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Abstract
This paper studies optimal taxation of entrepreneurial capital and financial assets

in economies with private information. Returns to entrepreneurial capital are risky and
depend on entrepreneurs’ effort, which is not observed. The presence of idiosyncratic
risk in capital returns implies that the intertemporal wedge on capital that charac-
terizes constrained-efficient allocations can be positive or negative. The properties of
optimal marginal taxes on entrepreneurial capital depend on the sign of the intertem-
poral wedge. If the wedge is positive, the marginal capital tax should be decreasing in
capital returns, while the opposite is true when the wedge is negative. Optimal taxes on
other assets should be set according to their correlation with risky productive capital.
The intertemporal wedge associated with an asset is greater than the one associated
with entrepreneurial capital as long as their correlation is less than one. The optimal
tax system tends to reduce the variance of capital returns after tax relative to before
tax, while the opposite is true for other assets. If entrepreneurs are allowed to sell shares
of their capital to outside investors, returns to externally owned capital are subject to
double taxation- at the level of the entrepreneur and at the level of the outside investors.

∗PRELIMINARY AND INCOMPLETE VERSION I wish to thank V.V. Chari, Pierre-Andre’ Chi-
appori, Chris Edmonds, Narayana Kocherlakota and Victor Rios-Rull for helpful conversations. I am
grateful to seminar participants at Yale, University of Pennsylvania, NYU and Columbia University and
to conference participants at the SED Annual Meeting, the SAET meeting, and at the NBER Summer
Institute for useful comments. Mailing Address: 1022 IAB, West 118th Street, New York, NY 10027,
E-mail: sa2310@columbia.edu.

1



1. Introduction

This paper studies optimal taxation of entrepreneurial capital and financial assets in
economies with private information. The optimal setting of capital income taxes is
a central question in macroeconomics. Previous studies of optimal capital taxes have
abstracted from idiosyncratic risk in capital returns and incentive problems in the op-
eration of capital that are potentially prevalent for entrepreneurial capital. Yet, en-
trepreneurial capital accounts for a substantial fraction of economy-wide capital and
household wealth in the US. Moscowitz and Vissing-Jorgensen (2002) identify entrepre-
neurial capital with private equity. Based on the Survey of Consumer Finances they
document that the total value of private equity is similar in magnitude to public equity.
Households who hold entrepreneurial capital invest on average more than 70% of their
wealth in a single private company which they actively manage. Gentry and Hubbard
(2000) estimate that about 9% of US households can be classified as entrepreneurial.
Based on the Survey of Consumer Finances, entrepreneurial households own 38% of
assets of the household sector and 39% of net worth. Macroeconomic studies of optimal
capital income taxation have also devoted little attention to the taxation of financial
assets different from capital and to whether capital should be taxed at the firm or at
the investor level.

This paper considers economies where capital returns are risky and depend positively
on agents’ effort. This implies that capital is agent specific and generates idiosyncratic
risk in capital returns. The risky productive capital is identified with entrepreneurial
capital, given the active role played by owners in the determination of capital returns.
Higher effort increases the probability of high capital returns thus increasing the ex-
pected returns from capital. The returns from entrepreneurial capital are observable
but entrepreneurial effort is private information. Entrepreneurs are allowed to trade
financial assets, with returns possibly correlated with their idiosyncratic uncertainty,
and can also sell shares of their capital to outside investors.

We characterize optimal taxes, following the dynamic public finance approach, re-
viewed in Kocherlakota (2005a). Under this approach, which extends Mirrlees’s (1971)
analysis to a dynamic framework, optimal taxes implement the constrained-efficient al-
location as competitive equilibrium for a particular decentralized trading arrangement.
The only a priori restrictions imposed on the tax system stem from the informational
constraints. Hence, it is essential to characterize the constrained-efficient allocation for
this environment to derive the optimal tax system.

The constrained-efficient allocation solves the problem of a planner who allocates
investment and consumption across time and states to maximize the agents’ ex ante life-
time utility, subject to a resource constraint and an incentive compatibility constraint.
This allocation displays a wedge between the marginal benefit on an additional unit of
entrepreneurial capital and the private marginal cost, given by the marginal utility of



current consumption. The intertemporal wedge, which stems from the effects of capital
on the agents’ incentive to exert effort, can be positive or negative. This result stands
in contrast with findings for private information economies with idiosyncratic risk in
labor earnings. As shown in Golosov, Kocherlakota and Tsyvinski (2003), building on
Diamond and Mirrlees (1978) and Rogerson (1985), in such economies the intertem-
poral wedge is always positive. An additional unit of capital has an adverse effect on
incentives, since it reduces the dependence of consumption on effort or labor supply, and
tightens the incentive compatibility constraint on effort. Hence, an agent’s optimal level
of effort is always decreasing in their holdings of capital. Instead, with idiosyncratic risk
in capital returns, the optimal level of effort may be increasing in capital. In this case,
more capital relaxes the incentive compatibility constraint on effort, and intertemporal
wedge is negative.

The dependence of the distribution of capital returns on effort drives the incentive
effects of capital. Specifically, at high effort, the mean and the variance of capital
returns are greater than under low effort. We can then rely on intuition from portfolio
theory to understand the role of capital. For given variance of capital returns, capital’s
higher expected return at high effort generates a substitution effect, which tends to
increase capital at high effort relative to low effort, and an opposing wealth effect. The
substitution effect dominates when the coefficient of relative risk aversion is smaller
than one. For given expected capital returns, the increase in variance induces agents to
reduce their exposure, thus reducing capital holdings at high effort relative to low effort.
On the other hand, a precautionary motive tends to increase optimal capital holdings
at high effort relative to low effort. For preferences in the CRRA class, the first effect
dominates if the coefficient of relative risk aversion is smaller than one, while the second
effect dominates otherwise.

To study optimal taxes, we first consider a decentralized arrangement in which en-
trepreneurs choose investment and effort and individual investment is observable. En-
trepreneurs can also trade risk-free bonds and risky securities, possibly correlated with
their idiosyncratic capital returns. The optimal tax system conditions tax payments
on the observable history of capital returns. The properties of the optimal marginal
tax on entrepreneurial capital depends on the sign of the intertemporal wedge. When
the intertemporal wedge is positive, the marginal tax rate on capital is decreasing in
capital returns, while the opposite is true when the intertemporal wedge is negative.
The intertemporal wedge on the risk-free bond is always positive and higher than the
intertemporal wedge on capital, and the marginal tax on bonds is decreasing in capital
returns. Irrespective of the sign of the intertemporal wedge on productive capital, the
marginal capital tax is always lower than the marginal tax on bonds in the bad state,
while the opposite is true in the good state. The optimal marginal tax on risky secu-
rities depends on the correlation of their returns with idiosyncratic uncertainty. If the
correlation between the returns from a risky security and capital is less than one, the



intertemporal wedge on the security is greater than the intertemporal wedge on capi-
tal and the marginal tax on the security is higher than the marginal tax on capital in
the bad state. The intertemporal wedge on any security decreases with the correlation
with the security’s return and idiosyncratic risk. Hence, capital is subsidized relative
to risk-free bonds and risky securities in the bad state. The optimal marginal tax on
capital tends to reduce the variance of after tax returns on capital relative to returns
before tax, while the opposite is true for risk-free bonds and risky securities.

We also allow entrepreneurs to sell shares of their capital and buy equity in other
entrepreneurs’ capital. Each entrepreneur can be viewed as a firm, so that this arrange-
ment introduces a market for private equity, and the amount of capital invested can be
interpreted as firm size. Entrepreneurs can also purchase risk-free bonds. The optimal
tax system for this market structure embeds a prescription for optimal double taxation
of entrepreneurial capital- at the firm level, through the marginal tax on earnings, and
at the investor level, through a marginal tax on stocks returns. Specifically, it is nec-
essary that the tax on earnings be "passed on" to stock investors via a corresponding
reduction in dividend distributions to avoid equilibria in which entrepreneurs sell all
their capital to outside investors. In such equilibria, an entrepreneur exerts no effort
and thus it is impossible to implement the constrained-efficient allocation. Moreover,
marginal taxation of dividends received by outside investors is necessary to preserve in-
centives for the usual reasons. Hence, earnings from entrepreneurial capital are subject
to double taxation.

