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1 Introduction

In this paper we propose a number of techniques for evaluating probability event forecasts. These
evaluation tools are viewed as complementing existing ways of evaluating probability distributions of
macroeconomic variables. Our interest focuses on data sets comprised of a relatively small number of
probability distributions, such as the probability distributions of expected inflation from the Survey of
Professional Forecasters (SPF). The nature of these data sets affects the ways in which the forecasts
can be evaluated. For instance, the SPF density forecasts are produced by averaging the histograms
of a number of respondents, so that it appears unlikely that any evaluation of the forecasts will make
recourse to the method of construction. By way of contrast, the approach of Li and Tkacz (2001)
compares the conditional density function of a particular parametric model to a non-parametric estimate
of the conditional density function. The parametric model determines the conditioning variables in the
non-parametric estimate of the true (given those conditioning variables) conditional density.

A popular way of evaluating these probability distributions employs the probability integral trans-
form described by Diebold, Gunther and Tay (1998) (but which has a lineage going back at least to
Rosenblatt (1952)). As an example, Diebold, Tay and Wallis (1999) apply this approach to the SPF
inflation forecasts for the period 1969 to 1995. The probability integral transform evaluates the whole
forecast distribution. Diebold et al. (1998) and Granger and Pesaran (2000a) establish that a density
forecast that coincides with the data generating process will be optimal in terms of minimizing expected
loss whatever the loss function of the user, whereas in general rankings between rival forecasts will not
be invariant to the user’s loss function. This provides a strong case for evaluating the whole forecast
density – a forecast density that provides a close match to the true density can be used by all with equa-
nimity, no matter what their individual loss functions. However, a rejection of the forecast densities may
not render the forecasts of no value for the purpose at hand. Just as financial risk management tends to
focus on a tail quartile of the expected distribution of returns of financial assets (the Value at Risk: VaR),
users of inflation forecasts may be primarily interested in whether the probabilities assigned to inflation
falling in a certain key range are reasonably accurate.1 A density forecasts may be well calibrated over
the range(s) of interest but be rejected overall.

As well as being of interest in their own right, an assessment of the accuracy of the implied probabil-
ities of certain events (inflation falling in a certain range) may also be informative about the reasons for
the ‘whole-density’ rejection, thereby operating in a constructive manner. Event probability forecasts
are intimately related to interval forecasts (commonly also called prediction intervals). Event probabil-
ity forecasts assign a probability to inflation falling in a pre-specified range. Interval forecasts specify
a range for a given probability. This relationship will motivate one of the evaluation tools. A density
forecast can be viewed as being comprised of a sequence of intervals forecasts generated by allowing the
nominal coverage rate to vary over all values in the unit interval. The evaluation of a sequence of interval
forecasts with a specific nominal coverage rate therefore assesses one aspect of the underlying sequence

1Since the Spring of 1997, the Monetary Policy Committee in the UK has been charged with delivering an inflation rate of
±1 percentage points around a target of 2 1

2
%. Whether formalised or not, considerations of this type are an integral part of

most Western countries’ macroeconomic stabilisation policies.
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of forecast densities (such as the VaR in risk management exercises2). Similarly, the evaluation of event
probabilities assess the forecast densities over particular ranges.

Having accurate forecast probabilities of events of interest may be more important than the forecast
density being correctly calibrated throughout its range. To this end, we propose tests of the efficiency
of probability forecasts of events derived from the SPF density forecasts. We also propose the use
of forecast encompassing tests as a check on the ‘conditional efficiency’ of the SPF event probability
forecasts relative to rival sets of forecasts. Both sets of tests are applicable to event probability forecast
evaluation in general.

The plan of the paper is as follows. Section 2 provides a brief review of the probability integral
transform approach, and section 3 sets out in detail the event probability forecast evaluation tools we
propose. Section 4 describes the nature of the SPF forecasts, and the results of the evaluation using
the probability integral transform approach. Section 5 describes the application of the event probability
evaluation techniques to the SPF forecasts, and section 6 concludes.

2 Probability distribution forecast evaluation

The key idea of the probability integral transform approach popularised by Diebold et al. (1998) is the
following. Suppose we have a series of 1-step forecast densities for the value of a random variable {Yt},
denoted by pY,t|t−1(y), where t = 1, . . . , n. The probability integral transforms (pits) of the realizations
of the variable with respect to the forecast densities are given by:

zt =

ytZ
−∞

pY,t|t−1(u)du ≡ PY,t|t−1 (yt) (1)

for t = 1, . . . , n, where PY,t|t−1 (yt) is the forecast probability of Yt not exceeding the realized value yt.
When the forecast density equals the true density, fY,t|t−1 (y), it follows that zt ∼ U (0, 1). Even though
the actual conditional densities may be changing over time, provided the forecast densities match the
actual densities at each t, then zt ∼ U (0, 1) for each t, and the zt are independently distributed, such
that the time series {zt}nt=1 is independently identically uniform distributed, i.e., iidU (0, 1).

