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Abstract

Misspecification errors due to the presence of unattended structural breaks can affect
the power of standard panel cointegration statistics. We propose modifications to allow
for one structural break when testing the null hypothesis of no cointegration that retain
good properties in terms of empirical size and power. Response surfaces to approximate the
finite sample moments that are required to implement the statistics are provided. Since panel
cointegration statistics rely on the assumption of cross-section independence, a generalisation
to the common factor framework is carried out. Moreover, for those situations where the
common factor model is not suitable we suggest the applicatication of a sieve bootstrap

method to compute the empirical distribution of the statistics.
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1 Introduction

The theory of cointegration establishes that there exist linear combinations of non-stationary
variables that cancel out common stochastic trends. This phenomenon gives rise to equilibrium
relationships amongst non-stationary variables, which means that in the long-run these variables

follow each other. The concept of cointegration does not prevent that neither the vector of
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cointegration nor the deterministic component of the long-run relationship might change along
the analysed time period. In fact, Hansen (1992), and Quintos and Phillips (1993) propose test
statistics to assess the stability of the cointegration relationship. More interestingly, it is well
known that the inference about the presence of cointegration can be affected by misspecification
errors that do not account for changes in the parameters of the model, which can bias conclu-
sions towards the non-stationarity —see Campos, Ericsson and Hendry (1996), and Gregory and
Hansen (1996). All these considerations have driven to design procedures to test for cointegration
allowing for structural breaks. Thus, Gregory and Hansen (1996) generalised the standard coin-
tegration approach in Engle and Granger (1987) to allow for the presence of structural breaks
that might affect either the deterministic component or the cointegration vector of the long-
run relationship. Hao (1996), Bartley, Lee and Strazicich (2001), and Carrion-i-Silvestre and
Sans6 (2004) use the multivariate version of the KPSS statistic in Harris and Inder (1994), and
Shin (1994) to test for the null of cointegration with one structural break. Finally, Hansen and
Johansen (1993), and Busetti (2002) propose methods to estimate the cointegration rank in a
multivariate framework. These proposals obey to requirements that arise in empirical modelling
since there is some empirical applications in the literature that test for cointegration allowing for
structural breaks. For instance, Gregory and Hansen (1996) and Gabriel, Da Silva and Nunes
(2002) investigate the long-run money demand for the U.S. and Portugal, respectively. Busetti
(2002) conducts two illustrations using road casualties in Great Britain, and some macroeconomic
data for the UK. Finally, Clemente, Marcuello, Montanés and Pueyo (2004) focus on health care
expenditure demand functions. The main conclusion that arises from these applications is that
inference on cointegration analysis can be affected by the presence of structural breaks.
Non-stationary panel data econometrics literature has experienced a rapid development since
1990s. The main reason that has popularised the use of the panel data techniques is the idea
that power of unit root and cointegration testing might increase due to the combination of the
information that comes from both the cross-section and the time dimensions. As a result, new
statistics to assess the stochastic properties of panel data sets have appeared in the literature
—see Banerjee (1999), Baltagi and Kao (2000), and Baltagi (2001) for an overview of the field.
Surprisingly, instability has not received too much attention in panel data cointegration frame-
work. In this regard, Kao and Chiang (2000) analyse instability in cointegration relationships
assuming that cointegration is present, with an homogeneous cointegrating vector for all individ-
uals —although it is possible to split the panel in two sub-panels using bootstrap— and a common
break point. Besides, Breitung (2002) proposes a VAR-based panel data cointegration procedure
that allows introducing dummy variables outside the long-run relationship. Finally, Westerlund
(2004) extends the LM statistic in McCoskey and Kao (1998) allowing for one structural break.
As can be seen, there are not many contributions in the literature that addresses the panel
data cointegration hypothesis testing allowing for structural breaks. In this paper we address this
concern and generalise the approach in Pedroni (1999, 2004) to account for one structural break

that affects the long-run relationship in different ways. Pedroni proposes seven statistics depend-



ing on the way that the individual information is combined to define the panel tests. Moreover,
the statistics can also be grouped in either parametric or non-parametric statistics, depending
on the way that autocorrelation and endogeneity bias is accounted for. In this paper we only
focus on the parametric statistics. One important feature of all these proposals is cross-section
dependence matter. Thus, all these panel data statistics assume cross-section independence. In
this paper we address this concern in two different ways. First, we generalise the proposal in
Pedroni (2004) dealing with an approximate common factor model as in Bai and Ng (2004). The
limiting distribution of the statistics is derived and new sets of critical values are computed when
required. Second, we propose to carry out a sieve bootstrap to obtain the empirical distribution
of the statistics for those cases in which the factor model should not be appropriate.

The paper proceeds as follows. In section 2 the interest of our proposal is motivated through
Monte Carlo simulations. Section 3 presents the models and statistics for the null hypothesis of
no cointegration with power against the alternative of broken cointegration. The moments that
are required for the computation of the panel data statistics are computed in this section. In
this regard, we estimate response surfaces to approximate these moments for whichever sample
size. Section 4 extends the approach to the common factor framework. Section 5 focuses on
the finite sample properties of the statistics. In section 6 we illustrate the proposal analysing
the Feldstein-Horioka puzzle. Finally, section 7 concludes with some remarks. All proofs are

collected in the Appendix.

2 Motivation

Pedroni (1999, 2004) proposes seven statistics to test the null hypothesis of no cointegration
using single equation methods based on the estimation of static regressions. Since the statistics
are based on single equation methods the cointegrating rank for each unit is either 0 or 1,
with a heterogeneous cointegrating vector for each individual. After conducting the estimation
of the individual static regressions, the cointegrating residuals are used to compute one of the
statistics. The seven statistics can be classified in two different groups depending on whether they
are within-dimension-based statistics -homogeneity is assumed when computing the cointegration
test statistic— and between-dimension-based statistics —heterogeneous behaviour is allowed for the
statistic. In order to correct for the endogeneity bias, Pedroni (1999, 2004) suggests applying the
FM-OLS estimation method for the non-parametric statistics, although DOLS estimation method
can be applied as well —see Kao and Chiang (2000), and Mark and Sul (2003). Notwithstanding,
the statistics that use the parametric way to correct for the presence of autocorrelation does not
correct for the endogeneity bias.

As mentioned in the introduction, we are only concerned with the parametric version of the
statistics, i.e. the normalised bias and the pseudo ¢-ratio statistics. To motivate our proposal we
analyse the effects of structural breaks on the parametric group Pedroni statistics through Monte

Carlo simulations. First, we focus on the case where there is cointegration but the deterministic



component changes at a point in time. In a second stage we consider the case of unstable

cointegrating vector. The DGP is given by:

Yie = fi (1) + @i ip + 2iy
Aﬂci,t =&t
Zit = PiZit—1 T Vit

Cip = (Ei,tavi,t), ~did N (0,13),

where f; (t) denotes the deterministic component.

For the first case we have f; (t) = p; + 6, DU, with DU, ; = 1 for t > Tp; and 0 otherwise,
where Ty,; = ;T A; € (0,1), denotes the date of the break. The parameter set is given by p; = 1,
0, ={0,1,3,5,10}, ajy = a; = 1, and A; = {0.25,0.5,0.75}. The autoregressive parameter is
set equal to p; = {0,0.95}. The sample size is T = {100,200}, the number of individuals is
N = {20,40} and 1,000 replications are carried out. For ease of simplicity but without loss of
generality, in all simulations we have specified a common break point for all individuals. The
model that has been estimated to compute the pseudo t¢-ratio Pedroni panel data cointegration
test statistics includes a constant term (individual effects) as deterministic component. Results
reported in Table 1 show that the effect of level shift only matters in those situations where
the magnitude of the shift is large and the break point is located at the end of the time period.
Therefore, we can conclude that for small and moderate level shifts the misspecification error of
the deterministic component does not damage the power of Pedroni statistic.

In the second stage we have analysed the case where the structural break changes both the
level and the slope of the time trend. The deterministic function is given by f; (t) = p; +
0;DU;+ + &t + v, DT}, where p; = 1, 0; = 3, §; = 0.3 and DT, is the dummy variable
defined above. Note that in this case the pseudo t-ratio statistic has been computed using a
time trend as the deterministic component. Table 1 shows that in this situation consequences
of the misspecification error are more serious, since the empirical power approaches zero as the
magnitude of the slope shift (v,) increases when the break point is placed either in the middle
(A; = 0.5) or at the end (A; = 0.75) of the period.

The third situation analyses the effects of both the change in the level and in the cointegrating
vector. As before, the deterministic component is f; (t) = p; + 0;DU;,, with p; = 1 and
0; = {0,3}. Now we focus on the change in the cointegrating vector specifying a;; = a;1 =1
for t <Tp; and a; ¢ = ;20 = {0, 2, 3, 4,5, 10} for ¢ > T};. The model that has been estimated
to compute the (pseudo t-ratio) Pedroni panel data cointegration statistic includes a constant
term as deterministic component. Table 2 indicates that for the empirical power to diminish
the change in the cointegrating vector has to be either moderate or large, and be located in the
middle (A; = 0.5) or at the end (A; = 0.75) of the period. Notice that this conclusion is reached
irrespective of the level shift that affects the constant term.

Finally, the fourth case of study considers the change in the time trend that defines the



deterministic component and the change in the cointegrating vector. In this case f; (t) = p; +
0,DU,  + &t + v DTy, with p; =1, 0, =3,§, =03,7,=05,and oy = ;1 =1for t <Tp,
and a; ; = a; 2 = {0, 2, 3,4, 5, 10} for ¢t > Tj;. The model that has been estimated to compute
the pseudo t-ratio Pedroni panel data cointegration statistic includes individual and time effects.
Table 3 reports that the change in the slope implies further reductions on the empirical power
of the statistic when the break point is located in the middle and at the end of the period.

In all, we can conclude that misspecification errors due to the lack of accounting for a struc-
tural break can reduce the power of the panel data cointegration test in Pedroni (2004) in those
cases where the break point is placed in the middle or at the end of the time period. Therefore,
we have observed a bias towards the spurious non-rejection of the null hypothesis of no cointe-
gration. A relevant feature is that the power distortions appear when break changes either the
slope of the time trend or the cointegrating vector, but no effects are to be expected when the

break only affects the constant term.

3 Models and test statistics

Let {Y; .} be a (m x 1)-vector of non-stationary stochastic process whose elements are individ-
ually I(1). Moreover, let us assume that the DGP that describes Y;; is given by the following

triangular representation

Aﬂ%‘,t =&t

i = fi (t) + 25 ;000 + e

where Y; s = (v} ,, Jc,’i,t)/ is conveniently partitioned into two vectors of dimension y; ; ((m — r) x 1)
and 2;; (r x 1) respectively, i = 1,...,N, ¢t =1,...,T. The disturbance terms §; , = (sg’t, e;’t)/
are assumed to satisfy the strong-mixing conditions in Phillips (1987) and Phillips and Perron
(1988). The (m x r) matrix of r cointegrating vectors is d;; = (—aimlr)' where «; is the
((m — ) x 1) submatrix of parameters to be estimated and I, is the identity matrix. At this
stage and in order to set the analysis in a simplified framework, let us assume that {e;+} and
{e;+} are independent —if we weaken this assumption, then DOLS estimation method should be
applied in order to account for the endogeneity bias.

The general functional form for the deterministic term f (¢) is given by
fi(t) = p; + Bt +0;DU; 4 + v, DT},

where

t <Tp; t < Ty
DUi,t = 0 =7 ’DTz*t = 0 = b
1 t>Ty ’ (t — sz’) t > Ty

with Tp; = T, A\; € (0,1), denoting the time of the break for the i-th individual, ¢ = 1,..., N.