This paper is related to Albanesi and Sleet (2005) and Kocherlakota (2005b) who
also study the optimal taxation of capital income and labor income. They consider
environments with idiosyncratic labor earnings risk, where skill or ability is private
information. They study fiscal implementations with one asset and assume that asset
returns are uncorrelated with idiosyncratic risk. Grochulski and Piskorski (2005) study
optimal wealth taxes in economies with risky human capital, where human capital and
idiosyncratic skills are private information. Farhi and Werning (2005) study optimal
estate taxation in an overlapping generation economy with private information. They
also find that the intertemporal wedge is positive if agents discount the future at a higher
rate than the planner. Cagetti and De Nardi (2004) explore the effects of tax reforms
in a quantitative model of entrepreneurship with endogenous borrowing constraints.

The plan of the paper is as follows. Section 1 present the economy and studies
constrained-efficient allocations and the incentive effects of capital. Section 2 investi-
gates optimal taxes. Section 3 concludes.

2. A Model

The baseline model builds on Sandmo (1970) and Levhari and Srinivasan (1969). The
economy is populated by a continuum of unit measure of ex ante identical agents. Each



agent lives for two periods. Agents consume in both periods and exert effort in the first
period1. Their lifetime utility given by:

U = u (c0)− v (e) + βu (c1) ,

with β ∈ (0, 1) , u0 > 0, u00 < 0, v0 > 0, v00 > 0, and limc→0 u0 (c) =∞.
Agents are endowed with K0 units of the consumption good at time 0. The economy

is endowed with an investment technology. The return on investment R (K1) depends
on an agent’s effort:

R (K1) = K1 (1 + x) ,

where x is the random net return on capital. We assume that e ∈ {0, 1} . The stochastic
process for x is:

x =

½
x with probability π (e) ,

x with probability 1− π (e) ,
(1)

with x̄ >x and π (1) > π (0) . The first assumption implies that E1 (x) > E0 (x) ,
where Ee denotes the expectation operator for probability distribution π (e) . The second
assumption implies V1 (x) ≥ V0 (x) , where Ve denotes that variance for probability
distribution π (e) .

We assume effort is private information, while the realized value of x, as well as its
distribution, and K0 and K1 are public information.

The planner maximizes the agent’s lifetime utility by choice of K1 and of consump-
tion at time 1, conditional on the realized value of x, c1 (x) . Given that effort is private
information, the planner faces an incentive compatibility constraint.

The planning problem is:

U∗ (K0) = max
e∈{0,1},K1∈[0,K0], c0,c1(x)≥0

u (c0)− v (e) + βEeu (c1 (x)) (Problem 1)

subject to
c0 +K1 ≤ K0, Eec1 (x) ≤ K1Ee (1 + x) , (2)

βE1u (c1 (x))− βE0u (c1 (x)) ≥ v (1)− v (0) , (3)

where Ee denotes the expectation operator with respect to the probability distribution
π (e). We refer to the allocation {e,K1, c0, c1 (x) , c1 (x̄)} that solves this problem as
constrained-efficient.

1The solution is the same if agent exerts effort at time 1.



Proposition 1. An allocation {e∗,K∗
1 , c

∗
0, c

∗
1 (x) , c

∗
1 (x̄)} that solves Problem 1 with

e∗ = 1 satisfies:

u0 (c∗1 (x))

u0 (c∗1 (x̄))
=

h
1 + µ (π(1)−π(0))π(1)

i
h
1− µ (π(1)−π(0))(1−π(1))

i > 1, (4)

u0 (c∗0)E1

∙
1

u0 (c∗1 (x))

¸
= βE1 (1 + x) , (5)

where µ > 0 is the multiplier on the incentive compatibility constraint (3).

Condition (4) implies that c∗1 (x̄) > c∗1 (x)− there is partial insurance. Using (5),
we can derive the intertemporal profile of constrained-efficient allocations. Let the
intertemporal wedge on risky productive capital be defined as:

IWK = βE1u
0 (c∗1 (x)) (1 + x)− u0 (c∗0) .

Since the utility function is strictly concave, (5) implies IW 6= 0. To investigate the sign
of the wedge, we rewrite:

IWK = βCov1
¡
u0 (c∗1 (x)) , 1 + x

¢
+µ (π (1)− π (0))β

£
u0 (c∗1 (x))− u0 (c∗1 (x̄))

¤
E1 (1 + x) ,

(6)
where Cov1 denotes the covariance conditional on e = 1. Partial insurance, µ > 0, and
π (1) − π (0) > 0 imply that the second term on the right hand side of (6) is positive,
while Cov1 (u0 (c∗1 (x)) , 1 + x) < 0. Hence, the intertemporal wedge can be positive or
negative.

In dynamic moral hazard models, higher wealth in a subsequent period influences
the agent’s attitude towards the risky distribution of outcomes in subsequent periods,
as discussed in Rogerson (1985), which in turn affects incentives to exert effort. The
intertemporal wedge measures the social cost of transferring wealth to a future period
that stems from these incentive effects. In standard repeated moral hazard models,
such as Rogerson (1985), higher wealth always has an adverse effect on incentives,
because it reduces the dependence of current consumption on the current realization
of uncertainty, and therefore on effort. Hence, the intertemporal wedge is positive and
the agent is savings constrained along the optimal allocation. In the model described
here, higher capital increases the agent’s expected utility and provides insurance by
increasing utility in the bad state, but it also increases the expected returns from effort.
Hence, a higher level of capital does not necessarily have an adverse effect on incentives.
The sign of the wedge depends on the balance between these two effects, which we now
examine in more detail.



2.1. The Incentive Effects of Capital and the Intertemporal Wedge

To relate the sign of the intertemporal wedge to the incentive effects of capital, we
consider the agents’ lifetime utility maximization problem:n

ê, K̂1

o
= arg max

K1∈[0,K0], e∈{0,1}
U (e,K1)− v (e) ,

where

U (e,K1) ≡ u (K0 −K1) + π (e)u (K1 (1 + x̄)) + (1− π (e))u (K1 (1 + x)) .

The agent’s Euler equation is:

UK1 = −u0
³
K0 − K̂1

´
+Eêu

0
³
K̂1 (1 + x)

´
(1 + x) = 0. (7)

This equation clarifies that the optimal level of capital depends on effort. This comple-
mentarity between capital and effort determines the incentive effects of capital. To see
this, differentiate UK1 with respect to e, to obtain:

∆UK1

∆e
≡ (π (1)− π (0))

£
u0 (ĉ1 (x̄)) (1 + x̄)− u0 (ĉ1 (x)) (1 + x)

¤
. (8)

This term is the discrete analogue of the off-diagonal term of the Hessian matrix in the
agent’s lifetime decision problem. Totally differentiating (7) yields:

∆e

∆K1
=
−UK1K1

∆UK1
∆e

.

The numerator of this expression is positive by concavity of u, hence, the expressions
∆e
∆K1

and
∆UK1
∆e have the same sign.

Manipulating (6), we obtain:

IWK = µ(π(1)− π(0))
£
u0(c∗1(x))(1 + x)− u0(c∗1(x))(1 + x)

¤
. (9)

Evaluating (8) at the constrained-efficient allocation, it follows that:

sign

½
∆e

∆K1
(e∗,K∗

1)

¾
= sign

½
∆UK1

∆e
(e∗,K∗

1)

¾
= sign {−IWK} .

Hence, if there is a positive complementarity between capital and effort at the constrained-
efficient allocation, that is

∆UK1
∆e (e∗,K∗

1) > 0, the intertemporal wedge is negative. Con-

versely, if the complementarity between capital and effort is negative,
∆UK1
∆e (e∗,K∗

1) < 0,
the intertemporal wedge is positive. A positive/negative complementarity between cap-
ital and effort imply that if an agent will find it optimal to reduce/increase investment



if she lowers her effort. This means that the intertemporal wedge is positive/negative
when more capital tightens/relaxes the incentive compatibility constraint.

The analogue of (8) for a riskless asset, B1, with gross return (1 + r) is:

∆UB1

∆e
≡ (π (1)− π (0))

£
u0 (ĉ1 (x̄))− u0 (ĉ1 (x))

¤
(1 + r) .

This expression is negative as long as ĉ1 (x̄) > ĉ1 (x) . Hence, an agent choosing e = 0 will
always choose a higher value of B1 relative to an agent choosing e = 1. It follows that
higher levels of a risk free bond always tighten the incentive compatibility constraint,
so that:

IWB = (π (1)− π (0))
£
u0 (c∗1 (x))− u0 (c∗1 (x̄))

¤
(1 + r) > 0.

Assuming r = E1 (x) ,we can write:

E1u
0(c∗1 (x))E1(1 + x)− u0(c∗0) = µ(π(1)− π(0)){u0(c∗1(x))− u0(c∗1(x))}E1(1 + x)(10)

> E1u
0(c∗1 (x))(1 + x)− u0(c∗0).

