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VERY PRELIMINARY AND INCOMPLETE

Abstract

In this paper we consider the implications for downstream competi-

tion of the scarcity of inputs to the production process. We show that,

even though downstream firms may have symmetric production tech-

nologies and access to the centralized input market, input purchases and

downstream production will be asymmetric. One firm will appear to be

a “fat cat”, apparently purchasing too much input and using it very inef-

ficiently; whereas the other, smaller firms will appear “lean and mean”,

making high rates of profit despite their low input purchases. Even as

the number of downstream firms becomes large, downstream production

is both allocatively and productively inefficient. We conjecture that con-

sumers might be better off if the input were allocated through bilateral

contracts rather than through a centralized efficient auction process.
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1 Introduction

In this paper we consider the implications for downstream competition of the

scarcity of inputs to the production process. With some notable exceptions,

economists considering strategic competition among firms in output markets

have ignored the potential for strategic behavior in input markets. To the

extent that “buyer power” has been modelled, this has typically been done in

a context divorced from downstream competition between firms. We show that

this simplification is potentially misleading: there is an important interaction

between upstream purchases and downstream competition that leads to some

unexpected outcomes.

For example, modelling input and output competition between symmetric

firms separately will typically give symmetric outcomes. In contrast, we show

that this may not the case when one allows firms to compete both on input and

on output markets. In particular, we show that, when the allocation of the pro-

duction capacity (which is sufficiently abundant) is centralized in an “efficient

auction” process,1 there is no symmetric equilibrium. We assume that the firms

have the same technology with increasing marginal costs, compete downstream

à la Cournot, and yet downstream asymmmetry may arise endogenously. When

the amount of total capacity is sufficiently large, one large firm buys up capac-

ity and hoards it in order to keep up the market price of output, whilst other

firms remain small and their production capacity-constrained. As the number of

downstream firms becomes large, the resulting equilibrium resembles the text-

book model of a dominant firm constrained by a competitive fringe but there

are subtle differences. Even as the number of downstream firms goes to infinity,

downstream output does not converge to competitive levels in our model, and

the one-firm concentration ratio remains bounded away from zero.2

The capacity auction may transform the downstream market into a natural

oligopoly with endogenous asymmetries. This is so even though all firms have

access to the same technology and an efficient market for capacities. One firm

1An auction is called efficient if it allocates each unit of the good to the buyer that values
it the most. In the context of our model, a Vickrey-Clarke-Groves mechanism with bids that
are contingent on the entire allocation constitutes an efficient auction. Other auction formats
that may yield the same capacity allocation are discussed in Section 2.

2There are also some technical differences. In the dominant firm model, the dominant firm
sets price, taking as given the supply curve of the competitive fringe.
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will appear to be a “fat cat”, apparently purchasing too much capacity and

using it very inefficiently; whereas the other, smaller firms, will appear “lean

and mean”, making high rates of profit despite their low capacity purchases.

Viewed in isolation, this kind of outcome may seem to be a puzzle: why don’t

the small, productive firms expand to steal the downstream market from the

large, inefficient firm? Observing such a situation might lead one to suspect

that some unobserved regulation, illegal anti-competitive behavior or political

influence protect the large firm from its more efficient rivals. The model helps

us understand that this is not necessarily the case: the asymmetric outcome

may simply be the result of standard non-cooperative behavior. The reason

that the small firms’ rate of profit is so high is precisely because the large firm

is buying up input to make it unprofitable for them to expand. If the large firm

were not so fat, the small firms would expand output and their rate of profit

would decline.3

This asymmetric distribution of input results in two sorts of inefficiencies.

The first is that output is too low; when firms compete in quantities down-

stream, and purchase their inputs via an efficient auction, output will be lower

than the Cournot outcome that might be expected from modelling the down-

stream market alone. In fact, output will maximize the joint surplus of the firms

subject to the incentive compatibility constraint that one firm’s output choice

is that firm’s best reponse to the output choices of all other firms. Second,

and conceptually distinct from this allocative inefficiency, is a productive inef-

ficiency: for a given level of output, the asymmetric distribution of production

means that costs are not minimized; the marginal physical product of the input

is not equalized across firms.

The asymmetric (and doubly inefficient) distribution of capacities in the

upstream auction arises when the total available capacity is is greater than a

certain threshold level. When the total capacity to be distributed is less than

this threshold, the outcome of the auction is symmetric: Each firm gets the

3The small firms may even benefit from the ineffiency of the large firm, making more profits
than they would if, by fiat, input were distributed symmetrically (resulting in a symmetric
Cournot outcome). Indeed, depending upon parameters, the large firm may be providing a
public good in buying up the excess input to reduce the supply of output: not only is its rate
of profit necessarily lower than that of the small firms, it may be that its absolute level of
profit is lower too.
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same capacity, and fully uses it in the downstream market. In this case, the

second source of inefficiency (the production inefficiency due to the asymmetry

of the firms’ output levels) disappears.

Perhaps the most interesting result of our model is that as the total available

capacity increases around the capacity threshold, and the capacity distribution

changes from symmetric to asymmetric, the total surplus of the economy (which

includes the firms’ total profit and the downstream consumer surplus) falls by

a discrete amount. That is, there is a certain discontinuity at the capacity

level where the regime change occurs, and society is strictly worse off when

more capacity is distributed among the firms. This is so because the firms’

total profit is continuous at the capacity-threshold (they are indifferent between

the symmetric and asymmetric allocation), however, total output (and hence

consumer surplus) falls discontinuously due to the introduction of production

inefficiencies as production becomes asymmetric.

Our results are interesting not only because they may help understand the

size distribution of firms in some industries, but also from a normative per-

spective. To the extent that economists have recently been interested in the

design of markets for the allocation of inputs,4 the typical prescription has been

that old rigid structures of bilateral contracts and vertical integration should

be replaced by centralized auction markets for the input. The idea was that

if all input is brought to a centralised market, then one can ensure that those

that value the input most highly are able to purchase it, resulting in efficient

production. Our results suggest that this intuition is misplaced in a context

where downstream firms compete. It is not entirely surprising that an efficient

auction, since it maximizes the bidders’ surplus, may allocate input in a way

which results in a lack of downstream competition.5 Perhaps more surprising

is that, in the presence of diseconomies of scale or complementarities between

4Examples include the sale of electicity by electricity generating companies to electricity
retailers; the sale of licences for mobile phone operators; the sale of oil tracts to oil production
companies; the sale of forestry tracts to logging companies...

5This idea can be found in Jehiel and Moldovanu (2000, 2003). However, the result is not
completely evident. For example, McAfee (1999) argues that when large and small incumbents
compete in an auction to purchase an additional unit of capacity, a small (constrained) firm
will win the auction if there are at least two large (unconstrained) firms. McAfee does not
consider the full dynamic game in which capacity is acquired over time. We show that, when
inputs are allocated simultaneously, the symmetric outcome which he identifies is no longer
an equilibrium.
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inputs, an “efficient” auction will result in production inefficiencies. This sug-

gests that allocating input by some more decentralised means such as bilateral

contracting, might, contrary to intuition, actually be better for consumers.

