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Abstract

This paper develops a theory of policing that can explain the phenomenon of

random “crackdowns,” which are periods of especially high interdiction/surveillance

that are announced ahead of time and are sustained temporarily. We show that,

when police minimize the crime rate, random crackdowns can emerge as part of

an optimal policing strategy. These crackdowns provide a way of estimating the

deterrence effect of policing that does not rely on exogenous variation in police

resources. We consider alternative specifications of police objective functions and

show that crackdowns would not arise if police activities are decentralized. We

demonstrate support for several implications of the crackdown theory using traffic

data gathered by the Police Department in Belgium, and we use the model to

estimate the deterrence effect of policing on speeding.
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1 Introduction

Police often engage in �crackdowns� on crime, which are intermittent periods of high

intensity policing. In this paper we develop an economic model in which random crack-

downs may arise as part of an optimal policing strategy. When such crackdowns occur,

they o¤er a way of estimating the deterrence e¤ect of policing absent any exogenous vari-

ation in police resources. We use our model of crackdowns to analyze a speed deterrence

program used by police in Belgium and to estimate the deterrence e¤ect of additional

resources spent on ticketing speeders and to assess whether the current level of deterrence

is socially optimal.

Two features characterize our notion of random crackdowns. First, they are arbitrary,

in the sense that they subject certain groups (identi�ed by presence in a particular

time or place, or by other observable characteristic) that are not notably di¤erent from

other groups in criminal propensities to higher intensity police monitoring. Second, they

are publicized, i.e., those who are subjected to it are informed before they engage in

criminal activity.1 Crackdowns are employed in a number of policing situations. Some

examples include drunk driving interdiction accomplished using sobriety checkpoints,

crackdowns on speeding achieved through announced greater police presence on certain

highways/roads, or crackdowns on drug tra¢ cking aimed at particular neighborhoods.2

Being arbitrary and publicized, crackdowns may seem an ine¢ cient deployment of

police resources; potential criminal activity could merely be displaced to non-crackdown

periods or locations. Criminologists rationalize the use of crackdowns by appealing to

psychological theories according to which the impression created by the temporary show

of force (the crackdown) is a psychological �blu¤�that leads the potential criminals to

overestimate the risk of detection during non-crackdown periods.3 This view relies on

1Our de�nition of crackdown is di¤erent from the conventional use of the term in the literature

on policing (see e.g. Di Tella and Schargrodsky 2002, 2004) because we require that crackdowns be

arbitrary. We will return to this point when we discuss the related literature.
2For example, operation �safe streets�in Philadelphia, which put heavy law enforcement on partic-

ular city blocks, received extensive media coverage. Other examples of crackdowns include the NHTSA

campaign �You Drink & Drive. You Lose�which instituted highly visible enforcement against drunk

driving. Another example is �Checkpoint Tennessee,�Tennessee�s statewide sobriety checkpoint pro-

gram.
3Sherman (1990), Ross (1984). Sherman, p. 11, recommends that crackdowns be highly publicized
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the potential criminals�expectations being systematically wrong, and so is inconsistent

with rationality.

In this paper we take a di¤erent approach and develop a fully rational model in

which potential criminals are not fooled and yet crackdowns arise as part of an optimal

policing strategy. To understand the basic driving force behind our analysis, we present

an example that shows how policing through random crackdowns can be optimal.

Example Consider a population of 100 citizens, half of whom would never commit

a crime, and half of whom would commit a crime unless they are certain that they will

be caught. A citizen�s propensity to commit a crime is unobservable to the police. The

police resources are such that they can only check 50 citizens. Suppose that the police

check citizens at random (note that all citizens look the same to police), so that each

citizen has a probability 1/2 of being checked. Then, only the high-propensity citizens

will commit a crime, giving rise to a crime rate of 1/2.

Suppose now that half of the citizens have blue eyes, half have brown eyes. Eye color

is distributed independently of the propensity to commit a crime, so it is arbitrary for

police to treat citizens di¤erently according to eye color. Nevertheless, suppose that police

crack down on brown-eyed citizens and check them all, and completely ignore the blue-

eyed citizens. Then no brown-eyed ever commits a crime because they are sure that they

would be caught, and only those blue-eyed citizens commit a crime who have high criminal

propensity. Thus, the crime rate with a crackdown on brown-eyed persons is 1/4, which

is lower than the crime rate of 1/2 obtained without crackdowns.

This thought experiment shows that crackdowns can reduce crime by introducing

disparate treatment within a population of observably identical individuals. We have

not proved that the speci�c way in which citizens are divided and policed (blue-eyed

v. brown-eyed) is the optimal one for reducing crime, though this is indeed the case.

We show later in the paper that given any distribution (continuous or discrete) of the

propensity to commit a crime, the optimal policing scheme involves dividing the popu-

lation into no more than two groups, not necessarily of equal size. Let us now return

and be followed by secret �backdowns," and warns of the risk of exhausting the blu¤ through overuse.

3



to the example, and show that crackdowns make it possible to determine the deterrence

e¤ect of policing absent any exogenous variation in policing resources.

Using crackdowns to identify the deterrence e¤ect of policing Consider

now an increase in police manpower to 51 checks. How does the optimal policing scheme

change? It can be shown that the optimal policing scheme involves moving one person

from the non-crackdown group to the crackdown group. That is, police would pick a

blue-eyed citizen, force him to wear brown contact lenses, and then check with probability

1 all those who appear to have brown eyes. The remaining citizens (all with blue eyes)

are never checked. We can calculate the expected decrease in the crime rate that follows

from an increase in manpower of 1 check: it is the decrease in crime that obtains from

moving a random citizen from the group that is not cracked down upon to the group that

is cracked down upon. Because the average crime rate in both groups is observed, we

can readily compute the expected decrease in the crime rate � in this case, the expected

crime rate goes from 25 percent to 24.5 percent.

