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Abstract

Misspeci�cation errors due to the presence of unattended structural breaks can a¤ect

the power of standard panel cointegration statistics. We propose modi�cations to allow

for one structural break when testing the null hypothesis of no cointegration that retain

good properties in terms of empirical size and power. Response surfaces to approximate the

�nite sample moments that are required to implement the statistics are provided. Since panel

cointegration statistics rely on the assumption of cross-section independence, a generalisation

to the common factor framework is carried out. Moreover, for those situations where the

common factor model is not suitable we suggest the applicatication of a sieve bootstrap

method to compute the empirical distribution of the statistics.

Keywords: Panel cointegration, structural break, common factors, sieve bootstrap, cross-

section dependence

JEL Codes: C12, C22

1 Introduction

The theory of cointegration establishes that there exist linear combinations of non-stationary

variables that cancel out common stochastic trends. This phenomenon gives rise to equilibrium

relationships amongst non-stationary variables, which means that in the long-run these variables

follow each other. The concept of cointegration does not prevent that neither the vector of

�Corresponding author: Av. Diagonal, 690. 08034 Barcelona. E-mail: carrion@ub.edu. Part of the reseach
was written while the author was visiting the European University Institute in Florence in the spring 2004. I
would like to thank the Department of Economics for its hospitality during my stay. The author also acknowledges
�nancial support from the Generalitat de Catalunya.

1



cointegration nor the deterministic component of the long-run relationship might change along

the analysed time period. In fact, Hansen (1992), and Quintos and Phillips (1993) propose test

statistics to assess the stability of the cointegration relationship. More interestingly, it is well

known that the inference about the presence of cointegration can be a¤ected by misspeci�cation

errors that do not account for changes in the parameters of the model, which can bias conclu-

sions towards the non-stationarity �see Campos, Ericsson and Hendry (1996), and Gregory and

Hansen (1996). All these considerations have driven to design procedures to test for cointegration

allowing for structural breaks. Thus, Gregory and Hansen (1996) generalised the standard coin-

tegration approach in Engle and Granger (1987) to allow for the presence of structural breaks

that might a¤ect either the deterministic component or the cointegration vector of the long-

run relationship. Hao (1996), Bartley, Lee and Strazicich (2001), and Carrion-i-Silvestre and

Sansó (2004) use the multivariate version of the KPSS statistic in Harris and Inder (1994), and

Shin (1994) to test for the null of cointegration with one structural break. Finally, Hansen and

Johansen (1993), and Busetti (2002) propose methods to estimate the cointegration rank in a

multivariate framework. These proposals obey to requirements that arise in empirical modelling

since there is some empirical applications in the literature that test for cointegration allowing for

structural breaks. For instance, Gregory and Hansen (1996) and Gabriel, Da Silva and Nunes

(2002) investigate the long-run money demand for the U.S. and Portugal, respectively. Busetti

(2002) conducts two illustrations using road casualties in Great Britain, and some macroeconomic

data for the UK. Finally, Clemente, Marcuello, Montañés and Pueyo (2004) focus on health care

expenditure demand functions. The main conclusion that arises from these applications is that

inference on cointegration analysis can be a¤ected by the presence of structural breaks.

Non-stationary panel data econometrics literature has experienced a rapid development since

1990s. The main reason that has popularised the use of the panel data techniques is the idea

that power of unit root and cointegration testing might increase due to the combination of the

information that comes from both the cross-section and the time dimensions. As a result, new

statistics to assess the stochastic properties of panel data sets have appeared in the literature

�see Banerjee (1999), Baltagi and Kao (2000), and Baltagi (2001) for an overview of the �eld.

Surprisingly, instability has not received too much attention in panel data cointegration frame-

work. In this regard, Kao and Chiang (2000) analyse instability in cointegration relationships

assuming that cointegration is present, with an homogeneous cointegrating vector for all individ-

uals �although it is possible to split the panel in two sub-panels using bootstrap�and a common

break point. Besides, Breitung (2002) proposes a VAR-based panel data cointegration procedure

that allows introducing dummy variables outside the long-run relationship. Finally, Westerlund

(2004) extends the LM statistic in McCoskey and Kao (1998) allowing for one structural break.

As can be seen, there are not many contributions in the literature that addresses the panel

data cointegration hypothesis testing allowing for structural breaks. In this paper we address this

concern and generalise the approach in Pedroni (1999, 2004) to account for one structural break

that a¤ects the long-run relationship in di¤erent ways. Pedroni proposes seven statistics depend-
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ing on the way that the individual information is combined to de�ne the panel tests. Moreover,

the statistics can also be grouped in either parametric or non-parametric statistics, depending

on the way that autocorrelation and endogeneity bias is accounted for. In this paper we only

focus on the parametric statistics. One important feature of all these proposals is cross-section

dependence matter. Thus, all these panel data statistics assume cross-section independence. In

this paper we address this concern in two di¤erent ways. First, we generalise the proposal in

Pedroni (2004) dealing with an approximate common factor model as in Bai and Ng (2004). The

limiting distribution of the statistics is derived and new sets of critical values are computed when

required. Second, we propose to carry out a sieve bootstrap to obtain the empirical distribution

of the statistics for those cases in which the factor model should not be appropriate.

The paper proceeds as follows. In section 2 the interest of our proposal is motivated through

Monte Carlo simulations. Section 3 presents the models and statistics for the null hypothesis of

no cointegration with power against the alternative of broken cointegration. The moments that

are required for the computation of the panel data statistics are computed in this section. In

this regard, we estimate response surfaces to approximate these moments for whichever sample

size. Section 4 extends the approach to the common factor framework. Section 5 focuses on

the �nite sample properties of the statistics. In section 6 we illustrate the proposal analysing

the Feldstein-Horioka puzzle. Finally, section 7 concludes with some remarks. All proofs are

collected in the Appendix.

2 Motivation

Pedroni (1999, 2004) proposes seven statistics to test the null hypothesis of no cointegration

using single equation methods based on the estimation of static regressions. Since the statistics

are based on single equation methods the cointegrating rank for each unit is either 0 or 1,

with a heterogeneous cointegrating vector for each individual. After conducting the estimation

of the individual static regressions, the cointegrating residuals are used to compute one of the

statistics. The seven statistics can be classi�ed in two di¤erent groups depending on whether they

are within-dimension-based statistics �homogeneity is assumed when computing the cointegration

test statistic�and between-dimension-based statistics �heterogeneous behaviour is allowed for the

statistic. In order to correct for the endogeneity bias, Pedroni (1999, 2004) suggests applying the

FM-OLS estimation method for the non-parametric statistics, although DOLS estimation method

can be applied as well �see Kao and Chiang (2000), and Mark and Sul (2003). Notwithstanding,

the statistics that use the parametric way to correct for the presence of autocorrelation does not

correct for the endogeneity bias.

As mentioned in the introduction, we are only concerned with the parametric version of the

statistics, i.e. the normalised bias and the pseudo t-ratio statistics. To motivate our proposal we

analyse the e¤ects of structural breaks on the parametric group Pedroni statistics through Monte

Carlo simulations. First, we focus on the case where there is cointegration but the deterministic
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component changes at a point in time. In a second stage we consider the case of unstable

cointegrating vector. The DGP is given by:

yi;t = fi (t) + �i;txi;t + zi;t

�xi;t = "i;t

zi;t = �izi;t�1 + vi;t

�i;t = ("i;t; vi;t)
0 � iid N (0; I2) ;

where fi (t) denotes the deterministic component.

For the �rst case we have fi (t) = �i + �iDUi;t with DUi;t = 1 for t > Tbi and 0 otherwise,

where Tbi = �iT , �i 2 (0; 1), denotes the date of the break. The parameter set is given by �i = 1,
�i = f0; 1; 3; 5; 10g, �i;t = �i = 1, and �i = f0:25; 0:5; 0:75g. The autoregressive parameter is
set equal to �i = f0; 0:95g. The sample size is T = f100; 200g, the number of individuals is
N = f20; 40g and 1,000 replications are carried out. For ease of simplicity but without loss of
generality, in all simulations we have speci�ed a common break point for all individuals. The

model that has been estimated to compute the pseudo t-ratio Pedroni panel data cointegration

test statistics includes a constant term (individual e¤ects) as deterministic component. Results

reported in Table 1 show that the e¤ect of level shift only matters in those situations where

the magnitude of the shift is large and the break point is located at the end of the time period.

Therefore, we can conclude that for small and moderate level shifts the misspeci�cation error of

the deterministic component does not damage the power of Pedroni statistic.

In the second stage we have analysed the case where the structural break changes both the

level and the slope of the time trend. The deterministic function is given by fi (t) = �i +

�iDUi;t + �it + iDT
�
i;t, where �i = 1, �i = 3, �i = 0:3 and DT �i;t is the dummy variable

de�ned above. Note that in this case the pseudo t-ratio statistic has been computed using a

time trend as the deterministic component. Table 1 shows that in this situation consequences

of the misspeci�cation error are more serious, since the empirical power approaches zero as the

magnitude of the slope shift (i) increases when the break point is placed either in the middle

(�i = 0:5) or at the end (�i = 0:75) of the period.

The third situation analyses the e¤ects of both the change in the level and in the cointegrating

vector. As before, the deterministic component is fi (t) = �i + �iDUi;t, with �i = 1 and

�i = f0; 3g. Now we focus on the change in the cointegrating vector specifying �i;t = �i;1 = 1
for t � Tbi and �i;t = �i;2 = f0; 2, 3, 4, 5, 10g for t > Tbi. The model that has been estimated
to compute the (pseudo t-ratio) Pedroni panel data cointegration statistic includes a constant

term as deterministic component. Table 2 indicates that for the empirical power to diminish

the change in the cointegrating vector has to be either moderate or large, and be located in the

middle (�i = 0:5) or at the end (�i = 0:75) of the period. Notice that this conclusion is reached

irrespective of the level shift that a¤ects the constant term.

Finally, the fourth case of study considers the change in the time trend that de�nes the
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deterministic component and the change in the cointegrating vector. In this case fi (t) = �i +

�iDUi;t + �it + iDT
�
i;t, with �i = 1, �i = 3, �i = 0:3, i = 0:5, and �i;t = �i;1 = 1 for t � Tbi

and �i;t = �i;2 = f0; 2, 3, 4, 5, 10g for t > Tbi. The model that has been estimated to compute
the pseudo t-ratio Pedroni panel data cointegration statistic includes individual and time e¤ects.

Table 3 reports that the change in the slope implies further reductions on the empirical power

of the statistic when the break point is located in the middle and at the end of the period.

In all, we can conclude that misspeci�cation errors due to the lack of accounting for a struc-

tural break can reduce the power of the panel data cointegration test in Pedroni (2004) in those

cases where the break point is placed in the middle or at the end of the time period. Therefore,

we have observed a bias towards the spurious non-rejection of the null hypothesis of no cointe-

gration. A relevant feature is that the power distortions appear when break changes either the

slope of the time trend or the cointegrating vector, but no e¤ects are to be expected when the

break only a¤ects the constant term.

3 Models and test statistics

Let fYi;tg be a (m� 1)-vector of non-stationary stochastic process whose elements are individ-
ually I(1). Moreover, let us assume that the DGP that describes Yi;t is given by the following

triangular representation

�xi;t = "i;t

yi;t = fi (t) + x
0
i;t�i;t + ei;t

where Yi;t =
�
y0i;t; x

0
i;t

�0
is conveniently partitioned into two vectors of dimension yi;t ((m� r)� 1)

and xi;t (r � 1) respectively, i = 1; : : : ; N , t = 1; : : : ; T . The disturbance terms �i;t =
�
"0i;t; e

0
i;t

�0
are assumed to satisfy the strong-mixing conditions in Phillips (1987) and Phillips and Perron

(1988). The (m� r) matrix of r cointegrating vectors is �i;t = (��i;t; Ir)0 where �i;t is the
((m� r)� 1) submatrix of parameters to be estimated and Ir is the identity matrix. At this
stage and in order to set the analysis in a simpli�ed framework, let us assume that f"i;tg and
fei;tg are independent �if we weaken this assumption, then DOLS estimation method should be
applied in order to account for the endogeneity bias.