We discuss in more depth the role of the “efficient capacity auction” for

obtaining our results. First, we show that the same allocative and productive

inefficiencies that appear when capacity is allocated via a Vickrey-Clarke-Groves

mechanism may also arise in more practical auction formats, such as a uniform-

price share auction. (Indeed, we show that the efficient allocation can always be

implemented in an equilibrium of the uniform-price auction.) Secondly, we point

out that other auction formats, where, for example, each unit of the capacity is

allocated separately consecutively, in a dynamic procedure, fare better in terms

of total social surplus (which includes the surplus of downstream consumers)

than an “efficient” auction.

2 Model and Preliminary Results

In the first stage of the game, n ex-ante identical firms are allocated produc-

tion capacities via an efficient auction (such as a VCG-mechanism). Then, in

the second stage, the same firms compete–à la Cournot and subject to their

capacity constraints–in a market for a homogenous good. The firms’ produc-

tion technologies exhibit increasing marginal costs, and the market demand is

downward sloping. The participants have no private information, everything is

commonly known.

In this section we introduce notation that formally describes this model,

and perform some preliminary analysis (e.g., we show that the second-period

subgame, Cournot competition with capacity constraints, has a unique equi-

librium). In the next section we derive the equilibrium market structure and

discuss its properties.

2.1 Notation and Assumptions

Denote the total available capacity by K, and the capacities of the firms, de-

termined in the first-period auction, by ki, i = 1, . . . , n, where
P

i ki = K.

Denote the inverse demand function in the downstream market by P (Q),

where Q is the total production. We assume that P is twice differentiable, and
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that both P (Q) and P 0(Q)Q are strictly decreasing for all Q > 0. Firm i’s

cost of producing qi ≤ ki units is c(qi), while its cost of producing more than

ki units is infinity. We assume that c is twice differentiable, strictly increasing,

and strictly convex. Finally, we assume that producing a limited amount of the

good is socially desirable: P (Q)− c0(Q) is positive for Q = 0, and negative as

Q→∞.
We can write the profit of firm i in the downstream market for quantity

qi ≤ ki and total output from firms other than i, Q−i, as

πi(qi, Q−i) = P (Q−i + qi)qi − c(qi). (1)

The marginal profit of firm i given the other firms’ total production is ∂πi/∂qi =

P 0(Q−i + qi)qi + P (Q−i + qi)− c0(qi).
The assumptions on the market demand and individual cost functions made

above are standard in the literature. They ensure that πi is concave in qi, and

that the quantities are strategic substitutes,

∂2πi
∂qi∂Q−i

≡ P 00(Q−i + qi)qi + P 0(Q−i + qi) < 0,

where the inequality follows from d [P 0(Q)Q] /dQ = P 00(Q)Q + P 0(Q) < 0,

P 0(Q) < 0, and qi ∈ [0, Q−i + qi].

The assumptions are also known to imply that in the Cournot game without

capacity constraints, there exists a unique equilibrium. The per-firm output in

the unconstrained Cournot equilibrium, denoted by q∗, satisfies

∂πi(q
∗, (n− 1)q∗)
∂qi

= P 0(nq∗)q∗ + P (nq∗)− c0(q∗) = 0. (2)

This is just the first-order condition of maximizing πi in qi given Q−i, and using
Q−i = (n− 1)q∗. It is easy to see that under our assumptions, there is a unique
q∗ that solves (2): Consider the left-hand side of (2). At q∗ = 0, it is positive,
while as q∗ → ∞, it becomes negative by assumption. Its derivative in q∗ is
nP 00(nq∗)q∗ + P 0(nq∗)(n + 1)− c00(q∗) < 0. Therefore, there exists a unique q∗

at which it equals zero, and so (2) is satisfied.

We will use ri(Q−i) to refer to the best response of firm i to the total pro-

duction of the other firms, Q−i, when firm i does not face a binding capacity
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constraint. That is, ri(Q−i) = argmaxqi πi(qi, Q−i). Equivalently, ri(Q−i) can
be characterized by the first-order condition of this maximization, that is,

∂πi(ri(Q−i), Q−i)
∂qi

= P 0(Q)ri(Q−i) + P (Q)− c0(ri(Q−i)) ≡ 0, (3)

where Q = Q−i + ri(Q−i). By totally differentiating this identity with respect
to Q−i and rearranging, we find that

r0i(Q−i) = −
∂2πi/∂qi∂Q−i
∂2πi/∂q2i

= − P 00(Q)ri(Q−i) + P 0(Q)
P 00(Q)ri(Q−i) + 2P 0(Q)− c00(ri(Q−i))

∈ (−1, 0).

The unconstrained Cournot equilibrium satisfies q∗ = ri((n − 1)q∗). To ease
notation, we drop the reference to firm i’s identity when referring to the best

response function because the best-response functions are identical across the

firms.

The are two other industry-structure benchmarks besides the unconstrained

symmetric Cournot outcome (where the production is q∗ per firm and nq∗ total)
that will come up in later in the section. The monopoly production in the

downstream market is denoted by QM , where QM = argmaxQ P (Q)Q − c(Q),

that is,

P 0(QM)QM + P (QM) = c0(QM). (4)

The other market structure that will turn out to be important for us is that of

a perfectly coordinated symmetric cartel. By definition, the symmetric cartel

output maximizes the firms’ joint profits while each firm produces one-nth of the

total output. That is, the total output in the cartel, QC, maximizies P (Q)Q−
nc(Q/n), and so

P 0(QC)QC + P (QC) = c0(QC/n). (5)

Note that the monopoly output equals the total production of the symmetric

cartel if and only if c0(QM) = c0(QC/n).

2.2 The Second-Period Cournot Subgame

LetΠi(k1, . . . , kn) denote the (indirect) profit of firm i in the capacity-constrained

Cournot game given that the capacity allocation is (k1, . . . , kn). We need to

know if Πi is well-defined, that is, whether there is a unique capacity con-
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strained Cournot equilibrium in the downstream market for any capacity allo-

cation (k1, . . . , kn). Proposition 1 settles this issue. In what follows, without

loss of generality and purely for the ease of notation, we relabel the firms in

increasing order of capacities, so that k1 ≤ . . . ≤ kn in any capacity allocation.

Proposition 1 For any capacity allocation, there is a unique equilibrium in the
capacity-constrained Cournot game. The equilibrium is qi = ki for i = 1, . . . ,m

and qi = qUm for i = m + 1, . . . , n for some m ∈ {0, 1, . . . , n}, where qUm solves

qUm = r
³Pm

j=1 kj + (n−m− 1)qUm
´
.