Hence, the intertemporal wedge on risky productive capital is always smaller than the
wedge on a riskless asset with the same expected rate of return.

The fact that the distribution of capital returns depends on effort implies that capital
under high effort can be thought of as a different asset than capital under low effort.
Under high effort, capital has higher expected returns than capital under low effort,
since E1 (x) > E0 (x) , and if π (1) < 1 − π (0) , capital returns under high effort have
higher variance than under low effort, so that V1 (x) > V0 (x) . Then, we can use intuition
from portfolio theory to interpret the incentive effects of capital. For given variance of
capital returns, the effect of high effort on capital’s expected return generates a negative
substitution effect on time 0 consumption, which tends to increase capital at high effort,
and a positive wealth effect on time 0 consumption that tends to reduce capital at high
effort. The substitution effect dominates when the coefficient of relative risk aversion is
smaller than one for standard preferences, as shown in Gollier (2001).

For given expected return, an increase in the variance of returns has two countervail-
ing effects on the optimal level of capital at high effort, as discussed in Sandmo (1970).
On one hand, the increase in the variance of capital returns makes an agent less inclined
to expose herself to the possibility of loss and thus reduces capital holdings. On the
other hand, greater riskiness makes it necessary to prevent low consumption in the bad
state, which increases optimal capital holdings at high effort. So the substitution effect
of increased variance in capital returns on time 0 consumption is positive, while the
wealth effect is negative. Levhari and Srinivasan (1969) show that for preferences in the
CRRA class, the substitution effect dominates if the coefficient of relative risk aversion
is smaller than one, and capital holdings decrease in response to increased variance of



returns, while the wealth effect dominates and capital holding increase if it is greater or
equal to 1. Hence, the rate of return effect and the variance effect seem to have opposing
effects on how the optimal capital level varies as a function of effort, at least for utility
functions in the CRRA class.

If we restrict attention to utility functions in the CRRA class, with u(c) = c1−σ

1−σ , so

that u0(c)c
u(c) = 1− σ, from (8) we can derive:

∆UK1

∆e
K̂1 = (π (1)− π (0))β

£
u0 (ĉ1 (x̄)) (1 + x̄)− u0 (ĉ1 (x)) (1 + x)

¤
K1 (11)

> (π (1)− π (0))β
£
u0 (ĉ1 (x̄)) ĉ1 (x̄)− u0 (ĉ1 (x)) ĉ1 (x)

¤
= (π (1)− π (0)) (1− σ)β [u (ĉ1 (x̄))− u (ĉ1 (x))] ,

if (1 + x̄) K̂1 > ĉ1 (x̄) > ĉ1 (x) > (1 + x) K̂1. This implies that if 1 > σ, the intertemporal
wedge will be negative if (1+x)K1 ≥ c∗1(x) ≥ c∗1(x) ≥ (1+x)K1. However, this condition
does not restrict the sign of the intertemporal wedge for σ ≥ 1, which is the empirical
relevant case.

To investigate the properties of optimal allocations in more detail, we now turn to
numerical examples.

2.2. Numerical Examples

We restrict attention to utility functions in the CRRA class and assume, with u (c) =
c1−σ

1−σ , v (e) = γe1/γ , γ > 0. In addition, we assume π (e) = a+ be, with a ≥ 0, b > 0 and
2a+b ≤ 1, so that V1 (x) ≥ V0 (x) . Hence, the parameter b represents the impact of effort
on capital returns. For our benchmark parameterization, we fix γ = 0.1111, correspond-
ing to a compensated effort supply elasticity of 0.1, a value in line with micro evidence
for males. We interpret x as percentage earnings on entrepreneurial capital, which we
identify as private equity. We parameterize the distribution of x with the distribution of
earnings conditional on survival for private equity in Moscowitz and Vissing-Jorgensen
(2002). This corresponds to x= 25% and x̄ = 75% and π (50%|e = 1) = 0.752. We
set a = 0, so that at low effort capital is risk free, and b = 0.5. This corresponds to
E1x = 0.5, E0x = 0.25, SD1 (x) = 0.25, where SDe denotes the standard deviation,
conditional on effort e. We consider several other parameterizations of the capital re-
turns distribution to check robustness. We set K0 = 1 for all the parameterizations
considered.

2The average returns to private equity, including capital gains and earnings, are estimated from SCF
data to be 12.3, 17.0 and 22.2 percent per year in the time periods 1990-1992, 1993-1995, 1996-1998, as
reported in Moskowitz and Vissing-Jorgensen (2002).



Equation (9) shows that the sign of the intertemporal wedge depends on the spread in
consumption across states at the constrained-efficient allocation, as well as on the spread
in capital returns across states (x− x) , which determines the differential E1 (x)−E0 (x)
and V1 (x)−V0 (x). If the spread in consumption across states is small or the variance of
capital returns is large, the intertemporal wedge on capital is more likely to be negative,
other things equal. If the spread in consumption across states at the constrained-efficient
allocation is small, the complementarity between capital and effort will mostly be driven
by the higher expected rate of return on capital implied by higher effort, and thus is
likely to be positive. On the other hand, if the spread in consumption across states
is large, then risk exposure is likely to be the dominant force in the complementarity
between capital and effort. Since at high values of σ the constrained-efficient allocation
is likely to display less spread in consumption across states, the intertemporal wedge
will likely be negative for high values of σ.

Given the importance of the parameter σ for the sign of the intertemporal wedge,
we compute the optimal allocation and the intertemporal wedge as a function of σ. Our
findings for the benchmark parameterization are displayed in figure 1. The intertemporal
wedge on K1 is the solid line, while the dashed line corresponds to the intertemporal
wedge for a risk-free asset with the same expected return as capital. The intertemporal
wedge for capital is negative for all values of σ, while the intertemporal wedge on a
riskless asset with the same expected return as capital is always positive. Investment
is decreasing in σ. In the third panel, we plot constrained-efficient consumption (solid
line) and total capital earnings, K∗

1 (1 + x) (dotted line), in each state. The amount
of insurance embedded in the constrained-efficient allocation increases with σ. Hence,
the spread in optimal consumption across states decreases with σ. This contributes to
a negative value of the intertemporal wedge as σ increases.

To explore robustness, we also compute the constrained-efficient allocation for higher
spread in capital returns. We set {x, x̄} = {0, 1}, so that E1x = 0.5 and SD1x = 0.5.
As shown in figure 2, the intertemporal wedge on productive capital is negative and
large in absolute value relative to the previous case. However, since the expected value
of capital returns is the same as for figure 1, K∗

1 , c
∗
1 (x) and the intertemporal wedge on

the riskless asset are also the same.
Figure 3 shows the properties of the optimal allocation for a smaller spread in capital

returns. In particular, {x, x̄} = {0.3, 0.7} , which implies E1x = 0.5, SD1 (x) = 0.2,
E0 (x) = 0.3. From (9), we know that a smaller spread in capital returns increases the
value of the intertemporal wedge on capital. The intertemporal wedge on capital in this
case is positive for intermediate values of σ.

Lastly, we consider a parameterization with a higher cost of effort. Specifically, we
set γ = 0.15, which corresponds to a compensated effort supply elasticity of 18%. All
other parameters are as in the benchmark parameterization. The incentive compatibility
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Figure 1: Benchmark parameterization
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Figure 2: Larger spread in capital returns.
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Figure 3: Smaller spread in capital returns.
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Figure 4: Higher cost of effort.

constraint implies that the spread in consumption across states in the constrained-
efficient allocation must be larger, with a higher cost of effort. Hence, the intertemporal
wedge is now positive for intermediate values of σ. As in the previous examples, the
intertemporal wedge turns negative for high values of σ, when the spread in consumption
across states is smaller.

3. Optimal Taxes

We now consider how to implement constrained-efficient allocations in a setting where
agents can trade in competitive markets. We explore different market structures, or de-
centralized trading arrangements. A market structure specifies the distribution of own-
ership rights, the feasible trades between agents and the information structure. Agents
are subject to taxes that influence their budget constraints. The only ex ante constraint
imposed on the tax system is that it must specify transfers that are conditioned only on
agents’ observable characteristics. A tax system implements the constrained-efficient
allocation if such an allocation arises as the competitive equilibrium outcome under
this tax system for a particular market structure. We examine three different market
structures. In the simplest one, agents choose capital and effort. We then allow agents



to accumulate capital and trade bonds. Here, we first consider risk-free bonds and then
allow for trade in securities with returns that are correlated with idiosyncratic uncer-
tainty. Lastly, we allow entrepreneurs to sell shares in their own capital. In addition,
they accumulate capital and trade risk-free bonds. The first market structure is very re-
strictive but can used to derive the properties of optimal marginal capital taxes. These
properties carry over to the more complex market structures. The main result for the
market structure in which agents can accumulate capital and trade risk-free securities is
the optimality of differential asset taxation. The main result for the environment where
entrepreneurs can issue shares in their own capital is the optimality of double taxation
of capital earnings.