The general functional form for the deterministic term f (t) is given by

fi (t) = �i + �it+ �iDUi;t + iDT
�
i;t;

where

DUi;t =

(
0 t � Tbi
1 t > Tbi

;DT �i;t =

(
0 t � Tbi

(t� Tbi) t > Tbi
;

with Tbi = �iT , �i 2 (0; 1), denoting the time of the break for the i-th individual, i = 1; : : : ; N .
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Note also that the cointegrating vector is speci�ed as a function of time so that

�i;t =

(
�i;1 t � Tbi
�i;2 t > Tbi

:

Using these elements, we propose up to six di¤erent model speci�cations:

� Model 1. Constant term with a level shift but stable cointegrating vector:

yi;t = �i + �iDUi;t + x
0
i;t�i + ei;t (1)

� Model 2. Time trend with a level shift but stable cointegrating vector:

yi;t = �i + �it+ �iDUi;t + x
0
i;t�i + ei;t (2)

� Model 3. Time trend with both level and slope shifts but stable cointegrating vector:

yi;t = �i + �it+ �iDUi;t + iDT
�
i;t + x

0
i;t�i + ei;t (3)

� Model 4. Constant term with both level and cointegrating vector shift:

yi;t = �i + �iDUi;t + x
0
i;t�i;t + ei;t (4)

� Model 5. Time trend with both level and cointegrating vector shift (the slope does not
shifts):

yi;t = �i + �it+ �iDUi;t + x
0
i;t�i;t + ei;t (5)

� Model 6. The time trend and the cointegrating vector shifts:

yi;t = �i + �it+ �iDUi;t + iDT
�
i;t + x

0
i;t�i;t + ei;t (6)

Using one of these speci�cations we propose to test the null hypothesis of no cointegration

against the alternative hypothesis of cointegration using the ADF test statistic applied to the

residuals of the cointegration regression as in Engle and Granger (1987) and Gregory and Hansen

(1996) but in the panel data framework developed in Pedroni (1999, 2004).

Our proposal can be described in the following steps. First and following Gregory and Hansen

(1996), we proceed to the OLS estimation of one of the models given in (1) to (6) and, then, we

run the following ADF type-regression equation on the estimated residuals (êi;t (�i)):

�êi;t (�i) = �iêi;t�1 (�i) +
kX
j=1

�i;j�êi;t�j (�i) + "i;t: (7)
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Note that the notation that is used refers to the break fraction (�i) parameter, which in most

of cases is unknown. In order to get rid of the break fraction parameter, Gregory and Hansen

(1996) suggest to estimate the models given in (1) to (6) for all possible break dates, obtain

the estimated OLS residuals and compute the corresponding ADF statistic. With the sequence

of ADF statistics at hands, we can estimate the break point for each individual as the date

that minimises the sequence of individual ADF test statistics �either the t-ratio, t�̂i (�i), or

the normalised bias, T �̂i (�i). Gregory and Hansen (1996) derive the limiting distribution of

t�̂i

�
�̂i

�
= inf�i2(0;1) t�i (�i) and T �̂i

�
�̂i

�
= inf�i2(0;1) T �̂i (�i), which are shown not to depend

on the break fraction parameter. Note that the estimation of the break point T̂bi is conducted as

T̂bi = argmin
�i2(0;1)

t�̂i (�i)

T̂bi = argmin
�i2(0;1)

T �̂i (�i) ;

8i = 1; : : : ; N . At this point we could either follow Gregory and Hansen (1996) and test the null
hypothesis for each individual or decide to combine the individual information in a panel data

statistic.

The panel statistics in which we are going to focus the null hypothesis testing are given by

the parametric Z�̂NT
and Zt̂NT

tests in Pedroni (1999, 2004), which can be thought as the panel

data version of the rho-statistic and t-statistic tests in Phillips and Ouliaris (1990). These test

statistics are de�ned by pooling the individual ADF tests, so that they belong to the class of

between dimension test statistics. Speci�cally, they are computed as:

TN�1=2Z�̂NT

�
�̂
�

= TN�1=2
NX
i=1

PT
t=1 êi;t�1

�
�̂i

�
�êi;t

�
�̂i

�
PT

t=1 ê
2
i;t�1

�
�̂i

� = TN�1=2
NX
i=1

T �̂i

�
�̂i

�

N�1=2Zt̂NT

�
�̂
�

= N�1=2
NX
i=1

PT
t=1 êi;t�1

�
�̂i

�
�êi;t

�
�̂i

�
�PT

t=1 ŝ
2
i

�
�̂i

�
ê2i;t�1

�
�̂i

��1=2 = N�1=2
NX
i=1

t�̂i

�
�̂i

�
:

Note that in this framework we allow for a high degree of heterogeneity since the cointegrat-

ing vector, the short run dynamics and the break point estimate might be di¤ering amongst

individuals. The use of the panel data cointegration test aims to increase the power of the sta-

tistical inference when testing the null hypothesis of no cointegration, but some heterogeneity is

preserved conducting the estimation of the parameters individually.

Following Pedroni (1999, 2004), the panel test statistics are shown to converge to standard

Normal distributions once they have been properly standardizes, i.e.

TN�1=2Z�̂NT

�
�̂
�
��1

p
N ) N (0;	1)

N�1=2Zt̂NT

�
�̂
�
��2

p
N ) N (0;	2) ;
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where ) denotes weak convergence. The moments of the limiting distributions, �1;	1;�2 and

	2, are approximated by Monte Carlo simulation for the di¤erent speci�cations and allowing

up to seven stochastic regressors in the cointegrating relationship �i.e. the dimension of the Yi;t
(m� 1)-vector goes from (2� 1) to (8� 1). Since the limit distribution of the tests can provide
a poor approximation in �nite samples, we have approximated the moments of the test statistics

for di¤erent values of the sample size, speci�cally T = f30 , 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 400, 500, 1; 000g. In addition, the �nite sample distributions depend on the procedure
that is applied when selecting the order (k) of the parametric correction in (7), so that the �nite

sample distributions are obtained in two di¤erent ways: (i) assuming the value of k to be �xed,

for which we have speci�ed three values k = 0, k = 2 and k = 5, and (ii) selecting the lag length

using the t-sig criterion in Ng and Perron (1995) with a kmax = 5 as the maximum order of lags.

In all simulations r = 10; 000 replications were done. Table 4 presents the moments of the limit

distributions based on T = 1; 000. As can be seen, the moments of the distribution depends both

on the speci�cation and the number of stochastic regressors.

Reporting the moments of the �nite sample distribution for the di¤erent values of T and

di¤erent procedures for the selection of k will take a lot of space. Instead, in order to summarise

all these results we have estimated response surfaces to model the moments of each test statistic

as a function of T and the number of stochastic regressors p = (m� 1), i.e. Mj = g (Tj ; pj),

j = 1; : : : ; (15 � 7). The general functional form that has been essayed is

g (Tj ; pj) =
2X
l=0

 
�0;l + �1;l

1

Tj
+ �2;l

1

T 2j
+ �3;l

1

T 3j

!
plj :

These functions have been estimated by OLS using the Newey-West robust covariance distur-

bance matrix to assess the individual signi�cance of the regressors �the level of signi�cance is the

10%. Tables 5 to 8 report the estimated coe¢ cients of the response surfaces. A GAUSS code is

available from the authors to compute the statistics and corresponding moments.

4 Common factors in panel cointegration

Previous derivations are valid under the assumption that individuals are cross-section indepen-

dent. However, this requirement is hardly satis�ed in empirical economic applications where

countries or regions depend each other. In order to generalise the framework of the paper we

have extended our approach to account for the presence of common factors as in Bai and Ng
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(2004). In this situation the model is given in structural form as:

yi;t = fi (t) + x
0
i;t�i;t + ui;t (8)

ui;t = Ft�i + ei;t; (9)

(I � L)Ft = C (L)wt (10)

(1� �iL) ei;t = Hi (L) "i;t; (11)

t = 1; : : : ; T , i = 1; : : : ; N , where C (L) =
P1

j=0 CjL
j , and fi (t) denotes the deterministic

component, Ft denotes a (1� r)-vector containing the common factors, with �i the vector of
loadings. Despite the operator (1� L) in equation (10), Ft does not have to be I(1). In fact, Ft
can be I(0), I(1), or a combination of both, depending on the rank of C(1). If C(1) = 0, then Ft
is I(0). If C(1) is of full rank, then each component of Ft is I(1). If C(1) 6= 0, but not full rank,
then some components of Ft are I(1) and some are I(0). Our analysis is based on the same set

of assumptions in Bai and Ng (2004). Let M <1 be a generic positive number, not depending

on T and N :

Assumption A: (i) for non-random �i, k�ik � M ; for random �i, E k�ik4 � M , (ii)
1
N

PN
i=1 �i�

0
i
p! ��, a (l � l) positive matrix.

Assumption B: (i) wt � iid (0;�w), E kwtk4 �M , and (ii) V ar (�F 0t ) =
P1

j=0 Cj�wC
0
j > 0,

(iii)
P1

j=0 j kCjk < M ; and (iv) C (1) has rank l1, 0 � l1 � l.
Assumption C: (i) for each i, "i;t � iid (0;�"), E j"i;tj8 � M ,

P1
j=0 j jHi;j j < M , !2i =

Hi (1)
2
�2i > 0; (ii) E ("i;t"j;t) = � i;j with

PN
i=1 j� i;j j �M for all j;

(iii) E
��� 1p

N

PN
i=1 ["i;s"i;t � E ("i;s"i;t)]

���4 �M , for every (t; s).
Assumption D: The errors "i;t, wt, and the loadings �i are three mutually independent groups.

Assumption E: E kF0k �M , and for every i = 1; : : : ; N , E jei;0j �M .

Assumption A ensures that the factor loadings are identi�able. Assumption B establishes the

conditions on the short and long-run variance of �Ft �i.e. positive de�nite short-run variance

and long-run variance that can be of reduced rank in order to accommodate linear combinations

of I (1) factors to be stationary. Assumption C(i) allows for some weak serial correlation in

(1� �iL) ei;t, whereas C(ii) and C(iii) allow for weak cross-section correlation. Finally, Assump-
tion E de�nes the initial conditions.

The estimation of the common factors are done as in Bai and Ng (2004). If we compute the

�rst di¤erence:

�yi;t = �fi (t) + �x
0
i;t�i;t +�Ft�i +�ei;t;

and take the orthogonal projections:

Mi�yi;t = Mi�Ft�i +Mi�ei;t

= ft�i + zi;t; (12)
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with Mi = I � �xdi
�
�xd0i �x

d
i

��1
�xd0i the idempotent matrix, and ft = Mi�Ft and zi;t =

Mi�ei;t. The superscript d in �xdi indicates that there are deterministic elements. The esti-

mation of the common factors and factor loadings can be done as in Bai and Ng (2004) using

principal components. Speci�cally, the estimated principal component of f = (f2; f3; : : : ; fT ),

denoted as ~f , is
p
T � 1 times the r eigenvectors corresponding to the �rst r largest eigen-

values of the (T � 1) � (T � 1) matrix y�i y�0i , where y�i;t = Mi�yi;t. Under the normalization
~f ~f 0= (T � 1) = Ir, the estimated loading matrix is ~� = ~f 0y�i = (T � 1). Therefore, the estimated
residuals are de�ned as

~zi;t = y
�
i;t � ~ft~�i: (13)

We can recover the idiosyncratic disturbance terms through cumulation, i.e. ~ei;t =
Pt

j=2 ~zi;j ,

and test the unit root hypothesis (�i;0 = 0) using the ADF regression equation

�~ei;t

�
�̂i

�
= �i;0~ei;t�1

�
�̂i

�
+

kX
j=1

�i;j�~ei;t�j

�
�̂i

�
+ "i;t:

When r = 1 we can use the ADF type equation to analyse the order of integration of Ft as well.

However, we should proceed in two steps. In the �rst step we regress ~Ft on the deterministic

speci�cation and the stochastic regressors. In the second step we estimate the ADF regression

equation using the detrended common factor
�
~F dt

�
, i.e. the residuals of the �rst step:

� ~F dt = �0
~F dt�1 +

kX
j=1

�j� ~F
d
t�j + ut;

and test if �0 = 0.

Finally, if r > 1 we should use one of the two statistics proposed in Bai and Ng (2004)

to �x the number of common stochastic trends (q). As before, let ~F dt denote the detrended

common factors. Start with q = r and proceed in three stages �we reproduce these steps here

for completeness:

1. Let ~�? be the q eigenvectors associated with the q largest eigenvalues of T
�2PT

t=2
~F dt ~F

d0
t .