Proof. If the total industry production is Q and firm i’s production is qi, then

firm i’s marginal profit is

∂πi(qi, Q−i)
∂qi

¯̄̄̄
Q−i=Q−qi

= P 0(Q)qi + P (Q)− c0(qi). (6)

This expression is strictly decreasing in qi because P 0 < 0 and c00 ≥ 0, and it
becomes negative if qi is sufficiently large. Therefore, in equilibrium, if the total

production is Q and firm i’s capacity constraint is slack, then firm i produces a

quantity qU(Q) such that

qU(Q) = min {qi ≥ 0 | P 0(Q)qi + P (Q)− c0(qi) ≤ 0} . (7)

If firm i’s capacity constraint is less than qU(Q) then it produces ki. Note that

all firms whose capacity constraints are slack produce the same output, qU(Q).

The function qU(Q) is continuous, and by the Implicit Function Theorem

its derivative is
dqU(Q)

dQ
= −P

00(Q)qU(Q) + P 0(Q)
P 0(Q)− c00(qU(Q))

.

If qU(Q) ≤ Q then P 00(Q)qU(Q) + P 0(Q) < 0 by assumption. This, combined

with P 0 < 0 and c00 ≥ 0, implies that dqU(Q)/dQ < 0 whenever qU(Q) ≤ Q.

Define

h(Q) =
nX
i=1

min
©
ki, q

U(Q)
ª−Q. (8)

Clearly, Q∗ ∈ [0, K] and h(Q∗) = 0 if and only if Q∗ is the total production in
a capacity-constrained Cournot equilibrium.
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We claim that there exists a unique Q∗ ∈ [0, K] that satisfies h(Q∗) = 0. To
see this, first note that qU(0) > 0 by equation (7), hence h(0) > 0 by equation

(8). If Q ≥ K ≡ P
i ki then equation (8) yields h(Q) ≤ 0. Since qU(Q) is

continuous, h(Q) is continuous as well. Therefore, by the Intermediate Value

Theorem, there exists Q∗ ∈ (0,K] such that h(Q∗) = 0. If Q < K then, by (8),

h(Q) ≤ 0 implies that qU(Q) < ki for some i, and therefore qU(Q) ≤ Q. As a

result, qU(Q) is strictly decreasing, and so is h(Q), for all Q ∈ [Q∗, K). Since
h(Q∗) = 0, we have h(Q) < 0 for all Q ∈ (Q∗,K]. Therefore, any Q∗ ∈ [0, K]
such that h(Q∗) = 0 is unique.

Denote the capacity-constrained Cournot equilibrium given capacity alloca-

tion (k1, . . . , kn) by (qei (k1, . . . , kn))
n
i=1, and let the indirect profit function of

firm i be

Πi(k1, . . . , kn) = P (
P

i q
e
i (k1, . . . , kn)) q

e
i (k1, . . . , kn)− c (qei (k1, . . . , kn)) .

An interesting feature of our model is that the buyers’ (firms’) marginal val-

uations for an additional unit of capacity may not be monotonic in the amount

of capacity that they receive. This can be seen, at the level of intuition, for

two firms as follows. When firm 1 is relatively small (has little capacity, which

is a binding constraint in the downstream Cournot competition) then the mar-

ginal value of an additional unit of capacity is positive but decreasing because

expanding the firm’s production generates a positive yet decreasing marginal

profit in the downstream market. However, if the firm is relatively large, so

much so that its capacity constraint is slack in the downstream Cournot game,

then the marginal value of additional capacity is increasing. This is so because

by buying more capacity the firm tightens the other firm’s capacity constraint,

and the returns on this activity are increasing for our firm.6 Therefore, the

marginal value of capacity for firm i is U-shaped in the capacity of the firm, as

shown in Figure 1.

The initial capacity auction is called efficient if it leads to an allocation

(k1, . . . kn),
P

i ki = K, that maximizes
P

iΠi(k1, . . . , kn). Such an allocation

is obviously only “efficient” with respect to the welfare of the competing firms,

6These verbal statements are true and may be verified by direct calculation in the case of
two firms.
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Figure 1: Firm i’s marginal value of capacity when n = 2.
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and it ignores the consumer surplus in the downstream market. However, it

is the outcome of the capacity auction if the sale of the K units of capacity

is organized as a so-called Vickrey-Clark-Groves auction, and it may be the

outcome (the focal equilibrium) if a practical share-auction is used. We discuss

this issue further in the next subsection.

2.3 The First-Period Auction

The mechanism that determines the firms’ capacities in the first period so far

has been treated as a “black box”: We posited that it allocates each unit of

capacity to the firm that values it the most. In this subsection, we open the

black box and discuss how and why such an auction may arise.

Vickrey (1961) described a general method for designing efficient mecha-

nisms, according to which all so-called Vickrey-Clarke-Groves mechanisms are

devised. All participants are requested to submit their monetary valuations for

all possible allocations of the goods. The auctioneer chooses the allocation that

maximizes the sum of the buyers’ valuations. Each buyer pays the difference be-

tween the other buyers’ total valuation in the hypothetical case that the goods

were allocated efficiently only among them (i.e., excluding him) and in the al-

location actually selected by the auctioneer. The rules induce all participants

to submit their valuations for every allocation honestly, and the outcome of the

auction is efficient.

Under certain assumptions on the valuations of the buyers, the efficient

outcome and the Vickrey payments can be implemented by simple auctions. For

example, for the sale of a single object, the English auction is efficient under

general conditions. Ausubel (2004) designed an ascending-price auction for the

sale of multiple identical goods with decreasing private marginal valuations. An

ascending-price auction can be designed even more generally (see Schummer et

al, 2005). Vickrey’s methodology can be extended to interdependent (i.e., not

private) valuations as long as the participants signals are uni-dimensional.7 Such

an extension was done by Dasgupta and Maskin (2000), and Perry and Reny

(2002), (2005).

The VCG mechanism is originally intended to solve social choice problems

7For multidimensional signals, see Jehiel and Moldovanu’s (2001) impossibility theorem
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where all parties affected by the allocation of goods have an opportunity to

submit bids. Therefore, it may be questionable to use such mechanisms for the

sale of inputs or capacities that the buyers will use in a downstream market.

The outcome of the VCG auction in this case is still “efficient,” but that just

means that it maximizes the joint profits of the bidders. While the mechanism

can be amended, and made socially efficient, by requiring to get “bids” for

all allocations on behalf of downstream customers and other affected parties as

well, this is usually overlooked in practice. In what follows, when we refer to the

mechanism as the “efficient capacity auction” we mean a VCG auction where

the buyers’ joint payoffs are maximized.

The actual rules of the VCG auction in our model are as follows.

1. Each buyer-firm is required to submit a valuation for all capacity alloca-

tions, (k1, . . . , kn) with
Pn

i=1 ki = K, denoted by bi(k1, . . . , kn).

2. The auctioneer computes the allocation that maximizes
Pn

i=1 bi(k1, . . . , kn),

which we denote by (k∗1, . . . , k
∗
n).