Evaluating the forecast densities by assessing whether {zt}nt=1 is iidU (0, 1) thus requires testing
the joint hypothesis of independence and uniformity. Independence can be assessed by examining cor-
relograms of {zt}nt=1, and of powers of this series (as a check for dependence in higher moments, which
would be incompatible with the independence claim), and formal tests of autocorrelation can be per-
formed. Uniformity can also be assessed in a number of ways: whether the empirical cdf of the {zt} is
significantly different from the theoretical uniform cdf (a 45◦ line) using e.g., the Kolmogorov Smirnov
(KS) test of whether the maximum difference between the two cdfs exceeds some critical value. The
effect of a failure of independence on the distribution of the test statistic is unknown, and could be ex-
acerbated by a small sample size. Moreover tests of autocorrelation will be affected by failure of the
uniformity assumption. Graphical analyses are often reported as an adjunct to formal tests of the two
parts of the joint hypothesis.

2See Lopez (1996) for a discussion of the relationship between VaR analysis and interval forecasting.
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Other ways of testing probability distributions are given in Thompson (2002), who suggests a fre-
quency domain test of the uncorrelatedness of the {zt} based on the cumulative periodogram approach
of Durbin (1969), and the generalized spectral approach of Hong (2001). To aid comparison with the
earlier work on the SPF inflation forecasts, and because our primary interest is on event probability
forecast evaluation, we will not consider the frequency domain approaches.

3 Event probability forecast evaluation

3.1 Regression-based tests of event probabilities

Let It be the event indicator that takes the value unity when the event occurs in period t, and zero
otherwise. An event could be inflation being in a certain range, for example. The probabilities pt
attached to the event in each period are calculated by linear interpolation of the the SPF histograms. The
evaluation of a sequence of event probability forecasts {pt}nt=1 requires an assessment of probabilities
which typically vary over time while the ranges defining the events are fixed. Whereas for sequences
of interval forecasts the nominal coverage level is fixed and the range defining the ‘event’ varies over t.
The close relationship between the two permits interval evaluation tests to be adapted to evaluate event
probability forecasts.

Christoffersen (1998, p. 849–50) and Engle and Manganelli (1999) present regression-based tests
of interval forecasts based on:

It = α+ β0Wt−1 + εt, t = 1, . . . , n (2)

as a way of testing ‘conditional forecast efficiency’. It is the ‘hit sequence’, and equals unity when the
tth interval contains the actual, and Wt−1 is a vector of variables known at t − 1. Wt−1 will typically
include the lagged values {It−1, It−2, . . .}. Conditional efficiency is the requirement that a sequence
of forecasts has correct conditional coverage, E (It|Wt−1) = p for all t. This can in turn be viewed
as requiring that the ex post coverage of the set of forecasts equals the nominal coverage rate (correct
unconditional coverage, E (It) = p) and that hits (alternatively, misses) are not associated with other
variables, or combinations of other variables, Wt−1. Conditional efficiency requires that

£
α β0

¤
= [p 00].

A rejection of β = 0 would signify that the likelihood of a hit varies systematically with information
known at the time the interval forecast was made.

A simple way of testing the conditional efficiency of event probability forecasts {pt}nt=1 is to include
pt as an explanatory variable in (2), so that now interpreting {It} as the event indicator we obtain:

It = γpt + βW 0
t−1 + εt, t = 1, . . . , n (3)

The null hypothesis of conditional efficiency is that E (It |Wt−1) = pt for all t, which requires that£
γ β0

¤
= [1 00]. When Wt−1 simply consists of an intercept, (3) is the realization-forecast regression

of Mincer and Zarnowitz (1969). Here the realization {It} is binary, and the forecast is a probability.
Nevertheless, [γ β] = [1 0] is a sufficient condition3 for unbiasedness and also implies that the forecast

3See Holden and Peel (1990).
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errors {It − pt} are uncorrelated with the forecasts.4 In the context of equation (2) for interval forecasts,
Clements and Taylor (2003) note that the binary nature of the dependent variable {It} suggests fitting
a regression model to a logistic transformation of the dependent variable. In terms of the event forecast
evaluation regression (3) the logit model is:5

Pr (It = 1) = Λ(γ, β;αt), t = 1, . . . , n (5)

where
Λ(γ, β;αt) = eγαt+β/(1 + eγαt+β)

and αt = ln(pt/(1− pt)). The transformation of pt given by αt gives Pr (It = 1) = pt under the null
[γ β] = [1 0] as required.