2. Let ~Y dt = ~�? ~F
d
t , from which we can de�ne two statistics:

(a) Let K (j) = 1� j= (J + 1), j = 0; 1; 2; : : : ; J :

i. Let ~�
d

t be the residuals from estimating a �rst-order VAR in ~Y dt , and let

~�d1 =
JX
j=1

K (j)

 
T�1

TX
t=2

~�
d

t
~�
d0
t

!
:

ii. Let ~vdc (q) =
1
2

hPT
t=2

�
~Y dt ~Y

d0
t�1 +

~Y dt�1
~Y d0t

�
� T

�
~�d1 +

~�d01

�i�
T�1

PT
t=2

~Y dt�1
~Y d0t�1

��1
:

10



iii. De�ne MQdc (q) = T
�
~vdc (q)� 1

�
:

(b) For p �xed that does not depend on N and T :

i. Estimate a VAR of order p in �~Y dt to obtain ~� (L) = Iq � ~�1L � : : : � ~�pL
p.

Filter ~Y dt by ~� (L) to get ~y
d
t = ~� (L) ~Y dt .

ii. Let ~vdf (q) be the smallest eigenvalue of

�df =
1

2

"
TX
t=2

�
~Y dt ~Y

d0
t�1 + ~Y dt�1 ~Y

d0
t

�# 
T�1

TX
t=2

~Y dt�1 ~Y
d0
t�1

!�1
:

iii. De�ne the statistic MQdf (q) = T
h
~vdf (q)� 1

i
:

3. If H0 : r1 = q is rejected, set q = q � 1 and return to the �rst step. Otherwise, ~r1 = q and
stop.

The following Theorem o¤ers the main results concerning these statistics.

Theorem 1 Let fyi;tg the stochastic process with DGP given by (8) to (11). The following

results hold as N;T ! 1. Let k be the order of autoregression chosen such that k ! 1 and

k3=min [N;T ]! 0.

(1) Under the null hypothesis that �i = 1 in (11),

(1.a) for the speci�cation that does not include time trend with or without level shift(s):

ADF c~e (i))
1
2

�
W (1)

2 � 1
�

�R 1
0
W (r)

2
dr
�1=2 ;

(1.b) for those speci�cations including a time trend with or without level shift(s):

ADF �~e (i)) �1
2

�Z 1

0

V (r)
2
dr

��1=2
;

where V (r) =W (r)� rW (1).

(1.c) for those speci�cations including a time trend with slope shift(s):

ADF ~e (i)) �1
2

0@ l+1X
j=1

(�j � �j�1)2
Z 1

0

V (bj)
2
dr

1A�1=2

;

for j = 1; : : : ; l structural breaks, where V (bj) =W (bj)�bjW (1), with bj = (r � �j�1) = (�j � �j�1)
so that 0 < bj < 1, and T bj�1 < t � T bj with �j = T bj =T , �0 = 0 and �l+1 = 1.

11



(2) When r = 1, under the null hypothesis that Ft has a unit root and no slope shift(s)

ADF d~F )
R 1
0
W d
w (r) dW

d
w (r)�R 1

0
W d
w (r)

2
dr
�1=2 ;

where W d
w (r) denotes the detrended Brownian motion, while when we allow for slope shift(s)

ADF d~F (�))
R 1
0
W d
w (r; �) dW

d
w (r; �)�R 1

0
W d
w (r; �)

2
dr
�1=2 ;

where W d
w (r; �) is the detrended Brownian motion and � denotes either the break fraction para-

meter �if there is only one slope shift�or the break fraction vector �if there are more than one

slope shift.

(3) When r > 1, let Wq be a q-vector of standard Brownian motion and W d
q the detrended coun-

terpart. Let vd� (q) be the smallest eigenvalues of the statistic computed for a model that does not

include slope shift(s)

�d� =
1

2

�
W d
q (1)W

d
q (1)

0 � Ip
� �Z 1

0

W d
q (r)W

d
q (r)

0
dr

��1
;

and let vd� (q; �) be the smallest eigenvalues of the statistic computed for the model that includes

slope shift(s)

�d� (�) =
1

2

�
W d
q (1; �)W

d
q (1; �)

0 � Ip
� �Z 1

0

W d
q (r; �)W

d
q (r; �)

0
dr

��1
;

(3.1) Let J be the truncation lag of the Bartlett kernel, chosen such that J ! 1 and

J=min
hp
N;
p
T
i
! 0. Then, under the null hypothesis that Ft has q stochastic trends, T

�
~vdc (q)� 1

� d!

vd� (q) and T
�
~vdc (q; �)� 1

� d! vd� (q; �) :

(3.2) Under the null hypothesis that Ft has q stochastic trends with a �nite VAR(�p) representation

and a VAR(p) is estimated with p � �p, T
h
~vdf (q)� 1

i
d! vd� (q) and T

h
~vdf (q; �)� 1

i
d! vd� (q; �) :

The proof of the Theorem is outlined in the Appendix. Some remarks are in order. First,

note that the de�nition of the common factors framework implies that the matrix of projections

Mi that is used above cannot depend on i, which means that all elements that are de�ned in

�xdi should be the same across i. There are two di¤erent kind of elements in �x
d
i : (i) the

deterministic regressors and (ii) the stochastic regressors. Regarding the latter, we have shown

in the Appendix that the limiting distribution of the statistics do not depend on the presence

of stochastic regressors, so that we can ignore the e¤ect of these elements when de�ning Mi.

Unfortunately, this is not true for the deterministic regressors. Thus, to warrant that Mi does
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not (asymptotically) depend on i we have to assume common break dates, i.e. we assume that

the break points are the same for all individuals. This restriction can be seen as a limitation of

our analysis, but in fact it is due to the de�nition of the common factors framework. Thus, (12)

speci�es a common factor structure for all individuals, so that ft cannot depend on i. If we look at

the de�nition of ft =Mi�Ft we can see that the speci�cation of heterogeneous structural breaks

implies that the idempotent matrix Mi depends on i. The only way to overcome this situation

is to impose Mi = M 8i so that the structural breaks are the same for all individuals. That is
the reason why in Theorem 1 we do not have included any subscript on � for the individuals.

Second, the limiting distribution of the ADF statistic for the idiosyncratic disturbance term

does not depend on the presence of stochastic regressors. Moreover, the presence of level shifts do

not a¤ect the limiting distribution of the ADF statistic that is computed using the idiosyncratic

disturbance term.

Finally, the distribution of the statistics that focus on the common factors depend on some

elements that de�ne the deterministic component although, surprisingly, they do not depend on

the number of stochastic regressors. Speci�cally, the presence of level shifts do not a¤ect the

limiting distribution of the ADF and �d� statistics, although this is not true when there are slope

shifts. For the latter, the test statistics depends on the number and location of the structural

breaks. Moreover, in this case we have to assume that these structural breaks are common to

all individuals. The limiting distribution for the ADF statistic when there is one structural

break can be found in Perron (1989) for the speci�cation denoted as Model C. For the �d� (�) we

have simulated asymptotic critical values that depend both on the number of stochastic common

trends and on the break fraction. Note that the critical values reported in Table 9 correspond to

the case of only one structural breaks, though our approach can be easily extended to multiple

slope shifts.

The individual ADF statistic for the idiosyncratic disturbance terms can be pooled to de�ne

a panel data cointegration test. Thus, following the steps given in previous section we can de�ne

N�1=2Ze
t̂NT

�
�̂
�
��e2

p
N ) N (0;	e2) ;

where the superscript e denotes the idiosyncratic disturbance term. As for the previous statistics,

we have approximated the moments �e2 and 	
e
2 by simulation. These moments depend on the

deterministic speci�cation that is used and, except for the case of slope changes, they are the

same as the ones for the statistics in Bai and Ng (2004) �note that these authors prefer to

combine individual p-values instead of using these moments.

5 Monte Carlo simulation

We have analysed the �nite sample performance of the statistics that have been proposed in the

paper conducting a simulation experiment. The empirical size of the tests is studied regressing
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two independent random walks, which have been generated as the cumulated sum of iid N (0; 1)

processes. The sample size has been set equal to T = f50; 100; 250g and the number of individuals
at N = f20; 40g. The results reported in Table 10 are obtained from r = 5; 000 replications,

assuming that the break point is unknown and using the estimated response surfaces of the

previous section. As can be seen, the empirical size of both the normalised bias and the pseudo

t-ratio statistics is close to the nominal size irrespective of T and N .

The empirical power of the statistics is assessed using the DGP given by:

yi;t = �i + �iDUi;t + �it+ iDT
�
i;t + x

0
i;t�i;t + zi;t

zi;t = �izi;t�1 + vi;t;

where vi;t � iid N (0; 1) 8i , i = 1; : : : ; N . The speci�cation of the values of the parameters

depends on the model under consideration. In general, the constant and, when required, the

slope of the trend are set equal to �i = 1 and �i = 0:3, respectively. When there is a change in

the level the magnitude is set equal to �i = 3, while for the slope shift we consider i = 0:5. The

change in the cointegrating vector is given by �i;t = �i;1 = 1 for t � Tbi and �i;t = �i;1 = 3 for
t > Tbi, for a break point located at �i = 0:5, 8i , i = 1; : : : ; N �the same results are obtained

when �i = 0:25 and �i = 0:75. The autoregressive coe¢ cient is set at �i = 0:5. The computation

of the statistics controls the autocorrelation in the disturbance term including up to kmax = 5

lags using the t-sig criterion to select the order of the autoregressive correction. Results reported

in Table 11 indicates that the empirical power of both statistics equals one in all situations. The

results contrast with the ones in Table 3 where it has been shown that structural breaks, when

not accounted for, reduces the power of the statistics.

Let us now deal with the situation with common factors. The DGP is given by a bivariate

system:

yi;t = fi (t) + x
0
i;t�i;t + ui;t

ui;t = Ft�i + ei;t

Ft = �Ft�1 + �Fwt

ei;t = �iei;t�1 + "i;t

�xi;t = vi;t;

where (wt; "i;t; vi;t)
0 follow a mutually iid standard multivariate Normal distribution for 8i; j

i 6= j and 8t; s t 6= s. In this paper we consider two di¤erent situations depending on the number
of common factors, i.e. r = f1; 3g, and specify three values for the autoregressive parameters
� = f0:8; 0:9; 1g and �i = f0:8; 0:9; 1g 8i. Note that these values allows to analyse both the
empirical size and power of the statistics. The importance of the common factors is controlled

through the speci�cation of �2F = f0:5; 1; 10g. The number of common factors is estimated using
the panel BIC information criterion in Bai and Ng (2002) with rmax = 6 as the maximum number
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of factors. We consider N = 40 individuals and T = f50; 100; 250g time observations.
Table 12 reports the results for the constant and time trend cases without structural break. As

can be seen, the empirical size of either the ADF pooled idiosyncratic t-ratio statistic
�
Ze
t̂NT

�
and

the ADF statistic of the common factor is close to the nominal size, which is set at the 5% level of

signi�cance. As expected the power of the tests increases as the autoregressive parameter moves

away from unity. Moreover, the power of the Ze
t̂NT

test is higher or equal to the power shown

by the ADF d
F̂
test. Note that these conclusions are obtained irrespective of the deterministic

speci�cation.

Tables 13 and 14 show that these results do not change when specifying three common

factors for the constant case. Thus, the Ze
t̂NT

test shows a correct empirical size and good power.

Regarding the MQdc (q) test, it shows correct empirical size, while as expected the test has low

power for large values of the autoregressive parameter �the bandwidth for the Bartlett spectral

window is set as J = 4ceil [min [N;T ] =100]1=4. Simulations available upon request indicate that

similar conclusions are reached for the time trend case, and when using the parametric approach

for the MQ test.

Similar results are obtained when we introduce one structural in the model. At this stage of

the analysis we assume that the break point is known and located at �i = f0:25; 0:5; 0:75g 8i.
Table 15 reports results for the empirical size and power for the model that allows for one level

shift with �i = 0:5 and one common factor. It should be mentioned that there are no variations

for neither the model that includes a slope shift nor for the other values of �i �these results

are available upon request. On the one hand, the panel data unit root test on the idiosyncratic

disturbance terms show good properties in terms of empirical size and power. On the other hand,

the ADF statistic for the common factor shows right size although, as expected, it has low power

when the autoregressive parameter is close to unity and the sample size is small.

6 Empirical illustration

The correlation between investment and savings as a ratio of the GDP has devoted huge amount

of literature aim reconcile the observation of signi�cant correlation with the idea of capital

mobility. The fact that the domestic investment has to be �nanced by domestic saving goes

against the conventional wisdom that in a world of perfect capital mobility, where capital �ows

among countries should act to equalise the yields to investors, such correlations should not be

observed. Thus, (high) capital mobility implies that investment does not need to be correlated

with saving. Therefore, the idea of capital mobility and the correlation between investment and

saving rates is known as Feldstein-Horioka Puzzle.