In this paper, we develop a general model of policing in which crackdowns sometimes

arise as an optimal policy, under di¤erent assumptions about police objective functions

and constraints. As in the above example, the analysis provides a methodology for

estimating the deterrence e¤ect of policing. In addition, it yields some implications for

the data that can be used to validate the model.

We apply our policing model to analyze the e¤ectiveness of resources spent on speed-

ing interdiction. Although the decision to speed is rarely studied by economists, it has

great economic relevance, both in the U.S. and worldwide. According to data from the

National Highway Tra¢ c Safety Administration (NHTSA), speeding is a factor in 30

percent of all fatal crashes in the US.4 In 2001, more than 12,000 people died in speed-

related crashes on American roads, at an economic cost to society of more than $40

billion.5 Worldwide, tra¢ c injuries rank second to HIV/AIDS as the leading cause of

ill-health and premature death among the 15-44 age group. Because the number of ve-

4See Tra¢ c Safety Facts 2001.
5Over 80 percent of the economic cost is attributable to lost workplace and household productivity.

See Blincoe et al (2002).
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hicles per capita is rapidly growing in developing countries, tra¢ c injuries are projected

to be one of the leading public health issues over the next few decades.6

To deter speeding, police in several countries have adopted programs of announced

radar controls that occasionally publicizes the location and approximate time of operation

of some radar controls.7 The data analyzed in this paper were gathered in the Belgian

province of the Eastern Flanders during the years 2000-2003. We have observations on

all controls in that time period a¤ecting 6.5 million cars and resulting in 206,146 tickets

issued. The announced controls in the data are observed to rotate in a random fashion

across di¤erent stretches of the roads and time periods. We interpret the announced

controls as crackdowns on particular groups of motorists, those that are travelling on the

announced stretch of the road at the announced time.8 By comparing decisions to speed

within the crackdown and non-crackdown groups, we obtain a measure of the deterrence

e¤ect of the increased probability of detection. Using implications of the theory, we

are able to calculate the e¤ect of more interdiction on speeding in terms of additional

resources spent.

The paper develops as follows. Section 2 presents a theoretical model that we use

to study the conditions under which crackdowns emerge as an optimal policing strategy.

The model allows for unobserved heterogeneity in the bene�ts citizens get from breaking

the law. Section 3 extends the model to consider the following alternative assumptions

on police objective functions and constraints: the police minimizes undetected crime

instead of overall crime; the police are constrained in terms of the number of successful

interdictions; or, each police o¢ cer acts in a decentralized fashion to maximize his/her

own arrest record. Section 4 of the paper applies the model developed in section two to

data that we obtained from the Belgian police department. Section 5 provides a brief

discussion and some further extensions. Section 6 concludes.
6See the WHO publication on tra¢ c safety: http://www.who.int/world-health-day/

2004/en/tra¢ c_facts_en.pdf.
7For example, the Netherlands, Belgium, Germany and Australia.
8A crucial feature of our crackdown theory is that drivers can only respond to the announcement of

crackdown by adjusting their speeding behavior. Our data therefore only include controls on highways,

on which no time is gained by choosing an alternative but slower road.
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1.1 Related Literature

The idea that deterrence may be improved by focussing interdiction on arbitrary sub-

sets of the population is present in the literature on racial pro�ling (see Persico 2001).

Recently, Lazear (2004) develops a related idea in the context of designing educational

tests, where the question is how much of the test content to reveal ahead of the test.9 In

the nutrition literature, there is another related idea in connection with nutrition curves.

For example, Pratap and Sharma (2002) argue that, in the presence of limited amounts

of food, maximization of family survival and resources may entail an unequal distribution

of nutritional resources, i.e., focussing resources on a subset of the family. Relative to

these strands of literature, the contribution of this paper is (a) to pose a general opti-

mal policing problem and to characterize the optimal policing strategy; (b) to point out

that crackdowns (in our terminology) allow the researcher to infer the deterrence e¤ect

of policing; and, (c) to empirically illustrate the methodology within a policy-relevant

application, speeding.

From a broader perspective, the issue of the deterrence e¤ect in tra¢ c situations

is a subset of the vast literature on crime.10 Of direct relevance to this paper is the

smaller literature concerned with tra¢ c enforcement (speeding, drunk driving, and seat-

belt wearing), which is reviewed by Zaal (1994). Much of the literature on speeding

attempts to quantify the e¤ects of a change in the speed limit on accidents.11 There

is also a literature directly concerned with police enforcement and with estimating the

deterrence e¤ect of increased policing12 and of greater penalties13 on speeding. Parallel

literatures deal with the deterrence e¤ect of increased policing and greater penalties

on drunk driving14 and on seat-belt wearing.15 There is also literature studying the

9Coincidentally, Lazear (2004) also uses speeding as a potential application in developing his argu-

ment, but his work is independent of ours.
10See Ehrlich (1987) for a review of this literature, and Levitt (1997) for an important study of

deterrence in law enforcement.
11See for instance Balkin and Ord (2001), Lave (1985, 1989) and the literature cited therein, Ledolter

and Chan (1996).
12See e.g. Redelmeier et al (2003) and the literature cited therein.
13See Bar-Ilan and Sacerdote (2002), Homel (1988a), Ross and Gonzalez (1988).
14See e.g. Ross (1984).
15See e.g. Campbell (1988), Peltzmann (1975).
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connection between risk-taking behavior (speeding, drunk driving) and accidents; see

Levitt and Porter (2001) for a good example in the context of drunk driving. Ashenfelter

and Greenstone (2004) use the fact that some US states choose to relax the speed limit

to estimate the value of a statistical life. That paper also provides a rich summary of

economics papers in this area.