In principle Wt−1 could include {It−1, It−2, . . . pt−1, . . .} etc., but to aid interpretation we first test
with Wt−1 = 1 only in (3) using a logit regression, and then expand the information set to test whether
other variables help explain the forecast error et ≡ It − pt in regressions such as:

It − pt = βWt−1 + error.

Plausible candidate variables in the inflation example are import price inflation to capture the oil price
shocks of the seventies, and the unemployment rate as suggested by textbook Phillips Curve models.
We will consider instead the information contained in rival sets of probability forecasts, and to that end
we consider tests of forecast encompassing in the next section.

3.2 Forecast encompassing tests of probability forecasts

One set of forecasts {f1t} is said to forecast encompass another {f2t} if the latter contains no useful
information not already present in {f1t}, in the mean-squared error sense that a linear combination of
f1t and f2t (with non-zero weight accorded to f2t) has a mean-squared forecast error (MSFE) no smaller
than that of f1t. The notion of forecast encompassing is more stringent than the requirement that {f1t}
has a smaller MSFE than {f2t} – {f1t} could have a smaller MSFE than {f2t} but nevertheless a
combination of the two could have a smaller MSFE than {f1t}.6

Forecast encompassing is a natural way to compare rival sets of forecasts. In this section we inves-
tigate the validity of tests of forecast encompassing when the forecasts are probability forecasts. We

4From (3) with Wt−1 = 1:
(It − pt) = (γ − 1) pt + β + εt

and so:

E [(It − pt) pt] = (γ − 1)E
¡
p

2
t

¢
+ βE (pt) . (4)

5When the events cover all possible outcomes the adequacy of the event probability forecasts can be assessed using the
multinomial logit model for unordered multi-responses, as described by Patton (2002) working within a similar framework.

6There is an extensive literature on forecast encompassing: see Diebold and Lopez (1996) and Newbold and Harvey (2002)
for recent surveys, and Chong and Hendry (1986), Clemen (1989), Newbold and Granger (1974) and Stock and Watson (1999)
inter alia. Forecast encompassing is formally equivalent to the notion of conditional efficiency introduced by Nelson (1972)
and Granger and Newbold (1973).
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define the forecast errors as eit = yt− fit, i = 1, 2, where {yt}nt=1 is the sequence of outcomes, and fit
is the forecast made of period t at period t− 1, so the forecasts are 1-step ahead. The forecast error of
the combined forecast fct = (1− λ) f1t + λf2t is given by εt, so that rearranging implies that the null
hypothesis that forecast f2t contains no useful information that is not already present in f1t is given by
λ = 0 in the OLS regression:

e1t = λ (e1t − e2t) + εt. (6)

That is, the expected-squared error of the combined forecast is minimized by λ = 0, so that no weight is
accorded to f2t. The form of this regression implies that the individual forecasts are unbiased (E (eit) =
0, i = 1, 2) otherwise a constant term would be required in the combination and in (6). The weights on
the individual forecasts are restricted to sum to unity, and we restrict λ to 0 ≤ λ ≤ 1 to rule out forecasts
being given negative weights (and weights in excess of one). The alternative hypothesis is therefore one-
sided: λ > 0. The null of λ = 0 corresponds to E (e1t, e1t − e2t) = 0 against the one-sided alternative
E (e1t, e1t − e2t) > 0.

Under standard assumptions about forecast errors it follows from Diebold and Mariano (1995) that
the t-statistic that λ = 0 in (6) has an asymptotic standard normal distribution. However, Harvey,
Leybourne and Newbold (1998) (henceforth HLN) show that when the forecast errors are conditionally
heteroscedastic (E

¡
e2

1t | e1t − e2t

¢
= g (e1t − e2t)) the standard test will be incorrectly-sized, and they

propose the use of heteroscedasticity-robust methods as well as a number of modifications to improve
the small-sample performance.