There have been di¤erent attempts in the literature to assess if such correlation is signi�cant.

Some analyses have followed a cross-sectional approach using a sample of countries for which

average values of investment and saving ratios in a given time period are analysed. However,

most of the analyses have applied time series techniques to assess the extent of the correlation.
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In this regard, since both investment and saving ratios are found to be non-stationary processes

the presence of correlation requires that cointegration has to be met. Cointegration has been

tested from either country-by-country framework or panel data framework.

We contribute to this literature through the analysis of the Feldstein-Horioka Puzzle allowing

for one structural break. The selection of this topic for our analysis is not only due to the

great attention that has received in recent times, but because there is empirical and theoretical

evidence that this correlation might change along time. For instance, Coakley, Kulasi and Smith

(1998) note that the coe¢ cient on saving has shown some tendency to decline over recent years

for developed countries. Jansen (2000) �nds that long-run correlation decreases smoothly over

time, which is consistent with the notion of increased international capital mobility. Banerjee and

Zanghieri (2003) analyse fourteen European countries and reporting that long run association

drops quickly starting from the mid-80, when most European countries fully liberalised their

external accounts. Finally, Westerlund (2004) illustrates the LM cointegration test statistic with

one structural break using the Feldstein-Horioka puzzle concluding that the null hypothesis of

cointegration cannot be rejected once the presence of structural breaks is taken into account.

In this section we are going to investigate the Feldstein-Horioka puzzle through the application

of Pedroni cointegration statistics and the modi�cations that have been suggested in the paper.

To the best of our knowledge, this is the �rst time that the null of no cointegration is tested

including one structural break in the panel data set. The data set is the one in Banerjee and

Zanghieri (2003) and is taken from the European Commision�s Annual Macroeocomic Database

of the Directorate General for Economic and Financial A¤airs (AMECO), that combines data

obtained from national sources as well as from the IMF and OECD. The data measured at an

annual frequency covers from 1960 to 2002 for fourteen countries: Austria, Belgium, Denmark,

Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden and

United Kingdom.

Figure 1 presents pictures of the investment and saving shares for four countries. As can be

seen, there is evidence that the relationship between investment and saving might has changed

the pattern along the time period. Table 18 reports the results on the Pedroni (2004) statistic

specifying a constant as the deterministic component. All computations have been carried out

using GAUSS. The order of the autoregressive correction that is required in (7) is selected with

the t-sig criterion in Ng and Perron (1995) with kmax = 7 lags for the maximum order. Di¤erent

conclusions are reached depending on the statistic. On the one hand, when using the Zt̂NT

�
�̂
�

statistic the null hypothesis of no cointegration cannot be rejected neither at the 5% not at

the 10% level of signi�cance. On the other hand, the Z�̂NT

�
�̂
�
statistic rejects the null at the

5% level. However, these conclusions might not be valid if there is some dependence amongst

individuals. The computation of Pedroni statistics assumes cross-section independence across

i, an assumption that is di¢ cult to be hold in empirical applications. Banerjee, Marcellino

and Osbat (2004, 2005) show that one of the crucial assumption underlying all the tests of

panel cointegration, namely the absence of cointegration across the units of the sample is likely
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to be violated in many macroeconomic time series. In fact, Banerjee and Zanghieri (2003)

report that there is cross-section cointegration between the individuals of the panel sets that

we are considering here. In order to take into account cross-section dependence when carrying

out the cointegration analysis, we have decided to compute the bootstrap distribution of the

statistics. Some cautions about the method that is used to bootstrap cointegration relationships

are required, since not all available procedures lead to consistent estimates. In this regard,

we have followed Phillips (2001), Park (2002), and Chang, Park and Song (2002), and we have

decided to use sieve bootstrap. Our proposal is a modi�ed version of the sieve bootstrap described

in the papers mentioned above. Speci�cally, it consist of the following steps:

� Step 1: Fit one of the regressions in (1) to (6) by OLS to obtain êi;t
�
�̂i

�
, and de�ne

wi;t =
�
ûi;t

�
�̂i

�
; v0i;t

�0
where ûi;t

�
�̂i

�
= �êi;t

�
�̂i

�
and vi;t = �y1i;t.

� Step 2: Apply the sieve estimation method to the following VAR(q):

wi;t = �1wi;t�1 + � � �+�qwi;t�q + "i;t;

where the order of the VAR(q) is approximated using the BIC criterion with the maximum

order given by qmax = T 1=2. Obtain "�i;t by resampling the centered �tted residuals ~"i;t �
1
T

PT
t=1 ~"i;t, and construct the bootstrap samples w

�
i;t recursively using

w�i;t = �1w
�
i;t�1 + � � �+�qw�i;t�q + "�i;t;

given the initial values w�i;t = wi;t for t = 0; : : : ; 1� q.

� Step 3: De�ne w�i;t =
�
u�i;t

�
�̂i

�
; v�0i;t

�0
analogously as wi;t =

�
ui;t

�
�̂i

�
; v0i;t

�0
. Obtain

the bootstrap samples e�i;t
�
�̂i

�
and y1�i;t by integrating u

�
i;t

�
�̂i

�
and v�i;t respectively, i.e.

e�i;t

�
�̂i

�
= e�i;0

�
�̂i

�
+
Pt

j=1 u
�
i;j

�
�̂i

�
and y1�i;t = y

1�
i;0+

Pt
j=1 v

�
i;t, with e

�
i;0

�
�̂i

�
= ê�i;0

�
�̂i

�
and y1�i;0 = y

1
i;0. Then, generate the bootstrap samples for y

2�
i;t from

y2�i;t = fi (t) + y
1�
i;t�i;t + e

�
i;t

�
�̂i

�
; (14)

where the de�nition of fi (t) and �i;t depends on the model under consideration.

� Step 4: Estimate (14) by OLS for each individual assuming unknown break point position
and compute the panel cointegration statistics. In this paper we have considered 2,000

bootstrap replications.

Now, using the bootstrap critical values the null hypothesis of no cointegration cannot be

rejected by any of the statistics. Therefore, we should conclude that there is no correlation

between investment and saving shares, which has been interpreted in the literature as evidence

of capital mobility. However, pictures given above indicate that this relationship might has
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experienced the e¤ect of structural changes. If this is the case, we have shown that the power

of Pedroni panel cointegration statistics can be reduced if the structural breaks do not occur

at the beginning of the time period. In order to investigate the sensitivity of the cointegration

analysis to the presence of structural breaks we have estimated the model that includes a level

shift (Model 1), and the model that includes both level and cointegrating vector shift (Model 4).

Table 18 presents the values of the statistics for these models. When Model 1 is estimated the

null hypothesis of no cointegration is rejected by both statistics using the Normal distribution.

This conclusion is robust to the presence of cross-section dependence, since the bootstrap critical

values lead to reject the null hypothesis of no cointegration at least at the 10% level of signi�cance.

The situation is not so clear when estimating Model 4. Now the null hypothesis is still rejected

by both statistics when assuming cross-section independence, but this conclusion does not hold

when comparing the Z�̂NT

�
�̂
�
statistic with its bootstrap distribution.

7 Conclusions

This paper has shown that inference based on parametric Pedroni panel cointegration test sta-

tistics can be a¤ected by the presence of structural breaks. Monte Carlo evidence indicates

that in some situations the power of the tests drops as the magnitude of the structural break

increases. Speci�cally, when the structural break a¤ects either the slope of the time trend or

the cointegrating vector the power approaches zero as T , N and the magnitude of the break

increases. Notwithstanding, the power of the standard parametric Pedroni panel cointegration

statistics is not so much a¤ected when the structural break only shifts the level �we require a

large magnitude of structural breaks located at the end of the time period to reduce the power

of the statistics.

These features have motivated our proposal, and have led us to design statistical procedures

to account for the presence of structural breaks when testing for cointegration. Six di¤erent

speci�cations have been introduced depending on the e¤ect of structural breaks on the long-run

relationship. Finite sample and asymptotic moments have been computed that allow de�ning

panel cointegration statistics for the speci�cations considered.

The cross-section dependence is addressed in the paper in two di¤erent ways. First, we

assume an approximate common factor structure to model the cross-section dependence. We

derive the limiting distributions of statistics in two situations of interest, i.e. (i) for the case

of no structural break, and (ii) when there are level and slope shifts. The performance of the

approach is investigated through Monte Carlo simulations, from which we conclude that the

statistics show good performance once structural breaks are accounted for. The paper illustrates

the application of the statistics analysing the Feldstein-Horioka puzzle. Since the assumption of

cross-section independence is hardly satis�ed in practice, we have approximated the empirical

distribution of the statistics using sieve bootstrap. This de�nes the second approach to cross-

section dependence matter. The main conclusion is that after structural breaks are considered
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we �nd evidence that point to cointegration between investment and saving shares.
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A Mathematical Appendix

A.1 Pedroni Test Statistic with constant

For sake of simplicity let us �rst assume that there is no structural breaks a¤ecting the model

and there is no deterministic elements in the model �note that the presence of a constant term

does not change the results since it disappears when taking �rst di¤erences. Let us assume the

model given by (8) and (9). Alternatively, the model can be expressed as:

yi;t = x
0
i;t�i + Ft�i + ei;t:

As can be seen, the model assumes that residuals from the static regression follows a factor

structure as de�ned in Bai and Ng (2004). Note that if we introduce (12) in (13) we obtain

~zi;t = zi;t + ft�i � ~ft~�i (15)

= zi;t � vtH�1�i � ~ftdi;

where vt = ~ft � ftH and di = ~�i � H�10�i. The computation of the partial sum processes of

(15) gives:

T�1=2
tX

j=2

~zi;j = T
�1=2

tX
j=2

zi;j � T�1=2
tX

j=2

vjH
�1�i � T�1=2

tX
j=2

~fjdi: (16)

Let us analyse each element of (16) separately. The left-hand side of (16) is equal to

T�1=2
tX

j=2

~zi;j = T�1=2
tX

j=2

Mi�~ei;j (17)

= T�1=2
tX

j=2

�~ei;j � T�1=2
tX

j=2

[Pi�~ei]j ;

where [Pi�~ei]j denotes the j-th element of the matrix Pi�~ei, and Pi = IT�1 �Mi. The �rst

element on the right of (17) is equal to

T�1=2
tX

j=2

�~ei;j = T
�1=2~ei;t � T�1=2~ei;1 = T�1=2~ei;t +Op (1) ;

so that by the invariance principle

T�1=2
tX

j=2

�~ei;j ) �W (r) :
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The second element on the right hand of (17) is

T�1=2
tX

j=2

[Pi�~ei]j = T
�1=2 (xi;t � xi;1)0 (�x0i�xi)

�1
�x0i�~ei:

Note that (�x0i�xi)
�1
�x0i�~ei =

�
T�1�x0i�xi

��1 �
T�1�x0i�~ei

�
= op (1), since

�
T�1�x0i�xi

�
!p

Q�xi�xi , the variance and covariance matrix of �x
0
i�xi, and T

�1�x0i�~ei ! 0 since these ele-

ments are orthogonal by de�nition. On the other hand, T�1=2xi;t ) 

1=2
22;iWk (r) and T�1=2xi;1 !

0 by assumption. These derivations lead us to

T�1=2
tX

j=2

~zi;j = T
�1=2~ei;t + op (1) ;

since T�1=2xi;t (�x0i�xi)
�1
�x0i�~ei = op (1). The same result can be achieved for T

�1=2Pt
j=2 zi;j ,

i.e.

T�1=2
tX

j=2

zi;j = T
�1=2ei;t + op (1) :

This indicates that the presence of stochastic regressors does not have any e¤ect on the partial

sum processes. Regarding the term involving fvtg we see from Eq. (A.3) in Bai and Ng (2004)

that

T�1=2
tX

j=2

vj = Op
�
C�1NT

�
;

where CNT = min
�
N�1=2; T�1=2

	
. Moreover and as shown in Bai and Ng (2004), the term

di = Op
�
C�1NT

�
and T�1=2

Pt
j=2

~fj = Op (1), so that

T�1=2
tX

j=2

~zi;j = T
�1=2

tX
j=2

zi;j +Op
�
C�1NT

�
:

From all these results it follows that

DF c~e (i))
1
2

�
W (r)

2 � 1
�

�R 1
0
W (r)

2
dr
�1=2 ;

that is, the limiting distribution is the same derived in Bai and Ng (2004) for the constant case

�see Bai and Ng (2004) for the proof. The same result is found for the ADF test. This implies

that the presence of stochastic regressors does not a¤ect the limiting distribution of the statistic.