Note also that the cointegrating vector is specified as a function of time so that

Q¢ =

)

ain t<Ty
Q2 t > Ty

Using these elements, we propose up to six different model specifications:

e Model 1. Constant term with a level shift but stable cointegrating vector:

Yit = p; +0:DU; ¢ + 2} ,0i +eiy (1)

Model 2. Time trend with a level shift but stable cointegrating vector:

i =ty + Bit + 0;DU;y + 2 05 + €3 (2)
e Model 3. Time trend with both level and slope shifts but stable cointegrating vector:
Yit = i + Bit +0:DU; 4 + v, DT, + x;,t(si +eit (3)
e Model 4. Constant term with both level and cointegrating vector shift:
Vit = p; +60;DU; ¢+ + xé,tfh,t +eit (4)
e Model 5. Time trend with both level and cointegrating vector shift (the slope does not

shifts):
Yi = H; + Bit +0;DUsp + 35,050 + €1 (5)

e Model 6. The time trend and the cointegrating vector shifts:

Yip = p; + Bit +0;DU; ¢ + v, DT}y + 7 405t + € (6)

Using one of these specifications we propose to test the null hypothesis of no cointegration
against the alternative hypothesis of cointegration using the ADF test statistic applied to the
residuals of the cointegration regression as in Engle and Granger (1987) and Gregory and Hansen
(1996) but in the panel data framework developed in Pedroni (1999, 2004).

Our proposal can be described in the following steps. First and following Gregory and Hansen
(1996), we proceed to the OLS estimation of one of the models given in (1) to (6) and, then, we

run the following ADF type-regression equation on the estimated residuals (é;; (A;)):

k
Aéiy (Ni) = piiaa1 (M) + D & ;A i (M) + gise (7)
Jj=1



Note that the notation that is used refers to the break fraction ();) parameter, which in most
of cases is unknown. In order to get rid of the break fraction parameter, Gregory and Hansen
(1996) suggest to estimate the models given in (1) to (6) for all possible break dates, obtain
the estimated OLS residuals and compute the corresponding ADF statistic. With the sequence
of ADF statistics at hands, we can estimate the break point for each individual as the date
that minimises the sequence of individual ADF test statistics —either the t-ratio, t; (A;), or
the normalised bias, Tp; (A\;). Gregory and Hansen (1996) derive the limiting distribution of
th, (5\1) = infy,e(0,1) tp, (Mi) and Tp; (5\%) = infy,e(0,1) TP; (Ai), which are shown not to depend

on the break fraction parameter. Note that the estimation of the break point Tp; is conducted as

Ty = argmint,, (A;)
X:€(0,1)

Ty = argminT'p,; (\i),
/\16(0,1)

Vi=1,...,N. At this point we could either follow Gregory and Hansen (1996) and test the null
hypothesis for each individual or decide to combine the individual information in a panel data
statistic.

The panel statistics in which we are going to focus the null hypothesis testing are given by
the parametric Z, .. and Z; _ tests in Pedroni (1999, 2004), which can be thought as the panel
data version of the rho-statistic and t-statistic tests in Phillips and Ouliaris (1990). These test
statistics are defined by pooling the individual ADF tests, so that they belong to the class of

between dimension test statistics. Specifically, they are computed as:

TN_l/ZZ@NT (5\) — TN-1/2 é ZtT:1 éi;_—llégi\i)l ?;:)t (;\l> =TN~1/? é Tp; (;\z>
Sy (3) - NORY St fiec (/\1) Al (Al) NSy (5
N (A> N i=1 (Zthl 8 (Az) €1 (S‘i»l/z v 2;% </\Z) |

Note that in this framework we allow for a high degree of heterogeneity since the cointegrat-
ing vector, the short run dynamics and the break point estimate might be differing amongst
individuals. The use of the panel data cointegration test aims to increase the power of the sta-
tistical inference when testing the null hypothesis of no cointegration, but some heterogeneity is
preserved conducting the estimation of the parameters individually.

Following Pedroni (1999, 2004), the panel test statistics are shown to converge to standard
Normal distributions once they have been properly standardizes, i.e.

TN-Y27,

PNT

(A)-evN = N

N7 (3) —0:VN = N(0,W),



where = denotes weak convergence. The moments of the limiting distributions, ©1, ¥1, 0, and
U,, are approximated by Monte Carlo simulation for the different specifications and allowing
up to seven stochastic regressors in the cointegrating relationship —i.e. the dimension of the Y ;
(m x 1)-vector goes from (2 x 1) to (8 x 1). Since the limit distribution of the tests can provide
a poor approximation in finite samples, we have approximated the moments of the test statistics
for different values of the sample size, specifically T' = {30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 400, 500, 1,000}. In addition, the finite sample distributions depend on the procedure
that is applied when selecting the order (k) of the parametric correction in (7), so that the finite
sample distributions are obtained in two different ways: (i) assuming the value of k to be fixed,
for which we have specified three values k = 0, k = 2 and k = 5, and (ii) selecting the lag length
using the ¢-sig criterion in Ng and Perron (1995) with a kpnax = 5 as the maximum order of lags.
In all simulations » = 10, 000 replications were done. Table 4 presents the moments of the limit
distributions based on T" = 1,000. As can be seen, the moments of the distribution depends both
on the specification and the number of stochastic regressors.

Reporting the moments of the finite sample distribution for the different values of T" and
different procedures for the selection of k will take a lot of space. Instead, in order to summarise
all these results we have estimated response surfaces to model the moments of each test statistic
as a function of T' and the number of stochastic regressors p = (m — 1), i.e. M; = g(T},p;),

j=1,...,(15% 7). The general functional form that has been essayed is

2
1 1 1,
9(Tj,p;) = ; (50,1 + 517zfj + 52JT72 + 53,1T73> Dj-
These functions have been estimated by OLS using the Newey-West robust covariance distur-
bance matrix to assess the individual significance of the regressors —the level of significance is the
10%. Tables 5 to 8 report the estimated coefficients of the response surfaces. A GAUSS code is

available from the authors to compute the statistics and corresponding moments.

4 Common factors in panel cointegration

Previous derivations are valid under the assumption that individuals are cross-section indepen-
dent. However, this requirement is hardly satisfied in empirical economic applications where
countries or regions depend each other. In order to generalise the framework of the paper we

have extended our approach to account for the presence of common factors as in Bai and Ng



(2004). In this situation the model is given in structural form as:

Yie = fi(t)+ 28+ win (8)

uy = Fymi+eiy, 9)
(I-L)F, = C(L)w (10)
(1—p;LYeiy = H;(L)eiy, (11)

t=1,...,T,% = 1,...,N, where C(L) = >.72,C;L7, and f;(t) denotes the deterministic
component, F; denotes a (1 X r)-vector containing the common factors, with 7; the vector of
loadings. Despite the operator (1 — L) in equation (10), F; does not have to be I(1). In fact, F}
can be I(0), I(1), or a combination of both, depending on the rank of C(1). If C(1) = 0, then F;
is 1(0). If C(1) is of full rank, then each component of F} is I(1). If C(1) # 0, but not full rank,
then some components of F; are I(1) and some are I(0). Our analysis is based on the same set
of assumptions in Bai and Ng (2004). Let M < oo be a generic positive number, not depending
on T and N:

Assumption A: (i) for non-random 7;, |mi| < M; for random m;, E|m|* < M, (i)
% Zf\il w2 Y1, a (1 x 1) positive matrix.

Assumption B: (i) wy ~ iid (0,2,,), E |Jw,||* < M, and (i) Var (AF}) = 320 CiZuCj > 0,
(i) 32720 7 IG5l < M; and (iv) C (1) has rank I, 0 <1y <.

Assumption C: (i) for each i, g5y ~ iid (0,5.), Eles|® < M, Y025 [Hij| < M, w? =
H; (1)’ 02 > 0; (i) E (i4854) = 74 with S, |75 < M for all j;
(iii) B \/% vazl leis€ir — E (5i,35i7t)}‘4 < M, for every (t,s).

Assumption D: The errors €; ¢, we, and the loadings 7; are three mutually independent groups.

Assumption E: E ||Fp|| < M, and for every i = 1,...,N, Ee; 0| < M.

Assumption A ensures that the factor loadings are identifiable. Assumption B establishes the
conditions on the short and long-run variance of AF; —i.e. positive definite short-run variance
and long-run variance that can be of reduced rank in order to accommodate linear combinations
of I(1) factors to be stationary. Assumption C(i) allows for some weak serial correlation in
(1 —p;L)e;+, whereas C(ii) and C(iii) allow for weak cross-section correlation. Finally, Assump-
tion E defines the initial conditions.

The estimation of the common factors are done as in Bai and Ng (2004). If we compute the
first difference:

Ayir = Afi (t) + Axj B, + AFym + Aeiy,

and take the orthogonal projections:

MiAy;y = M;AFym; + MiAe;y
fimi + zig, (12)



with M; = I — Ax? (A:vf’Am?)fl Az the idempotent matrix, and f; = M;AF;, and z;; =
M;Ae; ;. The superscript d in Ax¢ indicates that there are deterministic elements. The esti-
mation of the common factors and factor loadings can be done as in Bai and Ng (2004) using
principal components. Specifically, the estimated principal component of f = (fa, f3,..., fr),
denoted as f, is T — 1 times the r eigenvectors corresponding to the first r largest eigen-
values of the (T'— 1) x (T'— 1) matrix y;y;’, where y;, = M;Ay;;. Under the normalization
ff'] (T —1) = I, the estimated loading matrix is II = f’y*/ (T — 1). Therefore, the estimated
residuals are defined as

Zig =y, — fifi. (13)

t

We can recover the idiosyncratic disturbance terms through cumulation, i.e. & = ,_, % j,

and test the unit root hypothesis (a;,0 = 0) using the ADF regression equation

k
AE; (5\1) = 00,0€i,t—1 (5\1) + Zai,jAéi,tfj (5\1) +€it
P

When r = 1 we can use the ADF type equation to analyse the order of integration of F} as well.
However, we should proceed in two steps. In the first step we regress F, on the deterministic
specification and the stochastic regressors. In the second step we estimate the ADF regression

equation using the detrended common factor (Fﬂ), i.e. the residuals of the first step:
~ ~ k ~
AFf =60F, + > 6,AF | + uy,
j=1

and test if 6o = 0.

Finally, if » > 1 we should use one of the two statistics proposed in Bai and Ng (2004)
to fix the number of common stochastic trends (g). As before, let F¢ denote the detrended
common factors. Start with ¢ = r and proceed in three stages —we reproduce these steps here

for completeness:

1. Let B | be the ¢ eigenvectors associated with the ¢ largest eigenvalues of 72 ZtT:z Ftde’.

2. Let Y = B, F?, from which we can define two statistics:

(a) Let K (j)=1—j/(J+1),j=0,1,2,...,J:

~d ~
i. Let &, be the residuals from estimating a first-order VAR in Y4, and let
J L d~d/
-3 ow) ().
j=1 t=2
L L . . SN |
i. Lot (g) = § [0l (V0 + VW) = 7 (314 9] (17 SiL VL Ve)

10



iii. Define MQ? (q) =T [v¢(q) — 1] .
(b) For p fixed that does not depend on N and T
i. Estimate a VAR of order p in AY}¢ to obtain I (L) = I, — I} L — ... — I, LP.
Filter Y;¢ by II (L) to get §¢ = II (L) Y,2.

ii. Let 0 (q) be the smallest eigenvalue of

T
1 o o
o) =3 [Z (V9 + ¥, 97
t=2

T -1
(s
t=2

iii. Define the statistic MQ‘]% (q)=T [ﬁ;‘f (q) — 1} .

