional mean of y on z. As for the choice of the 

Kernel function, the second order gaussian kernel, the default in the nonparametric regression 

program N ©, will be used in estimation, see Racine 1999, (p.67-70). The multivariate kernel that is 

necessary to estimate the conditional means in 3 and 4, is the product kernel: 

)()()()( 21 dzKzKzKZK ×⋅⋅⋅××=  

 

If there exist individual specific fixed effects  

[9] ititiit uzmy ++= )(α  

and if you use the local linear kernel estimator, that is you linearly expand the function around z, αi 

becomes a part of the “constant”, so that the estimated m(z) actually is the sum of the individual 

fixed effect and of the nonlinear function computed at z. Ullah and Roy 1998, p.589, suggest a 

further transformation of the data that allow to separately estimate the two elements, but it does not 

seem to be necessary to do so in what follows. It will have to be remembered that the nonlinear 

functions of z that will be presented in the following pages, all implicitly contain the individual 

specific effects.   

One last remark must address the fact that the regressors vector, z, contains the endogenous 

variable, lagged one and two periods. This does not affect the procedure and the results on 

consistency and asymptotic distribution of the SP estimators hold, as long as the independence 
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between the error terms and z is satisfied, i.e., in this case, if the error terms are not serially 

correlated. 

 

2. The Semiparametric estimation of Model [1] 

The procedure outlined above has been used to estimate a Semiparametric alternative to the 

model specified in Sitzia et al., Model [1] from now on: 

 
Model [1]   
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The variable definitions and some descriptive statistics are in table 1, index i identifies the five East 

European Countries: Hungary, Czeck Republic, Poland, Slovenia and Slovakia, and t indexes 

monthly observations from January 1993 through September 2001. This specification is based on a 

simplified version of the traditional Flexible Price Monetary Model. It includes an ECM term that 

models the long run equilibrium path that connects exchange rates and price differentials, and the 

LSTAR mechanism that models how interest rates differentials affect exchange rates nonlinearly as 

a function of the volatility of the process, that is as a function of risk. 

 

Table 1 – The list of variables 
 SYMBOL DEFINITION 
Y Dlog(ei) Rate of change of the exchange rate, by country, against 

Euro 
X1 Dlog(Pi)-Dlog(PEU) Inflation differentials 
X2 Dlog(eUS$-EU) Rate of change of the US$/Euro exchange rate 
X3 log(ei,t-1) Lagged log level of EaEucoutry£/Euro exchange rate 
X4 log(Pi,t-1/(PEU,t-1) Lagged log price differentials 
 
LSTAR 
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LSTAR component 

Z1 (ri - rEU) Interest rate differentials 
Z2 Dlog(ei,t-1) One period Lagged Endogenous 
Z3 Dlog(ei,t-2) Two period Lagged Endogenous 
MY E(Y | Z) NP Conditional mean of Y on Z 
MX1 E(X1 | Z) NP Conditional mean of X1 on Z 
MX2 E(X2 | Z) NP Conditional mean of X2 on Z 
MX3 E(X3 | Z) NP Conditional mean of X3 on Z 
MX4 E(X4 | Z) NP Conditional mean of X4 on Z 
NPNL E((Y-XB)|Z) Non Parametric Nonlinear component 

Notes: i = CZ, HU, PL, SK, SN;  D = first difference operator;  log = logarithm 
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Table 1 (continue) – Descriptive statistics on the stacked data, common sample (1993:04 – 2001:09) 
  Mean Median Maximum Minimum Std. Dev. Jarque-Bera Probability 

Dlog(ei) 0.004476 0.003871 0.099671 -0.10868 0.017036 1319.853 0

Dlog(Pi)-Dlog(PEU) 0.005868 0.004062 0.060239 -0.02177 0.008723 1044.696 0

Dlog(eUS$-EU) -0.00278 -0.0061 0.052344 -0.04558 0.022748 16.35081 0.000281

log(ei,t-1) 3.780565 3.673731 5.587743 0.696448 1.475605 48.05749 0

log(Pi,t-1/(PEU,t-1) 0.113943 0.116855 0.625651 -0.54318 0.216842 1.217865 0.543931