We acknowledge that our use of the term �crackdown� is somewhat di¤erent from

the way the term is conventionally used. Sometimes, the term crackdown is used to

indicate increases in interdiction that are not deliberate randomizations, but rather may

be considered exogenous increases in resources in the sense that they are caused by

events unrelated to the crime that is the object of study. Di Tella and Schargrodsky

(2002, 2004), for example, study the e¤ect of crackdowns on bureaucratic corruption

and on crime, respectively. Our work complements this line of inquiry by pointing out

that �random�crackdowns can be expected to arise endogenously as part of the optimal

policing strategy.

2 Benchmark Model

We next develop a model of optimal policing. Police choose how many citizens to monitor

and with what intensity (in our application, the police check for speeding) and motorists

decide whether or not to commit a crime (exceed the speed limit). Here we assume

that the citizen�s utility functions are linear and that committing the crime is a discrete

decision, but in Section 5 we relax these assumptions.

2.1 The model

There is population of size 1 that is heterogeneous in the bene�t x from committing a

crime. The bene�t is not observed by the police. Let x be distributed across this popula-

tion according to a c.d.f. F , and let p denote the probability that the citizen is monitored.

If a citizen commits a crime and is monitored, he is caught and receives penalty T . We

assume that p 2 [0; p], i.e., that a citizen can be monitored with probability no greater
than some p � 1.
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A citizen with bene�t x commits a crime if

x� pT > 0: (1)

If a group of citizens is policed with intensity p, the fraction of criminals is

1� F (pT ) :

We �rst consider the decision of police regarding how to monitor citizens. One possi-

ble policing strategy is to monitor every citizen with the same probability. Alternatively,

the police can divide the population into subgroups and police them at di¤erent inten-

sities. Of course, this division only matters if the citizens know that they are policed

with di¤erent intensities, so we will assume that each citizen knows the intensity with

which he/she is policed.16 We denote by � (p) the size of the group policed at intensity

p. Because the total size of the population is 1, it must be
R p
0
� (p) dp = 1.

The contribution of group � (p) to total crime is � (p) (1� F (pT )), and aggregating
over all groups gives the total number of criminals:Z p

0

� (p) (1� F (pT )) dp: (2)

In this section, we assume that the police�s goal is to minimize the total number of

criminals. Alternative speci�cations of the objective function are worth considering, and

two alternatives are studied in Sections 3.1 and 3.3.

Let us now turn to the resource constraint. Monitoring a group of size � with intensity

p is assumed to require police resources in the amount of � � p. We can think of these
resources as o¢ cer-hours devoted to crime interdiction. If total resources of P per capita

are available for policing, the aggregate police resource constraint readsZ p

0

� (p) pdp � P: (3)

We refer to this constraint as a time constraint. An alternative speci�cation of the

constraint on police resources is explored in Section 3.2. The police chooses a probability

measure � to minimize the number of criminals (2) subject to the resource constraint

(3).

16In practice, this means that the police must inform citizens of the intensity with which they are

policed.
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Figure 1: A crackdown is optimal.

2.2 Analysis

In this section we provide an intuitive characterization of the properties of the solution to

the police problem; these properties are summarized in Propositions 1 and 2. A formal

proof of these propositions is provided in Appendix A.

Let us start by supposing that the solution to the police problem entails policing all

citizens with the same intensity. By the resource constraint, this intensity must equal P .

In the formalism we adopt, this policing strategy corresponds to � (p) equal 1 if p = P ,

and equal zero otherwise. Substituting this choice of � into the objective function (2)

we see that the number of criminals equals S = 1 � F (PT ) : This situation is depicted
in the left hand panel of Figure 1.

One may notice that the number of criminals can be reduced if resources are allocated

di¤erently. If some citizens were policed with intensity pL and the rest were policed with

intensity pH , then it would be possible to bring the number of criminals down to S 0 < S.

This is the allocation of resources depicted in the right hand panel of Figure 1.

Citizens who are policed with intensity pH are said to be subject to a crackdown.

Figure 1 shows that crackdowns help �iron out�the inward bumps of the function 1 �
F (pT ), thus enabling the police to maintain policing intensity on the e¢ cient frontier.

More precisely, by using crackdowns the police elicit a response function from citizens

that corresponds to the convex hull of the epigraph of (i.e., of the area above) the function
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1� F (pT ).
In our formalism, this crackdown strategy corresponds to choosing � (p) > 0 if p =

pL; pH , and equal to zero otherwise. The fraction � (pH) is optimally chosen to be the

largest possible compatible with satisfying the resource constraint (3), which therefore

reads

(1� �H) pL + �HpH = P:

Of course, crackdowns are not always part of the optimal policing strategy. If, for

example, the function 1�F (pT ) is globally convex, as depicted in Figure 2, then crack-
downs would never be optimal. Even in Figure 1, if P were smaller than pL or larger

than pH , crackdowns would not be optimal. In those cases, the most e¢ cient use of

resources is to police every citizen with the same intensity.

Figure 2: Crackdowns are not optimal.

When crackdowns are optimal, it is because the function 1 � F (pT ) is not convex.
Given that crackdowns play a �convexifying�role, there is no additional gain in dividing

the population in more than two groups. In fact, given any function 1 � F (pT ), any
point in its convex hull can be achieved as a convex combination of at most two points

in its epigraph. A three group crackdown, therefore, which would entail three di¤erent

policing intensities, can achieve nothing more than a two-group crackdown. The following
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proposition actually takes this logic a little bit further in stating that �generically,�three

group crackdowns are strictly suboptimal.