Probability forecasts impose bounds on the ranges of the forecast errors and the disturbance term
εt in (6). Because yt is binary and fit ∈ (0, 1), then eit ∈ (−1, 1), and under the null εt ∈ (−1, 1).
Typically, probability forecasts will also be characterised by conditional heterocedasticity. To illustrate,
consider the data generating process given by:

yt = 1 (u1t > vt) , f1t = u1t, f2t = u2t, (7)

where u1t, u2t, and vt are independent U (0, 1) random variables. By construction, f1t forecast encom-
passes f2t because f2t is independent of yt. This can be seen from E (e1t, e1t − e2t) = 0:

E (e1t, e1t − e2t) = E [(1 (u1t > vt)− u1t) (u2t − u1t)]

= E
¡
u2

1t

¢−E [u1t1 (u1t > vt)]−E (u1tu2t) +E [u2t1 (u1t > vt)]

= 1/3− 1/3− 1/4 + 1/4 = 0
using standard results pertaining to independent U (0, 1) random variables.

The probability forecast errors are also characterised by conditional heteroscedasticity whereby
E

¡
e2

1t | e1t − e2t

¢
depends on (e1t − e2t)

2. To establish the presence of heteroscedasticity of this form,
consider:

e2
1t = ζ0 + ζ1 (e1t − e2t)

2 + νt

where ζ0 is an intercept, and E
³
νt | (e1t − e2t)

2
´
= 0. Heteroscedasticity is present when ζ1 6= 0,

where:

ζ1 =
Cov

h
(e1t − e2t)

2 , e2
1t

i
V ar

h
(e1t − e2t)

2
i . (8)
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Table 1 Monte Carlo estimates of sizes of forecast encompassing tests of probability forecasts for the
artificial data generation process.

n R R1 R2 DM MDM rs,1 rs,2
8 2.76 3.50 0.28 3.14 1.17 2.98 4.01
16 2.95 2.75 1.24 3.10 1.86 2.82 5.18
32 2.85 2.75 2.05 2.98 2.38 2.07 6.34
64 2.90 3.15 2.79 3.22 2.97 1.23 8.17
512 3.24 4.25 4.20 4.26 4.23 0.05 35.77

10,000 3.21 4.83 4.83 4.83 4.83 0.00 100.00
The table records the Monte Carlo rejection frequencies for the true null of forecast encompassing for the data generation

process given by (7), based on 40, 000 replications, and for a nominal test size of 5%.

R is the standard t-statistic for λ = 0; R1 employs a correction for heteroscedasticity; R2 an alternative estimator of the

denominator of the t-statistic; DM is the Diebold-Mariano test for equal forecast accuracy applied to testing for forecast

encompassing; MDM is a modified version of DM ; and rs,1 is Spearman’s rank correlation test against positive correlation,

and rs,2 is Spearman’s rank correlation test implemented as a two-sided tests.

We can replace e1t and e2t by u1t, u2t and vt, and then substitute numerical values for the resulting
moments (and conditional) moments of U (0, 1) variables. ζ1 can be calculated rather more simply by
simulation, in which case we obtain ζ1 ' −0.14 for the data generation process given by (7).

Table 1 records the results of a small Monte Carlo investigation on the sizes of the standard and
HLN-modified forecast encompassing tests for the probability-forecast data generation process given
by (7). In brief, the test statistics we consider are: the standard t-statistic for λ = 0 (R); as R but
with heteroscedasticity-consistent-standard-errors (White (1980)) (R1); as R1 but with an alternative
estimator of the denominator of the t-statistic (R2); the Diebold and Mariano (1995) test for equal fore-
cast accuracy applied to testing for forecast encompassing (DM); the Harvey, Leybourne and Newbold
(1997) modifications to the Diebold-Mariano test for equal forecast accuracy applied to the DM test for
forecast encompassing; Spearman’s rank correlation test (rs,1 and rs,2). R and DM are compared to
a standard normal, and R1, R2 and MDM to a Student tn−1. All are implemented as one-sided tests.
Spearman’s rank correlation test is a distribution free test that determines whether there is a monotonic
relation between two variables, here e1t and (e1t − e2t), and is advocated by HLN for 1-step forecasts
where it is reasonable to assume that drawings of {e1t, (e1t − e2t)} are independent. We report a one-
sided rank correlation test against the alternative of positive correlation (rs,1), and a two-sided test (rs,2),
for reasons which will become apparent. Details of these tests are provided by HLN.