Let us now deal with the unit root hypothesis testing when there is r = 1 common factor. The

�rst di¤erence of the model de�nes an idempotent matrixMi that depends on the individual. At

�rst sight this goes against the de�nition of common factor since we assume that this element
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is common to all individuals and, hence, it cannot depend on i. Notwithstanding, it is shown

below that the elements that depend on i vanish asymptotically. Thus, note that

tX
j=2

~fj =
tX

j=2

Mi� ~Ft

= ~Ft � (xi;t � xi;1)0 (�x0i�xi)
�1
�x0i� ~F ; (18)

since we de�ne ~F1 = 0. Note that the �rst element of (18) is

~Ft = H (Ft � F1) + Vt;

since � ~Ft = H �Ft + vt and Vt =
Pt

j=2 vj . The detrended estimated factor will remove F1:

~F dt = H F dt + V
d
t ;

which it can be shown that

T�1=2 ~F dt = H T�1=2F dt +Op
�
C�1NT

�
;

since T�1=2V dt = Op
�
C�1NT

�
�see Bai and Ng (2004), Lemma B.2. The second term in (18) is

T�1=2 (xi;t � xi;1)0 (�x0i�xi)
�1
�x0i�

~F = op (1), since T�1�x0i�xi converges to the matrix of

covariance of �xi and T�1�x0i� ~F = op (1) by assumption. Since

T�1=2 ~F dt ) H W d
w (r)

T�2
TX
t=2

~F dt�1 ~F
d0
t�1 ) H2 �2w

Z 1

0

W d
w (r)

2
dr

T�1
TX
t=2

~F dt�1�
~Ft ) H2 �2w

Z 1

0

W d
w (r) dW (r) ;

the DF statistic converges to

DF d~F =
T�1

PT
t=2

~F dt�1�
~Ft�

~�2uT
�2PT

t=2

�
~F dt�1

�2�1=2 (19)

)
R 1
0
W d
w (r) dW (r)�R 1

0
W d
w (r)

2
dr
�1=2 ;

where W d
w (r) denotes the detrended Brownian motion and ~�

2
w

p! H2 �2w. The ADF statistic has

the same limiting distribution provided that the order of the autoregressive correction is selected

such that k !1 and k3=min [N;T ]! 0.
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The limiting distribution of the test statistic that is used when there are more than one

common factor (r > 1) is the same as the one derived in Bai and Ng (2004) for the constant case.

We address the reader to their paper for the proof of this part of the Theorem.

A.2 Pedroni Test Statistic with constant term and level shifts

The speci�cation that includes level shifts does not a¤ect the limiting distribution of the statistic,

that is, we obtain the same limiting distribution derived above for the constant case. Let us

consider the simplest situation in which there is only one level shift, although the derivations

can be extended to multiple level shifts. The deterministic function is given by

fi (t) = �i + �iDUi;t;

which implies that �fi (t) = �iD
�
T ib
�
t
and �xdi;t =

�
D
�
T ib
�
t
;�x0i;t

�
. Note that

T�1�xd0i �x
d
i =

"
T�1 T�1�x0

i;T ib+1

T�1�xi;T ib+1 T�1�x0i�xi

#
;

where in the limit all elements but T�1�x0i�xi converges to zero. On the other hand, we

can distinguish two elements of T�1�xd0i �~ei. The �rst element is given by T
�1D

�
T ib
�0
�~ei =

T�1=2
�
T�1=2�~ei;T ib+1

�
, where T�1=2�~ei;T ib+1 ) �dW (�i). The second set of elements is given

by T�1�x0i�~ei that converges to zero since we have assumed independency. Regarding the

partial sum process of �xdi;t

T�1=2
tX

j=2

�xdi;j =
h
T�1=2DUi;t T�1=2 (xi;t � xi;1)0

i
;

The extra rescaling factor T�1=2 that is not used when obtaining the limit of T�1D
�
T ib
�0
�~ei

implies that T�1=2
Pt

j=2�x
d
i;j

�
�xd0i �x

d
i

��1
�xd0i �~ei = op (1), from which is evident that the

limit distribution of the statistic ADF c~e (i) is not a¤ected by the presence of level shifts, so

that ADF c~e (i) converges to the same limiting distribution as in the constant case without level

shifts provided that the order of the autoregressive correction is selected such that k ! 1 and

k3=min [N;T ]! 0.

Regarding the situation in which there is only one common factor, r = 1, and we pro-

ceed to test the unit root hypothesis, we only have to analyse the order of magnitude of

T�1=2
Pt

j=2

h
Pi� ~F

i
j
, where Pi = IT�1 �Mi = �x

d
i

�
�xd0i �x

d
i

��1
�xd0i �

~F . As for the idiosyn-

cratic disturbance term analysis, T�1�xd0i � ~F involves two di¤erent elements. First, T
�1D

�
T ib
�0
� ~F =

T�1� ~FTb+1 = Op
�
T�1=2

�
. Second, T�1�x0i� ~F = op (1) by assumption. Therefore, using these

elements and the results derived above we can see that T�1=2
Pt

j=2

h
Pi� ~F

i
j
= op (1), so that

both the presence of level shifts and stochastic regressors does not a¤ect the limiting distribution
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of the ADF d~F statistic, which is the same as the one derived for the constant case without level

shifts.

This feature is also found for the statistic that is used when r > 1, which has the same

limiting distribution as for the constant case in Bai and Ng (2004).

A.3 Pedroni Test Statistic with time trend

The generalisation that includes a time trend can be carried out as well. In this case the model

(8) is replaced by

yi;t = �i + �it+ x
0
i;t�i + ui;t:

Note that as before we are not dealing with the structural break case since we are de�ning the

benchmark limiting distributions. Contrary to previous speci�cation, taking �rst di¤erences does

not remove the deterministic elements, since now the trend becomes a constant. This is a relevant

feature since the limiting distribution of the ADF-type statistic varies. However, the asymptotic

distribution of the statistic is the same as the one derived in Bai and Ng (2004) for the trend

case. The proof follows similar steps above. Now the �rst di¤erence of regressors de�nes the

following idempotent matrix

Mi = IT�1 ��xdi
�
�xd0i �x

d
i

��1
�xd0i ;

where the �xdi matrix is de�ned by the row vectors
�
1;�x0i;t

�0
. Note that as before the �rst

element of (17) converges to

T�1=2
tX

j=2

�~ei;j ) �W (r) :

The limiting expression of the second element in (17) has to be derived in several steps. First, note

that T�1�xd0i �x
d
i converges to variance and covariance matrix of �x

d
i , so that all these elements

are Op (1). The �rst element of the vector T�1�xd0i �~ei is given by T
�1=2

�
T�1=2

PT
t=1�~ei;t

�
=

T�1=2
�
T�1=2 (~ei;T � ~ei;1)

�
, where T�1=2 (~ei;T � ~ei;1) ) �W (1) since T�1=2~ei;1 ! 0. Note that

the extra rescaling term T�1=2 would be used below. The rest of the elements in T�1�xd0i �~ei in-

volve cross-products among the �rst di¤erence of the stochastic regressors and�~ei that converges

to zero since we have assumed independency. Therefore,

�
�xd0i �x

d
i

��1
�xd0i �~ei =

"
E T�1=2

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)�

�D�1CE
�
T�1=2

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)

#

where E =
�
A�BD�1C

��1
and A = 1; B = T�1�0�xi; C = B0 andD = T�1�x0i�xi denote the

elements of the partitioned matrix T�1�xd0i �x
d
i , with � = (1; : : : ; 1)

0. The partial sum process
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of �xdi;t is

T�1=2
tX

j=2

�xdi;j =
h
T�1=2t T�1=2 (xi;t � xi;1)0

i
;

so that

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

t

T
E
�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1) ;

since T�1 (xi;t � xi;1)0 = op (1). Moreover, the matrix E can be expressed as

�
A�BD�1C

��1
= A�1 +A�1B

�
D � CA�1B

��1
CA�1

= 1 +B (D �B0B)�1B0:

Note that B = T�1�0�xi !p 0 so that
�
A�BD�1C

��1
= 1 + op (1). Therefore,

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

t

T

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)

) r �W (1) :

From Bai and Ng (2004), the terms T�1=2
Pt

j=2 vj

 = Op
�
C�1NT

�
, kdik = Op

�
C�1NT

�
and

T�1=2
Pt

j=2
~fj

 = Op (1). These derivations lead us to
T�1=2

tX
j=2

~zi;j = T�1=2~ei;t �
t

T
T�1=2~ei;T +Op

�
C�1NT

�
) � (W (r)� r W (1)) � �V (r) :

The DF statistic is

DF �~e (i) =
T�1

PT
t=2 ~ei;t�1�~ei;t�

~�2T�2
PT

t=2 ~e
2
i;t�1

�1=2 :
Note that the following identity holds

T�1
TX
t=2

~ei;t�1�~ei;t =
~e2i;T
2T

�
~e2i;1
2T

� 1

2T

TX
t=2

(�~ei;t)
2
;

which shows that T�1~e2i;T ) �2V (1)
2
= 0, T�1~e2i;1 = 0 and T�1

PT
t=2 (�~ei;t)

2 !p �
2, from

which it follows that T�1
PT

t=2 ~ei;t�1�~ei;t !p ��2=2 and T�2
PT

t=2 ~e
2
i;t�1 ) �2

R 1
0
V (r)

2
dr
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�see Bai and Ng (2004), Lemma G.4. Using these elements it is straightforward to see that

DF �~e (i)) �1
2

�Z 1

0

V (r)
2
dr

��1=2
;

where V (r) = W (r)� r W (1), i.e. the limiting distribution is the same derived in Bai and Ng

(2004) for the trend case. Although the proof is more involved, the same result is achieved for

the ADF test. As before, this implies that the presence of stochastic regressors does not a¤ect

the limiting distribution of the statistic. Note that this result is also achieved when there are

level shifts in the model, since the impulse dummies do not a¤ect the limiting distribution of the

ADF �~e (i) statistic.

Let us now deal with the unit root hypothesis testing when there is r = 1 common factor.

As before,
tX

j=2

~fj = ~Ft �
tX

j=2

h
Pi� ~F

i
j
:

We can distinguish two di¤erent elements in T�1�xd0i � ~F . The �rst one is T
�1PT

t=2�
~Ft =

H T�1 (FT � F1) = Op
�
T�1=2

�
. The second set of elements is T�1�x0i� ~F = op (1) by assump-

tion. Following similar steps above, it is cumbersome but straightforward to see that

T�1=2
tX

j=2

~fj = H T�1=2
�
Ft � F1 � (FT � F1)

t

T

�
+Op

�
C�1NT

�
= H T�1=2F dt +Op

�
C�1NT

�
;

where F dt denotes the detrended common factor, which is obtained as the residual of a regression

on a constant and a time trend. Therefore, DF statistic given by (19) converges to

DF d~F )
R 1
0
W d
w (r) dW (r)�R 1

0
W d
w (r)

2
dr
�1=2 ;

where, as before, W d
w (r) denotes the detrended Brownian motion and ~�

2
w

p! H2 �2w. The

ADF statistic has the same limiting distribution provided that the order of the autoregressive

correction is selected such that k !1 and k3=min [N;T ]! 0.