Proposition 1 Given a homogeneous population with a generic distribution of propen-

sity to commit a crime, the optimal policing strategy involves either monitoring everyone

at the same rate, or dividing the population into at most two groups to be monitored with

di¤erent intensities.

Proof. Theorem 6 provides a formal proof of this result.

An extreme form of crackdowns arises when 1� F is globally concave. In this case,
the convex hull is given by the segment that connects the points (0; 1� F (0)) and
(p; 1� F (pT )), which means that for any P we have pL = 0; pH = p. Thus, the optimal
policy entails the use of extreme crackdowns: one group of citizens will be monitored as

intensely as possible, the rest will not be monitored at all.17 This observation gives rise

to the following remark.

Remark 1 If F is convex on its domain, then for any P 2 (0; p) the optimal polic-

ing strategy involves monitoring one group of citizens with maximal intensity, and not

monitoring the others at all.

We now turn to the comparative static result that deals with increases in the police

budget in the presence of crackdowns. The intuition behind the result can be explained

using Figure 1. Suppose that P , the amount of resources available to the police, is

increased slightly. Although the fraction of citizens who are subjected to a crackdown is

now higher because more resources are available, the optimal police strategy still entails

a crackdown with intensities pH and pL. In other words, only the sizes of the two groups

change, but not the intensity with which they are monitored. This simple but important

point is noted in the following proposition.

Proposition 2 Given total police resources of P , suppose the optimal policing strategy

involves dividing the population into a crackdown group of size �H monitored with inten-

sity pH and a non-crackdown group of size �L monitored with intensity pL. Consider an

17This is the case of the example in the introduction.
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increase in total police resources to ~P 2 (P; pH). In the new optimal strategy the crack-
down group is larger than before, (i.e., ~�H > �H and thus ~�L < �L, the non-crackdown

group is smaller), but the intensities with which the two groups are monitored remain

unchanged (they are still pH and pL).

Proof. Theorem 6 provides a formal proof of this result.

Proposition 2 provides a way of forecasting the deterrence e¤ect of an increase in

police resources. Crucially, the approach does not require knowledge of the shape of the

function 1 � F (pT ). Refer again to Figure 1. Graphically, increasing P results in the

crime rate S 0 sliding down along the shaded segment. The slope of the shaded segment,

therefore, determines the degree to which crime decreases as resources increase. This

slope can be calculated based on the formula

[1� F (pHT )]� [1� F (pLT )]
pH � pL

:

Multiplying this slope by eP � P a¤ords a forecast of the decrease in crime due to a

hypothetical increase in police resources from P to eP . Thus,
�Crime
�P

=
(crime ratejpH)� (crime ratejpL)

pH � pL
:

The terms in the numerator on the right-hand side (the crime rates with and without

crackdown) as well as those in the denominator (the intensity of monitoring) would be

observable in most applied settings in which crackdowns are observed.

To see why observing crackdowns is necessary to carry out this computation, consider

the no-crackdown primitives depicted in Figure 2. We are interested in forecasting 1 �
F
� ePT�, the crime rate after the increase in the budget. Absent any information on

the shape of the function 1� F (pT ), there is no way to compute 1� F
� ePT� based on

the available information, which is only the knowledge of 1 � F (PT ), the initial crime
rate. This is why most of the literature on deterrence focusses on identifying sources of

exogenous variation in P , which allows one to trace out (or at least locally approximate)

the function 1�F (PT ) as P varies. However, in the presence of crackdowns there is no
need to identify sources of exogenous variation in P to identify the deterrence e¤ect.18

18Seen from this perspective, one can think of crackdowns as being a case where exogenous variation

in P arises as part of the optimal policing strategy.

12



If, in addition to observing crackdowns, one also has access to exogenous variation

in total police resources P , then Proposition 2 yields a testable implication of the model

we developed. The implication is that, as P increases between pL and pH ; the optimal

monitoring intensity should not change but the size of the group subjected to crack-

downs should increase. In Section 4.3, we verify this implication in the context of speed

interdiction. As noted in the introduction, a key assumption is that the citizens that

are subject to increased interdiction as a result of crackdown cannot avoid being mon-

itored. For our application of speed interdiction, we concentrate attention on highways

only, where avoiding the monitoring would imply an extra time cost that which does not

compensate for the time gains from speeding.

3 Variants on the Benchmark Model

In this section we explore several variations on the benchmark model for two reasons.

First, we wish to provide a more accurate �t for applications in which either the police

objective function or the resource constraint are not accurately captured by the bench-

mark model. We will mention some such applications when we introduce each variant.

Section, we wish to compare alternative models in terms of the likelihood that crack-

downs as optimal policing strategy. In comparing the models in Sections 2.1, 3.1, and

3.2, we will take the distribution of the propensity to commit a crime as given. These

comparisons, therefore, are of interest (a) if we are comparing alternative systems of

police incentives in how they reduce levels of the same crime, or (b) if we are willing to

accept that the distribution of the propensity to commit a crime is somewhat similar

across di¤erent types of crime and policing applications, which could be the case if one

variable (income, or education, say) determined the propensity to commit various types

of crimes.

In terms of their structure, the models in Sections 2.1, 3.1, and 3.2 share a key feature.

All three models give rise to programming problems that are linear in �. This linearity

explains why Propositions 1 and 2 are applicable to all three models. The model explored

in Section 3.3 is mathematically di¤erent, which explains why crackdowns do not arise

at all in that model.
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3.1 First variant: minimizing undetected crime

We next consider a model in which police minimize undetected crime instead of simply

trying to decrease crime. Police may care about minimizing undetected crime, for exam-

ple, in the case of drug interdiction, where police may wish to minimize the amount of

drugs that slip through and reach the market .