3. If Hy : 71 = q is rejected, set ¢ = ¢ — 1 and return to the first step. Otherwise, 71 = ¢ and
stop.

The following Theorem offers the main results concerning these statistics.

Theorem 1 Let {y;} the stochastic process with DGP given by (8) to (11). The following
results hold as N, T — oo. Let k be the order of autoregression chosen such that k — oo and
k3/min [N, T] — 0.

(1) Under the null hypothesis that p; =1 in (11),

(1.a) for the specification that does not include time trend with or without level shift(s):

L(wa?-1)
(le(r)2 clr)1/27

ADFY (i) =

0

(1.b) for those specifications including a time trend with or without level shift(s):

—1/2

ADFYT (i) = —% (/01V(r)2dr> :

where V (r) =W (r) —rW (1).
(1.c) for those specifications including a time trend with slope shift(s):

—1/2
I+1 /

. 1 5 [ 2
ADFQ(Z):»—5 > (= A1) /0 V (b;)° dr ,

Jj=1

forj=1,...,1 structural breaks, where V (b;) = W (b;)—b;W (1), withb; = (r — X\j_1) / (A\j — Aj—1)
s0 that 0 < b; <1, and T;Ll <t< ij with A\j; = T;’/T, Ao =0 and N\j41 = 1.

11



(2) When r = 1, under the null hypothesis that Fy has a unit root and no slope shift(s)
Jy Wi (r) W (r)

(fwg oy ar)”™

d
ADFF =

where W2 (r) denotes the detrended Brownian motion, while when we allow for slope shift(s)

1yird d
" Jo W& (r,\) dWE (r, A)
ADFF(A):} 0 1 5 1/27
(Jo Wit (ro ) ar)

where W& (r, \) is the detrended Brownian motion and X denotes either the break fraction para-
meter —if there is only one slope shift— or the break fraction vector —if there are more than one
slope shift.

(8) When r > 1, let W, be a g-vector of standard Brownian motion and qu the detrended coun-
terpart. Let vl (q) be the smallest eigenvalues of the statistic computed for a model that does not
include slope shift(s)

d_l d d I ! d,,, d’f'l’l"
o =5 Wi owiay -5 | [ wiowiera]

and let v (g, \) be the smallest eigenvalues of the statistic computed for the model that includes
slope shift(s)

—1

dd(\) = % (W (L)W (1,0 = 1) [/01 Wi (r, ) W (r,A)’dr] ,

(8.1) Let J be the truncation lag of the Bartlett kernel, chosen such that J — oo and
J/ min [\/N, \/T} — 0. Then, under the null hypothesis that F; has q stochastic trends, T [0¢ (q) — 1] <
o (g) and T [5¢ (a.0) = 1] 5 vt (¢, ).
(3.2) Under the null hypothesis that Fy has q stochastic trends with a finite VAR(D) representation
and a VAR(p) is estimated with p > p, T [ﬁ;‘f (q) — 1} A vd(q) and T [f)? (g, A) — 1] A vl (g, ).

The proof of the Theorem is outlined in the Appendix. Some remarks are in order. First,
note that the definition of the common factors framework implies that the matrix of projections
M; that is used above cannot depend on i, which means that all elements that are defined in
Az¢ should be the same across i. There are two different kind of elements in Az¢: (i) the
deterministic regressors and (ii) the stochastic regressors. Regarding the latter, we have shown
in the Appendix that the limiting distribution of the statistics do not depend on the presence
of stochastic regressors, so that we can ignore the effect of these elements when defining M.

Unfortunately, this is not true for the deterministic regressors. Thus, to warrant that M; does
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not (asymptotically) depend on i we have to assume common break dates, i.e. we assume that
the break points are the same for all individuals. This restriction can be seen as a limitation of
our analysis, but in fact it is due to the definition of the common factors framework. Thus, (12)
specifies a common factor structure for all individuals, so that f; cannot depend on i. If we look at
the definition of f; = M;AF; we can see that the specification of heterogeneous structural breaks
implies that the idempotent matrix M; depends on ¢. The only way to overcome this situation
is to impose M; = M Vi so that the structural breaks are the same for all individuals. That is
the reason why in Theorem 1 we do not have included any subscript on A for the individuals.

Second, the limiting distribution of the ADF statistic for the idiosyncratic disturbance term
does not depend on the presence of stochastic regressors. Moreover, the presence of level shifts do
not affect the limiting distribution of the ADF statistic that is computed using the idiosyncratic
disturbance term.

Finally, the distribution of the statistics that focus on the common factors depend on some
elements that define the deterministic component although, surprisingly, they do not depend on
the number of stochastic regressors. Specifically, the presence of level shifts do not affect the
limiting distribution of the ADF and ®¢ statistics, although this is not true when there are slope
shifts. For the latter, the test statistics depends on the number and location of the structural
breaks. Moreover, in this case we have to assume that these structural breaks are common to
all individuals. The limiting distribution for the ADF statistic when there is one structural
break can be found in Perron (1989) for the specification denoted as Model C. For the ®? (\) we
have simulated asymptotic critical values that depend both on the number of stochastic common
trends and on the break fraction. Note that the critical values reported in Table 9 correspond to
the case of only one structural breaks, though our approach can be easily extended to multiple
slope shifts.

The individual ADF statistic for the idiosyncratic disturbance terms can be pooled to define

a panel data cointegration test. Thus, following the steps given in previous section we can define
N2 ze (A) — 05VN = N (0,5),
INT

where the superscript e denotes the idiosyncratic disturbance term. As for the previous statistics,
we have approximated the moments ©§ and ¥§ by simulation. These moments depend on the
deterministic specification that is used and, except for the case of slope changes, they are the
same as the ones for the statistics in Bai and Ng (2004) —note that these authors prefer to

combine individual p-values instead of using these moments.

5 Monte Carlo simulation

We have analysed the finite sample performance of the statistics that have been proposed in the

paper conducting a simulation experiment. The empirical size of the tests is studied regressing
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two independent random walks, which have been generated as the cumulated sum of itd N (0, 1)
processes. The sample size has been set equal to T' = {50, 100, 250} and the number of individuals
at N = {20,40}. The results reported in Table 10 are obtained from r = 5,000 replications,
assuming that the break point is unknown and using the estimated response surfaces of the
previous section. As can be seen, the empirical size of both the normalised bias and the pseudo
t-ratio statistics is close to the nominal size irrespective of T' and N.

The empirical power of the statistics is assessed using the DGP given by:

Yii = p; +0: DUy + &t + 7, DT} + 2 01 + iy

Zit = PiRit—1 T Vi,

where v; 4 ~ iid N (0,1) Vi, ¢ = 1,...,N. The specification of the values of the parameters
depends on the model under consideration. In general, the constant and, when required, the
slope of the trend are set equal to pu; = 1 and &, = 0.3, respectively. When there is a change in
the level the magnitude is set equal to §; = 3, while for the slope shift we consider v, = 0.5. The
change in the cointegrating vector is given by a;; = a;1 =1 for t <Tj; and a4 = ;1 = 3 for
t > Tp;, for a break point located at \; = 0.5, Vi, i = 1,..., N —the same results are obtained
when A; = 0.25 and A\; = 0.75. The autoregressive coefficient is set at p, = 0.5. The computation
of the statistics controls the autocorrelation in the disturbance term including up to kpax = 5
lags using the t-sig criterion to select the order of the autoregressive correction. Results reported
in Table 11 indicates that the empirical power of both statistics equals one in all situations. The
results contrast with the ones in Table 3 where it has been shown that structural breaks, when
not accounted for, reduces the power of the statistics.

Let us now deal with the situation with common factors. The DGP is given by a bivariate

system:

Yie = fi () + 25 1050 + wit
u = Fymi + e
Fy=oF_1 +orpw;
€it = Pi€it—1 t Eit

Az = Vi,

where (wt,siyt,viﬁt)/ follow a mutually iid standard multivariate Normal distribution for Vi, j
1 # 7 and Vt, s t # s. In this paper we consider two different situations depending on the number
of common factors, i.e. r = {1,3}, and specify three values for the autoregressive parameters
¢ = {0.8,0.9,1} and p, = {0.8,0.9,1} Vi. Note that these values allows to analyse both the
empirical size and power of the statistics. The importance of the common factors is controlled
through the specification of 0% = {0.5,1,10}. The number of common factors is estimated using

the panel BIC information criterion in Bai and Ng (2002) with rpax = 6 as the maximum number
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of factors. We consider N = 40 individuals and T' = {50, 100,250} time observations.

Table 12 reports the results for the constant and time trend cases without structural break. As
can be seen, the empirical size of either the ADF pooled idiosyncratic ¢-ratio statistic (ZfNT) and
the ADF statistic of the common factor is close to the nominal size, which is set at the 5% level of
significance. As expected the power of the tests increases as the autoregressive parameter moves
away from unity. Moreover, the power of the Zt?NT test is higher or equal to the power shown
by the ADF; test. Note that these conclusions are obtained irrespective of the deterministic
specification.

Tables 13 and 14 show that these results do not change when specifying three common
factors for the constant case. Thus, the Z ENT test shows a correct empirical size and good power.
Regarding the MQ? (q) test, it shows correct empirical size, while as expected the test has low
power for large values of the autoregressive parameter —the bandwidth for the Bartlett spectral
window is set as J = 4ceil [min [N, T / 100}1/ *. Simulations available upon request indicate that
similar conclusions are reached for the time trend case, and when using the parametric approach
for the M Q test.

Similar results are obtained when we introduce one structural in the model. At this stage of
the analysis we assume that the break point is known and located at A; = {0.25,0.5,0.75} Vi.
Table 15 reports results for the empirical size and power for the model that allows for one level
shift with A\; = 0.5 and one common factor. It should be mentioned that there are no variations
for neither the model that includes a slope shift nor for the other values of \; —these results
are available upon request. On the one hand, the panel data unit root test on the idiosyncratic
disturbance terms show good properties in terms of empirical size and power. On the other hand,
the ADF statistic for the common factor shows right size although, as expected, it has low power

when the autoregressive parameter is close to unity and the sample size is small.

6 Empirical illustration

The correlation between investment and savings as a ratio of the GDP has devoted huge amount
of literature aim reconcile the observation of significant correlation with the idea of capital
mobility. The fact that the domestic investment has to be financed by domestic saving goes
against the conventional wisdom that in a world of perfect capital mobility, where capital flows
among countries should act to equalise the yields to investors, such correlations should not be
observed. Thus, (high) capital mobility implies that investment does not need to be correlated
with saving. Therefore, the idea of capital mobility and the correlation between investment and
saving rates is known as Feldstein-Horioka Puzzle.

There have been different attempts in the literature to assess if such correlation is significant.
Some analyses have followed a cross-sectional approach using a sample of countries for which
average values of investment and saving ratios in a given time period are analysed. However,

most of the analyses have applied time series techniques to assess the extent of the correlation.
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In this regard, since both investment and saving ratios are found to be non-stationary processes
the presence of correlation requires that cointegration has to be met. Cointegration has been
tested from either country-by-country framework or panel data framework.

We contribute to this literature through the analysis of the Feldstein-Horioka Puzzle allowing
for one structural break. The selection of this topic for our analysis is not only due to the
great attention that has received in recent times, but because there is empirical and theoretical
evidence that this correlation might change along time. For instance, Coakley, Kulasi and Smith
(1998) note that the coefficient on saving has shown some tendency to decline over recent years
for developed countries. Jansen (2000) finds that long-run correlation decreases smoothly over
time, which is consistent with the notion of increased international capital mobility. Banerjee and
Zanghieri (2003) analyse fourteen European countries and reporting that long run association
drops quickly starting from the mid-80, when most European countries fully liberalised their
external accounts. Finally, Westerlund (2004) illustrates the LM cointegration test statistic with
one structural break using the Feldstein-Horioka puzzle concluding that the null hypothesis of
cointegration cannot be rejected once the presence of structural breaks is taken into account.