A.4 Pedroni Test Statistic with time trend and slope shift(s)

The model is given by the following deterministic speci�cation

fi (t) = �i + �it+ �iDUi;t + iDT
�
i;t;
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which implies that �fi (t) = �i + �iD
�
T ib
�
t
+ iDUi;t and �x

d
i;t =

�
1; D

�
T ib
�
t
; DUi;t;�x

0
i;t

�
. In

order to simplify the steps of the proof, we deal with the equivalent speci�cation that does not

include the impulse dummy, i.e. �xdi;t =
�
1; DUi;t;�x

0
i;t

�
. This simpli�es derivations, although it

does not imply loss of generality. Moreover, note that the subspace spanned by
�
1; DUi;t;�x

0
i;t

�
is equivalent to the one spanned by

�
DU1i;t; DU

2
i;t;�x

0
i;t

�
where DU1i;t = 1 for t � Tb and 0

otherwise, and DU2i;t = 1 for t > Tb and 0 otherwise. This rede�nition makes DU
1
i;t and DU

2
i;t

to be orthogonal. Note that as before the �rst element of (17) converges to

T�1=2
tX

j=2

�~ei;j ) �W (r) :

The limiting expression of the second element in (17) has to be derived in several steps. First, note

that T�1�xd0i �x
d
i converges to variance and covariance matrix of �x

d
i , so that all these elements

are Op (1). The �rst element of the vector T�1�xd0i �~ei is given by T
�1=2

�
T�1=2

PTb
t=1�~ei;t

�
=

T�1=2
�
T�1=2 (~ei;Tb � ~ei;1)

�
, where T�1=2 (~ei;Tb � ~ei;1) ) �W (�) since T�1=2~ei;1 ! 0. The sec-

ond element is T�1=2
�
T�1=2

PT
t=Tb+1

�~ei;t

�
= T�1=2

�
T�1=2 (~ei;T � ~ei;Tb)

�
, where T�1=2 (~ei;T � ~ei;Tb))

�W (1)� �W (�). Note that as before the extra rescaling term T�1=2 would be used below. Fi-

nally, the third set of elements in the product is T�1�x0i�~ei that converges to zero since we have

assumed independency. Therefore,

�
�xd0i �x

d
i

��1
�xd0i �~ei =

"
E T�1=2

�
T�1=2 (~ei;Tb � ~ei;1) ; T�1=2 (~ei;T � ~ei;Tb)

�0
+ op (1)�

�D�1CE
�
T�1=2

�
T�1=2 (~ei;Tb � ~ei;1) ; T�1=2 (~ei;T � ~ei;Tb)

�0
+ op (1)

#

where E =
�
A�BD�1C

��1
and A = diag (�; 1� �) ; B = T�1

�
DU1i ; DU

2
i

�0
�xi; C = B0 and

D = T�1�x0i�xi denote the elements of the partitioned matrix T
�1�xd0i �x

d
i . Moreover, fol-

lowing the steps given above
�
A�BD�1C

��1
= A�1 + op (1), since B !p 0. The partial sum

process of �xdi;t for t � Tb is

T�1=2
tX

j=2

�xdi;j =
h
T�1=2t 0 T�1=2 (xi;t � xi;1)0

i
;

while for t > Tb is

T�1=2
tX

j=2

�xdi;j =
h
T�1=2Tb T�1=2 (t� Tb) T�1=2 (xi;t � xi;1)0

i
;
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so that for t � Tb

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

t

T

1

�

�
T�1=2 (~ei;Tb � ~ei;1)

�
+ op (1)

) r

�
�W (�) ;

since T�1 (xi;t � xi;1)0 = op (1). Therefore, for t � Tb

T�1=2
tX

j=2

~zi;j = T�1=2~ei;t �
t

T
T�1=2~ei;T +Op

�
C�1NT

�
) �

�
W (r)� r

�
W (�)

�
;

since from Bai and Ng (2004), the terms T�1=2
Pt

j=2 vj

 = Op �C�1NT �, kdik = Op �C�1NT � and
T�1=2

Pt
j=2

~fj

 = Op (1). Note that we can de�ne b1 = r=� so that 0 < b1 < 1, which in turn
implies that

T�1=2
tX

j=2

~zi;j ) �
p
�W (b1)� �b1

p
�W (1)

= �
p
� (W (b1)� b1W (1)) � �

p
�V (b1) ;

given the properties of Brownian motions. On the other hand, for t > Tb

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

Tb
T

1

�

�
T�1=2 (~ei;Tb � ~ei;1)

�
+
t� Tb
T

1

1� �

�
T�1=2 (~ei;T � ~ei;Tb)

�
+ op (1)

) �

�
W (�) +

r � �
1� � (W (1)�W (�))

�
;

so that

T�1=2
tX

j=2

~zi;j = T�1=2~ei;t �
t

T
T�1=2~ei;T +Op

�
C�1NT

�
) �

�
W (r)�W (�)� r � �

1� � (W (1)�W (�))

�
:

As before, we can de�ne b2 = (r � �) = (1� �) so that 0 < b2 < 1, which in turn implies that

T�1=2
tX

j=2

~zi;j ) �
p
1� � (W (b2)� b2W (1)) � �

p
1� �V (b2) :
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Using similar developments as in the previous proof, the numerator of the DF statistic converges

to T�1
PT

t=2 ~ei;t�1�~ei;t !p ��2=2, while the denominator is

T�2
TX
t=2

~e2i;t�1 = T�2
Tb+1X
t=2

~e2i;t�1 + T
�2

TX
t=Tb+2

~e2i;t�1

) �2
�
�2
Z 1

0

V (b1)
2
db1 + (1� �)2

Z 1

0

V (b2)
2
db2

�
;

with V (b1) and V (b2) two independent Brownian bridges. Therefore, the limiting distribution

of the DF statistic is

DF �~e (i)) �1
2

�
�2
Z 1

0

V (b1)
2
db1 + (1� �)2

Z 1

0

V (b2)
2
db2

��1=2
:

It can be shown that this limiting distribution is symmetric around � = 0:5 since in this case we

can interchange �2 and (1� �)2 and obtain the same distribution. Furthermore, this result can
be extended to multiple slope shifts, since it is straightforward to see that T�2

PT
t=2 ~e

2
i;t�1 can

be split in the di¤erent subperiods that de�ne the l multiple structural changes, so that

DF �~e (i)) �1
2

0@ l+1X
j=1

(�j � �j�1)2
Z 1

0

V (bj)
2
dr

1A�1=2

;

where l denotes the number of structural breaks, V (bj) =W (bj)�bjW (1), with bj = (r � �j�1) = (�j � �j�1)
so that 0 < bj < 1, and T bj�1 < t � T bj with �j = T bj =T , �0 = 0 and �l+1 = 1. As before, the
same limiting distribution is found for the ADF statistic.

The limiting distribution of the ADF statistic when there is one common factor is a¤ected by

the presence of slope shifts. We can distinguish three di¤erent elements in T�1�xd0i � ~F . As in

the case of the time trend, the �rst element is T�1
PT

t=2�
~Ft = H T�1 (FT � F1) = Op

�
T�1=2

�
.

The second element is given by T�1
PT

t=Tb+1
� ~Ft = H T�1 (FT � FTb) = Op

�
T�1=2

�
. Finally,

the third set of elements is T�1�x0i� ~F = op (1) by assumption. Following similar steps as in the

case of the time trend we can see that

T�1=2
tX

j=2

~fj = H T�1=2
�
Ft � F1 � (FT � F1)

t

T
� (FT � FTb)

t� Tb
T

1 (t > Tb)

�
+Op

�
C�1NT

�
= H T�1=2F dt +Op

�
C�1NT

�
;

where 1 (t > Tb) is an indicator function. Now F dt is obtained as the residual of a regression on a

constant, a time trend and the dummy variable DT �t = (t� Tb) 1 (t > Tb). Using these elements
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it is straightforward to see that the DF statistic given by (19) converges to

DF d~F (�))
R 1
0
W d
w (r; �) dW (r; �)�R 1

0
W d
w (r; �)

2
dr
�1=2 ;

where, as before, W d
w (r; �) denotes the detrended Brownian motion, � is the break fraction

parameter and ~�2w
p! H2 �2w. Note that this limiting distribution has been considered in Perron

(1989) for the speci�cation denoted as Model C.
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Table 1: Empirical power of Pedroni cointegration statistic. The structural change a¤ects the
deterministic component

�i = 0 �i = 0:5
T = 100 T = 250 T = 100 T = 250

�i (�i; i) N = 20 N = 40 N = 20 N = 40 N = 20; N = 40 N = 20; N = 40
0.25 (0; 0) 1 1 1 1 1 1 1 1

(1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 1 1 1 1
(10; 0) 1 1 1 1 0.49 0.88 1 1

0.5 (1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 0.99 1 1 1
(10; 0) 0.94 1 1 1 0.08 0.09 0.90 0.99

0.75 (1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 0.99 1 1 1
(10; 0) 0.83 0.98 1 1 0.01 0.00 0.72 0.94

0.25 (0; 0) 1 1 1 1 1 1 1 1
(3; 0:5) 1 1 1 1 1 1 1 1
(3; 0:7) 1 1 1 1 1 1 1 1
(3; 1) 1 1 0.99 1 1 1 0.99 1

0.5 (3; 0:5) 0.65 0.89 0.01 0 0.02 0 0 0
(3; 0:7) 0.02 0.01 0 0 0 0 0 0
(3; 1) 0 0 0 0 0 0 0 0

0.75 (3; 0:5) 0.34 0.54 0 0 0 0 0 0
(3; 0:7) 0 0 0 0 0 0 0 0
(3; 1) 0 0 0 0 0 0 0 0

DGP: yt = �i + �iDUi;t + �it + iDT
�
i;t + �ixi;t + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t with

�i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i = 1. The nominal size is set at the 5%

level and 1,000 replications are carried out.
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Table 2: Empirical power of Pedroni cointegration statistic. The structural change a¤ects both
the deterministic component and the cointegrating vector

�i = 0 �i = 0:5
N (T = 100) N (T = 250) N (T = 100) N (T = 250)

�i (�i; i) (�i;1; �i;2) 20 40 20 40 20 40 20 40
0.25 (0; 0) (1; 0) 1 1 1 1 1 1 1 1

(0; 0) (1; 2) 1 1 1 1 1 1 1 1
(0; 0) (1; 3) 1 1 1 1 1 1 1 1
(0; 0) (1; 4) 1 1 1 1 1 1 1 1
(0; 0) (1; 5) 1 1 1 1 0.99 1 1 1
(0; 0) (1; 10) 0.99 1 1 1 0.97 1 1 1

0.5 (0; 0) (1; 2) 1 1 1 1 0.98 1 1 1
(0; 0) (1; 3) 0.98 1 0.99 1 0.50 0.77 0.76 0.94
(0; 0) (1; 4) 0.71 0.92 0.86 0.99 0.27 0.42 0.42 0.67
(0; 0) (1; 5) 0.45 0.68 0.62 0.853 0.17 0.31 0.32 0.50
(0; 0) (1; 10) 0.17 0.30 0.26 0.406 0.13 0.18 0.19 0.31

0.75 (0; 0) (1; 2) 1 1 1 1 0.83 0.97 0.96 1
(0; 0) (1; 3) 0.76 0.92 0.86 0.98 0.11 0.11 0.20 0.28
(0; 0) (1; 4) 0.26 0.32 0.33 0.48 0.02 0.01 0.04 0.03
(0; 0) (1; 5) 0.09 0.10 0.12 0.13 0.01 0.01 0.02 0.01
(0; 0) (1; 10) 0.01 0 0.01 0 0.01 0 0.01 0

0.25 (3; 0) (1; 2) 1 1 1 1 1 1 1 1
(3; 0) (1; 3) 1 1 1 1 0.99 1 1 1
(3; 0) (1; 4) 1 1 1 1 0.99 1 1 1
(3; 0) (1; 5) 1 1 1 1 0.98 1 1 1
(3; 0) (1; 10) 0.98 1 1 1 0.97 1 0.99 1

0.5 (3; 0) (1; 2) 1 1 1 1 0.97 1 1 1
(3; 0) (1; 3) 0.97 1 1 1 0.51 0.74 0.72 0.92
(3; 0) (1; 4) 0.71 0.92 0.84 0.98 0.23 0.44 0.43 0.69
(3; 0) (1; 5) 0.44 0.66 0.63 0.88 0.18 0.29 0.29 0.50
(3; 0) (1; 10) 0.18 0.28 0.26 0.42 0.12 0.18 0.19 0.32

0.75 (3; 0) (1; 2) 1 1 1 1 0.77 0.95 0.96 1
(3; 0) (1; 3) 0.74 0.91 0.86 0.98 0.11 0.10 0.18 0.26
(3; 0) (1; 4) 0.22 0.35 0.32 0.47 0.03 0.01 0.04 0.03
(3; 0) (1; 5) 0.09 0.09 0.10 0.14 0.01 0.00 0.02 0.01
(3; 0) (1; 10) 0.01 0 0.01 0.01 0 0 0.01 0

DGP: yt = �i + �iDUi;t + �it+ iDT
�
i;t +�i;txi;t + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t

with �i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i;t = �i;1 for t � Tb;i and

�i;t = �i;2 for t > Tb;i. The nominal size is set at the 5% level and 1,000 replications are
carried out.
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Table 3: Empirical power of Pedroni cointegration statistic. The structural change a¤ects both
the deterministic component and the cointegrating vector