3. Firm i is required to pay the difference between the value of the efficient al-

location that would be obtained in i’s absence,
P

j 6=i bj(k
o
1, . . . , k

o
n), where

(ko1, . . . , k
o
n) maximizes

P
j 6=i bj(k1, . . . , kn) subject to

P
j 6=i kj = K, and

the value of the efficient allocation for the other firms,
P

j 6=i bj(k
∗
1, . . . , k

∗
n).

It is routine to check that the above rules induce each firm to submit

bi(k1, . . . , kn) = Πi(k1, . . . , kn), i.e., all firms bid honestly. Each firm that gets

something in the efficient capacity allocation pays a positive price. Finally, each

firm has an incentive to participate in the auction. The last claim can be seen

by noting that firm i’s payoff in the auction is

Πi(k
∗
1, . . . , k

∗
n)−

h
max

nP
j 6=iΠj(k1, . . . , kn)

¯̄̄P
j 6=i kj = K

o
−Pj 6=iΠj(k

∗
1, . . . , k

∗
n)
i
,

which is non-negative since

Πi(k
∗
1, . . . , k

∗
n)+

P
j 6=iΠj(k

∗
1, . . . , k

∗
n) = max

nPn
j=1Πj(k1, . . . , kn)

¯̄̄Pn
j=1 kj = K

o
is at least as large as max

nP
j 6=iΠj(k1, . . . , kn)

¯̄̄P
j 6=i kj = K

o
.
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There are other auctions that may yield the same capacity allocation, which

are in fact more widely used in practice. In the rest of this subsection we

demonstrate that the uniform-price share auction (first analyzed by Wilson

(1979)) is one of them. For simplicity, in the rest of the subsection we assume

that there are only two firms, n = 2.

In the uniform-price share auction for K units of capacity each firm i is re-

quired to submit an inverse demand schedule, pi(ki), ki ∈ [0,K], which specifies
the highest unit price firm i is willing to pay in exchange for ki units of capacity.

The auctioneer aggregates the demands and computes a market clearing price.

A price level, say p∗, is called market clearing if there exists a capacity vector
(k1, k2) such that k1 + k2 = K and pi(ki) = p∗ for i = 1, 2. Each firm i is then

required to buy ki units of capacity at unit price p∗.

Proposition 2 Assume n = 2. There exists an equilibrium in the uniform-

price share auction that implements the efficient capacity allocation.

Proof. Denote the efficient capacity allocation by (k∗, K − k∗), and pick a
positive p∗ such that p∗k∗ ≤ Π1(k

∗, K − k∗) and p∗(K − k∗) ≤ Π2(k
∗, K − k∗).

We claim that the following strategies constitute an equilibrium of the share

auction:

p1(k1) =
1

K − k1
[Π2(k1, K − k1)−Π2(k

∗, K − k∗) + (K − k∗)p∗] ,

p2(k2) =
1

K − k2
[Π1(K − k2, k2)−Π1(k

∗, K − k∗) + k∗p∗] .

To see this, first note that if both firms submit these inverse demand sched-

ules then the market clearing price is p∗ with k1 = k∗, k2 = K − k∗ because
p1(k

∗) = p2(K − k∗) = p∗.
Second, notice that if firm 1 uses the proposed bid function p1, then by the

definition of p1 and k1 + k2 = K, for all levels of k2 that firm 2 may be able to

induce by choosing an appropriate bid function, we have

Π2(K − k2, k2)− p1(K − k2)k2 = Π2(k
∗,K − k∗)− (K − k∗)p∗.

Therefore, firm 2 is indifferent between inducing the capacity allocations (K −
k2, k2) and (k∗,K − k∗). Hence firm 2 has no profitable deviation from the
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equilibrium. Similarly, if firm 1 is able to induce an allocation (k1,K−k1) given
that firm 2 bids according to p2, then by the definition of p2 and k1 + k2 = K,

Π1(k1,K − k1)− p2(k2)k1 = Π1(k
∗,K − k∗)− k∗p∗.

So firm 1 has no incentive to deviate from the proposed equilibrium either. We

conclude that p1 and p2 constitute an equilibrium of the uniform price share

auction.

Remark 1 From the proof of Proposition 2 it is clear that for n = 2, any

capacity allocation can be supported in an equilibrium of the uniform-price share

auction. When n > 2, this is not the case. However, the efficient capacity

allocation can be supported in equilibrium for any n. In order to prove this we

first need to characterize the efficient capacity allocation, which we do in the

next section.

It is well known that the uniform price share auction exhibits multiple equi-

libria. Wilson (1979) showed that there may be several unit prices that may be

supported in an equilibrium. We are not concerned about the multiplicity of

p∗ because our focus is not the revenue generated by the auction, but the the
capacity allocation. As we remarked above, there is a multiplicity of equilibria

with respect to the capacity allocation as well. A straightforward argument as

to why we would expect the capacity allocation (k∗,K − k∗) to emerge as the
focal equilibrium is that this allocation is efficient, that is, it maximizes the

joint profits of the two firms.

3 Results

We turn to the analysis of the equilibrium market structure in the model of Sec-

tion 2, and show that it may be qualitatively different depending on the amount

of capacity sold in the auction. If the total capacity that is auctioned off is rel-

atively little then the firms behave symmetrically, while if it is large then the

only equilibrium is asymmetric, in which exactly one firm ends up with excess

capacity and produces a larger quantity, while the other firms produce less while

being constrained by their insufficient capacities. The “regime change” (from
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a symmetric to an asymmetric outcome) happens at a certain capacity thresh-

old and makes the total production drop discontinuously as the total capacity

increases (see Section 3.1). In Section 3.2 we discuss how the market structure

in our model differs from the unconstrained Cournot outcome,monopoly, and

the structure of a perfectly coordinated symmetric cartel. In Section 3.3, we

extend the comparison for an infinite number of firms as well. We provide some

testable implications of the model regarding firm size and Tobin’s Q in Section

3.4. We conclude the section by considering alternative auction mechanisms for

the allocation of capacities in Section 3.5.

3.1 Industry Structure in the Downstream Market

Interestingly, the qualitative results regarding the downstream market structure

depend on the total available capacity, K. If the total available capacity is rel-

atively low then the efficient capacity allocation is symmetric, and all firms end

up producing at their capacity constraints in the downstream market. However,

if K is large–exceeding a threshold that is strictly lower than the total capac-

ity needed to produce the symmetric, unconstrained Cournot output–then the

industry structure becomes asymmetric. All but one firm gets the same, low

capacity and operates at full capacity, while one firm gets the remaining capac-

ity (which is a bigger share of the total than the share of any other firm), and

operates strictly within its capacity constraint.