3.1. Optimal Capital Taxes

The first market structure we consider is one in which agents independently choose
capital holding as well as effort. To focus on the properties of optimal marginal capital
taxes, we rule out any other means of transferring wealth intertemporally. Decisions
occur as follows. Agents are endowed with initial capital K0 and choose K1 at the
beginning of period 0. Their choice is observable by the government. Agents then choose
effort, which is not observed by the government or other agents. At the beginning of
period 1, x is realized and observed. Then, the government collects taxes and agents
consume. The tax system is represented by the tax function T (K1, x) . We restrict
attention to functions T that are differentiable almost everywhere in their first argument
and satisfy E1T (K1, x) = 0.

An agent’s problem is:n
ê, K̂1

o
(K0, T ) = arg max

K1∈[0,K0], e∈{0,1}
U (e,K1;T )− v (e) , (Problem 2)

where
U (e,K1;T ) = u (K0 −K1) + βEeu (K1 (1 + x)− T (K1, x))

and Ee denotes expectations taken with respect to the probability distributions π (e).
The agent’s intertemporal Euler equation is:

u0 (K0 −K1) = βEê

£
u0 (K1 (1 + x)− T (K1, x)) (1 + x− Tk (K1, x))

¤
,

where ê is an agent’s optimal choice of effort.
Setting T (K∗

1 , x) to satisfy:

c∗1 (x) = K∗
1 (1 + x)− T (K∗

1 , x) , (12)



ensures that, if K∗
1 is chosen, high effort will be optimal for the agent. Evaluating the

Euler equation at {1,K∗
1} , we can write:

u0 (K0 −K∗
1) = βE1

£
u0 (c∗1 (x)) (1 + x− Tk (K

∗
1 , x))

¤
. (13)

We consider separable tax systems of the form: T (K1, x) = ρ (x) + τK (x)K1. The
restrictions on T (K∗

1 , x) implied by (12) and.(13) do not fully pin down the properties
of the marginal asset tax and do not ensure that the constrained-efficient allocation is
optimal for the agent. To see this, let τK (x̄) = τK (x) = τ , so that the marginal capital
tax does not depend on x. Let ρ̄ (x) and τ̄ the values of ρ and τ that satisfy (12) and
(13), and let T̄ (K1, x) = ρ̄ (x) + τ̄K1. To check whether e = 1 and K∗

1 are optimal for
the agent under this tax system, we can examine the approximate Hessian of Problem
2. A sufficient condition for the determinant of the Hessian to be positive is that the
off-diagonal term is small in absolute value. This term is given by:

∆UK1

∆e

¡¡
e∗,K∗

1 ; T̄
¢¢
≡ (π (1)− π (0))β

£
u0 (c̄∗1) (1 + x̄)− u0 (c∗1) (1 + x)

¤
−τ̄ (π (1)− π (0))β

£
u0 (c̄∗1)− u0 (c∗1)

¤
.

As discussed in section 2.1, the first term in
∆UK1
∆e has the opposite sign of the in-

tertemporal wedge. Since the sign of τ̄ is the same as the sign of the intertemporal
wedge:

sign

½
∆e

∆K1

¡
e∗,K∗

1 ; T̄
¢¾
= sign {−IWK} .

If the absolute value of
∆UK1
∆e is sufficiently large, agents may conduct profitable "joint

deviations" in which they set e = 0 and K1 6= K∗
1 . If the intertemporal wedge is negative

(positive), a deviating agent will reduce (increase) her capital holdings relative to K∗
1 .

How can marginal asset taxes be set to prevent such a joint deviation? Following
Albanesi and Sleet (2005), we show the following.

Proposition 2. A the tax system T ∗ (K1, x) , in the class T (K1, x) = τK(x)K1+ρ(x),
that satisfies:

c∗1 (x) = K∗
1 (1 + x)− ρ∗ (x) , (14)

u0(c∗0)

βu0(c∗1(x))
= 1 + x− τ∗K(x), (15)

implements the constrained-efficient allocation.



Proof. Suppose not. By definition,
n
ê, K̂1

o
(K0, T

∗) satisfies:

u0
³
K0 − K̂1

´
= βEêu

0
³
K̂1 (1 + x)− T ∗

³
K̂1, x

´´
(1 + x− τ∗K (x)) .

If
n
ê, K̂1

o
(K0, T

∗) 6= (1,K∗
1) :

1 = Eê

u0
³
K̂1 (1 + x)− T ∗

³
K̂1, x

´´
u0
³
K0 − K̂1

´ u0 (c∗0)

u0 (c∗1 (x))
.

Then, irrespective of ê, K̂1 > K∗
1 implies

u0(K̂1(1+x)−T∗(K̂1,x))
u0(K0−K̂1)

<
u0(c∗0)

u0(c∗1(x))
, while K̂1 <

K∗
1 implies

u0(K̂1(1+x)−T∗(K̂1,x))
u0(K0−K̂1)

>
u0(c∗0)

u0(c∗1(x))
. This is a contradiction. Hence, at K̂1 = K∗

1 .

Then, by incentive compatibility (14) implies ê = 1.
The following corollary characterizes the properties of the optimal tax system. The

average marginal capital tax is zero. The marginal capital tax is decreasing in capital
returns, and thus appears regressive, if the intertemporal wedge is positive, while it is
increasing in capital returns and thus appears regressive is the intertemporal wedge is
negative.

Corollary 3. The tax system T ∗ (K1, x) defined by (14) and (15) implies:
i) E1τ∗K (x) = 0;
ii) sign (τ∗K (x̄)− τ∗K (x)) = sign (−IWK) .

Proof. By (15):

E1

∙
1 + x− u0 (c∗0)

u0 (c∗1 (x))

¸
= E1τ

∗
K (x) ,

which from (5) implies E1τ∗K (x) = 0 = 0. (15) also implies:

u0(c∗1(x))τ
∗
K(x)− u0(c∗1(x))τ

∗
K(x) = u0(c∗1(x))(1 + x)− u0(c∗1(x))(1 + x).

Since:
sign

£
u0(c∗1(x))(1 + x)− u0(c∗1(x))(1 + x)

¤
= sign (-IWK)

and u0(c∗1(x)) < u0(c∗1(x)), it follows that sign (τ
∗
K (x̄)− τ∗K (x)) = sign (−IWK).

Remark 4. We have assumed here that the level of capital held by agents is observed
by the government. In this setting, however, the government need not know the level
of K1 to implement the the constrained-efficient allocation, since the marginal tax on



capital does not depend on the level of capital. This will also hold in a model with more
than two periods, if marginal taxes are allowed to depend on the history of realizations of
idiosyncratic capital returns, as in Kocherlakota (2005). If on the other hand, marginal
taxes are constrained to depend on the current level of capital returns only, as in Albanesi
and Sleet (2005), then marginal capital taxes will depend on the level of K1, which
summarizes an agent’s history. The assumption that K1 is observable is motivated by
concerns regarding administrative feasibility. Since capital is agent specific and directly
held, it is only feasible to collect capital taxes if the level of capital is observed. For
assets that are traded on financial markets, it is possible for the government to collect
taxes at the source, without directly observing the quantities of assets held by each
individual agent. We turn to this case in the next implementation.

3.2. Optimal Differential Asset Taxation

We now allow agents to trade risk-free bonds. Agents’ initial capital is K0 and their
initial endowment of bonds is B0 ≥ 0.The timing of events is as follows. At time 0,
agents choose K1 and they purchase, at price q, bonds, B1 ≥ 0, that pay one unit
of consumption at time 1. Agents then exert effort. At time 1, capital returns x are
realized, the government levies taxes and the agents consume. We assume that K1 and
B1 are observed by the government. The tax system is represented by the function:
T (B1,K1, x) .