�i = 0 �i = 0:5
N (T = 100) N (T = 250) N (T = 100) N (T = 250)

�i (�i; i) (�i;1; �i;2) 20 40 20 40 20 40 20 40
0.25 (3; 0:5) (1; 2) 1 1 1 1 0.99 1 1 1

(3; 0:5) (1; 3) 1 1 1 1 0.99 1 0.98 1
(3; 0:5) (1; 4) 1 1 1 1 0.96 1 0.95 1
(3; 0:5) (1; 5) 0.98 1 0.98 1 0.92 1 0.95 1
(3; 0:5) (1; 10) 0.85 0.98 0.95 1 0.88 0.98 0.93 1

0.5 (3; 0:5) (1; 2) 0.43 0.72 0 0 0.01 0.01 0 0
(3; 0:5) (1; 3) 0.36 0.53 0.01 0 0.05 0.04 0 0
(3; 0:5) (1; 4) 0.28 0.41 0.03 0.01 0.08 0.09 0.01 0
(3; 0:5) (1; 5) 0.23 0.30 0.05 0.04 0.08 0.10 0.01 0.01
(3; 0:5) (1; 10) 0.14 0.21 0.08 0.13 0.12 0.19 0.09 0.10

0.75 (3; 0:5) (1; 2) 0.71 0.89 0.04 0.02 0.04 0.02 0 0
(3; 0:5) (1; 3) 0.52 0.68 0.11 0.08 0.08 0.08 0.01 0
(3; 0:5) (1; 4) 0.28 0.34 0.09 0.08 0.08 0.05 0.01 0
(3; 0:5) (1; 5) 0.15 0.16 0.06 0.04 0.05 0.05 0.01 0.01
(3; 0:5) (1; 10) 0.04 0.03 0.03 0.01 0.05 0.03 0.03 0.01

DGP: yt = �i + �iDUi;t + �it+ iDT
�
i;t +�i;txi;t + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t

with �i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i;t = �i;1 for t � Tb;i and

�i;t = �i;2 for t > Tb;i. The nominal size is set at the 5% level and 1,000 replications are
carried out.
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Table 5: Response surfaces for (k = 0)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.39 60.648 -3.127 -19.196 0.339 67.8 -3.684 -26.679
�̂0;1 5.064 -1226.67 -8.833 121.763 6.104 -1885.589 -9.439 144.172
�̂0;2 179.334 -2571.386 16698.79 28.308 3575.522
�̂0;3 196196.7 -1990.403 58983.27 1029.447 -72734.42
�̂1;0 -0.005 16.530 -0.429 -6.238 0.003 17.645 -0.341 -5.625
�̂1;1 1 -1325.654 124.468 0.902 -1543.665 180.54
�̂1;2 34.590 42679.5 -60.807 -1312.53 39.629 53149.58 -51.393 -4444.318
�̂1;3 -532567.3 -663605.3 48906.87
�̂2;0 -0.362 0.016 0.112 -0.39 0.01 0.067
�̂2;1 -0.236 3.084 6.859 -0.228 1.208
�̂2;2 225.078 5.935 -51.736 4.325
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.359 91.108 -3.971 -31.767 0.43 60.884 -3.221 -19.845
�̂0;1 7.472 -3645.426 -8.979 442.209 3.046 318.553
�̂0;2 59.681 75512.06 -49.326 -10829.74 102.433 -87968.11 -110.06 -16385.62
�̂0;3 -777252.4 164392.7 1874059 307418.8
�̂1;0 14.514 -0.314 -5.334 35.776 -0.628 -10.047
�̂1;1 0.852 -1361.209 -2.06 124.516 3.307 -3225.963 -2.236 219.694
�̂1;2 42.03 47092.270 -1139.025 121345.6 -1980.416
�̂1;3 -562391.3 -1725484
�̂2;0 -0.216 0.008 0.039 0.001 -1.033 0.023 0.136
�̂2;1 0.038 5.521 -0.165 -0.188 12.356
�̂2;2 -3.393 -128.867 11.955 797.530 -3.325 -290.951
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.364 74.286 -3.78 -27.851 0.366 87.342 -3.968 -30.483
�̂0;1 6.564 -2146.293 -6.974 242.942 10.855 -2699.1 -8.23 191.322
�̂0;2 20055.64 -266.021 28358.7 -83.457 4931.966
�̂0;3 -42063.93 7384.621 -123591.5
�̂1;0 0.008 34.679 -0.544 -9.615 0.007 33.827 -0.505 -9.373
�̂1;1 2.617 -3212.648 -0.868 322.608 3.982 -3213.574 -1.767 357.392
�̂1;2 41.638 115262.4 -43.717 -8330.38 118816.1 -9875.101
�̂1;3 -1488387 113929.5 -1614095 131909.7
�̂2;0 -1.053 0.018 0.097 -0.888 0.014 0.072
�̂2;1 -0.161 24.408 -0.306 11.106 -0.325 -0.189 9.476
�̂2;2 10.166 -273.637 15.916 730.025 -5.392 -222.194
�̂2;3
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Table 6: Response surfaces for (k = 2)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.415 62.309 -3.213 -19.672 0.336 69.482 -3.735 -26.724
�̂0;1 0.967 -104.685 4.102 91.646 2.873 1.953 -42.725
�̂0;2 85.478 -428.601 -6704.974 58.52 -18212.26 -286.032 421.283
�̂0;3 6757.605 103243.4 275990.6 5567.945
�̂1;0 -0.018 15.196 -0.414 -5.961 0.005 15.915 -0.334 -5.411
�̂1;1 1.579 -172.849 4.4 17.452 1.368 -236.01 6.006 56.212
�̂1;2 -26.560 438.162 -30.879 -59.458 -245.555
�̂1;3 612.861
�̂2;0 0.002 -0.147 0.015 0.08 -0.001 -0.195 0.010 0.05
�̂2;1 -0.085 -9.382 4.173 -0.138 0.614
�̂2;2 -2.239 -71.787
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.353 89.831 -4.011 -31.141 0.429 66.591 -3.235 -19.246
�̂0;1 6.456 -173.345 5.695 25.550 1.626 -1025.367 66.531
�̂0;2 -6455.393 -543.11 -4224.155 100.548 30787.53 -76.879 -6527.479
�̂0;3 8627.961 84886.75 120101.1
�̂1;0 0.006 14.775 -0.317 -5.476 -0.002 29.482 -0.624 -9.880
�̂1;1 -1.009 -274.989 5.92 63.485 2.983 438.987 13.891 135.547
�̂1;2 81.566 -53.692 -245.299 -45.199 -24349.6 -374.707 -2851.772
�̂1;3 -631.881 4741.349 32282.1
�̂2;0 -0.001 -0.155 0.009 0.054 0.024 0.104
�̂2;1 0.181 -0.147 -0.199 -138.416 -0.304 2.734
�̂2;2 -5.953 6.356 3434.739
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.380 78.16 -3.825 -27.922 0.383 91.354 -4.016 -31.322
�̂0;1 -1049.361 4.26 97.299 2.626 6.241 156.004
�̂0;2 94.123 11495.16 -98.231 -5411.362 90.144 -40668.1 -493.482 -11876.56
�̂0;3 88658.21 521643.9 7199.83 218847.8
�̂1;0 0.004 29.349 -0.524 -9.171 0.011 29.639 -0.488 -8.640
�̂1;1 2.825 14.206 143.512 2.271 -281.767 13.469 106.736
�̂1;2 -7443.609 -434.678 -3425.206 4060.874 -326.613 -744.496
�̂1;3 5633.642 49471.7 3497.908
�̂2;0 0.017 0.047 -0.001 0.014
�̂2;1 -0.136 -86.63 -0.236 5.337 -0.121 -58.02 -0.272 6.34
�̂2;2 1363.246 -74.929 1.486 -89.481
�̂2;3
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Table 7: Response surfaces for (k = 5)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.411 61.076 -3.196 -19.09 0.327 70.537 -3.758 -26.36
�̂0;1 2333.282 -2.138 -251.033 1.926 3688.82 9.947 -577.95
�̂0;2 89.8 14804.35 -2084.949 -111525 -102.888 8408.465
�̂0;3 2785.821 -2085.401 5474.382 2935591 -70550.62
�̂1;0 -0.018 14.491 -0.419 -5.96 0.008 14.356 -0.324 -5.371
�̂1;1 1.282 1468.171 15.196 -102.32 0.596 1834.07 14.124 -70.904
�̂1;2 -14669.95 -348.385 2139.019 -25876.53 -368.115 1714.215
�̂1;3 4192.348 4228.759
�̂2;0 0.001 0.016 0.068 -0.001 0.010 0.029
�̂2;1 -0.069 -0.289 1.362 -0.172
�̂2;2
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.367 89.609 -4.013 -30.645 0.435 58.969 -3.269 -19.333
�̂0;1 6021.446 10.749 -722.651 3904.387 8.328 -180.318
�̂0;2 139.06 -119796.1 -322.281 10502.56 -154668.9 -527.974 -3147.907
�̂0;3 4467.837 2779171 -173970.8 4215.836 3727902 6371.796
�̂1;0 -0.004 13.944 -0.307 -5.325 -0.003 27.297 -0.59 -9.213
�̂1;1 1.052 1272.166 15.51 -75.522 1.582 3537.474 24.265 -136.207
�̂1;2 -11.117 -394.685 1780.818 9.137 -47364.92 -666.318 2432.973
�̂1;3 4719.719 8318.551
�̂2;0 0.008 0.014 0.826 0.023
�̂2;1 70.693 -0.27 -0.092 -0.479
�̂2;2 -2726.643 81.938
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.343 60.513 -3.828 -27.858 0.378 71.175 -4.026 -31.256
�̂0;1 1.636 6899.273 12.998 -253.539 0.867 11057.17 13.951 -408.183
�̂0;2 -88.332 -322583.2 -182.882 -13556.49 -499199.5 -403.515 -10959.25
�̂0;3 7587.446 5934887 359446.7 6664.312 10140177 228140.6
�̂1;0 0.016 32.949 -0.496 -8.767 0.011 29.816 -0.451 -8.12
�̂1;1 1.581 2404.486 25.834 -154.416 1.509 3570.033 24.749 -194.826
�̂1;2 -842.643 6727.948 -40673.95 -789.654 8114.972
�̂1;3 9999.87 -124097.4 10535.88 -121465.5
�̂2;0 -0.001 0.017 -5.136 -0.001 0.754 0.012 -0.078
�̂2;1 -0.083 187.542 -0.574 247.073 -0.074 -0.331
�̂2;2 -7067.742 9.204 120.421
�̂2;3
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Table 8: Response surfaces for the automatic lag length selection method (kmax = 5)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.41 56.823 -3.218 -19.638 0.372 71.034 -3.778 -26.654
�̂0;1 10.777 2079.863 -34.87 -97.193 1.676 1730.194 -42.359 -392.725
�̂0;2 -284.429 737.622 -3103.602 97.645 40207.55 1018.228 4124.832
�̂0;3 4332.145 -11377.84 -13147.4
�̂1;0 -0.004 18.14 -0.442 -6.027 0.005 13.145 -0.351 -5.628
�̂1;1 -2.036 1.628 -68.79 1293.969 3.225
�̂1;2 55.887 28710.63 1511.876 -18644.32 -36.265
�̂1;3
�̂2;0 -0.748 0.017 0.081 -0.001 0.01 0.064
�̂2;1 0.165 205.976 -0.114 0.967 48.061 -0.161 -5.218
�̂2;2 -5962.404 5.98 140.98
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.389 72.251 -4.061 -31.033 0.517 70.453 -3.286 -19.519
�̂0;1 5.779 7427.681 -43.941 -465.591 1.919 -26.176 -101.832
�̂0;2 -225.895 -177465.4 921.364 1330.639 44801.21 166.728 -2334.409
�̂0;3 5584.734 2808044 -13082.02
�̂1;0 19.721 -0.335 -5.637 -0.02 26.003 -0.649 -9.78
�̂1;1 -0.798 3.616 2162.096 3.806 -26.883
�̂1;2 56.865 37740.3 -30.174 72.559 -45.143
�̂1;3
�̂2;0 0.001 -0.737 0.009 0.059 0.001 0.025 0.086
�̂2;1 0.093 190.91 -0.194 -6.067 0.176 275.749 -0.227 -8.473
�̂2;2 -5491.499 146.45 -8513.873 292.56
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.399 109.977 -3.875 -27.694 0.424 87.103 -4.071 -31.407
�̂0;1 -8193.521 -35.047 -296.345 5713.206 -41.846 -243.518
�̂0;2 119.632 607421 681.665 1996.116 147.021 -286832.2 938.021 -12550.07
�̂0;3 -9915995 -8374.721 7973939 -14997.98 240521.8
�̂1;0 0.011 7.772 -0.549 -9.262 0.011 19.269 -0.509 -8.675
�̂1;1 0.937 6841.871 4.83 -9.079 0.858 4385.407 5.806 -66.601
�̂1;2 -256154.3 -74.577 -540.416 -58727.81 -111.692 3590.481
�̂1;3 3915350 1563.76 -69517.66
�̂2;0 -0.001 1.661 0.018 0.048 -0.001 1.239 0.014
�̂2;1 -0.235 -8.318 -0.178 -7.49
�̂2;2 13.846 283.209 15.245 -3.999 271.886
�̂2;3
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Table 9: Asymptotic critical values for the MQ tests
� = 0:1 � = 0:2 � = 0:3

r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -32.163 -23.629 -19.865 -34.858 -26.091 -22.144 -36.123 -27.562 -23.619
2 -43.372 -34.321 -30.056 -46.436 -37.139 -32.688 -46.773 -37.778 -33.492
3 -53.648 -44.378 -39.748 -55.828 -46.232 -41.766 -57.136 -47.511 -42.775
4 -63.359 -53.470 -48.595 -65.206 -55.582 -50.645 -65.570 -55.883 -51.370
5 -73.691 -62.796 -57.434 -74.601 -64.165 -59.199 -75.573 -64.731 -59.919
6 -81.346 -71.238 -65.663 -83.575 -72.562 -67.309 -83.921 -73.247 -67.908