In this section we are going to investigate the Feldstein-Horioka puzzle through the application
of Pedroni cointegration statistics and the modifications that have been suggested in the paper.
To the best of our knowledge, this is the first time that the null of no cointegration is tested
including one structural break in the panel data set. The data set is the one in Banerjee and
Zanghieri (2003) and is taken from the European Commision’s Annual Macroeocomic Database
of the Directorate General for Economic and Financial Affairs (AMECO), that combines data
obtained from national sources as well as from the IMF and OECD. The data measured at an
annual frequency covers from 1960 to 2002 for fourteen countries: Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden and
United Kingdom.

Figure 1 presents pictures of the investment and saving shares for four countries. As can be
seen, there is evidence that the relationship between investment and saving might has changed
the pattern along the time period. Table 18 reports the results on the Pedroni (2004) statistic
specifying a constant as the deterministic component. All computations have been carried out
using GAUSS. The order of the autoregressive correction that is required in (7) is selected with
the t-sig criterion in Ng and Perron (1995) with k. = 7 lags for the maximum order. Different
conclusions are reached depending on the statistic. On the one hand, when using the Z; (5\)
statistic the null hypothesis of no cointegration cannot be rejected neither at the 5% not at
the 10% level of significance. On the other hand, the Z, (;\> statistic rejects the null at the
5% level. However, these conclusions might not be valid if there is some dependence amongst
individuals. The computation of Pedroni statistics assumes cross-section independence across
i, an assumption that is difficult to be hold in empirical applications. Banerjee, Marcellino
and Osbat (2004, 2005) show that one of the crucial assumption underlying all the tests of

panel cointegration, namely the absence of cointegration across the units of the sample is likely
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to be violated in many macroeconomic time series. In fact, Banerjee and Zanghieri (2003)
report that there is cross-section cointegration between the individuals of the panel sets that
we are considering here. In order to take into account cross-section dependence when carrying
out the cointegration analysis, we have decided to compute the bootstrap distribution of the
statistics. Some cautions about the method that is used to bootstrap cointegration relationships
are required, since not all available procedures lead to consistent estimates. In this regard,
we have followed Phillips (2001), Park (2002), and Chang, Park and Song (2002), and we have
decided to use sieve bootstrap. Our proposal is a modified version of the sieve bootstrap described

in the papers mentioned above. Specifically, it consist of the following steps:

e Step 1: Fit one of the regressions in (1) to (6) by OLS to obtain &, (5\2), and define
. / < .
Wi = (ﬂi,t ()\z) ,v§7t) where ; 4 ()\Z) = Aé; 4 ()\i) and v, = Ay ,.

e Step 2: Apply the sieve estimation method to the following VAR(q):
Wiy = Prwi 1+ + Pgw;p_gq + €54,

where the order of the VAR(q) is approximated using the BIC criterion with the maximum
order given by qumax = T2, Obtain Ef,t by resampling the centered fitted residuals &;; —

T . .
4 31 &it, and construct the bootstrap samples w;, recursively using
* * * *
Wiy =Prw; g+ A+ Pqwy T E s
given the initial values w}, = w;; for t =0,...,1—gq.

~ ! R ’
e Step 3: Define w;, = (u;‘t (/\Z) ,vz’t) analogously as w;; = (ui,t ()\i) ,vg’t> . Obtain
the bootstrap samples e}, (;\l) and y}j by integrating u; , (5\Z> and v;, respectively, i.e.

et (M) = eio (M) + Sjoruiy (M) and l = ol + 5y v with e (A) = &5 (A0
and y} =y} o. Then, generate the bootstrap samples for y from

yE = Fi (0 +ylioie+ iy (M) (14)
where the definition of f; (¢) and §;, depends on the model under consideration.

e Step 4: Estimate (14) by OLS for each individual assuming unknown break point position
and compute the panel cointegration statistics. In this paper we have considered 2,000

bootstrap replications.

Now, using the bootstrap critical values the null hypothesis of no cointegration cannot be
rejected by any of the statistics. Therefore, we should conclude that there is no correlation
between investment and saving shares, which has been interpreted in the literature as evidence

of capital mobility. However, pictures given above indicate that this relationship might has
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experienced the effect of structural changes. If this is the case, we have shown that the power
of Pedroni panel cointegration statistics can be reduced if the structural breaks do not occur
at the beginning of the time period. In order to investigate the sensitivity of the cointegration
analysis to the presence of structural breaks we have estimated the model that includes a level
shift (Model 1), and the model that includes both level and cointegrating vector shift (Model 4).
Table 18 presents the values of the statistics for these models. When Model 1 is estimated the
null hypothesis of no cointegration is rejected by both statistics using the Normal distribution.
This conclusion is robust to the presence of cross-section dependence, since the bootstrap critical
values lead to reject the null hypothesis of no cointegration at least at the 10% level of significance.
The situation is not so clear when estimating Model 4. Now the null hypothesis is still rejected
by both statistics when assuming cross-section independence, but this conclusion does not hold

when comparing the 7 (5\) statistic with its bootstrap distribution.

7 Conclusions

This paper has shown that inference based on parametric Pedroni panel cointegration test sta-
tistics can be affected by the presence of structural breaks. Monte Carlo evidence indicates
that in some situations the power of the tests drops as the magnitude of the structural break
increases. Specifically, when the structural break affects either the slope of the time trend or
the cointegrating vector the power approaches zero as T, N and the magnitude of the break
increases. Notwithstanding, the power of the standard parametric Pedroni panel cointegration
statistics is not so much affected when the structural break only shifts the level —we require a
large magnitude of structural breaks located at the end of the time period to reduce the power
of the statistics.

These features have motivated our proposal, and have led us to design statistical procedures
to account for the presence of structural breaks when testing for cointegration. Six different
specifications have been introduced depending on the effect of structural breaks on the long-run
relationship. Finite sample and asymptotic moments have been computed that allow defining
panel cointegration statistics for the specifications considered.

The cross-section dependence is addressed in the paper in two different ways. First, we
assume an approximate common factor structure to model the cross-section dependence. We
derive the limiting distributions of statistics in two situations of interest, i.e. (i) for the case
of no structural break, and (ii) when there are level and slope shifts. The performance of the
approach is investigated through Monte Carlo simulations, from which we conclude that the
statistics show good performance once structural breaks are accounted for. The paper illustrates
the application of the statistics analysing the Feldstein-Horioka puzzle. Since the assumption of
cross-section independence is hardly satisfied in practice, we have approximated the empirical
distribution of the statistics using sieve bootstrap. This defines the second approach to cross-

section dependence matter. The main conclusion is that after structural breaks are considered
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we find evidence that point to cointegration between investment and saving shares.
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A Mathematical Appendix

A.1 Pedroni Test Statistic with constant

For sake of simplicity let us first assume that there is no structural breaks affecting the model
and there is no deterministic elements in the model —note that the presence of a constant term
does not change the results since it disappears when taking first differences. Let us assume the

model given by (8) and (9). Alternatively, the model can be expressed as:
Yit = T30, + Fimi 4 €t

As can be seen, the model assumes that residuals from the static regression follows a factor
structure as defined in Bai and Ng (2004). Note that if we introduce (12) in (13) we obtain

Zig = Zig+ fimi— fiti (15)

—1 rs
= Zi,t—UtH Wi—ftdia

where v, = f; — fiH and d; = #; — H Vr;. The computation of the partial sum processes of
(15) gives:

t t t t
T_1/2 Z Zi,j = T_1/2 Z Zi,j — T_1/2 Z UjH_lﬂ'i — T_1/2 Z fjdi- (16)
Jj=2 j=2 j=2 Jj=2

Let us analyse each element of (16) separately. The left-hand side of (16) is equal to

t t
TNz = T2 MAG (17)
j=2

Jj=2

t t
= T7V2Y A& ; -T2 [PAE],
j=2 j=2

where [PiAéi]j denotes the j-th element of the matrix P;A¢;, and P; = I7_1 — M;. The first
element on the right of (17) is equal to

t
TN Ae =T %6, — T 1?6, =T7"%6,,+ 0, (1),

=2

so that by the invariance principle

t
T-1/? ZAéi’j = oW (7‘) .

Jj=2
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The second element on the right hand of (17) is

t
T71/2 Z [PzAélb = T71/2 (xiyt — 331‘,1)/ (A{L';Al'z)il A‘%;Aél
=2
Note that (Az/Az;) " Azl Ag; = (T‘le;Axi)_l (T~ Az;AE;) = oy (1), since (T AziAx;) —P
QAqz;Az;, the variance and covariance matrix of Az}Az;, and Tfle;Aéi — 0 since these ele-
ments are orthogonal by definition. On the other hand, 7'/, ; = Q;é%Wk (r)and T-22; ; —

0 by assumption. These derivations lead us to

t
T_1/2 Z gi,j = T_I/Qéiﬂf + 0p (1) ,

j=2

since T2z, ¢ (Azi Ax;) ™" Az Aé; = 0, (1). The same result can be achieved for 71/2 Z;:z Zi s
i.e.
t
T71/2 Z Zij = T71/2€i7t + Op (1) .
j=2
This indicates that the presence of stochastic regressors does not have any effect on the partial

sum processes. Regarding the term involving {v;} we see from Eq. (A.3) in Bai and Ng (2004)
that

t
T2 v =0, (Cyr),
j=2

where C'yr = min {N‘1/2,T_1/2}. Moreover and as shown in Bai and Ng (2004), the term
d; = O, (Cyy) and T—1/2 S, fi =0, (1), so that

=2

t t
TN "5, =T 2,4+ 0, (Cyp) -
=2 =2
From all these results it follows that
2
L (W (r)? - 1)

v (Rwera)”™

that is, the limiting distribution is the same derived in Bai and Ng (2004) for the constant case
—see Bai and Ng (2004) for the proof. The same result is found for the ADF test. This implies
that the presence of stochastic regressors does not affect the limiting distribution of the statistic.

Let us now deal with the unit root hypothesis testing when there is r = 1 common factor. The
first difference of the model defines an idempotent matrix M; that depends on the individual. At

first sight this goes against the definition of common factor since we assume that this element
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is common to all individuals and, hence, it cannot depend on ¢. Notwithstanding, it is shown

below that the elements that depend on % vanish asymptotically. Thus, note that

t
=2

S

zt: M;AF,
j=2
= = (g — 1) (AZ)Az) " AZAF, (18)
since we define F; = 0. Note that the first element of (18) is
F,=H(F,— F1)+V,,
since AFt =H AF;, +v; and V;, = Zz':z v;. The detrended estimated factor will remove F7:
Ff=H F'+ V7,
which it can be shown that
T7V2E} = H T7V2F 4+ 0, (Cx})

since T~Y/2V2 = O, (Cy}) —see Bai and Ng (2004), Lemma B.2. The second term in (18) is
T2 (2 — i) (AméAxi)_l AZ)AF = o, (1), since T~'Axz}Ax; converges to the matrix of
covariance of Az; and T~'Az'AF = o, (1) by assumption. Since
TP = HWi(r)
T 1
TS LY, - HEol /0 W ()2 dr
t=2

T 1
7'y B AF, = H? ai/o W (r)dw (r),

t=2

the DF statistic converges to

T, B AF
DF? = 2= I AT (19)

(2L, (7)) -
Jo W (r)dw (r)

(fol wg (7‘)2 dr) v

where W¢ (r) denotes the detrended Brownian motion and 52, % H? 02. The ADF statistic has

w

the same limiting distribution provided that the order of the autoregressive correction is selected
such that k — oo and k*/ min [N, T] — 0.
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The limiting distribution of the test statistic that is used when there are more than one
common factor (r > 1) is the same as the one derived in Bai and Ng (2004) for the constant case.