(ri - rEU)  10.71223 10.3035 52.91 -1.488 7.731825 51.7439 0
LSTAR  5.046543 3.011501 30.44552 -1.38737 5.52697 237.9494 0
MY  0.004676 0.00301 0.087304 -0.02156 0.008026 13644.03 0
MX1  0.005826 0.004689 0.027914 -0.00222 0.004504 148.607 0
MX2  -0.00262 -0.00311 0.045047 -0.03329 0.005363 8586.646 0
MX3  3.663435 3.73147 5.07855 0.860213 0.60998 371.622 0
MX4  0.103941 0.11051 0.366347 -0.30341 0.087832 126.6757 0
NPNL  0.001536 -0.00017 0.086304 -0.02415 0.007364 31505.7 0

 
 

Table 2 shows the estimated equation 3, the “first step” OLS estimates for the linear part of 

model [1] performed on the transformed variables y* and x* (in the notation of section 1). From the 

results obtained with the ECM – LSTAR specification by Sitzia et al., and from the theoretical a-

prioris, we want parameters β1 through β4 to be significant, and for the PPP hypothesis to be 

accepted by these data, that the lagged levels of the exchange rates and price differentials be 

opposite in sign and almost the same in absolute value.  

Both changes in price differentials and changes in eUS$-EU are significant and positive . However 

the two coefficients of the error component variables, the lagged log of exchange rates and price 

differentials, are significant only at the 10% level. The negative sign of the coefficient attached to 

the lagged level price differentials and the little significance of the whole ECM component do not 

fully support at this stage the PPP hypothesis.  

 

Table 2 – estimated equation [3] 
Dependent Variable: Dlog(ei)-MY 
Method: GLS (Cross Section Weights) 
Date: 01/31/02   Time: 18:27 
Sample: 1993:04 2001:08 
Included observations: 101 
Balanced sample 
Total panel observations 505 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient t-Statistic Prob. 
Dlog(Pi)-Dlog(PEU)-
MX1 

0.173196 2.452425 0.0145

Dlog(eUS$-EU)-MX2 0.129202 4.924747 0.0000
log(ei,t-1)-MX3 0.000780 1.748454 0.0810
log(Pi,t-1/(PEU,t-1)-MX4 -0.005112 -1.695803 0.0905

    
R-squared 0.077639 Log likelihood 1765.861 
Adjusted R-squared 0.072116 Sum squared r. 0.088862 
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The next step in the SemiParametric analysis of Model [1] consists in computing, using the 

estimated coefficients in table 2, the new transformed endogenous variable, y** (see [4]), and in 

performing the final non parametric regression of y** on the variables in z, (see [9]). The estimated 

Non Parametric conditional mean of y** on z is going to be called from now on NPNL. As a last 

step we are going to reestimate the full model of exchange rates using as a regressor NPNL instead 

of the LSTAR mechanism. 

Table 3 presents the pooled fixed effect estimates of model [1] in the LSTAR version and in its 

SP counterpart. The estimates and the goodness of fit of the two specifications are going to be 

compared and commented. In particular the two alternative nonlinear components are going to be 

analysed to test whether the nonparametric estimates support or reject the LSTAR functional form. 

In the following section, the paper will address the question of how and how significantly the 

interest rates spreads and the lagged values of the endogenous variable affect NPNL hence the 

changes in exchange rates.  

3. A comparison between the LSTAR and the NPNL estimates 

How do the semiparametric estimates compare with the  LSTAR model? Or in other words how 

is it posible to check if the imposed parametric LSTAR mechanism is supported by the data? The 

nonparametric test T suggested by Ullah (1985), is a preliminary simple specification test that can 

easily be computed on our data, where the hypothesis we wish to test is: 
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If T is large, H0 is rejected. It can be proved that under some normalizing transformations T is 

asymptotically normally distributed (see Lee-Ullah, 2000, p.6). The residual sums of squares in the 

formula are computed using the residuals of the FEGLS estimations of model 1, where the 

nonlinear component is either the LSTAR or the estimated non parametric function 

Table 3 shows the estimated regressions as well as the computed T test for the LSTAR model 

against the SemiParametric model. The number is shown in absolute value with no associated P 

value of the test because our sample dimension is far from asymptotic and it cannot be hoped that 

the T test be normally distributed. The computed values however show that the SP model performs 
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better than the LSTAR model by approximately 25% which does not seem to be an irrelevant 

fraction of explanatory power. 

However, the SP estimates reproduce in terms of significativity and absolute value of the 

coefficients the results obtained by Sitzia et al., namely the long run equilibrium path between 

exchange rates and price differentials seems to be accepted by this specification. Moreover the Non 

Parametric Non Linear component enters as significantly as the LSTAR mechanism in the 

estimated regression. (The coefficients associated to the two terms are different in signs and 

absolute values because of how the two term were constructed. LSTAR is a nonlinear combination 

of the variables involved (z1,z2,z3) that approximately keeps the location of the interest rate 

differentials. NPNL is the conditional mean of y** (Dlog(e)-X’b), substantially an error term with  

location close to that of Dlog(e), the dependent variable. See the descriptive statistics in table 1 

above).  