� = 0:4 � = 0:5 � = 0:6
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.635 -28.147 -24.140 -36.775 -28.226 -24.419 -36.805 -28.178 -24.176
2 -47.134 -38.391 -34.282 -48.148 -38.907 -34.553 -47.611 -38.587 -34.246
3 -57.176 -47.642 -43.088 -56.753 -47.715 -43.333 -57.230 -47.865 -43.200
4 -67.481 -56.958 -52.039 -65.752 -56.418 -51.708 -67.094 -56.599 -51.785
5 -75.603 -65.386 -60.204 -75.378 -65.302 -60.251 -75.182 -64.986 -60.057
6 -84.718 -73.703 -68.372 -83.902 -73.746 -68.222 -84.059 -73.136 -67.973

� = 0:7 � = 0:8 � = 0:9
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.302 -27.751 -23.890 -35.249 -26.722 -22.713 -32.918 -24.712 -20.896
2 -47.383 -38.223 -34.045 -46.572 -37.227 -33.085 -43.959 -35.248 -31.190
3 -56.908 -47.282 -42.693 -55.960 -46.442 -41.998 -54.568 -45.183 -40.623
4 -66.869 -56.270 -51.337 -65.833 -55.750 -50.890 -63.920 -53.985 -49.399
5 -75.074 -64.828 -59.867 -74.046 -64.430 -59.290 -74.177 -63.063 -57.839
6 -85.434 -73.646 -68.332 -83.244 -72.857 -67.721 -82.664 -71.518 -66.449
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Table 10: Empirical size of the tests (nominal size = 5%)

Z�̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.039 0.046 0.043 0.033 0.054 0.045

100 0.055 0.049 0.053 0.059 0.048 0.050
250 0.050 0.053 0.046 0.052 0.056 0.059

40 50 0.040 0.049 0.046 0.030 0.044 0.056
100 0.047 0.047 0.057 0.066 0.051 0.047
250 0.056 0.061 0.047 0.044 0.046 0.055

Zt̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.044 0.045 0.049 0.047 0.050 0.045

100 0.050 0.050 0.045 0.046 0.043 0.053
250 0.043 0.047 0.043 0.040 0.049 0.053

40 50 0.045 0.051 0.055 0.048 0.041 0.052
100 0.041 0.047 0.047 0.044 0.046 0.043
250 0.048 0.053 0.046 0.032 0.045 0.048

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.

Table 11: Empirical power of the normalised bias and pseudo t-ratio statistics for �i = 0:5
(nominal size = 5%)

Z�̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 1 1 1 1 1 1

100 1 1 1 1 1 1
250 1 1 1 1 1 1

40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

Zt̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 1 1 1 1 1 1

100 1 1 1 1 1 1
250 1 1 1 1 1 1

40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 13: Empirical size and power. Constant case with three common factors (N = 40)
T �i � �2F Ze

t̂NT
MQ(0) MQ(1) MQ(2) MQ(3)

50 1 1 0.5 0.082 0.006 0.167 0.340 0.484
100 1 1 0.5 0.057 0.003 0.024 0.186 0.784
250 1 1 0.5 0.050 0.001 0.02 0.128 0.848
50 1 0.9 0.5 0.117 0.021 0.139 0.312 0.525
100 1 0.9 0.5 0.061 0.086 0.053 0.206 0.652
250 1 0.9 0.5 0.051 0.771 0.017 0.075 0.134
50 1 0.8 0.5 0.121 0.066 0.090 0.302 0.539
100 1 0.8 0.5 0.051 0.509 0.041 0.122 0.325
250 1 0.8 0.5 0.061 0.986 0.007 0.003 0.001
50 1 1 1 0.061 0 0.003 0.030 0.967
100 1 1 1 0.052 0 0.013 0.063 0.921
250 1 1 1 0.050 0 0.010 0.078 0.909
50 1 0.9 1 0.030 0.001 0.006 0.045 0.945
100 1 0.9 1 0.036 0.093 0.033 0.134 0.737
250 1 0.9 1 0.034 0.844 0.008 0.041 0.104
50 1 0.8 1 0.033 0.039 0.010 0.062 0.886
100 1 0.8 1 0.048 0.56 0.025 0.095 0.317
250 1 0.8 1 0.052 0.994 0.001 0.001 0.001
50 1 1 10 0.060 0 0.002 0.015 0.979
100 1 1 10 0.049 0.001 0.006 0.059 0.931
250 1 1 10 0.060 0.004 0.009 0.084 0.900
50 1 0.9 10 0.044 0.008 0.001 0.027 0.957
100 1 0.9 10 0.053 0.116 0.030 0.133 0.717
250 1 0.9 10 0.042 0.904 0.006 0.022 0.065
50 1 0.8 10 0.030 0.034 0.012 0.059 0.886
100 1 0.8 10 0.049 0.651 0.014 0.076 0.256
250 1 0.8 10 0.043 0.994 0.001 0.001 0.001

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 15: Empirical size and power. One level shift, known break point (�i = 0:5) and one
common factor (N = 40)

T �i � �2F Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

50 1 1 0.5 0.050 0.058 0.9 1 0.059 0.8 1 0.060
100 1 1 0.5 0.053 0.053 0.9 1 0.058 0.8 1 0.055
250 1 1 0.5 0.046 0.051 0.9 1 0.051 0.8 1 0.053
50 1 0.9 0.5 0.042 0.121 0.9 1 0.128 0.8 1 0.138
100 1 0.9 0.5 0.049 0.275 0.9 1 0.324 0.8 1 0.316
250 1 0.9 0.5 0.047 0.837 0.9 1 0.948 0.8 1 0.948
50 1 0.8 0.5 0.042 0.282 0.9 1 0.303 0.8 1 0.319
100 1 0.8 0.5 0.049 0.695 0.9 1 0.782 0.8 1 0.803
250 1 0.8 0.5 0.050 0.981 0.9 1 1 0.8 1 1
50 1 1 1 0.041 0.057 0.9 1 0.059 0.8 1 0.060
100 1 1 1 0.050 0.058 0.9 1 0.053 0.8 1 0.056
250 1 1 1 0.050 0.049 0.9 1 0.048 0.8 1 0.053
50 1 0.9 1 0.041 0.119 0.9 1 0.137 0.8 1 0.128
100 1 0.9 1 0.054 0.292 0.9 1 0.307 0.8 1 0.308
250 1 0.9 1 0.042 0.889 0.9 1 0.949 0.8 1 0.953
50 1 0.8 1 0.039 0.304 0.9 1 0.310 0.8 1 0.316
100 1 0.8 1 0.048 0.748 0.9 1 0.797 0.8 1 0.798
250 1 0.8 1 0.053 0.994 0.9 1 1 0.8 1 1
50 1 1 10 0.048 0.058 0.9 1 0.060 0.8 1 0.057
100 1 1 10 0.054 0.057 0.9 1 0.054 0.8 1 0.052
250 1 1 10 0.053 0.045 0.9 1 0.049 0.8 1 0.052
50 1 0.9 10 0.038 0.113 0.9 1 0.122 0.8 1 0.130
100 1 0.9 10 0.046 0.288 0.9 1 0.287 0.8 1 0.296
250 1 0.9 10 0.049 0.941 0.9 1 0.944 0.8 1 0.951
50 1 0.8 10 0.038 0.289 0.9 1 0.291 0.8 1 0.290
100 1 0.8 10 0.045 0.791 0.9 1 0.790 0.8 1 0.793
250 1 0.8 10 0.044 1 0.9 1 0.999 0.8 1 1

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 16: Empirical size and power with three common factors. One level shift, known break
point (� = 0:5, N = 40)

T �i � �2F Ze
t̂NT

MQ(0) MQ(1) MQ(2) MQ(3)

50 1 1 0.5 0.082 0.011 0.179 0.349 0.461
100 1 1 0.5 0.064 0.002 0.039 0.196 0.763
250 1 1 0.5 0.063 0.001 0.013 0.130 0.856
50 1 0.9 0.5 0.117 0.032 0.137 0.332 0.499
100 1 0.9 0.5 0.070 0.047 0.061 0.206 0.686
250 1 0.9 0.5 0.052 0.653 0.079 0.117 0.151
50 1 0.8 0.5 0.126 0.077 0.104 0.274 0.545
100 1 0.8 0.5 0.055 0.361 0.104 0.184 0.351
250 1 0.8 0.5 0.054 0.930 0.066 0.004 0
50 1 1 1 0.050 0 0.001 0.034 0.965
100 1 1 1 0.056 0.001 0.004 0.066 0.929
250 1 1 1 0.051 0.001 0.009 0.092 0.898
50 1 0.9 1 0.039 0.002 0.006 0.052 0.940
100 1 0.9 1 0.042 0.039 0.042 0.157 0.762
250 1 0.9 1 0.042 0.770 0.038 0.089 0.103
50 1 0.8 1 0.034 0.014 0.015 0.071 0.900
100 1 0.8 1 0.036 0.408 0.080 0.179 0.333
250 1 0.8 1 0.047 0.989 0.011 0 0
50 1 1 10 0.054 0.001 0.001 0.020 0.976
100 1 1 10 0.054 0 0.004 0.060 0.935
250 1 1 10 0.051 0 0.009 0.093 0.898
50 1 0.9 10 0.038 0.003 0.005 0.038 0.950
100 1 0.9 10 0.046 0.047 0.046 0.166 0.74
250 1 0.9 10 0.050 0.855 0.019 0.055 0.071
50 1 0.8 10 0.032 0.013 0.013 0.071 0.896
100 1 0.8 10 0.044 0.486 0.070 0.152 0.291
250 1 0.8 10 0.048 1 0 0 0

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Figure 1. Investment and saving for some countries
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Table 18: Panel cointegration statistics
Pedroni model (individual e¤ects)

Bootstrap distribution
Test p-val 1% 2.5% 5% 10%

Zt̂NT

�
�̂
�

-1.167 0.122 -4.203 -3.652 -3.170 -2.678

Z�̂NT

�
�̂
�

-2.021 0.022 -4.818 -4.188 -3.539 -2.827

Model 1 (level shift)
Bootstrap distribution

Test p-val 1% 2.5% 5% 10%

Zt̂NT

�
�̂
�

-1.973 0.024 -2.661 -2.240 -1.989 -1.644

Z�̂NT

�
�̂
�

-4.011 0.000 -4.746 -4.179 -3.719 -3.275

Model 4 (level and cointegrating vector shift)
Bootstrap distribution

Test p-val 1% 2.5% 5% 10%

Zt̂NT

�
�̂
�

-1.937 0.026 -3.019 -2.547 -2.161 -1.729

Z�̂NT

�
�̂
�

-2.999 0.001 -5.257 -4.693 -4.033 -3.408

The bootstrap is based on 2,000 replications.
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