We address the reader to their paper for the proof of this part of the Theorem.

A.2 Pedroni Test Statistic with constant term and level shifts

The specification that includes level shifts does not affect the limiting distribution of the statistic,
that is, we obtain the same limiting distribution derived above for the constant case. Let us
consider the simplest situation in which there is only one level shift, although the derivations

can be extended to multiple level shifts. The deterministic function is given by
fi(t) = p; +0;DU; 4,
which implies that Af; (t) = 6;D (T}), and Azf, = (D (Ty),, Az},). Note that

—1 —1 /
T T Ami’Tva+1

T Az Az = . A

7

where in the limit all elements but T-'Az.Az; converges to zero. On the other hand, we
can distinguish two elements of T-1Az% Aé;. The first element is given by T-1D (Tlf)/ Aé; =
T-1/2 T_l/QAéZ-’TgH), where T_l/QAéi’Tbi+1 = odW ();). The second set of elements is given
by T~'Az/Aé; that converges to zero since we have assumed independency. Regarding the

partial sum process of Axﬁt
t
7-1/2 ZAQCZJ' _ [T‘l/QDUi,t T2 () — 2i0)' ]
j=2

The extra rescaling factor 7-1/2 that is not used when obtaining the limit of 7D (T, lf)/ A
implies that 7—1/2 Zz':z Az, (Axf’Aac‘{l)_l Az Aé; = o, (1), from which is evident that the
limit distribution of the statistic ADFY (i) is not affected by the presence of level shifts, so
that ADF¥ (i) converges to the same limiting distribution as in the constant case without level
shifts provided that the order of the autoregressive correction is selected such that & — oo and
k3/min [N, T] — 0.

Regarding the situation in which there is only one common factor, r = 1, and we pro-
ceed to test the unit root hypothesis, we only have to analyse the order of magnitude of
T-1/2 Zﬁ:g {PiAFN'L, where P; = It — M; = Ax?¢ (Axf’Axf)_l Amf’AF. As for the idiosyn-
cratic disturbance term analysis, 7' Az%’ AF involves two different elements. First, 7-1D (Tl’f)/ AF =
TflAFTbH =0, (T’1/2). Second, TflegAF = 0p (1) by assumption. Therefore, using these
elements and the results derived above we can see that T7—1/2 2222 [HAF} = 0,(1), so that

both the presence of level shifts and stochastic regressors does not affect the limiting distribution
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of the ADF P‘i’ statistic, which is the same as the one derived for the constant case without level
shifts.
This feature is also found for the statistic that is used when r > 1, which has the same

limiting distribution as for the constant case in Bai and Ng (2004).

A.3 Pedroni Test Statistic with time trend

The generalisation that includes a time trend can be carried out as well. In this case the model
(8) is replaced by
Yir = pu; + Byt + 2 B + wig

Note that as before we are not dealing with the structural break case since we are defining the
benchmark limiting distributions. Contrary to previous specification, taking first differences does
not remove the deterministic elements, since now the trend becomes a constant. This is a relevant
feature since the limiting distribution of the ADF-type statistic varies. However, the asymptotic
distribution of the statistic is the same as the one derived in Bai and Ng (2004) for the trend
case. The proof follows similar steps above. Now the first difference of regressors defines the
following idempotent matrix
-1

M; = Ip_; — Az? (Axf’Axf) Az,
where the Az{ matrix is defined by the row vectors (1, Azg’t)/. Note that as before the first
element of (17) converges to

t
T_1/2ZAéi,j = O'W('f‘) .
j=2
The limiting expression of the second element in (17) has to be derived in several steps. First, note
that T~ Az Azd converges to variance and covariance matrix of Az¢, so that all these elements
are O, (1). The first element of the vector T~! Az A¢; is given by T~1/2 (T‘1/2 ZtT:l Aém) =
T-1/2 (T_1/2 (&0 — éi,l)), where T—1/2 (&7 —€i,1) = oW (1) since T_l/zém — 0. Note that
the extra rescaling term 7~/2 would be used below. The rest of the elements in 7~ ' Az Aé; in-
volve cross-products among the first difference of the stochastic regressors and Aé; that converges
to zero since we have assumed independency. Therefore,
ET-1/? (Tfl/2 (& — éi,l)) +0, (1)

Ax¥ Aeh) T Az e, =
(Azf' Axf) x; Aé (-D7'CE) T~Y/2 (112 (éi,T—éi71))+op(1)]

where F = (A — BD_lC)_1 and A=1,B=T"1/Az;,C = B and D = T~*Az,Az; denote the

elements of the partitioned matrix T 'Az¥Az¢, with ¢ = (1,...,1)". The partial sum process
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of Az, is

t
T71/2 Z A.Z‘ij = |:T71/2t T71/2 (xi,t - 1‘,’71)/] 5
j=2
so that

t
T3 Aat ) (Ae Act) T Aaf' A = %E (T*l/2 (Eir — éi,l)) +o, (1),
=2

. — / .
since T~ (z;+ — 2:1)" = 0, (1). Moreover, the matrix E can be expressed as

(A-BD'C)™" = A'4+A'B(D-CA'B) cA!
1+B(D-BB) 'B.

Note that B =T~1/Az; —, 0 so that (A — BD’IC’)71 =1+ o0, (1). Therefore,

t

D S L (I CYE) B
j=2

= roW(l).

From Bai and Ng (2004), the terms 7~1/2 HZE:Q ij = 0, (C;,lT), ldi] = O, (C';,}) and
T-1/2 HZ§:2 fj H = Op (1). These derivations lead us to

t
t
T2 Zizg = T_l/zéz',t - TT_I/%ZET + Op (CJ?T)
j=2
= o(Wr)—rWQ)=0oV(r).

The DF statistic is -
T30 Cir—108iy

DF? (i) = Ty
e /2
9o =T
(U2T 2> =2 e?,t—l)

Note that the following identity holds

€

’r &, 1 2
LY b Aég;
o7 ~ 2T 2TZ( Cit) "

T
—1 ~ ~
T E €¢,t71A€i,t =
t=2

P
which it follows that 7! 23:2 €it-10éir —p —02/2 and T2 23:2 &, = o’ fol V (r)? dr

which shows that T-1¢2, = 02V (1) = 0, T7'¢?; = 0 and T~'Y,_, (A&;,)* —, o2, from
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—see Bai and Ng (2004), Lemma G.4. Using these elements it is straightforward to see that

DFY (i) = —% </01 v (r)? dr) 71/2,

where V (r) = W (r) —r W (1), i.e. the limiting distribution is the same derived in Bai and Ng
(2004) for the trend case. Although the proof is more involved, the same result is achieved for
the ADF test. As before, this implies that the presence of stochastic regressors does not affect
the limiting distribution of the statistic. Note that this result is also achieved when there are
level shifts in the model, since the impulse dummies do not affect the limiting distribution of the
ADFT (i) statistic.

Let us now deal with the unit root hypothesis testing when there is » = 1 common factor.
As before,

¢ ¢
S hi=E-Y [par] .
= = J
We can distinguish two different elements in T-'Az’ AF. The first one is 7! Zthz AF; =
H T~ (Fr — Fy) = O, (T~/?). The second set of elements is 7' Az/AF = 0, (1) by assump-
tion. Following similar steps above, it is cumbersome but straightforward to see that

t
_ 1 t
T 1/2 E fj e
=2

H T 1/? (Ft —F—(Fp—F)) T) + 0, (Cyh)

HT'?F+0,(CyT),

where F! denotes the detrended common factor, which is obtained as the residual of a regression

on a constant and a time trend. Therefore, DF statistic given by (19) converges to

Jo Wit (r) dW (r)
1/

(fol W (r)? dr)

d
DFy =

27

where, as before, W< (r) denotes the detrended Brownian motion and &2 % H? ¢2. The
ADF statistic has the same limiting distribution provided that the order of the autoregressive

correction is selected such that k — oo and k?/min [N, T] — 0.

A.4 Pedroni Test Statistic with time trend and slope shift(s)

The model is given by the following deterministic specification

fi(t) = p; + Bt +0,DU; 4 + v, DT},

29



which implies that Af; (t) = 8, + 0;D (Tbi)t +~,DU, + and Ax;-{t = (1, D (Tg)t , DU, 4, A$;7t). In
order to simplify the steps of the proof, we deal with the equivalent specification that does not
include the impulse dummy, 7.e. Axﬁ ;= (1, DUy, Axg’t). This simplifies derivations, although it
does not imply loss of generality. Moreover, note that the subspace spanned by (1, DU, 4, Amgvt)
is equivalent to the one spanned by (DUi{t,DUEhAm’M) where DU}, = 1 for t < Ty and 0
otherwise, and DUEt =1 for ¢ > T}, and 0 otherwise. This redefinition makes DUil)t and DUﬁt

to be orthogonal. Note that as before the first element of (17) converges to

t
T_1/2 Z Aéi’j = oW (’F) .

=2

The limiting expression of the second element in (17) has to be derived in several steps. First, note
that T~ Az Axd converges to variance and covariance matrix of Az¢, so that all these elements
are O, (1). The first element of the vector T~'Azd A¢; is given by T—1/2 (T*I/2 PO Aém) =
T2 (T=Y2 (&; 1, — €;1)), where T~Y2 (&1, — &.1) = oW ()) since T~/2&;; — 0. The sec-
ond element is 7—1/2 (T‘l/2 ZtT:TbH Aéi,t> =T-1/2 (T‘l/2 (&1 — éi7Tb))5 where T-1/2 (&1 —éim,) =
oW (1) — oW ()). Note that as before the extra rescaling term 7~'/2 would be used below. Fi-
nally, the third set of elements in the product is T~ Az} A¢; that converges to zero since we have

assumed independency. Therefore,

~ ~ _ ~ ~ /!
(Axd’Ax‘.i)_l Az AG; = [ ET-V2(T~YV2 (& r, — &), T V(&1 —&1,)) +0p(1) 1

(=D~'CE) T=Y2 (T2 (&1, — &), T2 (@0 —éim,)) +op (1)
where E = (A— BD-'C)™" and A = diag (\,1—\), B = T~ [DU}, DU?]' Az;,C = B’ and
D = T~'Az!Az; denote the elements of the partitioned matrix T-'Az¥Az¢. Moreover, fol-

lowing the steps given above (A — BD*IC')f1 = A" + 0, (1), since B —, 0. The partial sum

process of Az, for t < T, is
¢
T_l/2 Z AS(}ZJ = {T_l/Qt 0 T_l/2 (.’L'Z'}t - .’L‘i,l),:| y
=
while for ¢t > Ty is

t
TN Aaly = [T, TR =T T (g — )]
=2
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so that for t < Ty
_ d 1o ara~ t1
T 1/2ZA30 (Azd'Azd) " Axf'Ae; = T (T 1/2(61Tb_611))+0p(]-)
T