The agents’ problem is:n
ê, K̂1, B̂1

o
(B0,K0, T ) = arg max

K1∈[0,K0], B1≥B̄, e∈{0,1}
U (e,K1, B1;T )− v (e) ,

(Problem 3)
where

U (e,K1, B1;T ) = u (K0 +B0 −K1 −B1)+Eeu (K1 (1 + x) +B1 (1 + r)− T (K1, B1, x)) ,

subject to K0 +B0 −K1 − qB1 ≥ 0 and K1 (1 + x) +B1 − T (B1,K1, x) ≥ 0 for x ∈ X.
Here, the debt limit B̄ is imposed to ensure that an agent’s problem is well defined.
The natural debt limit for tax systems in the class T (B1,K1, x) = ρ (x) + τB (x)B1 +

τK (x)K1 is B̄ = − [K1(1+x−τK(x))−ρ(x)]
1+r−τB(x) . This limit ensures that agents will be able to

pay back all outstanding debt in the low state.
We restrict attention to a tax system of the form: T (B1,K1, x) = ρ (x)+τB (x)B1+

τK (x)K1 and show the following.

Proposition 5. A tax system T ∗ (B1,K1, x) , in the class T (B1,K1, x) = ρ (x) +



τB (x)B1 + τK (x)K1, and an initial bond allocation B∗0 that satisfy:

1− τ∗B (x) =
qu0 (c∗0)

βu0 (c∗1 (x))
, (16)

1 + x− τ∗K (x) =
u0 (c∗0)

βu0 (c∗1 (x))
, (17)

c∗1 (x) = K∗
1 (1 + x)− τK (x)K

∗
1 − ρ∗ (x) , (18)

and
c∗0 = B∗0 +K0 −K∗

1 −B∗1 , (19)

for some B∗1 ≥ B̄ and some q < 1 implements the constrained-efficient allocation.

Proof. We want to show thatn
ê, K̂1, B̂1

o
(B0,K0, T

∗) = (1,K∗
1 , B

∗
1) ,

for some B∗1 ≥ 0 and for given q. The agents’ intertemporal Euler equations evaluated
at the constrained efficient allocation are:

UB (ê) = −u0 (c∗0) q +Eêu
0 (c∗1 (x)) (1− τ∗B (x)) = 0,

UK (ê) = −u0 (c∗0) +Eêu
0 (c∗1 (x)) (1 + x− τ∗K (x)) = 0,

where Ux denotes a partial derivative with respect to the variable x. Suppose thatn
ê, K̂1, B̂1

o
(B0,K0, T

∗) 6= (1,K∗
1 , B

∗
1) . We consider two classes of deviations, local

deviations at an interior solution of the agents problem and large deviations where
either K1 or B1 is not interior. For local deviations, note that at T ∗ :

1 = Eê
u0 (ĉ1 (x))

u0 (ĉ0)

u0 (c∗0)

u0 (c∗1 (x))
,

irrespective of the value of ê. It follows that if either K̂1 ≷ K∗
1 or B̂1 ≷ B∗1 , then (16)

and (17) imply u0(ĉ1(x))
u0(ĉ0)

≶ u0(c∗0)
u0(c∗1(x))

irrespective of the value of ê, a contradiction at (19).

The local sufficient conditions for optimality are also satisfied irrespective of the value
of ê. To see this, consider the sub-optimization problem associated with the choice of
B1 and K1 for given e. The elements of the Hessian, HU , for this problem are:

UBB (ê) = q2u00 (c∗0) +Eêu
00 (c∗1 (x)) (1− τ∗B (x))

2 ≤ 0,

UKK (ê) = u00 (c∗0) +Eêu
00 (c∗1 (x)) (1 + x− τ∗K (x))

2 ≤ 0,



UBK (ê) = u00 (c∗0) q +Eêu
00 (c∗1 (x)) (1− τ∗B (x)) (1 + x− τ∗K (x)) .

Under (16)-(17), |HU | =
¡
1− 2q + q2

¢
u00 (c∗0)Eêu

00 (c∗1 (x))

µ
qu0(c∗0)

βu0(c∗1(x))

¶2
> 0 for q 6= 1.

We now consider large deviations. Since K1 = K0 and B1 = 0 can never be optimal
given the Inada conditions, we only need to consider the following deviation: K̂1 = 0
and B̂1 > 0. This deviation is budget feasible for the agent. If such a deviation is
optimal it satisfies:

−u0
³
K0 − qB̂1

´
q +Eêu

0
³
B̂1 + ρ∗ (x)

´
(1− τ∗B (x)) = 0, (20)

−u0
³
K0 − qB̂1

´
q +Eêu

0
³
B̂1 + ρ∗ (x)

´
(1 + x− τ∗K (x)) < 0. (21)

However, by (16) and (17), (1− τ∗B (x)) = (1 + x− τ∗K (x)) , and (20) and (21) clearly
cannot hold at the same time irrespective of the value of ê. Then, at K∗

1 , B
∗
1 are globally

optimal irrespective of the value of ê. At at K∗
1 , B

∗
1 , ρ

∗ (x) implies ê = 1 since the
constrained-efficient allocation is incentive compatible. The fact there are no profitable
large deviations implies that global sufficient conditions are satisfied.

The tax system T ∗ removes the complementarity between effort and investment and
effort and bond holdings and it guarantees that the necessary and sufficient conditions
for the joint global optimality of K∗

1 and B∗1 = 0 are satisfied at all effort levels.

Corollary 6. The tax system T ∗ (K1, B1, x) , the bond price q = 1/E1 (1 + x) and
allocation {1, B∗1 ,K∗

1} with B∗1 = 0 constitute a competitive equilibrium for the market
economy with initial capital K0 and initial bond holdings B0 = 0.

Proof. By Proposition 5, for any q < 1 andB∗1 ≥ 0, the allocation {1, B∗1 ,K∗
1} solves the

agents’ optimization problem in the market economy. In addition, (18) and (19) imply
that the resource constraint are satisfied at t = 0 and t = 1 and that the government
budget constraint is also satisfied.

We now derive implications for asset taxes.

Proposition 7. The tax system T ∗ (B1,K1, x) defined by (16), (17) and (18) implies:
i) E1τ∗K (x) = 0;
ii) sign (τ∗K (x̄)− τ∗K (x)) = sign (−IWK) ;
iii)E1τ∗B (x) = 0;
iv) τ∗B (x̄) < τ∗B (x) ;
v) τ∗B (x) > τ∗K (x) and τ∗B (x̄) < τ∗K (x̄) ;
vi) the intertemporal wedge associated with the risk-less bond is greater than the

intertemporal wedge associated with risky productive capital.



Proof. Results i) and ii) can be shown as in Corollary 3. Result iii) follows from the
planner’s Euler equation, since:

E1τ
∗
B (x) = 1− qE1

µ
u0 (c∗0)

βu0 (c∗1 (x))

¶
,

and q = 1/E1 (1 + x) . Result iv) follows directly from (16) and u0 (c∗1 (x̄)) < u0 (c∗1 (x)) .
To show result v) note that (16) and (17) imply τ∗B (x) − τ∗K (x) = E1x − x. The
intertemporal wedge associated with each asset is:

E1u
0 (c∗1 (x)) (1 + x)− u0 (c∗0) = E1u

0 (c∗1 (x)) τ
∗
K (x) ,

E1u
0 (c∗1 (x))E1 (1 + x)− u0 (c∗0) = E1u

0 (c∗1 (x)) τ
∗
B (x) .

Result vi) follows directly.
In Corollary 6, we construct a competitive equilibrium in which q = 1/E1 (1 + x) ,

which implies, as shown in proposition 7 that E1τ∗B (x) = 0. We can construct other
competitive equilibria, in which q 6= 1/E1 (1 + x) . Let 0 < q̂ < 1. Then, (17) and the
planner’s Euler equation imply:

E1τ
∗
B (x) = 1− q̂E1

µ
u0 (c∗0)

βu0 (c∗1 (x))

¶
= 1− q̂E1 (1 + x) .

So that: E1τ
∗
B (x) > 0 for q̂ < 1/E1 (1 + x) and E1τ

∗
B (x) < 0 for q̂ > 1/E1 (1 + x) .

Hence, there is an indeterminacy in the equilibrium bond price and the level of the
marginal bond tax. This indeterminacy does not affect the dependence of marginal
bond taxes on x, which is pinned down by (17).

The asset positionsK1 and B1 need not be observable to implement the constrained—
efficient allocation, as long as x is observable, because taxes on assets are linear. As
discussed in Remark 4, if marginal asset taxes can be made dependent on the realization
of individual risk, it is possible to implement the constrained-efficient allocation with no
hidden saving in a market structure where asset positions are not observed by the gov-
ernment3. This implementation requires an administrative arrangement in which taxes
are collected at the source. It is natural to think of such a system for financial assets,
such as bonds, traded on a centralized market, if a market institution or intermediaries
are clearing the transactions. Here, we maintain the assumption that B1 is observable
to the government for symmetry with section 3.1.