As a preparation for stating the results formally, we first describe the asym-

metric industry structure that prevails when K is sufficiently large. In the effi-

cient capacity auction, each “small” firm buys a capacity k1 = . . . = kn−1 = k∗,
while the “large” firm receives the rest, kn = K − (n− 1)k∗. The capacity level
of each of the small firms, k∗, maximizes

P ((n− 1)k + r((n− 1)k)) [(n− 1)k + r((n− 1)k)]
− (n− 1)c(k)− c(r((n− 1)k)). (9)

This is the total industry profit given that (n−1) firms produce k and one firm
produces the unconstrained best reply, r((n − 1)k). The optimal level of k∗ is
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characterized by the first-order condition of the maximization,

[P 0(Q∗)Q∗ + P (Q∗)] [1 + r0((n− 1)k∗)]
= c0(k∗) + r0((n− 1)k∗)c0(r((n− 1)k∗)), (10)

where Q∗ = (n− 1)k∗ + r((n− 1)k∗). Note that k∗ does not vary with K.

The following lemma states that if at least one firm is allocated excess capac-

ity in the efficient auction then the capacity allocation must be the asymmetric

one described above. We will later see that a sufficient condition for there be-

ing at least one firm with slack capacity is that the total capacity exceed the

amount needed for producing the unconstrained Cournot equilibrium outcome,

i.e., K > nq∗. In the statement and proof of the lemma recall that the firms’
indices are ordered so that k1 ≤ k2 ≤ . . . ≤ kn.

Lemma 1 Suppose that (k1, . . . , kn) is the capacity allocation in the efficient
auction preceding the capacity-constrained Cournot game. If at least one firm’s

capacity constraint is slack, i.e., kn > qen(k1, . . . kn), then k1 = . . . = kn−1 = k∗

and kn = K − (n− 1)k∗.

Proof. We will argue that if some firm or firms have excess capacity and

(k1, . . . , kn) differs from the proposed asymmetric capacity allocation, then there

exists some perturbation that increases the total industry profit thereby con-

tradicting the efficiency of (k1, . . . , kn).

First, we show that under the hypothesis of the lemma, there is at least one

firm whose capacity constraint is binding in the downstream market. Suppose

towards contradiction that all firms are unconstrained. Then they each produce

q∗, where q∗ < ki. Redistribute capacities so that for all i < n, ki = q∗, and
kn = K − (n − 1)q∗. This change does not affect the downstream equilibrium

production of any firm. Then, carry out the following perturbation: Reduce

the capacity of each firm except firm n by an infinitesimal amount, dq, and

increase kn by (n − 1)dq. As a result, the total production changes: Firm
n gains dqn = r0((n − 1)q∗)(n − 1)dq, while the other firms lose a combined
dQ−n = (n − 1)dq. Since r0 > −1, the change in total production is negative,
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that is, dqn + dQ−n < 0. The change in the total industry profit is,

dΠ =
∂πn(q

∗, (n− 1)q∗)
∂qn

dqn +
∂πn(q

∗, (n− 1)q∗)
∂Q−n

dQ−n

+
n−1X
i=1

·
∂πi(q

∗, (n− 1)q∗)
∂qi

dq +
∂πi(q

∗, (n− 1)q∗)
∂Q−i

µ
dqn +

n− 2
n− 1dQ−n

¶¸
.

q∗ is the unconstrained Cournot equilibrium production, therefore ∂πi(q∗, (n−
1)q∗)/∂qi = 0 for all i. By symmetry,

∂πi(q
∗, (n− 1)q∗)
∂Q−i

=
∂πj(q

∗, (n− 1)q∗)
∂Q−j

for all i, j = 1, . . . , n.

Using these facts, the expression for dΠ simplifies to

dΠ =
∂πn(q

∗, (n− 1)q∗)
∂Q−n

dQ−n +
n−1X
i=1

∂πi(q
∗, (n− 1)q∗)
∂Q−i

µ
dqn +

n− 2
n− 1dQ−n

¶
=

∂πn(q
∗, (n− 1)q∗)
∂Q−n

(n− 1) (dQ−n + dqn) .

By ∂πn/∂Q−n < 0 and dqn + dQ−n < 0, the change in total industry profit is

positive, that is, dΠ > 0. The perturbation of capacities increases the firms’

total profit, hence the original distribution of capacities was not efficient, which

is a contradiction.

For n = 2, the previous argument establishes that exactly one firm has

excess capacity. We now prove that the same is true for n > 2 as well. Suppose

towards contradiction that more than one firm has excess capacity, i.e., due to

the way firms are indexed, qen−1(k1, . . . , kn) < kn−1. Note that the capacity of
firm 1 is binding, therefore qe1(k1, . . . , kn) = k1 < qn−1. Redistribute all excess
capacity from firms 2 through n − 1 to firm n; this obviously does not change

the production levels. Denote the new capacity levels by (k̃1, . . . , k̃n). Now

decrease k̃n−1 = qen−1(k1, . . . , kn) by dq and increase k̃1 = k1 by dq. Since firm

1’s capacity is a binding constraint for its producton, qe1 increases by dq as well.

As a result, the total production of all firms is unchanged. However, as the

cost functions are strictly convex and the distribution of production among the

firms has become less asymmetrical (we have increased qe1, decreased qen−1, and
qe1 < qen−1 at the initial capacity levels), the total industry profit increases. The
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original allocation of capacities was not maximizing the total industry profit,

which is a contradiction.

We conclude that if the capacity auction is efficient and there is a firm

with excess capacity in the downstream market then it is firm n (i.e., there

can only be one firm with slack capacity). Due to symmetry, the allocation

of capacities that maximizes the total downstream industry profit subject to

the constraint that firm n best-responds to the joint production of the other

firms is the same for firms 1 through n − 1, that is, k1 = . . . = kn−1 = k∗.
The capacity-constrained firms each produce k∗, while the unconstrained firm
produces r((n−1)k∗). The optimal capacity constraint, k∗, maximizes the total
industry profit, (9).

The result of Lemma 1 is remarkable because it pins down the industry

structure in our model whenever there is any slack capacity in the downstream

market. Note that the asymmetric allocation of capacities (k1 = . . . kn−1 = k∗,
kn = K − (n− 1)k∗) and the corresponding asymmetric production (qe1 = . . . =

qen−1 = k∗, qen = r((n − 1)k∗)) do not depend on the total amount of available
capacity, K. Observe that in this outcome, the small constrained firms indeed

produce less than the unconstrained big firm as k∗ < r((n− 1)k∗).
The only possibility that we have not considered is that no firm has slack

capacity in the Cournot game that follows the efficient capacity auction. In

this case, since the production technologies are symmetric and exhibit stritly

decreasing returns, the efficient capacity allocation must be symmetric. (By

distributing the total capacity K, we essentially distribute a fixed total produc-

tion among the firms because all capacity is fully used. The most efficient way

to produce a fixed quantity is by spreading it evenly across the firms.)