= XO’W()\),

since Tt (z;4 — xiyl)/ = 0, (1). Therefore, for t < T

t
— =~ - o t e N
T 1/222’1‘,;‘ = T Y%, - TT Y2e.1+ 0, (Cyr)
r
= o (W (r) — XW()\)> )
since from Bai and Ng (2004) the terms T—1/2 HZ] QUJH = CNT)v ||d || = (CI?I%‘) and
T-1/2 HZ -, fg H - . Note that we can define b; = r/X so that 0 < b; < 1, which in turn

implies that

t

71/2251,4' = VAW (by) — abi VAW (1)

i=2

= oVA(W (b)) =ty W (1)) = oVAV (by),

given the properties of Brownian motions. On the other hand, for ¢t > T}

t
_ Ty 1
T_1/2 Z AJ??,] (A.Z‘Zd/A],‘g) ! A$;i/A‘él = T{) b\ ( —1/2 (61 Ty, — éi71)>
t—1T, 1
T 1-x (T Y2 (& — ei,Tb)> +0p (1)

= o (W IR or - w o)

so that

t
T*l/QZ,ém = T7Y%, - T T2 7+ 0, (CyT)

As before, we can define bo = (r — A) /(1 — A) so that 0 < ba < 1, which in turn implies that

TN 5 = oV T= MW (b2) — oW (1)) = 0v/T = AV (b2) .
j=2
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Using similar developments as in the previous proof, the numerator of the DF statistic converges

to T—1 Zthz €it—108; 1 —p —0?/2, while the denominator is

T Ty+1 T
—2 -2 _ 2 -2 —2 -2
T E €1 = T E €1+ T E € -1
=2 t=2 t=Ty+2

= g2 <)\2 /01V(b1)2db1+(1—A)2/01V(b2)2db2>,

with V (b1) and V (b2) two independent Brownian bridges. Therefore, the limiting distribution
of the DF statistic is

) 1 1 1 -1/2
DF7 (i) = —5 </\2/ V (b1)*dby + (1 — /\)2/ V(b2)2db2>
0 0
It can be shown that this limiting distribution is symmetric around A = 0.5 since in this case we
can interchange A\* and (1 — )\)2 and obtain the same distribution. Furthermore, this result can
be extended to multiple slope shifts, since it is straightforward to see that T2 Zthg é?’tfl can

be split in the different subperiods that define the [ multiple structural changes, so that

—1/2
+1 /

1
DFg(i):sf% Z(Ajf/\j_l)Q/O V (b;)? dr ,

Jj=1

where [ denotes the number of structural breaks, V' (b;) = W (b;)—b;W (1), with b; = (r — X\;_1) /
so that 0 < b; < 1, and T]l?_1 <t< T]l? with \; = T;’/T, Ao = 0 and Ajy1 = 1. As before, the
same limiting distribution is found for the ADF statistic.

The limiting distribution of the ADF statistic when there is one common factor is affected by
the presence of slope shifts. We can distinguish three different elements in T‘lAaﬁf’ AF. As in
the case of the time trend, the first element is 7! Zf:z AF,=HT *(Fr—F) =0, (T-1/2).
The second element is given by 7! Z;Tb_ﬂ AF, = H T7' (Fr — Fr,) = O, (T~%/?). Finally,
the third set of elements is T~ 'Az}AF = o, (1) by assumption. Following similar steps as in the
case of the time trend we can see that

t

t
_ - _ t—T,
TN = HTl/Q(Ft—Fl—(FT—FI)T b
j=2

(Fr — Fr,) 1(t> Tb)) +0, (Cyr
= HT'Y?F'+0,(Cy}),

where 1 (¢ > T3) is an indicator function. Now F{ is obtained as the residual of a regression on a

constant, a time trend and the dummy variable DT}y = (t — T) 1 (¢t > Tp). Using these elements
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it is straightforward to see that the DF statistic given by (19) converges to

. Jy W (r, A) dW (r, \)

d
e (fol Wi (r, )\)2 dr) Ve

where, as before, W< (r,\) denotes the detrended Brownian motion, \ is the break fraction
parameter and 62 % H? 2. Note that this limiting distribution has been considered in Perron
(1989) for the specification denoted as Model C.
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Table 1: Empirical power of Pedroni cointegration statistic. The structural change affects the

deterministic component

T =100 T = 250 T =100 T =250
Ai (0i,7,) N=20 N=40 N=20 N=40| N=20; N =40 =20; N =40
025 (0,0) 1 1 1 1 1 1 1 1
(1,0) 1 1 1 1 1 1 1 1
(3,0) 1 1 1 1 1 1 1 1
(5,0) 1 1 1 1 1 1 1 1
(10,0) 1 1 1 1 0.49 0.88 1 1
05  (1,0) 1 1 1 1 1 1 1 1
(3,0) 1 1 1 1 1 1 1 1
(5,0) 1 1 1 1 0.99 1 1 1
(10,0) 0.94 1 1 1 0.08 0.09 0.90 0.99
0.75  (1,0) 1 1 1 1 1 1 1 1
(3,0) 1 1 1 1 1 1 1 1
(5,0) 1 1 1 1 0.99 1 1 1
(10,0) 0.83 0.98 1 1 0.01 0.00 0.72 0.94
0.25 (0,0) 1 1 1 1 1 1 1 1
(3,0.5) 1 1 1 1 1 1 1 1
(3,0.7) 1 1 1 1 1 1 1 1
(3,1) 1 1 0.99 1 1 1 0.99 1
0.5 (3,0.5) 0.65 0.89 0.01 0 0.02 0 0 0
(3,0.7) 0.02 0.01 0 0 0 0 0 0
(3,1) 0 0 0 0 0 0 0 0
0.75  (3,0.5) 0.34 0.54 0 0 0 0 0 0
(3,0.7) 0 0 0 0 0 0 0 0
(3,1) 0 0 0 0 0 0 0 0

DGP: yr = p; + 0, DU; ¢ + &t + 7, DTy + ciie + zig; Ay = €ip and 2i¢ = p;2i1-1 + ;¢ With

Ci,t =

level and 1,000 replications are carried out.
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Table 2: Empirical power of Pedroni cointegration statistic. The structural change affects both
the deterministic component and the cointegrating vector

pi =0 p; =05
N (T =100) | N (I'=250) | N (T'=100) | N (T = 250)
/\i (9“ ’}/i) (Oti71, Oéi72) 20 40 20 40 20 40 20 40
0.25 (0,0) (1,0) 1 1 1 1 1 1 1 1
(0,0) (1,2) 1 1 1 1 1 1 1 1
(0,0) (1,3) 1 1 1 1 1 1 1 1
(0,0) (1,4) 1 1 1 1 1 1 1 1
(0,0) (1,5) 1 1 1 1 1099 1 1 1
(0,0) (1,10) 099 1 1 1 097 1 1 1
0.5  (0,0) (1,2) 1 1 1 1 |0.98 1 1 1
(0,0) (1,3) 098 1 099 1 |050 077 | 0.76 0.94
(0,0) (1,4 071 092 | 086 099 |027 042 | 042 0.67
(0,0) (1,5) 0.45 0.68 | 0.62 0.853 | 0.17 0.31 0.32  0.50
(0,0) (1,10) 017 030 | 0.26 0.406 | 0.13 0.8 | 0.19 0.1
0.75  (0,0) (1,2) 1 1 1 1 0.83 097 0.96 1
(0,0) (1,3) 076 092 | 086 098 |011 011 | 020 0.28
(0,0) (1,4) 026 032 | 033 048 |0.02 0.01 0.04 0.03
(0,0) (1,5) 009 0.0 |0.12 0.13 |00l 0.01 | 0.02 0.01
(0,0) (1,10) 001 0 |001 0 [001 0O 001 0
0.25 (3,0) (1,2) 1 1 1 1 1 1 1 1
(3,0) (1,3) 1 1 1 1 1099 1 1 1
(3,0) (1,4) 1 1 1 1 1099 1 1 1
(3,0) (1,5) 1 1 1 1 |0.98 1 1 1
(3,0) (1,10) 098 1 1 1 097 1 099 1
0.5  (3,0) (1,2) 1 1 1 1 097 1 1 1
(3,0) (1,3) 097 1 1 1 |051 074 | 072 092
(3,0) (1,4) 0.71 092 | 084 098 | 023 044 | 043  0.69
(3,0) (1,5) 0.44 066 | 063 0.88 | 0.18 0.29 0.29  0.50
(3,0) (1,10)  0.18 0.28 [0.26 042 |[0.12 018 | 0.19 0.32
0.75  (3,0) (1,2) 1 1 1 1 077 095 | 096 1
(3,0) (1,3) 0.74 091 | 086 0.98 | 0.11 0.10 0.18 0.26
(3,0) (1,4) 0.22 035 | 032 047 | 0.03 0.01 0.04  0.03
(3,0) (1,5)  0.09 0.09 |010 0.14 |001 0.0 | 0.02 0.01
(3,0) (1,100 001 0 |00l 001 | 0 0 001 0

DGP: yy = p; +0;DU;  + €t + Vi DT + i + 2its Ax;y =€ip and 21 = p;2i—1 + Vi
with ¢; , = (i4vig) ~ did N(0,I3), p; = 1, &, = 0.3 and a;; = a;, for t < Tp,,; and
o = oy o for t > Ty, ;. The nominal size is set at the 5% level and 1,000 replications are
carried out.
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Table 3: Empirical power of Pedroni cointegration statistic. The structural change affects both
the deterministic component and the cointegrating vector

pi=0 p =05
N (T =100) | N (I'=250) | N (T'=100) | N (T = 250)
)\i (9“ ’}/i) (Oéi)l, Ozi72) 20 40 20 40 20 40 20 40
0.25 (3,0.5) (1,2) 1 1 1 I (099 1 1 1
(3,0.5) (1,3) 1 1 1 1 1099 1 098 1
(3,0.5) (1,4) 1 1 1 1 0.96 1 1095 1
(3,0.5) (1,5) 098 1 098 1 [092 1 |095 1
(3,0.5) (1,10) 0.85 0.98 | 0.95 1 0.88 0.98 0.93 1
05 (3,0.5) (1,2) 043 072 | 0 0 |00l 001 0 0
(3,0.5) (1,3) 036 053 [ 001 0 |005 0.04 0 0
(3,0.5) (1,4) 0.28 041 | 0.03 0.01 |0.08 0.09 0.01 0
(3,0.5) (1,5) 0.23 030 | 005 0.04 |0.08 0.10 0.01  0.01
(3,05)  (1,10) 0.4 021 |0.08 0.13 |0.12 0.19 | 0.09 0.10
0.75  (3,0.5) (1,2) 0.71  0.89 | 0.04 0.02 |0.04 0.02 0 0
(3,0.5) (1,3) 0.52 068 | 0.11 0.08 | 0.08 0.08 0.01 0
(3,0.5) (1,4 028 034 |009 008 | 008 005 |00l 0
(3,0.5) (1,5) 0.15 0.16 | 0.06 0.04 | 0.06 0.05 0.01 0.01
(3,0.5) (1,10) 0.04 0.03 | 003 0.01 |0.05 0.03 0.03 0.01

(2
with ¢; , = (Ei,t,’l}i)t)/ ~id N(0,12), p; = 1, §; = 0.3 and oy = o1 for t < Tp,; and
o = oy for t > Tp, ;. The nominal size is set at the 5% level and 1,000 replications are
carried out.