3Bizer and DiMarzo (1999) derive a related result in a standard moral hazard model in which
agents may borrow. They show that as long as debt repayments can be made state contingent, it is
possible to implement the constrained-efficient allocation with observable savings, even if borrowing
is unobserved by the principal, who designs the incentive-compatible transfer (salary) policy. In their
setting, it is important that agents borrow, rather than save. Only in this case can the return be made
state contingent. This requirement does not hold in our implementation, since the government can set
marginal bond taxes to be state contingent.



The optimal marginal capital and bond taxes for the benchmark parameterization
discussed in section 2.2 are plotted in figure ??, for r = E1 (x). The solid line in each
panel corresponds to the intertemporal wedge. The dashed-asterix line corresponds to
marginal taxes in state x, whereas the dashed-cross line corresponds to optimal marginal
taxes in state x̄. The marginal tax on capital, displayed in the left panel, is negative in
the low state and positive in the good state, while the opposite is true for the marginal
tax on bonds. Hence, the marginal capital tax is increasing in earnings, while the
marginal bond tax is decreasing in earnings. Despite the fact that wedges are quite
small in percentage terms, the magnitude of marginal taxes is significant. The capital
tax ranges from 3 to 21% in absolute value as a function of σ, while the bond tax ranges
from 5 to 24% in absolute value.
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Optimal capital and bond taxes, benchmark parameterization.

In figure 5, we report optimal marginal capital and bond taxes for the parameteri-
zation with a larger cost of effort. In this case, the intertemporal wedge on productive
capital is positive for intermediate values of σ. When IWK is positive, the marginal
capital tax is decreasing in capital returns, but the marginal tax on capital in the bad
state is always lower than the marginal tax on bonds in the bad state.

The main finding in the fiscal implementation for the market structure with riskless
bonds is the optimality of differential asset taxation. There are two aspects of this
result. First, the intertemporal wedge on a riskless asset is always greater than the
intertemporal wedge on entrepreneurial capital. Second, entrepreneurial capital should
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Figure 5: Optimal capital and bond taxes, larger cost of effort.



be subsidized relatively to a riskless asset in the bad state, irrespective of the sign of
the intertemporal wedge. The optimal tax system reduces after tax spread in capital
returns, whereas it increases the after tax spread in the returns to the riskless bond.

Results are similar for risky securities with returns that are correlated with x. Con-
sider a security with return r (x) > 0 for x = x, x̄, in zero net supply. Letting the
candidate tax system be given by T (S1,K1, x) = τK (x)K1 + τS (x)S1 + ρ (x) .Set
τ∗K (x) and ρ∗ (x) as in (17) and (18) for S∗1 = 0. Set marginal taxes on the security
according to:

1 + r (x)− τ∗S (x) =
qu0 (c∗0)

βu0 (c∗1 (x))
. (22)

The equilibrium price of the security is q =
E1(1+r(x)−τ∗S(x))
E1(1+x−τ∗K(x))

4. Then, (22) implies

E1r̃ (x) = E1x, where 1 + r̃ (x) = 1+r(x)
q .

The intertemporal wedge on the risky security is:

IWS = E1u
0 (c∗1 (x)) (1 + r̃ (x))− u0 (c∗0) ,

Following the usual reasoning:

sign {IWS} = sign
©
u0 (c∗1 (x)) (1 + r̃ (x))− u0 (c∗1 (x)) (1 + r̃ (x̄))

ª
.

Then, if Cov1 (r̃ (x) , x) ≤ 0, the intertemporal wedge on the risky security is positive.
The intertemporal wedge can be positive or negative if Cov1 (r̃ (x) , x) > 0. The following
result holds.

Proposition 8. If Cov1 (r̃ (x) , x) > 0 and V1 (x) > V1 (r̃ (x)) , then:

E1u
0 (c∗1 (x)) (1 + r̃ (x))− u0 (c∗0) > E1u

0 (c∗1 (x)) (1 + x)− u0 (c∗0) ,

τ∗S (x̄)− τ∗K (x̄) < 0 and τ∗S (x)− τ∗K (x) > 0.

Proof. This follows from:

E1u
0 (c∗1 (x)) (1 + r̃ (x))−E1u

0 (c∗1 (x)) (1 + x) = Cov1
¡
u0 (c∗1 (x)) , r̃ (x)

¢
− Cov1

¡
u0 (c∗1 (x)) , x

¢
= Cov1

¡
u0 (c∗1 (x)) , r̃ (x)− x

¢
.

Cov1 (u
0 (c∗1 (x)) , r̃ (x)− x) > 0 if r̃ (x)−x is decreasing in x, or Cov1 (r̃ (x)− x, x) < 0.

By the definition of covariance and by the fact that E1x = E1r̃ (x):

Cov1 (r̃ (x)− x, x) = E1r̃ (x)x−E1x
2 = Cov1 (r̃ (x) , x)− V1 (x) . (23)

4As in the case with risk-free bonds, the equilibrium expected return on this security is not separately
pinned down from E1τ

∗
s (x).



By V1 (x) > V1 (r̃ (x)) and Cov1 (r̃ (x) , x) > 0, 0 < Corr1 (r̃ (x) , x) < 1. Then:

Cov1 (r̃ (x) , x)− V1 (x) = Sd1 (x) [Corr1 (r̃ (x) , x)Sd1 (r̃ (x))− Sd1 (x)] < 0.

In addition, τ∗S (x)− τ∗K (x) = r̃ (x)−x. Since r̃ (x)−x is decreasing in x and E1r̃ (x) =
E1x, τ

∗
S (x̄)− τ∗K (x̄) < 0 and τ∗S (x)− τ∗K (x) > 0.

If Cov1 (r̃ (x) , x) > 0 and V1 (x) > V1 (r̃ (x)) , Corr1 (r̃ (x) , x) ∈ (0, 1) , where Corre
denotes the correlation conditional on π (e) . The proposition states that a security
positively correlated with capital with lower variance of returns has a higher intertem-
poral wedge than capital. An agent would be willing to hold such a security instead
of capital, since it is associated with lower earnings risk. However, this has an adverse
effect on incentives. This motivates the higher intertemporal wedge and the fact that
τ∗S (x)− τ∗K (x) is decreasing in x, which implies that capital is subsidized with respect
to the risky security in the bad state. Then, the correlation of an asset’s returns with
idiosyncratic capital risk determines the asset’s incentive effects and the properties of
optimal marginal taxes on the asset.

3.3. Optimal Double Taxation of Capital Income

We now allow entrepreneurs to sell shares of their capital and buy shares of other
entrepreneurs’ capital. In this setting, each entrepreneur can be interpreted as a private
company, so that this arrangement introduces a market for private equity. The amount
of capital invested by an entrepreneur can be interpreted as the size of their firm.

An entrepreneur’s budget constraint in each period is :

c0 = K0 −K1 −B1 −
Z
i∈[0,1]

S1 (i) di+ sK1,

c1 (x) = K1 (1 + x)−sK1 (1 + d (x))+

Z
i∈[0,1]

(1 +D (i))S1 (i) di+B1 (1 + r)−T (K1, s, B1, {S1}i , x) ,

where s ∈ [0, 1] is the fraction of ownership sold, S1 (i) is the value of shares in company
i purchased, d (x) dividends distributed to shareholders and D (i, x̃) denotes dividends
earned from stocks of company i if the realized returns are x̃ for x̃ ∈ X. The size of
each entrepreneur’s firm is simply given by their capital stock at the end of period
0. The value of a firm in terms of consumption goods, net of dividend payments is
1. Gross stock returns for an entrepreneur with private equity portfolio {S1 (i)}i are
given by

R
i∈[0,1] (1 +D (i))S1 (i) di, where D (i) denotes expected dividends from firm

i5. Entrepreneurs choose B1, K1, {S1 (i)}i as well as effort at time 0, taking as given the
5This holds since x is i.i.d. across entrepreneurs and the law of large numbers hold, given that i is

distributed on a continuum.



distribution policy, dividend processes for other companies, r and taxes. At time 1, x is
realized, dividends are distributed, the government collects taxes and the entrepreneurs
consume. The tax system, T (K1, s,B1, {S1}i , x) , is conditional on variables that are
assumed to be public information.