When a group is monitored with intensity p, the fraction of crime in the group that

goes undetected is (1� p) (1� F (pT )). Given a policing strategy �, undetected crime
is given by Z p

0

� (p) (1� p) (1� F (pT )) dp: (4)

The police chooses a policing strategy � to minimize expression (4) subject to the budget

constraint (3).

This programming problem is very similar to the one studied in Section 2.1. There,

as well as here, the objective function is decreasing in p. This was the only property of

the objective function that was used in Section 2.1, so it is immediate that Propositions

1 and 2 continue to hold in this setting.

Whether crackdowns are optimal depends, as before, on the convexity of the objective

function. In the present case, it is the convexity of undetected crime that matters. If

undetected crime is convex in p then crackdowns are never optimal (see Remark 1.) It

is a simple matter to verify that undetected crime is �more convex�than crime, in the

sense that if (1� F (pT )) is convex then (1� p) (1� F (pT )) is also convex. Therefore,
if F is such that police minimizing crime never �nds it optimal to engage in crackdowns,

then crackdowns are also not optimal if the objective is to minimize undetected crime.

These observations are collected in the following proposition.

Proposition 3 Suppose the police minimizes undetected crime. Then:

a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at di¤erent

intensities.

b) Given total police resources of P , suppose the optimal policing strategy involves

dividing the population into a crackdown group of size �H monitored with intensity pH
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and a non-crackdown group of size �L monitored with intensity pL. Consider an increase

in total police resources to ~P 2 (P; pH). In the new optimal strategy the crackdown group
is larger than before, (i.e., ~�H > �H and thus ~�L < �L, the non-crackdown group is

smaller), but the intensities with which the two groups are monitored remain unchanged

(they are still pH and pL).

c) There are no crackdowns for any P if the same is true when the police minimizes

crime. The converse is not true.

Part (c) of the proposition suggests that crackdowns tend to have drawbacks when the

police minimizes undetected crime, and are therefore less likely to be part of the optimal

strategy. A simple example provides intuition for why this is. Suppose T = p = 1; and

P = 1=2. Suppose further that F is a Uniform on [0,1]. When everyone is policed with

intensity 1/2 (no crackdown), half the citizens commit a crime and half of those criminals

are undetected, so undetected crime equals 1/4. Consider now an extreme crackdown in

which half the citizen know that they are monitored for sure, and the rest know that they

are never monitored. The latter half of the citizens all commit a crime, and undetected

crime is equal to 1/2. Undetected crime, therefore, increases due to the crackdown. This

example shows the drawbacks of crackdown when one minimizes undetected crime: the

group that is monitored less intensely commits a lot of crime, and that crime is more

likely to go undetected.

The same example helps illustrates the �converse not true�statement in part (c). In

the example, the crime rate is (1� p), which is linear in p: This means that any policing
strategy including crackdowns is optimal. Undetected crime is (1� p)2 which is strictly
convex, so crackdowns are strictly suboptimal. In this example, then, crackdowns are

suboptimal if police minimizes undetected crime, but they are optimal (albeit weakly)

when police minimizes crime.19

3.2 Second variant: constraint on successful interdictions

In this variant of the model, as in Section 2.1, the police minimize crime. The resource

constraint, however, is expressed in terms of successful interdictions rather than in terms

19Slightly tweaking the function F would ensure that crackdowns are strictly optimal when the police

minimizes crime.
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of time resources. In this variant, only monitoring criminals has a cost to the police;

monitoring honest citizens is costless. This variant captures environments in which

interdiction is cheap relative to the cost of processing violations. This happens to be

the case in our speeding application of Section 4, where the police are administratively

restricted in the number of tickets that they can write in a year.20

The term (1� F (pT )) � p represents the number of successful interdictions from a

population that is policed with intensity p. To capture the constraint on successful

interdictions we modify the constraint (3) to readZ p

0

� (p) (1� F (pT )) p dp � C: (5)

The police minimizes expression (2) subject to the constraint (5).

To rule out trivial cases where the resource constraint is not binding, we assume that

C is such that the police could not a¤ord to monitor everyone with maximal probability.

This assumption, which will be maintained throughout, reads

Assumption C < (1� F (pT )) p.

The present problem shares a key formal similarity with the benchmark model: both

programming problems are linear in �. As a consequence, Propositions 1 and 2 continue

to apply.

True, constraint (5) and constraint (3) are quite di¤erent. In constraint (5), for

example, the kernel of the integral is not necessarily increasing in p: higher monitoring

intensity does not necessarily entail more successful interdictions. Yet, at the optimal

solution, one can show that more resources (successful interdictions) must be expended

per capita on the crackdown group than on the other group. One can also show that

whenever crackdowns are optimal in the benchmark model for all values of P , then they

are also optimal when police are ticket constrained. These results are collected in the

following proposition.

Proposition 4 Consider a monitoring problem in which police minimize crime under

the constraint that successful interdictions not exceed C. Then:

20This makes sense because detecting speeders with automatic radar machines is almost costless

relative to processing a tra¢ c ticket. More on this in Section 4.
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a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at di¤erent

intensities.

b) Given C, suppose the optimal policing strategy involves dividing the population

into a crackdown group of size �H monitored with intensity pH and a non-crackdown

group of size �L monitored with intensity pL. Consider an increase in C to eC 2
(C; (1� F (pHT )) � pH). In the new optimal strategy the crackdown group is larger than
before, (i.e., ~�H > �H and thus ~�L < �L, the non-crackdown group is smaller), but the

intensities with which the two groups are monitored remain unchanged (they are still pH
and pL).

c) At the optimal monitoring strategy, the expected number of successful interdictions

per capita (the probability that there will be monitoring multiplied by the fraction of

motorists who speed) is larger in the crackdown group than in the non-crackdown group.

d) Crackdowns are optimal for all values of C if they are optimal in the benchmark

model for all values of P . The converse is not true.