The table indicates that R1, R2, DM and MDM are all correctly-sized asymptotically for tests of
probability forecasts, where n = 10, 000 is taken to correspond to n = ∞. All four are under-sized
in small-samples, especially R2 and MDM , although the size distortions to R1 and DM are not too
serious for n = 32, which corresponds to the size of the sample of SPF forecasts. Interestingly, MDM

is worse than DM . As expected given the conditional heteroscedasticity, the standard test R appears to
be undersized even as n gets large, but by a relatively small amount. Perhaps most strikingly, the rank
correlation tests are of little use on this type of data. The one-sided test against positive correlation (rs,1)
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Table 2 Monte Carlo estimates of size and power of forecast encompassing tests of probability fore-
casts for the ARCH(1) data generation process. .

n Null hypothesis R R1 R2 DM MDM

farch,t FE fr,t 3.61 5.16 0.55 3.90 1.73
8 farch,t FE fnc,t 11.44 16.27 7.03 13.79 10.33

fnc,t FE farch,t 17.85 21.80 2.49 17.09 7.92
farch,t FE fr,t 3.48 3.54 1.41 3.28 2.11

16 farch,t FE fnc,t 7.38 9.79 5.91 8.39 6.92
fnc,t FE farch,t 34.69 33.76 16.39 29.07 21.66
farch,t FE fr,t 3.33 3.27 2.29 3.27 2.67

32 farch,t FE fnc,t 6.66 7.28 5.45 6.62 5.93
fnc,t FE farch,t 60.61 57.66 46.77 53.92 49.80
farch,t FE fr,t 3.36 3.41 2.90 3.44 3.13

64 farch,t FE fnc,t 6.34 6.12 5.21 5.86 5.45
fnc,t FE farch,t 88.13 86.78 83.50 85.56 84.30
farch,t FE fr,t 3.42 4.20 4.13 4.19 4.15

512 farch,t FE fnc,t 6.09 5.11 4.99 5.07 5.02
fnc,t FE farch,t 100.00 100.00 100.00 100.00 100.00
farch,t FE fr,t 3.62 4.80 4.79 4.79 4.79

10,000 farch,t FE fnc,t 6.24 5.08 5.07 5.08 5.07
fnc,t FE farch,t 100.00 100.00 100.00 100.00 100.00

The table records the Monte Carlo rejection frequencies for the null of forecast encompassing for different pairs of forecasts,

when the data generation process is given by (9). The calculations are based on 40, 000 replications, and are for a nominal test

size of 5%.

The test statistics are explained in the text and in the notes to table 1.

farch,t FE fr,t is the hypothesis that farch,t forecast encompasses fr,t, etc., where farch,t are the true forecasts, fr,t contain

no useful information by construction. fnc,t is the no-change forecast.

is the most natural as it tests against a positive weight on the rival forecast, but is undersized at n = 32,
and more pertinently, the size goes to zero as n gets large. The reason is evident from the behaviour of
the two-sided rank correlation test rs,2, for which the size goes to one, indicating negative correlations
in the ranks.

Given that R1, R2, DM and MDM have reasonable size properties for tests of probability fore-
casts, we next carried out a Monte Carlo study to establish the powers of these tests for a data generation
process and sets of probability forecasts that match the inflation forecasts in certain respects. The data
generation process for inflation (yt) is an AR(1)-ARCH(1)model,7 approximately calibrated on the US

7See e.g., Engle (1982).
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annual data:

yt = 0.5 + 0.8yt−1 + εt

εt = zt
p
ht

ht = 0.4 + 0.85ε2
t−1 (9)

where zt is a standard normal random variable. We consider probability forecasts of the event that
inflation falls within the target range 11

2 to 31
2%. The ‘true’ probability forecasts are denoted by farch,t

and are calculated from the 1-step ahead conditional gaussian densities implied by (9) using the actual
values of the coefficients in the conditional mean and variance functions.8 There is no suggestion that
this process is a good representation of the way in which the SPF forecast densities are constructed.
All we require is that it captures some of the salient features, such as changing conditional means and
variances, so that we can explore the powers of the forecast encompassing tests against rival probability
forecasts of the sort used in the empirical study, where these aspects are absent or otherwise incorrectly
specified. We calculate ‘no-change’ fnc,t probability forecasts from conditional gaussian densities with
means equal to the realised rates of inflation in the previous periods, and variances equal to the sample
variances of the t − 4 to t − 1 observations (for a forecast of period t). A rationale for considering
forecasts of this type is given in section 5. In addition, we use a rival forecast fr,t = ut, where ut ∼
U (0, 1) and {ut} is independent of {zt}.

Table 2 reports the results of the Monte Carlo based on the data generation process (9), for n =
{8, 16, 32, 64, 512, 10000}, as before, where again n = 10, 000 mimics the asymptotic case. For each
n, the first test is of whether the true probability forecasts encompass randomly-generated forecasts
which are unrelated to yt. This serves as a check – the rejection frequencies for these rows correspond
to sizes, and as expected replicate closely the estimates recorded in table 1. Notice that the rejection
frequencies for the null hypotheses that farch encompasses fnc are in excess of 5% for small n, as the
fnc forecast probabilities are correlated with the occurrence of the event. The rejection frequencies of
the four modified tests of fnc encompassing farch are around 50 to 60% for n = 32, suggesting that
these tests have reasonable power for samples of the size of the SPF forecasts.