We consider candidate tax systems of the form T (K1, B1, {S1}i , x) = τP (x) (1 + x)K1+
τB (x)B1+τ s (x)

R
i S1 (i) di+ρ (x) . Here, τP (x) is a marginal tax on gross profits. This

candidate tax system does not condition taxes on the fraction of equity issued by en-
trepreneurs. The marginal tax on stock returns, τS (x) , depends on the agent holding
the stock and is the same for all stocks. We assume that the distribution policy d (x) is
exogenous6.

An entrepreneur’s Euler equations are:

−u0 (c0) (1− s) + βEê [(1 + x) (1− τP (x))− (1 + d (x)) s]u0 (c1 (x)) = 0, (24)

−u0 (c0) + βEê [1 + r − τB (x)]u
0 (c1 (x)) = 0, (25)

−u0 (c0) + βEê [1 +D (i)− τS (x)]u
0 (c1 (x)) = 0, (26)

£
u0 (c0)− βEê (1 + d (x))u0 (c1 (x))

¤
K1

⎧⎨⎩
= 0 for s ∈ (0, 1)
≤ 0 for s = 0
> 0 for s = 1.

. (27)

We define a competitive equilibrium for this trading structure and then consider how
to implement the constrained-efficient allocation. Since all entrepreneurs are ex ante
identical, we restrict attention to symmetric equilibria in which sK1 = S1 (i) , effort is
constant across entrepreneurs. Consequently, D (i) = EêD (i, x̃) , and D (i, x) = d (x)
for all i.

Definition 9. A (symmetric) competitive equilibrium is an allocation for the entrepre-
neurs

n
K̂1, ŝ, B̂1,

n
Ŝ1 (i)

o
i
, ê, ĉ1 (x)

o
with ŝ ∈ [0, 1), an interest rate r, a distribution

policy d̂ (x) and a dividend process D̂ (i, x) for i ∈ [0, 1] , x ∈ X, and a tax system
T (K1, s, B1, {S1}i , x) , such that:

i) the allocation
n
K̂1, ŝ, B̂1,

n
Ŝ1 (i)

o
i
, ê, ĉ1 (x)

o
solves the entrepreneurs’ problem,

for given d̂ (x) , D̂ (i, x̃) , r and T ;
ii) the dividend process is consistent with the distribution policy, d̂ (x) = D̂ (i, x) for

all i and x ∈ X;
ii) the stock market clears, ŝK̂1 = Ŝ1 (i) ;
iii) the resource constraint is satisfied in each period.

6 In the following section, we allow shareholders to optimally select the distribution policy, subject
to an incentive compatibility constraint.



The restriction ŝ ∈ [0, 1) stems from the fact that an entrepreneur’s optimal choice
of capital is undetermined at s = 1, since her utility does not depend on K1 in this case.
Moreover, at s = 1, an entrepreneur does not have any gains from effort, so e = 0. The
optimal choice of s is a function of the distribution policy. The following result holds.

Proposition 10. In any competitive equilibrium with s ∈ (0, 1) , Eê (1 + d (x))u0 (c1 (x)) =
Eê (1 + x) (1− τP (x))u

0 (c1 (x)) .

Proof. Suppose that the distribution policy is d̂ (x) and that Eê (1 + d (x))u0 (c1 (x)) 6=
Eê (1 + x) (1− τP (x))u

0 (c1 (x)) for some tax system where (24) holds with equality at

τ̂P (x) .Denote the corresponding competitive equilibrium allocation with
n
K̂1, ŝ, B̂1,

n
Ŝ1 (i)

o
i
, ê, ĉ1 (x)

o
,

with K̂1 > 0. If Eê (1 + d (x))u0 (c1 (x)) > Eê (1 + x) (1− τP (x))u
0 (c1 (x)) , for some

0 < ŝ < 1, we can write:

0 = −u0 (ĉ0) (1− ŝ) + βEê

h
(1 + x) (1− τ̂P (x))−

³
1 + d̂ (x)

´
ŝ
i
u0 (ĉ1 (x))

< − (1− ŝ)
h
u0 (ĉ0)− βEê

³
1 + d̂ (x)

´
u0 (ĉ1 (x))

i
,

which implies 0 > u0 (ĉ0)−βE1
³
1 + d̂ (x)

´
u0 (ĉ1 (x)) . But by (27), ŝ = 0. Contradiction.

Similarly, if Eê (1 + d (x))u0 (c1 (x)) < Eê (1 + x) (1− τP (x))u
0 (c1 (x)) for some 0 <

ŝ < 1:

0 = −u0 (ĉ0) (1− ŝ) + βEê

h
(1 + x) (1− τ̂P (x))−

³
1 + d̂ (x)

´
ŝ
i
u0 (ĉ1 (x))

> − (1− ŝ)
h
u0 (ĉ0)− βEê

³
1 + d̂ (x)

´
u0 (ĉ1 (x))

i
.

Then, u0 (ĉ0)− βE1

³
1 + d̂ (x)

´
u0 (ĉ1 (x)) > 0, which by (27) implies ŝ = 1. Contradic-

tion.
Based on this result, we consider the distribution policy: 1+d∗ (x) = (1 + x) (1− τP (x)) ,

which satisfies the restriction in proposition 10. Dividends per share are simply given
by after tax profits. This prescription should be interpreted as part of the share issuing
agreement, and is taken as given by the entrepreneurs and the shareholders. Then:
1+D∗ (i) = Eê (1 + x) (1− τP (x)) = 1+Eêx−EêτP (x)−EêτP (x)x. If we restrict at-
tention to competitive equilibria in which r = E1x, in any competitive equilibrium with
B1 ≥ 0 and S1 (i) > 0 for all i, it must be that τS (x)−τB (x) = −EêτP (x)−EêτP (x)x
for x ∈ X7.

7As discussed in section 3.2, the equilibrium rate of return on bonds is not pinned down separately
from the expected marginal bond tax.



Consider a candidate tax system where the marginal profit tax is τ∗P (x) , defined
by:

(1 + x) (1− τ∗P (x)) =
u0 (c∗0)

βu0 (c∗1 (x))
. (28)

Equation (28) is the entrepreneurs’ Euler equation for K1, evaluated at the constrained-
efficient allocation at distribution policy d∗ (x). It implies that τ∗P (x) is independent
from s. Impose that τ∗B (x) satisfies (17). In addition, set τ

∗
S (x) so that:

1 +D∗ (i)− τ∗S (x) =
u0 (c∗0)

βu0 (c∗1 (x))
, (29)

where D∗ (i) = Eêx−Eêτ
∗
P (x)−Eêτ

∗
P (x)x. Lastly, let ρ

∗ (x) satisfy:

c∗1 (x) = K∗
1 (1 + x) (1− τ∗P (x))− s∗K∗

1 (1 + d∗ (x)) + (1 +E1 (x)− τ∗B (x))B
∗
1(30)

+

"Z
i∈[0,1]

(1 +D∗ (i)− τ∗S (x))S
∗
1 (i) di

#
− ρ∗ (x) ,

for some s∗ ∈ [0, 1] and B∗1 , with S∗1 = s∗K∗
1 . This tax system implies that (27) is

satisfied as an equality at any s∗ ∈ [0, 1) for distribution policy d∗ (x) .

Proposition 11. The tax system T ∗ (K1, B1, {S1}i , x) = τ∗P (x) (1 + x)K1+τ
∗
B (x)B1+

τ∗s (x)
R
i S1 (i) di+ρ∗ (x) , where τ∗P (x) , τ

∗
B (x) , τ

∗
S (x) and ρ

∗ (x) satisfy (28), (17), (29)
and (30), respectively, implements the constrained-efficient allocation at interest rate
r = E1x with distribution policy 1 + d∗ (x) = (1 + x) (1− τ∗P (x)) and dividend process
D∗ (i) for all i. The allocation

©
K∗
1 , s

∗, 0, {S∗1 (i)}i , 1, c∗1 (x)
ª
with s∗K∗

1 = S∗1 (i) for all
i and s∗ ∈ [0, 1), the tax system T ∗ (K1, B1, {S1}i , x) , the interest rate r = E1x, the
distribution policy d∗ (x) and the dividend process D∗ (i, x) constitute a competitive
equilibrium.

The proof is in the appendix and proceeds as the one for proposition 5. The setting of
marginal taxes ensures that the entrepreneurs’ first order necessary conditions and local
second order necessary conditions for an interior solution to their problem are satisfied.
In addition, it ensures that the allocation is globally optimal because it rules out any
corner solutions to the entrepreneurs’ investment and portfolio problems, irrespectively
of the level of effort. Lastly, the setting of ρ∗ (x) ensures high effort is optimal at the
appropriate level of capital and portfolio choices.