Proof. a), b): see Theorem 6.

c) Suppose not. Then if one perturbed the optimal strategy by shifting a small mass of

citizens from the non-crackdown group to the crackdown group, the resource constraint

would continue to be satis�ed and the crime rate would decrease. This contradicts

optimality of the original strategy.

d) Let P denote the maximal feasible policing intensity when all motorists are po-

liced with the same probability. This is the monitoring intensity that minimizes crime

among all feasible non-crackdown strategies. For future reference, observe that feasibility

implies C = P (1� F (PT )). Consider now the ancillary problem which is to minimize

crime subject to the constraint (2). Let �L; pL; �H ; pH denote the optimal crackdown

probabilities in the ancillary problem. By de�nition, this crackdown policy generates a

lower crime rate than if all citizens were policed with intensity P . We now show that the

same crackdown strategy is feasible in the original problem. This will prove that equal

policing is dominated by crackdowns in the original problem.

17



To verify feasibility in the original problem, write the following chain of inequalities:

C = P (1� F (PT ))

= [1� F ((�LpL + �HpH)T )] (�LpL + �HpH)

� �LpL (1� F (pLT )) + �HpH (1� F (pHT )) ;

where the inequality re�ects the concavity of the function x [1� F (xT )]. This function
is concave because F is convex, which we know because crackdowns are optimal for all

values of P in the ancillary problem (refer to Remark 1).

Part d) of the above proposition suggests that crackdowns can be optimal when the

police are ticket constrained even in cases where they are not optimal in the benchmark

model. The intuition for crackdowns when the police faces constraint (5) is as follows.

In a crackdown, the high interdiction group commits little crime, while the group that

is more prone to committing crime is rarely policed. This tends to reduce the number of

tickets that are written relative to the case in which both groups are policed at the same

rate. Thus, besides helping satisfy the objective function, engaging in crackdowns has

bene�cial e¤ects on constraint (5). The second e¤ect was not present in the benchmark

problem.

Part (b) of Proposition 4 yields a useful formula for computing the e¤ect of an increase

in police resources on the crime rate. Because this formula will be used in the empirical

work later, we derive it here. The crime rate given eC equals
e� (pL) � (1� F (pLT )) + e� (pH) � (1� F (pHT ))

(note that there is no tilde over the p�s in light of Proposition 4 part (b)). To obtain the

change in crime, subtract from this expression the analogous expression when resources

equal C. This yields

�Crime (6)

= [e� (pL)� � (pL)] (1� F (pLT )) + [e� (pH)� � (pH)] (1� F (pHT ))
= [e� (pH)� � (pH)] (F (pLT )� F (pHT )) :

The optimal policing strategy e� must meet the budget constraint, and so
eC = (1� e�H) (1� F (pLT )) pL + e�H (1� F (pHT )) pH :
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Isolating e�H yields
e�H = eC � (1� F (pLT )) pL

(1� F (pHT )) pH � (1� F (pLT )) pL
:

The optimal policing strategy before the increase in resources must also meet the budget

constraint, and so

�H =
C � (1� F (pLT )) pL

(1� F (pHT )) pH � (1� F (pLT )) pL
:

Substituting into (6) we get

�Crime =
� eC � C�� F (pLT )� F (pHT )

(1� F (pHT )) pH � (1� F (pLT )) pL

�
(7)

= �C �
�

(crime ratejpH)� (crime ratejpL)
(crime ratejpH) � pH � (crime ratejpL) � pL

�
:

All the terms in the right-hand side brackets are observable when the resource level equals

C. Thus, the decrease in crime rate due to an increase in resources can be computed even

without observing any variation in the data in the level of police resources. In Section 4

this slope is calculated in the context of highway speeding interdiction.

3.3 Third variant: decentralized policing

Assume that police behave in a decentralized way, meaning that the allocation of police

interdiction is decided by individual o¢ cers. Each o¢ cer chooses whom to search given

a constraint on the number of searches that he can make. Each o¢ cer is rewarded based

on successful interdiction, which means that he maximizes the number of arrests that he

makes. Knowles, Persico, and Todd (2001) study such a model and apply it to highway

drugs interdiction. In general, such a model is relevant in applications where there is an

agency problem in policing: individual police o¢ cers need to be given discretion over

whom to search and, at the same time, must be motivated to search the right groups of

citizens.

We next show that in a decentralized policing environment, crackdowns do not arise

in equilibrium. This is because every individual police o¢ cer would prefer not to police

the crackdown group and would instead devote his searches to the other group, because

of a higher likelihood of resulting in an arrest. This force prevents crackdowns as an

equilibrium phenomenon, as summarized in the following proposition.
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Proposition 5 Consider a problem in which each police o¢ cer chooses whom to monitor

to maximize arrests given a constraint on the total searches that he can make. Then

crackdowns never arise in equilibrium.

Note that in this model, crackdowns do not arise even if the primitives are the ones

depicted in Figure 1. The inability to sustain crackdowns in decentralized policing entails

a cost in terms of crime rate. The absence of crackdowns can be seen as an agency cost.

4 Empirical Application: Speeding Interdiction

In this section we apply our theoretical model of policing to study speeding interdiction

in Belgium. Speeding interdiction is an important policy question in its own right,

given that tra¢ c accidents are a leading cause of death and disability worldwide.21 In

addition, given that one of our goals is measuring deterrence, speeding interdiction has

the advantage that the issue of incapacitation does not play a signi�cant role.22 That

is, crime rates can be reduced by deterring potential criminals or by incapacitating

them, and the models we examined only dealt only with the question of deterrence.