4 The SPF probability distributions of expected future inflation

The SPF9 is a quarterly survey of macroeconomic forecasters of the US economy that began in 1968 as
the ASA-NBER survey, administered by the American Statistical Association and the National Bureau
of Economic Research, and since June 1990 has been run by the Philadelphia Fed, under its current

8West (2001) considers the effects of parameter estimation uncertainty on tests for forecast encompassing: see West (1996),
West and McCracken (1998) and West and McCracken (2002) on the impact of parameter estimation uncertainty on other tests
of predictive accuracy. Because the SPF probability distributions are not based on a simple model known to the econometrician,
it is difficult to see how an allowance could be made for the uncertainty in the respondents’ probability assessments, whether
this emanates from parameter estimation uncertainty or some other source.

9Detailed information on the survey as well as the survey results are available at thURL
http://www.phil.frb.org/econ/spf. An academic bibliography of articles that either discuss or use data
generated by the SPF is also maintained online.
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name. The majority of the survey questions ask respondents to report their point forecasts for a number
of variables at various forecast horizons, from which median forecasts are calculated, but respondents
are also asked to report discrete probability forecasts, or histograms, for output growth and inflation for
the current and next year, which are then averaged to produce the density forecasts.

Diebold et al. (1999) discuss the survey and the complications that arise in using the inflation fore-
casts. In order to obtain a non-overlapping series of forecasts – in the sense that the realization of
inflation in period t is known before making the next forecast of t+1 at period t – they take the density
forecasts made in the first quarter of each year of the annual change in that year on the preceding year.
This avoids the counterpart of the well-known problem in the point forecast evaluation literature that
a sequence of optimal h-step ahead forecasts, where the forecasting interval is one period, will follow
a moving-average process of h − 1. Further complications are that both the base years of the price
indices and the indices themselves have changed over time. The change in base years is likely to have
had a minor effect on the inflation rate, and we construct a series of realizations of annual inflation that
matches the indices for which probability assessments were requested. Thus, for 1969 to 1991 we use
the implicit GNP deflator, for 1992 to 1995 the implicit GDP deflator, and for 1996 to 2002 the chain-
weighted deflator, correcting for the changes in the definition of the index but not for base-year changes.
Moreover, we use the latest available estimates of the realized values.10

Finally, as documented by the Philadelphia Fed, the form in which the respondents report their prob-
ability assessments has changed over time, with changes in the number of bins and/or their locations
and lengths as the perceived likely ranges of the target variables has changed. However, this complica-
tion is minor because for the most part we will want to read off probabilities of certain values, and the
values that define given probabilities, and both can be achieved by piecewise linear approximation – this
approximation ‘undoes’ the discretization in the histogram.11

Figure 1 portrays the inflation density forecasts as Box-Whisker plots along with the realizations.
The observations for 1969 to 1996 closely match Diebold et al. (1999), and are discussed in detail by
those authors. We note that the forecasts and realizations for 1997 and 1998 indicate a continuation of
the tendency from the early part of the decade to both over-estimate the uncertainty and level of inflation.
The forecast distributions appear too dispersed and the central tendencies consistently indicate higher
inflation rates than actually materialise. Inflation is low and falling up until the end of the decade.

Table 3 presents the results of the formal ‘whole density’ tests of the probability integral transforms
{zt}. The KS test statistic offers no evidence against the null hypothesis of uniformity. Rather than
testing (powers of) the {zt} series for autocorrelation, Berkowitz (2001) suggests taking the inverse

10The series were taken from the Federal Reserve Bank of St Louis database (FRED), available at the URL
http://www.stls.frb.org/fred/data/ and have the codes GNPDEF, GDPDEF and GDPCTPI.

11As an example, suppose we wish to calculate the forecast probability of observing a value less than Y = 3.5. Suppose Pr

(Y < 2) is 0.5, and the bin defined by [2, 4) has a probability of 0.2. Then:

Pr (Y < 3.5) = Pr (Y < 2) +
1.5

2
Pr (Y ∈ [2, 4)) = 0.5 +

1.5

2
0.2 = 0.65.

Linear interpolation follows the assumption implicit in the histogram – that probability mass is uniform within a bin. If a
bin is bordered by a high probability bin and a relatively low probability bin, it might be desirable to attach higher probabilities
to points near the boundary with the high probability bin.
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Table 3 Tests of SPF density forecasts of inflation ((1969–2002)) based on probability integral trans-
forms.