The properties of the optimal tax system can be derived from (28)-(30). First:

E1τ
∗
P (x) = 1−E1

∙
u0 (c∗0)

β (1 + x)u0 (c∗1 (x))

¸
,



so that E1τ∗P (x) > 0 if IWK > 0 and E1τ
∗
P (x) < 0 if IWK < 0. In addition, τ∗P (x̄) −

τ∗P (x) < 0 when IWK > 0 and τ∗P (x̄)− τ∗P (x) > 0 when IWK < 0 from:

u0 (c∗0)

β (1 + x)u0 (c∗1 (x))
− u0 (c∗0)

β (1 + x̄)u0 (c∗1 (x̄))
= τ∗P (x̄)− τ∗P (x) ,

since IWK˜ (1 + x)u0 (c∗1 (x))− (1 + x̄)u0 (c∗1 (x̄)) . Lastly, by (29):

1 +E1x−E1τ
∗
P (x)−E1xτ

∗
P (x)−E1τ

∗
S (x) = E1

u0 (c∗0)

βu0 (c∗1 (x))
.

This impliesE1τ∗S (x) = −E1τ∗P (x)−E1xτ∗P (x) = −E1τ∗P (x)E1 (1 + x)−Cov1 (x, τ∗P (x)).
If IWK ≷ 0, Cov1 (x, τ∗P (x)) ≶ 0 and E1τ

∗
P (x) ≷ 0, as discussed above. Hence, the

sign of E1τ∗S (x) is typically ambiguous.

The optimal tax system described in proposition 11 embeds a prescription for optimal
double taxation of income from entrepreneurial capital : at the firm level thought τ∗P , and
at the investor level, through τ∗S . It is necessary that the tax on earnings be "passed
on" to stock investors via the distribution policy and that dividend distributions be
taxed at the level of the investors- hence, that business income be subject to double
taxation- in any equilibrium with s∗ ∈ (0, 1). To see this, first note that taxation
of stock income is required to ensure that agents choose S∗1 , for the usual reasons.
Further, proposition 10 implies that it is necessary for expected discounted dividends
to be equal to expected discounted after tax earnings on externally owned capital for
an interior value of s to be optimal for an entrepreneur. A corollary of proposition 10 is
that in any competitive equilibrium where the marginal tax on earnings satisfies (28),
s ∈ (0, 1) requires that the distribution policy satisfies 1 + d (x) = (1 + x) (1− τP (x)) .
In particular, for the tax system that implements the constrained-efficient allocation
with s∗ ∈ (0, 1) , 1 + d∗ (x) = (1 + x) (1− τ∗P (x)) . This implies that the taxes paid
on retained earnings at the firm level are passed on to investors, by a corresponding
reduction in distributed earnings. Hence, distributed earnings are subject to double
taxation.

If 1+d∗ (x) < (1 + x) (1− τ∗P (x)) , an entrepreneur will find it optimal to set s = 1.
But at s = 1, the constrained-efficient allocation cannot be implemented if entails high
effort on part of entrepreneurs, since an entrepreneur’s earnings do not depend on effort.
If 1 + d∗ (x) > (1 + x) (1− τ∗P (x)) , then s∗ = 0. In this case, the constrained-efficient
allocation is implemented by the tax system and the competitive equilibrium allocation
coincides with that of the market structure with risk-free bonds.

The distribution policy 1+d̃ (x) = 1+x, which corresponds to no taxation at the firm
level for distributed earnings, is of particular interest. Under this distribution policy,
(24) can be written as:

−
£
u0 (c0)− βE1 (1 + x)u0 (c1 (x))

¤
(1− s)− βE1 [(1 + x) τP (x)]u

0 (c1 (x)) = 0.
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Figure 6: Optimal marginal earnings taxes, benchmark parameterization.

Evaluating this expression at the constrained-efficient allocation for τ∗P (x) that solves
(28), it follows that u0 (c∗0) − βE1 (1 + x)u0 (c∗1 (x)) < 0, so that s = 0 from (27), if
the intertemporal wedge is positive. If the intertemporal wedge is negative, u0 (c∗0) −
βE1 (1 + x)u0 (c∗1 (x)) > 0, so that s = 1.

The optimal tax system does not pin down the equilibrium value of s∗ and the
equilibrium portfolio composition for this economy. The restriction s∗ ∈ [0, 1) implies
that for any value of s∗ in this range, the tax system ensures that entrepreneurs find it
optimal to choose K∗

1 .
For the benchmark parameterization, the optimal marginal earnings taxes are:

Remark 12. The constrained-efficient allocation can equivalently be implemented with
a marginal tax on tax on capital τK (x) that satisfies (16) and with distribution policy:
1 + d (x) = 1 + x − τK (x) and dividend process 1 + D (i, x̃) = 1 + x̃ − τ∗K (x̃) , so
that 1 +D (i) = 1 + E1 (x) , since E1τ∗K (x) = 0. The optimality of double taxation of
entrepreneurial earnings can be derived with a similar reasoning.

3.3.1. Private Equity with Incentive Compatible Dividends

TBA



4. Concluding Remarks

The analysis of optimal taxation with entrepreneurial capital conducted in this paper
has three main predictions. The first is that the intertemporal wedge on entrepreneurial
capital can be positive or negative. It is negative when risk aversion is greater than
intertemporal substitution with Kreps-Portheus preferences and when the coefficient
of relative risk aversion is either smaller than one or sufficiently high with expected
utility. A negative intertemporal wedge signals that more capital has a positive effect
on incentives. This can occur since the returns from effort are increasing in capital.
When the intertemporal wedge is negative the optimal marginal tax on capital rises with
earnings. The second prediction is that the marginal tax on financial assets depends on
the correlation of their returns with idiosyncratic uncertainty. If the correlation between
an asset’s returns and capital is less than one, the intertemporal wedge on the asset is
greater than the intertemporal wedge on capital and the marginal tax on the asset is
higher than the marginal tax on capital in bad states. The third prediction is that
income from entrepreneurial capital should be taxed at the firm level and again when
it accrues to outside investors in the form of stock returns. Hence, double taxation of
capital income is optimal.

The contribution of this analysis is twofold. First, we characterize the properties
of constrained-efficient allocations in private information economies with idiosyncratic
capital returns. This class of environments has not been studied in the recursive con-
tracting literature8. Second, we derive the properties of optimal taxes on entrepreneurial
capital as well as on other financial assets. We also consider whether entrepreneurial
capital earnings distributed to outside investors should be taxed at the firm level. This
generates a theory of optimal differential asset taxation and provides a foundation for
the double taxation of capital earnings.

The empirical public finance literature has documented substantial differences in the
tax treatment of different forms of capital income. Specifically, interest income is taxed
at a higher rate than stock returns, as discussed in Gordon (2003), while dividends are
taxed at a higher rate than accrued capital gains. Personal and corporate tax rates on
capital income are also different. As documented by Gordon and Slemrod (1988), the
higher marginal tax rate on interest income is a stable property of empirical tax systems
in many industrialized economies. Poterba (2002) has documented a strong response
of household portfolio composition to this differential tax treatment. Auerbach (2002)
finds that firms’s investment decisions appear to be sensitive to the taxation of dividend
income at the personal level and their choice of organization form is responsive to the
differential between corporate and personal tax rates.

8An exception is Kahn and Ravikumar (1999). They focus on an implementation with financial
intermediaries and rely on numerical simulations. They do no provide an analytical characterization of
the wedges associated with the constrained-efficient allocation.



In the economy studied in this paper, the optimal tax system implements the
constrained-efficient allocation by influencing portfolio choice and sales of private eq-
uity by entrepreneurs. Differential tax treatment of different asset classes is essential to
achieve this goal. The same logic applies to company stock held by top executives. A
quantitative version of the model can be used to provide an assessment of empirical tax
systems. We leave these extensions for future work.

5. Appendix

Proof of Proposition 1. Letting µ be the multiplier on the incentive compatibility
constraint and λ the one on the resource constraint, the first order necessary conditions
for the planning problem at e = 1 are:

−u0 (K0 −K1) + λE1 (1 + x) = 0,

(1− π (1))βu0 (c1 (x))− µ (π (1)− π (0))βu0 (c1 (x))− λ (1− π (1)) = 0,

π (1)βu0 (c1 (x̄))− µ (π (0)− π (1))βu0 (c1 (x̄))− λπ (1) = 0.

At e = 0, the same first order necessary conditions hold with µ = 0. If e∗ = 1 is optimal,
the first order conditions can be simplified to yield (4) and (5).

5.1. Optimal Taxes

Proof of Proposition 11. TBA.
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