Disentangling deterrence from incapacitation is a di¢ cult task.

It will become clear that the variant of the model that best �ts the application is the

one developed in Section 3.2.

4.1 The environment and the data

The data set comes from the administrative records of the Belgian police department.

In three Belgian provinces (Eastern Flanders, Liege and Luxembourg), the police puts

extensive e¤ort into publicizing announced radar controls, through di¤erent media in-

cluding newspapers, radio, internet, local stores and restaurants.23

21In 1990, for example, tra¢ c accidents represented the fourth leading cause of loss of DALYs in

developed countries. Worldwide, accidents were the third cause of loss of DALYs for ages 15-44; by

comparison, war was only the seventh leading cause for those ages.
22Speeders are not usually incapacited by prison terms. However, sometimes they do get their licenses

revoked for lengthy periods, so incapacitation can play some role in reducing speeding.
23The controls are announced, for example, on the website: http://www.federalepolitie.be. The logo

that accompanies announced controls is in Appendix C.
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Our data covers the province of Eastern Flanders, which has two major highways and

one minor highway, each of them connecting the city of Gent (see the road map given in

the Appendix B).24 The two major highways are divided into four sectors: A14-North,

A14-South, A10-East, A10-West. The province has two radar control machines that are

placed along roads or highways to record the speed of drivers passing along that road and

to take photographs of cars that are speeding, which are then issued tickets.25 On any

given day, the police either make no announcement or they announce the location of at

most one of the machines. An announcement covers exactly one section of one highway.

For example, an announcement might reveal that the machine will be placed somewhere

on a given section of a highway between the hours of 9am-12. The announcement does

not specify the direction of the road on which the machine is placed, nor the exact

location.

Our empirical analysis combines data from two sources. The �rst source is informa-

tion concerning date, time, and location of the machine, whether the radar control was

announced, the number of vehicles passing by the machine (as recorded by the machine),

the fraction of cars and trucks that were driving in excess of the speed limit (the limit

di¤ers for cars and trucks) and the fraction of vehicles exceeding the speed limit by 15

km/h.26 Our second source of information are police records on all vehicles that were is-

24The East-West highway A10 connects Gent with Brussels to the East and with Bruges to the West

and the North-South highway A14 connects Gent with Antwerp and the Dutch border to the North, and

with the French border to the South. Both highways are approximately equidistant and cover around

60-65km within the province of Eastern Flanders. The third highway, R4, is a short stretch of highway

connecting Gent with its port to the North.
25Radar control machines record speeds and take photographs of speeding vehicles. The license

information obtained from the photo and information recorded on the speed is used to issue the tickets.

If the driver passes a radar machine while exceeding the speed limit by a certain threshold (see below)

the probability is close to one of receiving a ticket. It is not equal to one, because, rarely, sun glare

makes the photo unreadable. The radar control machines are mobile and are sometimes moved to several

locations throughout the day.
26A major speeding violation is de�ned in the law as travelling at a speed of 10km/h or more over

the speed limit. In addition, the margin of error of the radar is �3%; or 4km/h at the maximum speed

on highways, which is 120km/h. It is police discretion when to issue a ticket for major violations, and

currently, police considers a major violation travelling at a speed of 136km/hr or higher on highways.

Currently no tickets are issued systematically for minor violations (over the speed limit, but less than

136km/h) as a result of the radar data collected.
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sued speeding tickets, which includes information on the speed of the driver (as recorded

by the machine), on the type of car, and on the place of residence of the driver.

Police objective and constraints. The police department explicitly states that its

goal is to optimally deter speeding, given an upper bound on the number of speeding

tickets can be issued each year. In particular, maximizing the revenue from tra¢ c tickets

is not part of the police objective function. In fact, the police do not even get to keep

the revenue from the tickets they write.

From conversations with the police, we learned that they face a binding constraint

on the total number of tickets. The primary cost of issuing a speeding ticket is the

administrative cost of processing the ticket, estimated to be about US $0.50; the police

are given a total budget at the beginning of the year, so they know how many tickets can

be issued during the year within this budget. This budget is the total number of ticketed

speeders reported in Table 1a.27 To avoid issuing too many tickets, police do not make

use of the radar control machines every day of the year. On days when no announcement

is made, police may or may not be using the machines to monitor the roads for speeders.

On days with announcements, police make use of at least one machine on the announced

road and may also use the other machine on another road unannounced. Based on this

description of the police problem, the relevant variant of the model is the one developed

in Section 3.2.

Following organizational reforms within the police, in 2002 and 2003 there was a

sharp increase in the number of tickets that the police was allowed to issue on highways.

The size of the budget constraint more than doubled, from 33,951 in 2000 to 78,136

in 2002. This change occurred, in part, because resources previously used to monitor

both highways and some smaller roads were from 2002 on earmarked for highways only.

Based on conversation with the police, this reallocation of funds was not triggered by any

perceived change in the motorists�propensity to speed, but rather was a side e¤ect of

broader organizational changes. We will therefore treat this change in the police budget

as exogenous, and we will use this source of variation to validate our model.