The conclusion of this discussion is that the efficient capacity allocation is

either asymmetric with exactly one firm receiving excess capacity and the others

all receiving k∗, or symmetric with all capacities binding in the downstream
market. Note that the asymmetric outcome can only arise as the solution when

it is feasible, that is, when K ≥ Q∗ ≡ (n− 1)k∗+ r((n− 1)k∗). If K < Q∗ then
we know the efficient capacity allocation is symmetric, ki = K/n for all i.

The following proposition states the main result of this subsection: There

exists a threshold level of total capacity, K̂, such that the efficient capacity

allocation is symmetric for K < K̂ and asymmetric for K > K̂. The threshold
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K̂ falls strictly in between Q∗ and nq∗.

Proposition 3 Define K̂ such that

P (K̂)K̂ − nc(K̂/n) = P (Q∗)Q∗ − (n− 1)c(k∗)− c(r((n− 1)k∗)), (11)

where k∗ satisfies (10) with Q∗ = (n− 1)k∗ + r((n− 1)k∗).
(a) If K < K̂ then the efficient capacity allocation is symmetric, that is,

each firm receives capacity K/n.

(b) If K > K̂ then the efficient capacity allocation is such that all but one

firm gets capacity k∗ < q∗, while exactly one firm gets capacity K − (n− 1)k∗.

Proof. We already know that the efficient capacity allocation is either symmet-
ric, where ki = K/n for all i and all capacity constraints bind, or asymmetric

as in Lemma 1, where ki = k∗ for i < n and kn = K − (n − 1)k∗. Note that
the former allocation is the efficient one when the latter is not feasible, that is,

K ≤ Q∗.
Recall that we say that the capacity allocation is efficient when it maxi-

mizes the total industry profit in the capacity-constrained Cournot game. In

the downstream market following the symmetric capacity allocation the total

industry profit is P (K)K−nc(K/n), which is strictly concave in K. Moreover,

P (Q∗)Q∗ − nc(Q∗/n) > P (Q∗)Q∗ − (n− 1)c(k∗)− c(r((n− 1)k∗)) (12)

because c is strictly convex and k∗ < Q∗/n < r((n − 1)k∗). On the other
hand, if the total capacity equals the total output in the unconstrained Cournot

equilibrium,K = nq∗, then from the proof of Lemma 1 we know that the efficient
allocation is the asymmetric one (where k1 = . . . = kn−1 = k∗), hence

P (nq∗)nq∗ − nc(q∗) < P (Q∗)Q∗ − (n− 1)c(k∗)− c(r((n− 1)k∗)).

Therefore, there exists K̂ ∈ (Q∗, nq∗) such that if K > K̂, the asymmetric

allocation is efficient, while if K < K̂, the symmetric allocation is efficient. At

K = K̂, the two allocations generate the same industry profits, that is, K̂ is

defined by (11).

An intriguing consequence of Proposition 3 is that the capacities of the firms
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and the total output produced in the downstreammarket change discontinuously

as a function of the total available capacity at K = K̂. In particular, the

capacities of the small firms and the total output fall by discrete amounts at

K = K̂. This is so because in the asymmetric solution (which is valid for all

K ≥ K̂) the small firms’ capacities are k∗ each and the total production is Q∗,
while in the symmetric solution at K = K̂, each firm has capacity K̂/n and the

total production is K̂. However, we know that Q∗ < K̂, hence the capacities

and the output jump at K = K̂. We depict the capacity allocation and the

resulting total industry production as a function of K in Figure 2.

The most important prediction that follows from Proposition 3 is that the

total surplus (social welfare) as a function of the available capacity is maxi-

mized at K = K̂. The total surplus is just the sum of the firms’ profits and

the consumer surplus in the downstream market (payments to the auctioneer

cancel). The total surplus is continuous and strictly increasing for K < K̂ be-

cause K is allocated symmetrically (which is socially desirable), all capacity is

fully used in production, and the total production is lower than the Cournot

output (K < K̂ < nq∗). However, the total surplus discretely falls as K ex-

ceeds K̂. This is so because the firms’ total profit is continuous at K = K̂ by

equation (11), but the consumer surplus falls discontinuously together with the

total output in the downstream market. (The total surplus stays constant for

all K > K̂.) The policy consequence is that a social planner should restrict the

quantity sold in the capacity auction to K̂ whenever K exceeds K̂.

3.2 Comparison with Benchmarks

Now we turn to the comparison of the industry structure in our model to cer-

tain benchmarks: (i) the symmetric unconstrained Cournot outcome, (ii) the

monopoly, and (iii) the perfectly coordinated collusive cartel. We also discuss

the limiting case of the model as the cost function becomes affine (constant

returns to scale).

First, by symmetry, r0 ∈ (−1, 0), and the fact that firms 1 through n−1 are
capacity constrained while firm n is not, it follows that

qe1 = k∗ < q∗ < r((n− 1)k∗) = qen.
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Figure 2: Capacities and total downstream production as a function of K
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The small firms each produce less than the per-firm Cournot output while the

unconstrained firm produces more than that.

Second, we claim that k∗ > 0, that is, the outcome of our model always

differs from that of a monopoly. To see this,differentiate (9), the total industry

profit in the asymmetric solution, in k to get

(n−1) {(1 + r0((n− 1)k)) [P 0 (Q)Q+ P (Q)]− c0(k)− r0((n− 1)k)c0 (r((n− 1)k))} ,

where Q = (n− 1)k + r((n− 1)k. For k = 0 and n <∞, this simplifies to

(n− 1)©£P 0(QM)QM + P (QM)
¤
(1 + r0(0))− c0(0)− r0(0)c0(QM)

ª
= (n− 1) £c0(QM)− c0(0)

¤
,

where QM ≡ r(0) is the monopoly output, and on the second line the first-order

condition of profit maximization by a monopoly, equation (4), is used. Since

c0(QM) > c0(0) by the strict convexity of c, the total industry profit is strictly
increasing at k = 0. Hence k∗ > 0.
Third, the outcome of our model is different from that of a collusive cartel

unless K = QC where QC is given by equation (5). This is so because our out-

come is asymmetric forK > K̂ (hence it cannot coincide with that of the cartel,

which is symmetric), and it is symmetric but the total downstream production

equals K (not QC) for K < K̂.

Finally, it may be instructive to consider a limiting case of our model, when

the production technology exhibits constant returns, that is, c is affine. While

this case is ruled out by our assumption that c is strictly convex–which has been

used in the proof of Lemma 1, for example–it is easy to check that Proposition 1

goes through with constant marginal costs as well. Therefore, for any capacity

allocation, there exists a unique equilibrium in the follow-up Cournot game.

It is interesting to note, by comparing equations (4) and (5), that when c0 is
constant, the monopoly and cartel outputs are equal, QM = QC.