 
Table 3. A comparison between the LSTAR and the NonParametric functions 
Dependent Variable: Dlog(ei)  
Method: GLS (Cross Section Weights)  
Sample: 1993:04 2001:08  
Included observations: 101  
Number of cross-sections used: 5  
Total panel (balanced) observations: 505  
White Heteroskedasticity-Consistent Standard Errors & Covariance 
 

 Nonlinear = NPNL Nonlinear = LSTAR 
Variable Coefficient P value Coefficient P value 

   
Dlog(Pi)-Dlog(PEU) 0.138431 0.0405 0.301936 0.0003 
Dlog(eUS$-EU) 0.124967 0.0000 0.146030 0.0000 
log(ei,t-1) -0.032770 0.0092 -0.042266 0.0014 
log(Pi,t-1/(PEU,t-1) 0.020347 0.0743 0.022556 0.0548 
Nonlinear Comp. 1.150099 0.0000 -0.000557 0.0000 
Fixed Effects    
HU--C 0.171401 0.226251  
PL--C 0.037450 0.056717  
CZ--C 0.116858 0.150846  
SN--C 0.171416 0.223508  
SK--C 0.122422 0.159066  

   
R-squared 0.373369 0.215566  
SSR 0.087526 0.110061  

   
T 0.2574  
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To reach further insight on how differently the LSTAR and nonparametric nonlinear (NPNL) 

mechanism behave in time and by country see figure 2. 

For all countries, it is evident how NPNL incorporates some individual and maybe time specific 

elements  (the αi in equation 9) that the LSTAR mechanism does not. Taking this into account, the 

two series do not differ too much in term of turning points, but rather in amplitude of the variation 

they record. The differences are more striking in Poland and Slovakia: in the former country NPNL 

shows only one relevant peak at the beginning of 1999. Viceversa, in the latter country it is LSTAR 

that has a smoother behavior. 

It is maybe more important at this stage to check whether and how much the individual  

conditioning variables z1, z2, z3 affect NPNL and, indirectly, Dlog(e). Figure 3 shows the partial 

derivatives of NPNL with respect to z1, z2, and z3, the interest rate differential, and the lagged one 

and two periods Dlog(e) respectively, for Hungary and Slovakia. Although not shown, the pattern 

of the estimated parameters is similar for the other three countries. 

The estimated δ(z1) (see [6] above), are never significantly different from 0, and so are the δ(z3)  

parameters: neither the interest rate differentials nor the twice lagged endogenous variable seem to 

affect NPNL and indirectly exchange rates. The marginal effect of z2, the endogenous variable 

lagged once, instead, strongly depends on the value taken on by z2 itself: for very large or very 

small past changes in exchange rates, current exchange rates react strongly and in the opposite 

direction. No significant inertial effect exists for values of dlog(et-1) close to 0.   
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Figure 2 – LSTAR vs NPNL (normalized data) 
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Figure 3. The estimated parameters 



 12

 

ir

 bir  ubir
 lobir

0 10 20 30

-1

0

1

 

Hungary: d(NPNL)/d(IRHU-IREU) 

 

ir

bir  ubir
 lobir

0 10 20 30

-1

0

1

 

Slovakia: d(NPNL)/d(IRSK-IREU) 

 

dlex100

 b1  ub1
 lob1

-5 0 5 10

-1

-.5

0

 

Hungary: d(NPNL)/d(DLOG(EXHU(-1))) 

 

dlex100

b1  ub1
 lob1

-5 0 5 10

-.5

0

.5

 

Slovakia: d(NPNL)/d(DLOG(EXSK(-1))) 

 

dlex200

 b2  ub2
 lob2

-5 0 5 10

-2

0

2

4

 

Hungary: d(NPNL)/d(DLOG(EXHU(-2))) 
 

 

dlex200

b2  ub2
 lob2

-5 0 5 10

-2

0

2

4

 

Slovakia: d(NPNL)/d(DLOG(EXSK(-2))) 



 13

From this first look at the estimated effects of the variables in the nonlinear mechanism, it looks 

as if only the lagged one period endogenous variable is relevant in explaining current changes in 

exchange rates, conditional on the variations in the X variables. 