DGP: yy = p; +0;DU;  + €t + 'yl-DT»’ft fai i+ 2y Azip =i and 2z = p;2i -1 + Vig
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Table 5: Response surfaces for (k = 0)

Model 1 Model 2
ZﬁNT ()‘) ZiNT ()‘) ZpNT ()‘) ZiNT (A>
(Ch Uy O, U, Ch Uy O, U,
Bo,o 0.39 60.648 -3.127 -19.196 0.339 67.8 -3.684 -26.679
BO,l 5.064 -1226.67 -8.833 121.763 6.104 -1885.589  -9.439 144.172
3072 179.334  -2571.386 16698.79  28.308  3575.522
3073 196196.7  -1990.403  58983.27 1029.447 -72734.42
31,0 -0.005 16.530 -0.429 -6.238 0.003 17.645 -0.341 -5.625
B, 1  -1325.654 124.468 0.002  -1543.665 180.54
31’2 34.590 42679.5 -60.807 -1312.53 39.629 53149.58 -51.393 -4444.318
3173 -532567.3 -663605.3 48906.87
32’0 -0.362 0.016 0.112 -0.39 0.01 0.067
By -0.236 3.084 6.850  -0.228  1.208
By 225.078  5.935  -51.736 4.325
B3
Model 3 Model 4
Zinr (V) Zivr (V) Zier (V) Zive (V)
0, vy O, Uy S Uy 02 Uy
50,0 0.359 91.108 -3.971 -31.767 0.43 60.884 -3.221 -19.845
3071 7.472  -3645.426 -8.979 442.209 3.046 318.553
[30’2 59.681  75512.06 -49.326 -10829.74 102.433  -87968.11 -110.06 -16385.62
By 5 777252.4 164392.7 1874059 307418.8
31,0 14.514 -0.314 -5.334 35.776 -0.628 -10.047
3171 0.852  -1361.209 -2.06 124.516 3.307 -3225.963  -2.236 219.694
3172 42.03  47092.270 -1139.025 121345.6 -1980.416
Bis -562391.3 -1725484
3270 -0.216 0.008 0.039 0.001 -1.033 0.023 0.136
32’1 0.038 5.521 -0.165 -0.188 12.356
3272 -3.393 -128.867 11.955 797.530 -3.325 -290.951
Ba3
Model 5 Model 6
Zpnr (/\) Zir (A) Zprr (A) Ztr (A)
©1 Uy (C]} Uy CH Uy (C]} Uy
Boo 0.364 74.286 -3.78 -27.851 0.366 87.342 -3.968 -30.483
Bo,l 6.564  -2146.293 -6.974 242.942 10.855 -2699.1 -8.23 191.322
3072 20055.64 -266.021 28358.7  -83.457  4931.966
Bos 42063.93  7384.621 ~123591.5
31,0 0.008 34.679 -0.544 -9.615 0.007 33.827 -0.505 -9.373
Bl’l 2.617  -3212.648 -0.868 322.608 3.982 -3213.574  -1.767 357.392
3172 41.638  115262.4 -43.717 -8330.38 118816.1 -9875.101
31’3 -1488387 113929.5 -1614095 131909.7
3270 -1.053 0.018 0.097 -0.888 0.014 0.072
Byy -0.161  24.408 -0.306 11.106 -0.325 20189 9.476
@2’2 10.166 —27336837 15.916 730.025 -5.392 -222.194

Bas




Table 6: Response surfaces for (k = 2)

Model 1 Model 2
ZﬁNT ()‘) ZfNT (A) ZﬁNT ()‘) ZENT (A>
@1 \Ifl @2 \Ifg @1 \111 @2 \IJQ
Boo 0415 62.309 -3.213 -19.672 0.336 69.482 23735 -26.724
Box 0967  -104.685  4.102 91.646 2.873 1.953 -42.725
Boo  85.4T8 -428.601  -6704.974 58.52  -18212.26 -286.032  421.283
Bos 6757.605  103243.4 275990.6  5567.945
Bio -0.018 15.196 -0.414 -5.961 0.005 15.915 -0.334 -5.411
By L1579 -172.849 4.4 17.452 1.368  -236.01 6.006 56.212
B -26.560  438.162 -30.879 -59.458  -245.555
Bis 612.861
Byo  0.002 -0.147 0.015 0.08 -0.001  -0.195 0.010 0.05
Byy  -0.085 -9.382 4.173 -0.138 0.614
By 2239 -71.787
Bas
Model 3 Model 4
Zir (M) Zive (V) Zinr (V) Zive (V)
0, U, 0, W, 0, U, 0, W,
Boo  0.353 89.831 -4.011  -31.141 0.429 66.591 -3.235  -19.246
Bon 6456  -173.345  5.695 25.550 1.626  -1025.367 66.531
Boa -6455.393  -543.11  -4224.155 100.548  30787.53  -76.879  -6527.479
Bos 8627.961  84886.75 120101.1
Bio  0.006 14.775 -0.317 -5.476 -0.002  29.482 -0.624 -9.880
Bip  -1.009  -274.989 5.92 63.485 2.983 438987  13.891  135.547
Bro 81566 -53.692  -245.299 -45.199  -24349.6  -374.707 -2851.772
Bys -631.881 4741.349  32282.1
By -0.001 -0.155 0.009 0.054 0.024 0.104
Byy  0.181 -0.147 0199 -138.416  -0.304 2.734
Bys  -5.953 6.356  3434.739
Bas
Model 5 Model 6
Zpnr (A) Ltz (A) Zpnr (A) Lt (A>
S W,y P Wo S Uy SJ Uy
Boo  0.380 78.16 -3.825  -27.922 0.383 91.354 -4.016  -31.322
Bo -1049.361  4.26 97.299 2.626 6.241 156.004
Boo 94123 1149516  -98.231  -5411.362 90.144  -40668.1  -493.482 -11876.56
Bos 88658.21 521643.9  7199.83  218847.8
Bro  0.004 29.349 -0.524 -9.171 0.011 29.639 -0.488 -8.640
Bi1  2.825 14.206  143.512 2.271  -281.767  13.469  106.736
Bia -7443.609 -434.678  -3425.206 4060.874  -326.613  -744.496
Bis 5633.642  49471.7 3497.908
Bao 0.017 0.047 -0.001 0.014
Byy  -0.136 -86.63 -0.236 5.337 0121 -58.02 -0.272 6.34
By 1363.246 74,929 1.486 -89.481

Bas




Table 7: Response surfaces for (k = 5)

Model 1 Model 2
Zi’NT (A> ZfNT ()‘> Zf’NT ()‘> ZfNT ()‘>
@1 \I/1 @2 \IJQ @1 \Ifl @2 \112
Boo  0.411 61.076 -3.196 -19.09 0.327 70.537 -3.758 -26.36
Bo1 2333.282  -2.138  -251.033 1.926 3688.82 9.947 -577.95
Boo 898 14804.35 -2084.949 2111525 -102.888  8408.465
Bos 2785.821 -2085.401 5474.382 2935591 -70550.62
Bio  -0.018 14.491 -0.419 -5.96 0.008 14.356 -0.324 -5.371
By, 1282 1468.171 15196  -102.32 0.596 1834.07  14.124  -70.904
B -14669.95 -348.385  2139.019 -25876.53  -368.115  1714.215
Bis 4192.348 4228.759
Bye  0.001 0.016 0.068 -0.001 0.010 0.029
Byy  -0.069 -0.289 1.362 -0.172
02,2
Bas
Model 3 Model 4
Zoer (V) Zive (V) Zinr (V) Zive ()
0, 0, 0, W, 6, 0, 0, W,y
Boo  0.367 89.609 -4.013 -30.645 0.435 58.969 -3.269  -19.333
Boa 6021.446  10.749  -722.651 3904.387 8328  -180.318
Boo 139.06 -119796.1 -322.281  10502.56 -154668.9  -527.974  -3147.907
Bos 4467.837 2779171 -173970.8 4215.836 3727902  6371.796
Bio  -0.004 13.944 -0.307 -5.325 -0.003 27.297 -0.59 -9.213
By 1052 1272166  15.51 -75.522 1.582  3537.474  24.265  -136.207
Bro -1L117 -394.685  1780.818 9.137  -47364.92 -666.318  2432.973
Bis 4719.719 8318.551
Bao 0.008 0.014 0.826 0.023
By 70.693 -0.27 -0.092 -0.479
Baa -2726.643 81.938
Bas
Model 5 Model 6
Zprr (A) Zir (A> Zpnr (/\) Ltz (A>
0, 0, 0, 0, 6, 0, 0, 0,
Boo  0.343 60.513 -3.828 -27.858 0.378 71.175 -4.026 -31.256
Box 1636 6899.273  12.998  -253.539 0.867  11057.17  13.951  -408.183
Boo -88.332 -322583.2 -182.882 -13556.49 -499199.5  -403.515  -10959.25
Bos T587.446 5934887 359446.7 6664.312 10140177 228140.6
Bio  0.016 32.949 -0.496 -8.767 0.011 29.816 -0.451 -8.12
Byi L1581 2404.486  25.834  -154.416 1.509  3570.033  24.749  -194.826
B -842.643  6727.948 -40673.95 -789.654  8114.972
Bis 9999.87  -124097.4 10535.88  -121465.5
Byo  -0.001 0.017 -5.136 -0.001 0.754 0.012 -0.078
By, -0.083  187.542  -0.574  247.073 -0.074 -0.331
By -7067.742  9.204 0 120.421

Bas




Table 8: Response surfaces for the automatic lag length selection method (kpqr = 5)

Bo,0
Bo.
Bo,2
Bo,3
B0
Bia
Bia
Brs
B2
B

2,2

Ba,3

)

Bo,0
Boa
Bo,2
Bo,3
Bro
Bia
P12
B
Bao
B
B2

Ba

Bo,0
Bo1
Bos
Bo,3
Bro
Bia
P12
Bra
Ba0
Baa
B2,
Pas

Model 1 Model 2
Zi’NT (A> ZfNT ()‘> ZﬁNT ()‘> ZfNT ()\)

@1 Uy @2 U, @1 Uy @2 U,
0.41 56.823 -3.218 -19.638 0.372 71.034 -3.778 -26.654
10.777 2079.863 -34.87 -97.193 1.676 1730.194 -42.359 -392.725

-284.429 737.622 -3103.602 97.645 40207.55 1018.228  4124.832
4332.145 -11377.84 -13147.4
-0.004 18.14 -0.442 -6.027 0.005 13.145 -0.351 -5.628
-2.036 1.628 -68.79 1293.969 3.225
55.887 28710.63 1511.876 -18644.32  -36.265
-0.748 0.017 0.081 -0.001 0.01 0.064
0.165 205.976 -0.114 0.967 48.061 -0.161 -5.218
-5962.404 5.98 140.98
Model 3 Model 4
Zier (A) Zive (V) Zier (M) Zive (V)
0, vy O2 Uy 0, vy O2 Uy
0.389 72.251 -4.061 -31.033 0.517 70.453 -3.286 -19.519
5.779 7427.681 -43.941 -465.591 1.919 -26.176 -101.832
-225.895 -177465.4  921.364  1330.639 44801.21 166.728  -2334.409
5584.734 2808044  -13082.02
19.721 -0.335 -5.637 -0.02 26.003 -0.649 -9.78

-0.798 3.616 2162.096 3.806 -26.883
56.865 37740.3 -30.174 72.559 -45.143

0.001 -0.737 0.009 0.059 0.001 0.025 0.086
0.093 190.91 -0.194 -6.067 0.176 275.749 -0.227 -8.473

-5491.499 146.45 -8513.873 292.56
Model 5 Model 6
Zprr (A) Zir (A> Zpnr (A> Lt (A)
Ch vy O9 Uy 0, vy O9 Uy
0.399 109.977 -3.875 -27.694 0.424 87.103 -4.071 -31.407
-8193.521 -35.047 -296.345 5713.206 -41.846 -243.518
119.632 607421 681.665  1996.116 147.021 -286832.2  938.021  -12550.07
-9915995 -8374.721 7973939  -14997.98  240521.8
0.011 7.772 -0.549 -9.262 0.011 19.269 -0.509 -8.675
0.937 6841.871 4.83 -9.079 0.858 4385.407 5.806 -66.601
-256154.3 -74.577 -540.416 -58727.81  -111.692 3590.481
3915350 1563.76  -69517.66
-0.001 1.661 0.018 0.048 -0.001 1.239 0.014
-0.235 -8.318 -0.178 -7.49
13.846 2821209 15.245 -3.999 271.886