When c is affine, the efficient allocation of capacities depends on the total

available capacity as follows. If K is less than QM then all capacity allocations

are efficient. To see this, note that firm i’s unconstrained best response to

the other firms’ joint production is at least QM − Q−i (this is so because the
best response would be QM for Q−i = 0 and r0 > −1). Since QM > K and
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Q−i ≤
P

j 6=i kj, the unconstrained best response is not feasible: Q
M − Q−i >

K−Pj 6=i kj ≡ ki. Hence firm i maximizes its profit by producing ki. Since each

firm operates at full capacity, the total industry output and profits are the same

no matter how the capacities are allocated. Therefore, all allocations are equally

efficient. On the other hand, if K is at least as large as QM then the efficient

capacity allocation is such that one firm gets all the capacity. This follows

because for any initial allocation of capacities, the production that maximizes

the firms’ joint profits is QM . However, if more than one firm is allocated a

positive capacity then the joint production in the Cournot game exceeds QM .

The cartel’s profit is maximized by shutting down all firms but one. This is the

outcome for K > K̂ = QM , therefore, the outcome of our model is monopoly,

which can be interpreted as perfect collusion among the firms.

3.3 Market Structure with an Infinite Number of Firms

Our preceding analysis of the market structure is valid for any finite number of

firms. In this subsection, we investigate what happens to the market structure

as the number of firms becomes infinitely large. In particular, we are interested

in knowing whether the market structure of our model collapses into monopoly,

perfect collusion, or perhaps perfect competition, in the limit as n→∞.
If the marginal cost is constant between zero and QM , then obviously, for

all finite n and in the limit as n→∞, the outcome of our model is monopoly,
which can be interpreted as a perfectly coordinated cartel. Therefore, in what

follows, we again do not consider this special limiting case of the model.

In the analysis of the prevailing market structure with an inifinite number

of firms we will assume that an infinite amount of good can only be sold at zero

price, and that the marginal cost of producing the first unit is positive. These

two assumptions ensure that as n → ∞, the unconstrained Cournot equilib-
rium converges to “perfect competition” in the sense that the per-firm produc-

tion converges to zero, and the total output converges to a quantity where the

market’s willingness to pay equals the marginal cost of any single infinitesimal

firm. To see this, recall that the per-firm output in the unconstrained Cournot

equilibrium satisfies P 0(nq∗)q∗ + P (nq∗) = c0(q∗). As n → ∞, q∗ has to go to
zero, otherwise limn→∞ P (nq∗) = 0, and limn→∞ P 0(nq∗)q∗ ≤ 0 < limn→∞ c0(q∗)
yields a contradiction. If q∗ → 0 then limn→∞ P (nq∗) = c0(0). We will continue
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to assume that there is sufficient total capacity to produce the unconstrained

Cournot output, that is, limn→∞ nq∗ < K.

Proposition 4 Suppose that limQ→∞ P (Q) = 0, 0 < c0(0) < c0(QM), and that

limn→∞ nq∗ < K. In our model, as n → ∞, k∗ converges to zero, however,
(n − 1)k∗ tends to a positive number which is less than the limit of the total
industry production. The market structure remains different from monopoly,

unconstrained Cournot competition, and perfect collusion even as n→∞.

Proof. Under these assumptions, the per-firm Cournot output converges to

zero as the number of firms goes to infinity. Since k∗ is less than q∗ for any
given n, it must also converge to zero.

We claim that (n− 1)k∗ cannot converge to zero as n → ∞. If it did then
limn→∞ r((n− 1)k∗) = QM . By equation (4),£

P 0(QM)QM + P (QM)
¤
[1 + r0(0)] = c0(QM) [1 + r0(0)]

> c0(0) + r0(0)c0(QM),

where c0(0) < c0(QM) is used on the second line. The strict inequality contra-

dicts (10), the first-order condition characterizing k∗, for n sufficiently large.
Finally, we claim that if the total industry production converges to Q̄∗ as n

goes to infinity then limn→∞(n− 1)k∗ < Q̄∗. In other words, the output of the
unconstrained firm does not shrink to zero as the number of firms grows large.

(Its output is greater than q∗ for any finite n, but q∗ goes to zero as n goes to
infinity.) Suppose towards contradiction that r(Q̄∗) = 0. By the definition of
the best-response function, equation (3), P (Q̄∗) = c0(0). This contradicts the
first-order condition that defines k∗ for n sufficiently large, because as n→∞,
by (10), P 0(Q̄∗)Q̄∗ + P (Q̄∗) = c0(0), and hence P (Q̄∗) > c0(0).

3.4 Tobin’s Q and Firm Size

Assuming that the (uniform) equilibrium price of a unit of capacity is p∗ > 0,

our model makes a testable prediction on the relationship between firm size and

Tobin’s Q. Let χi denote firm i’s Tobin’s Q after having been allocated capacity

ki; that is,

χi ≡
P (Q)qi − c(qi)

p∗ki
,
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where the numerator is firm i’s market value and the denominator firm i’s book

value.

Proposition 5 Assume that K > bK so that the efficient auction induces the

asymmetric allocation (k∗, ..., k∗,K − (n − 1)k∗) of capacity. In equilibrium,
χ1 = ... = χn−1 > χn, and so there is a negative relationship between firm size

(as measured by either book or market value, capacity, output, or sales) and

Tobin’s Q.

Proof. Note first that if K > bK, then one firm, say firm n, is allocated

capacity K − (n − 1)k∗ through the efficient auction, while each other firms
is allocated capacity k∗ < K − (n − 1)k∗. Firms 1 to n − 1 will then face a
binding capacity constraint in the output market, producing each an output

of k∗, while the large firm n will produce r ((n− 1)k∗) ∈ (k∗,K − (n− 1)k∗).
Hence, by any measure of firm size si (capacity, book or market value, sales,

output), s1 = ... = sn−1 < sn.

It remains to show that χ1 = ... = χn−1 > χn. For i ∈ {1, ..., n−1}, we have

χi =
P ((n− 1)k∗ + r((n− 1)k∗))k∗ − c(k∗)

p∗k∗
,

and so χ1 = ... = χn−1. For the large firm n, Tobin’s Q is

χn =
P ((n− 1)k∗ + r((n− 1)k∗))r((n− 1)k∗)− c(r((n− 1)k∗))

p∗ [K − (n− 1)k∗] .

We thus have χ1 > χn if and only if

P (Q∗)− c(k∗)
k∗

> P (Q∗)
r((n− 1)k∗)
K − (n− 1)k∗ −

c(r((n− 1)k∗))
K − (n− 1)k∗ ,

where Q∗ = (n − 1)k∗ + r((n − 1)k∗) is industry output. To see that this
inequality does indeed hold, note that

P (Q∗)− c(k∗)
k∗

> P (Q∗)− c(r((n− 1)k∗))
r((n− 1)k∗)

> P (Q∗)
r((n− 1)k∗)
K − (n− 1)k∗ −

c(r((n− 1)k∗))
K − (n− 1)k∗ ,
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where the first inequality follows from r((n−1)k∗) > k∗ and the stricty convexity
of c, and the second inequality from r((n − 1)k∗) < K − (n − 1)k∗. Hence,
χ1 > χn.