Summarizing, the evidence suggests that the data support the LSTAR specification: it is able to 

capture the turning points and the periods of “abnormal fluctuations “ in the exchange rates series 

almost as well as its nonparametric unrestricted counterpart. However not all the variables 

introduced in the nonlinear component of model [1] seem to be relevant in explaining exchange 

rates, and the test T, above, gives some indication of mispecification of LSTAR as the functional 

form that links the endogenous variable, exchange rates, to interest rate differentials and its own 

lagged values. Would a different parametric functional form approximate NPNL better than 

LSTAR? 

It results that a quadratic expression of the Z variables (Table 4) replicates NPNL quite well. In 

particular it results that the linear term of the economically relevant interest rates differential 

variable becomes statistically significant in this regression if more recent observations are added to 

the sample. So is its cross with the Z3 (DLOG(EX(-2))) term. This leads to presume that today’s 

changes in exchange rates do depend on past volatility and that, in turn, variations in interest 

spreads trigger a response in current exchange rates only if coupled with lagged exchange rates 

variations. This result actually confirms the logic underlying the LSTAR mechanism. 

 
Table 4 – A quadratic approximation to the NPNL function. 
White Heteroskedasticity-Consistent Standard Errors & Covariance 
Dependent Variable: NPNL? 
Method: GLS (Cross Section Weights) 

Sample: 1994:01 2000:01 Sample: 1993:04 2001:09 
Included observations: 73 Included observations: 102 
Balanced sample Balanced sample 
Total panel observations 365 Total panel observations 510 

  
Variable Coefficient Prob. Coefficient Prob. 

Z1? 0.000181 0.0550 0.000210 0.0000 
Z2? 0.193647 0.0009 0.156628 0.0000 
Z3? -0.051263 0.3808 -0.086412 0.0001 

Z1?^2 7.47E-07 0.8707 -9.03E-07 0.4027 
Z2?^2 2.614808 0.4777 1.381328 0.6009 
Z3?^2 -2.498541 0.0813 -1.867689 0.0291 

Z1?*Z2? 0.000816 0.9372 0.005774 0.1933 
Z1?*Z3? 0.007408 0.2081 0.006630 0.0121 
Z2?*Z3? -1.723849 0.3007 -1.212936 0.4348 

Fixed Effects     
HU--C -0.001782  -0.001946  
PL--C -0.000192  0.000178  
CZ--C -0.002229  -0.002235  
SN--C -0.001736  -0.001506  
SK--C -0.002704  -0.002458  

Adjusted R^2 0.662682  0.699502  
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4. Conclusions 
 

The dynamic processes that generate exchange rates have a relevant component that cannot be 

modeled as a linear combination of some explanatory variables. Theory usually refers to this 

component as “risk” or “risk premium”. Econometric specifications of exchange rate models have 

hence lately been of the ARCH-GARCH type, that is models where the variance of the process (a 

proxy of risk) is estimated together with its mean. An alternative parametric specification would 

include a nonlinear function of some explanatory variables in the mean of the process. In particular 

a LSTAR-type specification has recently been proposed by Sitzia and Brasili, where current 

exchange rates, among other things, react to interest rates differentials only in normal times, that is 

if there were no significant devaluations. 

It is however well known that functional mispecifications in a regression may lead to 

inconsistent estimates of all parameters in the equation, and recent applied literature has started 

using NonParametric techniques to estimate the risk component in exchange rate models, again in a 

way that is strongly similar to ARCH-type settings. In other words, the non parametric procedures 

are used to estimate a (non linear in this case) autoregressive function for the variance of the 

process under analysis. 

This paper uses the same kind of techniques, suggested first by Robinson and then by Pagan, 

Ullah and Roy in a series of articles, to estimate the semiparametric counterpart of the LSTAR 

model above, where nonlinearities in exchange rates determination are a part of the conditional 

mean of the process, rather than of its variance. 

It results that the non parametric data-driven estimates perform a little better but actually 

support the LSTAR specification. In particular the dependence of current on lagged exchange rates 

is confirmed to be highly non linear, with marginal effects that become very significant and 

negative for high or low values of the lagged variable. Interest rates differentials certainly do not 

affect current exchange rates in a linear form. There is some indication however that their cross 

effect together with lagged exchange rates is significant. 

The last result is that the linear part of the parametric LSTAR model is also supported by the 

Semi Parametric estimates: there is no indication of  bias in the estimated parameters due to 

functional mispecification. In particular the PPP hypothesis, that is reflected in the ECM component 

included in the specification, is not rejected by the data. 
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