Test
Distribution

KS test of uniformity 0.16
Independence

Bowman-Shenton 0.10
Doornik-Hansen 0.01
Berkowitz I 0.00
Berkowitz II 0.00

The test outcomes are recorded as p-values, except for the KS test, which is the test statistic value. The 5% critical value

is 0.23. The Bowman-Shenton test is a two-degree of freedom test with an asymptotic chi-squared distribution, whilst the

Doornik-Hansen tests may have better small-sample properties. Berkowitz I is a 1-degree-of-freedom test of no first-order

autocorrelation of the transformed probability integral transforms assuming N(0, 1). Berkowitz II is a 3-degree-of-freedom

test of zero-mean, unit-variance and no first-order autocorealtion of the transformed probability integral transforms assuming

normality

normal CDF transformation of the {zt}nt=1 series, to give, say, {z∗t }nt=1, and testing whether the trans-
formed series are iidN(0, 1). Berkowitz argues that more powerful tools can be applied to testing a
null of iidN(0, 1), compared to one of iid uniformity, and proposes a one-degree of freedom test of
independence against a first-order autoregressive structure, as well as a three-degree of freedom test of
zero-mean, unit variance and independence. In each case the maintained assumption is that of normal-
ity, so that standard likelihood ratio tests are constructed using the gaussian likelihoods. We find that
both the one and three-degree of freedom tests reject at the 1% level (see table 3). The assumption
of normality of {z∗t } is also amenable to testing – the Shenton and Bowman (1977) and Doornik and
Hansen (1994) tests of normality return p-values of 0.10 and 0.01 respectively, although these tests of
distribution do assume a random sample.

The formal tests of the iid part of the joint hypothesis reject the SPF densities confirming the im-
pression gained from the Box-Whisker plots.

5 Results of the event probability forecast evaluation

From the Box-Whisker plot in figure 1 it appears that the rejection of the SPF probability distributions
is due in part at least to the tendency over the recent period to both over-estimate the uncertainty or
variability and level of the rate of inflation. It is unclear to what extent these deficiencies detract from
their value without a fully-formulated decision-based approach.12 Whilst such approaches are used in

12That is, an evaluation of the forecast densities in terms of the expected ‘economic value’ from basing decisions/actions on
those forecasts: see, e.g., Granger and Pesaran (2000a, 2000b) and Pesaran and Skouras (2002, p. 245-7).
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Table 4 Inflation event forecasts evaluation.
Target range event Directional event

SPF forecasts 0.145 0.547
No change forecasts 0.123 0.306

The table records the p-values of Wald tests of [γ β] = [1 0] for the logit regressions. The ‘no change’ density forecasts of the

directional event imply pt = 0.5 for all t, and therefore αt = 0.5, for all t. In this case, the null is that β = 0 in a regression

that omits αt.

some disciplines such as meteorology, their practical adoption in economics appears some way off. 13

Consequently, we provide two complementary assessments of the quality of the density forecasts, based
on how accurately two particular events are forecast, using the techniques of section 3. The first is the
event that inflation will be in some target range, here taken to be 11

2 to 31
2%. In a number of countries the

monetary authorities target a range for the inflation rate. Given the lagged adjustment of the economy
to changes in monetary instruments, accurate forecasts of whether the target range is likely to be hit are
essential for the efficient conduct of monetary policy. The second event is the direction-of-change of
inflation. Accurately forecasting increases versus decreases in rates of growth has obvious appeal in the
context of real activity variables, because of the correlation with business cycle phases of contraction
and expansion, and Canova (2002) also recommends evaluating inflation forecasts in this way.

Table 4 records the p-values of the tests of [γ β] = [1 0] in the logit regression of (3) for the two
events. We are unable to reject the nulls that the forecast probabilities of both events are efficient. In
addition, event probability forecasts derived from ‘no-change’ forecast densities are also tested. The
latter are the density forecast analog of the widely-reported no-change point forecast (see, e.g., Theil
(1966)). No-change forecasts have been viewed as ‘naive’ predictors, but have recently been shown to
be a good forecasting device when there are structurl breaks (see, e.g., Clements and Hendry (1999)).
More pertinently, Atkeson and Ohanian (2001) show that a no-change predictor outperforms modern
Phillips Curve-based model predictions of inflation in the U.S. over the last fifteen years. We calculate
no-change density forecasts by assuming a conditional gaussian density with means equal to the realised
rate of inflations in the previous periods, and the variances equal to the sample variances of the t− 4 to
t−1 observations (for a forecast of period t). Given the preceding comments it is perhaps not surprising
that the no-change forecasts are not rejected for either event. Nevertheless, the no-change forecasts of
the directional event simply indicate that there is an evens chance that inflation will be lower (higher)
than in the previous period. While the no-change forecasts are uninformative about the directional event
by construction, figure 2 shows that the SPF forecasts are also relatively uninformative over the last
ten years, at least they vary little until 2002. That said, this is in large part a consequence of the low
variability of inflation over the last decade, such that directional changes often correspond to small
changes in the rate of inflation, and are therefore hard to predict.