This prediction is consistent with the empirical evidence provided in Eeck-

hout and Jovanovic (2002). Using Compustat data, they show that (i) the

market-to-book ratio (Tobin’s Q) is lower for firms with larger book value, and

(ii) the market-to-book ratio is decreasing in firm sales.

4 Alternative Rules for the Capacity Auction

In Section 2.3 we commented on the ways to implement the “efficient auction”

(which allocates capacities to maximize the buyer-firms’ profits) in our model.

We showed that this outcome is implemented by a VCG-auction where the

firms submit bids contingent on the entire capacity allocation. Moreover, we

also showed (for n = 2) that the same capacity allocation is supported by

an equilibrium of the uniform-price share auction. The latter result can be

extended to n > 2. (In the current version we state this fact without proof.)

The difficulty of the extension comes from the observation that in the uniform-

price auction, each firm submits a bid that only depends on the capacity that

it receives, not the entire allocation. Therefore, the bids in the uniform-price

share auction cannot reflect as much information as the bids in the VCG auction

do. However, this difficulty can be resolved due to the fact that in the efficient

capacity allocation all “small” firms are symmetric (receive capacity k∗ each),
and the single “big” firm gets the leftover capacity. As a result, an equilibrium

supporting the efficient capacity allocation similar to the equilibrium exhibited

in the proof of Proposition 2 can be constructed even if n > 2.

In light of the finding that the “efficient capacity auction” yields an asym-

metric and socially undesirable outcome in the downstreammarket, it is perhaps

more interesting to find out whether some other auctions (which are not “effi-

cient” from the perspective of the capacity buyers) could yield socially better

outcomes. One interesting “twist” on the rules of the auction that we investi-

gate in the rest of the subsection is where each unit of the capacity is auctioned

off separately over time, in a dynamic auction.

The rules of the dynamic auction are as follows. The total capacity to be
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sold is divided into small units (i.e., the K physical units are divided to make T

“units for sale”, where T may be much larger than K). At each point in time,

t = 1, . . . , T , one “unit” of capacity is sold at a second-price auction. This

dynamic process is carried out fast enough so that discounting between periods

can be assumed away.

At first glance, it may seem surprising that this dynamic auction does not

yield the same “efficient” result as the VCG auction. In fact, we now show that

if K is sufficiently large and the cost function exhibits constant returns to scale,

then the dynamic auction proposed above is socially more desirable than the

VCG auction.

Recall that under constant returns to scale, if K is sufficiently large (greater

than the monopoly output in the downstream market), then the outcome of our

model with an “efficient capacity auction” (such as the VCG capacity auction)

is monopoly–one firm gets all the capacity, and all the other firms get no

capacity at all. If this were the case in the dynamic capacity auction as well

then in period T (the last period), the large firm would have to outbid every

single other firm for the last unit of capacity. As a result, the large firm would

have to pay a price (for the last unit of capacity) that equals the marginal value

of one unit of capacity for a firm with zero capacity. The marginal value (or

profit) of an additional unit capacity for a firm with zero capacity is quite high,

but it decreases as the capacity of the small firm increases (at least locally, at

zero initial capacity). Therefore, the large firm may find it more desirable to

“give up” a unit of capacity earlier in the dynamic game, in order to “soften” the

competition it will face for the last unit of capacity in the final period. Indeed,

such a move is profitable for the large firm because its profit is “flat” in its

capacity. (As the large firm produces at the monopoly level, a small decrease in

production has a second-order effect on its profit, while the reduction in the price

of the last unit of capacity is of the first order). Therefore, the large firm will

not attempt to buy up all the capacity in the dynamic auction. The resulting

downstream output exceeds the monopoly output, hence the dynamic auction

yields a socially more desirable outcome than the “efficient” VCG mechanism.
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5 Conclusions, Future Research

It may be interesting and worthwhile to extend the model to allow for substi-

tutability between the input obtained in the auction and other inputs. (In other

words, we will treat the upstream good as “capital” rather than “capacity”

as we do currently.) The intuition gained from our analysis suggests that our

main results should generalize to that setup. Namely, we would expect that

the resulting input allocation is asymmetric and suffers from the same types of

inefficiencies that we identified in our model.

Another direction to future research is to explicitly incorporate upstream

sellers (producers of the input or capacity used by the downstream firms) into

the model. Our current model could easily be adapted to allow for a capacity

supply curve (i.e., the supply could be made more elastic). However, by ex-

plicitly considering upstream sellers it would be possible to compare different

contracting modes between the sellers and buyers of the upstream good (the

input or capacity). This extension would make it possible to formally compare

centralized and decentralized input trading mechanisms.

References

[1] Ausubel, Larry (2004), “An Efficient Ascending-Bid Auction for Multiple

Objects,” American Economic Review, Vol. 94, No. 5, pp. 1452-1475, De-

cember 2004.

[2] Dasgupta, Partha and Eric Maskin (2000), “Efficient Auctions”, The Quar-

terly Journal of Economics, 115:341-388.

[3] Eeckhout, Jan and Boyan Jovanovic (2002), ”Knowledge Spillovers and

Inequality", American Economic Review 92(5), 2002, 1290-1307.

[4] Jehiel, Philippe and Benny Moldovanu (2000), "Auctions with Downstream

Interaction among Buyers", RAND Journal of Economics, 31 (4), 2000,

768-791.

[5] Jehiel, Philippe and Benny Moldovanu (2001), “Efficient Design with In-

terdependent Valuations,” Econometrica, 69:1237-1259.

28



[6] Jehiel, Philippe and Benny Moldovanu (2003), "An Economic Perspective

on Auctions", Economic Policy, Vol. 36, April 2003, pp. 271-308.

[7] Jehiel, Philippe, Benny Moldovanu, and Ennio Stacchetti (1996), “How

(not) to Sell Nuclear Weapons” American Economic Review 86(4), 1996,

814-829.

[8] McAfee, R. Preston, “Four Issues in Market Design,” Revista Analisis Eco-

nomico, 13, no. 1, Junio de 1998, 7-24.

[9] Perry, Motty and Philip Reny (2002), “An Efficient Auction”, Economet-

rica, 70, 1199-1212.

[10] Reny, Philip J., and Motty Perry (2005): “An Efficient Multi-Unit Ascend-

ing Auction,” The Review of Economic Studies, 72, 567-592.

[11] Schummer, James, Sven de Vries, and Rakesh Vohra (2005), "On Ascending

Vickrey Auctions for Heterogeneous Objects" forthcoming in Journal of

Economic Theory.

[12] Vickrey, William (1961), “Counterspeculation, Auctions, and Competitive

Sealed Tenders,” Journal of Finance, 16:8-37.

[13] Wilson, Robert (1979), "Auctions of Shares," Quarterly Journal of Eco-

nomics, Vol. 93, No. 4 (November 1979), pp. 675-689.

29