Table 9: Asymptotic critical values for the MQ tests

A=0.1 A=02 A=0.3
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -32.163 -23.629 -19.865 -34.858 -26.091 -22.144 -36.123 -27.562 -23.619
2 -43.372 -34.321 -30.056 -46.436 -37.139  -32.688 -46.773  -37.778 -33.492
3 -53.648 -44.378 -39.748 -55.828 -46.232  -41.766 -57.136  -47.511 -42.775
4 -63.359 -53.470 -48.595 -65.206 -55.582  -50.645 -65.570 -55.883 -51.370
5 -73.691 -62.796 -57.434 -74.601 -64.165 -59.199 -75.573  -64.731 -59.919
6 -81.346 -71.238 -65.663 -83.575 -72.562  -67.309 -83.921 -73.247 -67.908

A=04 A=0.5 A=0.6
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.635 -28.147 -24.140 -36.775 -28.226 -24.419 -36.805 -28.178 -24.176
2 -47.134 -38.391 -34.282 -48.148 -38.907 -34.553 -47.611 -38.587 -34.246
3 -57.176 -47.642 -43.088 -56.753 -47.715 -43.333 -57.230 -47.865 -43.200
4 -67.481 -56.958 -52.039 -65.752 -56.418 -51.708 -67.094 -56.599 -51.785
5 -75.603 -65.386 -60.204 -75.378 -65.302 -60.251 -75.182 -64.986 -60.057
6 -84.718 -73.703 -68.372 -83.902 -73.746 -68.222 -84.059 -73.136 -67.973

A=0.7 A=08 A=0.9
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.302 -27.751 -23.890 -35.249 -26.722 -22.713 -32.918 -24.712 -20.896
2 -47.383 -38.223 -34.045 -46.572 -37.227 -33.085 -43.959 -35.248 -31.190
3 -56.908 -47.282 -42.693 -55.960 -46.442 -41.998 -54.568 -45.183 -40.623
4 -66.869 -56.270 -51.337 -65.833 -55.750  -50.890 -63.920 -53.985 -49.399
5 -75.074 -64.828 -59.867 -74.046 -64.430 -59.290 -74.177 -63.063 -57.839
6 -85.434 -73.646 -68.332 -83.244 -72.857  -67.721 -82.664 -71.518 -66.449
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Table 10: Empirical size of the tests (nominal size = 5%)

Zper (X) statistic

N T Modell Model2 Model3 Model4 Model5 Model 6

20 50 0.039 0.046 0.043 0.033 0.054 0.045
100 0.055 0.049 0.053 0.059 0.048 0.050
250 0.050 0.053 0.046 0.052 0.056 0.059

40 50 0.040 0.049 0.046 0.030 0.044 0.056
100 0.047 0.047 0.057 0.066 0.051 0.047
250 0.056 0.061 0.047 0.044 0.046 0.055

NT

N T Modell Model 2 Model3 Model4 Model 5 Model 6

20 50 0.044 0.045 0.049 0.047 0.050 0.045
100 0.050 0.050 0.045 0.046 0.043 0.053
250 0.043 0.047 0.043 0.040 0.049 0.053

40 50 0.045 0.051 0.055 0.048 0.041 0.052
100 0.041 0.047 0.047 0.044 0.046 0.043
250 0.048 0.053 0.046 0.032 0.045 0.048

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.

Z; (5\) statistic

Table 11: Empirical power of the normalised bias and pseudo t-ratio statistics for \; = 0.5
(nominal size = 5%)

ZﬁNT (5\) statistic

N T Modell Model2 Model3 Model4 Model5 Model 6

20 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

NT

N T Modell Model2 Model3 Model4 Model5 Model 6

Z; (5\) statistic

20 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1
40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 13: Empirical size and power. Constant case with three common factors (N = 40)
T pi a op Zi ~ MQO) MQQ) MQ2) MQQ)

>

50 1 1 05 0.082 0.006 0.167 0.340 0.484
100 1 1 05 0.0567 0.003 0.024 0.186 0.784
250 1 1 0.5 0.050 0.001 0.02 0.128 0.848
50 1 09 05 0.117 0.021 0.139 0.312 0.525
100 1 09 0.5 0.061 0.086 0.053 0.206 0.652
250 1 09 05 0051 0.771 0.017 0.075 0.134
50 1 08 0.5 0.121  0.066 0.090 0.302 0.539
100 1 08 0.5 0.051 0.509 0.041 0.122 0.325
250 1 0.8 0.5 0.061 0.986 0.007 0.003 0.001
50 1 1 1 0.061 0 0.003 0.030 0.967
100 1 1 1 0.052 0 0.013 0.063 0.921
250 1 1 1 0.050 0 0.010 0.078 0.909
0 1 09 1 0.030 0.001 0.006 0.045 0.945
100 1 09 1 0.036 0.093 0.033 0.134 0.737
250 1 09 1 0034 0.844 0.008 0.041 0.104
50 1 08 1 0.033 0.039 0.010 0.062 0.886
100 1 08 1 0.048 0.56 0.025 0.095 0.317
250 1 0.8 1 0.052 0.994 0.001 0.001 0.001
50 1 1 10 0.060 0 0.002 0.015 0.979
100 1 1 10 0.049 0.001 0.006 0.059 0.931
250 1 1 10 0.060  0.004 0.009 0.084 0.900
50 1 09 10 0.044 0.008 0.001 0.027 0.957
100 1 09 10 0.053 0.116 0.030 0.133 0.717
250 1 0.9 10 0.042 0.904 0.006 0.022 0.065
50 1 08 10 0.030 0.034 0.012 0.059 0.886
100 1 08 10 0.049 0.651 0.014 0.076 0.256
250 1 0.8 10 0.043 0.994 0.001 0.001 0.001

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 15: Empirical size and power. One level shift, known break point (\; = 0.5) and one
common factor (N = 40)

T p o o% A . ADFI‘:f Pi Zt?NT ADF; Pi ZENT ADF;Z
50 1 1 05 0.060 0.058 0.9 1 0.059 0.8 1 0.060
100 1 1 0.5 0.0563 0.053 0.9 1 0.058 0.8 1 0.055
250 1 1 0.5 0.046 0.051 0.9 1 0.051 0.8 1 0.053
50 1 09 05 0.042 0.121 0.9 1 0.128 0.8 1 0.138
100 1 0.9 05 0.049 0.275 0.9 1 0.324 0.8 1 0.316
250 1 09 0.5 0.047 0.837 0.9 1 0.948 0.8 1 0.948
50 1 08 0.5 0.042 0.282 0.9 1 0.303 0.8 1 0.319
100 1 0.8 0.5 0.049 0.695 0.9 1 0.782 0.8 1 0.803
250 1 0.8 0.5 0.050 0.981 0.9 1 1 0.8 1 1

50 1 1 0.041 0.057 0.9 1 0.059 0.8 1 0.060
100 1 1 0.050 0.058 0.9 1 0.053 0.8 1 0.056
250 1 1 1 0.050 0.049 0.9 1 0.048 0.8 1 0.053
50 1 09 1 0.041 0.119 0.9 1 0.137 0.8 1 0.128
100 1 09 1 0.054 0.292 0.9 1 0.307 0.8 1 0.308
250 1 09 1 0.042 0.889 0.9 1 0.949 0.8 1 0.953
50 1 08 1 0.039 0.304 0.9 1 0.310 0.8 1 0.316
100 1 0.8 1 0.048 0.748 0.9 1 0.797 0.8 1 0.798
250 1 08 1 0.053 0.994 0.9 1 1 0.8 1 1

50 1 1 10 0.048  0.058 0.9 1 0.060 0.8 1 0.057
100 1 1 10 0.054 0.057 0.9 1 0.054 0.8 1 0.052
250 1 1 10 0.0563 0.045 0.9 1 0.049 0.8 1 0.052
50 1 09 10 0.038 0.113 0.9 1 0.122 0.8 1 0.130
100 1 09 10 0.046 0.288 0.9 1 0.287 0.8 1 0.296
250 1 09 10 0.049 0.941 0.9 1 0.944 0.8 1 0.951
50 1 0.8 10 0.038 0.289 0.9 1 0.291 0.8 1 0.290
100 1 0.8 10 0.045 0.791 0.9 1 0.790 0.8 1 0.793
250 1 0.8 10 0.044 1 0.9 1 0.999 0.8 1 1

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 16: Empirical size and power with three common factors. One level shift, known break
point (A = 0.5, N = 40)

T pi a of Zf ~ MQO) MQI) MQ2) MQ@)
50 1 1 05 0.082 0.011 0.179 0.349 0.461
100 1 1 0.5 0.064 0.002 0.039 0.196 0.763
250 1 1 0.5 0.063 0.001 0.013 0.130 0.856
50 1 09 05 0.117 0.032 0.137 0.332 0.499
100 1 09 05 0.070 0.047 0.061 0.206 0.686
250 1 0.9 0.5 0.052 0.653 0.079 0.117 0.151
50 1 08 0.5 0.126 0.077 0.104 0.274 0.545
100 1 0.8 0.5 0.055 0.361 0.104 0.184 0.351
250 1 0.8 0.5 0.054 0.930 0.066 0.004 0

50 1 1 1 0.050 0 0.001 0.034 0.965
100 1 1 1 0.056 0.001 0.004 0.066 0.929
250 1 1 1 0.051 0.001 0.009 0.092 0.898
50 1 09 1 0.039 0.002 0.006 0.052 0.940
100 1 0.9 1 0.042 0.039 0.042 0.157 0.762
250 1 09 1 0.042 0.770 0.038 0.089 0.103
50 1 08 1 0.034 0.014 0.015 0.071 0.900
100 1 08 1 0.036 0.408 0.080 0.179 0.333
250 1 0.8 1 0.047 0.989 0.011 0 0

50 1 1 10 0.054 0.001 0.001 0.020 0.976
100 1 1 10 0.054 0 0.004 0.060 0.935
250 1 1 10 0.051 0 0.009 0.093 0.898
50 1 09 10 0.038 0.003 0.005 0.038 0.950
100 1 09 10 0.046 0.047 0.046 0.166 0.74
250 1 09 10 0.050 0.855 0.019 0.055 0.071
50 1 0.8 10 0.032 0.013 0.013 0.071 0.896
100 1 0.8 10 0.044 0.486 0.070 0.152 0.291
250 1 0.8 10 0.048 1 0 0 0

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Figure 1. Investment and saving for some countries
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Table 18: Panel cointegration statistics

Pedroni model (individual effects)
Bootstrap distribution

Test  p-val 1% 2.5% 5% 10%
Ziye (\) 1167 0122 4203 -3.652 -3170 -2.678
Zpwr (A) 2021 0022 4818 4188 3539 -2.827

Model 1 (level shift)
Bootstrap distribution

Test  p-val 1% 2.5% 5% 10%
o (A) -1973 0024 2661 -2.240 -1.989 -1.644
onp (A) 4011 0.000  -4.746 -4.179 -3.719 -3.275

Model 4 (level and cointegrating vector shift)
Bootstrap distribution

Test  p-val 1% 2.5% 5% 10%
i (A) 1937 0026 -3.019 2547 2161 -1.729
DT A -2.999 0.001 -5.257  -4.693 -4.033 -3.408

The bootstrap is based on 2,000 replications.
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