The results of the forecast encompassing test described in section 3.2 are recorded in table 5 for
13For example, “Unfortunately the complexity of situations prevents a single definitive cost measure being formulated. Thus

a range of simple statistical measures have been developed to measure various aspects of forecast quality” (Encyclopaedia of
Statistical Sciences, entry on Forecasting).
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Table 5 Forecast encompassing tests.
Null hypothesis R1 R2 DM MDM

Target range event
SPF encompasses No-change 0.247 0.246 0.242 0.248
No-change encompasses SPF 0.010 0.029 0.019 0.024

Directional event
SPF encompasses No-change 0.592 0.592 0.592 0.590
No-change encompasses SPF 0.000 0.002 0.000 0.000

The four variants of forecast encompassing tests are described in section 3.2. The table records the p-values of one-sided

forecast encompassing tests.

The range event is that inflation is between 1.5 and 3.5%, the directional event is that inflation is lower than in the previous

year.

the SPF and ‘no change’ forecast probabilities. The four modified tests are all very similar. We do not
reject the null that the SPF forecasts encompass the no-change for either the range (inflation between
11

2 and 31
2% ) or directional events (inflation lower than in previous year). Running the tests in the

reverse rejection we find the null hypotheses that the no-change forecasts encompass the SPF forecasts
is rejected for both events (at the 1% level for the directional event and at the 5% level for the range
event). The no-change forecasts do not contain any useful information not already present in the SPF
forecasts, for the two events we consider, although we can comfortably reject the hypotheses that the
SPF do not contain any information not already in the no-change forecasts. So whereas the tests of the
efficiency of the forecasts in table 4 are unable to reject the SPF or no-change forecasts for either event,
the tests of conditional efficiency or forecast encompassing – which include the rival model’s forecasts
in the information set – do give a definitive outcome.

6 Conclusions

We have proposed number of ways of evaluating probability event forecasts to complement the now
standard evaluation techniques available for forecast densities. We consider regression-based tests of
the efficiency of forecast probabilities paralleling Mincer and Zarnowitz (1969), as well as tests of
conditional efficiency or forecast encompassing, to evaluate the forecasts against a wider information
set. The tests of forecast encompassing are shown to be affected by conditional heteroscedasticity, but
simple modifications to the standard test statistics are shown via Monte Carlo to deliver correctly-sized
tests with reasonable power.

These tools are applied in an analysis of the SPF expected probability distributions of inflation.
The SPF densities are rejected using the ‘whole density’ probability integral transform approach, but
neither the SPF nor rival no-change forecast probabilities for two events of interest are rejected using
a realization-forecast regression related to that of Mincer and Zarnowitz (1969). However, widening
the information set to test for conditional efficiency against the information embodied in rival forecasts
shows that the SPF forecasts are conditionally efficient against the no-change forecasts (for both events),
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whilst the conditional efficiency of the no-change forecasts (against the SPF forecasts) is rejected.
The SPF forecasts have been extensively studied by economists. We have suggested new ways in

which derived forecast probabilities of particular events of interest may be evaluated, and compared
against rival sets of forecast probabilities. The techniques are general, and might be especially useful
when, as in the case of the SPF forecasts, the forecasts are not model based (or at least the model is not
known to the econometrician). As noted in the introduction, a number of alternative techniques might
usefully be brought to bear for model-based forecasts.
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Figure 1 Inflation forecast probability distributions shown as Box-Whisker plots and realizations.
The boxes represent the inter-quartile, the outer ‘whiskers’ the 10 and 90th percentiles, and the inner line the median. The

realizations are circles with dots at the centres.
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Figure 2 Time series of events ‘inflation in the range 1.5 to 3.5%’ and ‘lower inflation than last year’
and forecast probabilities of these event. Each column refers to one of the two events. The rows relate to the SPF

and no-change event forecast probabilities. In each panel, the bars are one-zero event indicators, and the lines the forecast

probabilities.
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