Monitoring Policy. Monitoring policy is decided long before the actual radar control.
27The number of ticketed speeders does not exactly match the budget constraint because the police

cannot exactly predict how many speeders will be ticketed during a monitoring event.
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For this reason, the o¢ cer who schedules the times and locations of announced and unan-

nounced controls does not react to short term changes in the circumstances (weather,

tra¢ c disruptions due to work areas, etc.). Once a radar control is planned, it is always

executed. Table 1a shows the number of vehicles subject to announced and unannounced

radar control on the three major highways for the years 2000-2003 as well as the number

of drivers issued speeding tickets. Table 1b shows the number of monitoring events on

each road. Highway A14 has the most monitoring, followed by A10 and then the shorter

highway, R4. Table A1 tabulates the number of announced and unannounced monitoring

events by month of year. There is no systematic pattern, except that monitoring is more

frequent in the month of December. As seen in table A2, which tabulates monitoring and

announcement events by day of the week, monitoring is also more frequent on weekend

days in 2000 and 2001, for the reason described above

Driver�s avoidance. One potential concern in applying our model to the data is

whether drivers who hear the radar control announcements can select an alternate route

to avoid detection, which would mean that the speeding response of people who choose

to remain on the announced road could no longer be compared to the response of drivers

in the absence of the announcements. Note, however, that our data pertains to major

highways. The potential problem of route selectivity is much less serious on major high-

ways, because if a motorist wants to avoid a highway with announced radar controls, she

will necessarily have to take country roads, with relatively low speed limits (between 50

and 90 km/h) and with tra¢ c lights. On the basis of time cost, a driver should prefer

to take the highway rather than a country road, even with the announced controls.28

4.2 Connecting the data to the theory

We now describe how we organize the data in light of the theoretical framework.

Monitoring intensity. p is the probability that a motorist traveling along a section of

the highway is monitored. In reality, not all motorists travel along the entire section�
28This argument might fail, however, if some motorists derived pleasure from exceeding the route-

speci�c speed limit for the sake of it. In that case, taking an alternate, slower route might deliver the

pleasure of breaking a speed limit, even though the limit being broken would be lower than maximum

speed that is legal on the highway.
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some make shorter trips. We will show below that, for our purposes, there is no loss in

generality in treating shorter trips in the same way as longer trips.

Even on announced days, police monitor somewhere in the announced sector, but the

probability of a driver being caught speeding in that sector is typically less than one,

because police do not monitor the entire length of time of the announced control and

they only monitor one of the two driving directions.

The monitoring intensities are obtained as follows. For sectors without announce-

ments, we estimate a logistic model for the probability of the sector being monitored,

where we take into account other factors that may a¤ect the motorists�expected proba-

bility of being monitored, such as the day of the week, the month of the year, whether

the particular road was recently subject to any monitoring (announced or unannounced),

whether there has been an announcement on another road and whether it is a holiday.

Table A3 presents the coe¢ cients from the logistic regression, where the model is esti-

mated separately by highway and the unit of observation is a day in which there was no

announced monitoring of that particular highway. Similarly, we estimate a regression

model for the duration of time spent monitoring on days without announcements. 29

We then multiply the predicted probability of monitoring and the expected time spent

monitoring. To obtain pL; this number is multiplied by 0.5 to account for uncertainty

about the direction monitored.

We compute pH in the same way, except that we replace the conditional probability of

monitoring by one (because there is always monitoring on sectors with announcements)

and obtain the expected time spent monitoring by dividing the duration of the actual

monitoring period by the duration speci�ed in the announcement.30

Crime rate. Our theory requires us to compute F (pLT ) and F (pHT ), the fractions of

speeders on a regular day and under a crackdown (see expression 7), which we obtain from

the data. We describe below how we also take into account other possible determinants

of speeding, such as tra¢ c conditions.

29The fraction of time spent monitoring is obtained by the expected number of hours divided by 16.

There is no monitoring in the data during nighttime.
30For example, if the announced crackdown duration is three hours but actual monitoring only lasted

one hour, the the expected probability of being monitored during the announced interval is 1/6.
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Heterogeneity in trip lengths. Because p is the probability that a motorist traveling

along an entire sector is monitored, equation (1) must be interpreted as a �per sector�

equation. Thus, we take x to represent the �per sector�bene�t of speeding. A motorist

who travelled only a fractionm of a sector would speed if mx�mpT > 0; or equivalently,
if x � pT > 0. Thus, the motorist�s decision problem is invariant to the fraction of the

sector travelled. This formulation allows us to aggregate trips of di¤erent lengths. This

is convenient because we do not observe the length of each individual trip.

Heterogeneity in driving population. The theoretical model presented above as-

sumes that individuals are identical in the eyes of police. In reality, the population

driving on the road may vary in observable ways. We might worry, for instance, that

the slightly higher levels of weekend monitoring before 2002 might be evidence that

the police viewed the weekend driving population as di¤erent than the weekday drivers.

When we raised this concern, however, the police gave us a di¤erent explanation. They

had anticipated the 2002 increase in resources prior to 2000 and wanted to �smooth the

transition� to more frequent monitoring by providing higher frequency monitoring on

weekends in 2000 and 2001. In our empirical analysis, we include day of the week as a

conditioning variable.

Aside from weekend monitoring, the only other signi�cant predictors of announce-

ments are whether it is a holiday and whether the same road was recently subject to

monitoring (see appendix Table A5), which increases the likelihood that there will be an

announcement.31 Because our model is static, it is silent on the question of the temporal

dynamics of monitoring.

31For this estimation, we can only use the limited set of conditioning variables that is available for all

days of the year (not just for the monitoring days). For example, police may monitor less on days with

high tra¢ c density; but we do not have a measured of tra¢ c density for days in which there was no

monitoring. The police told us that they establish the monitoring schedule approximately one month

in advance, so it is unlikely the the schedule depends on factors that could not be anticipated far in

advance, such as daily weather �uctuations.
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4.3 Validating the model

Police behavior in our speeding application seems to �t well our de�nition of crackdown:

the police randomly and publicly engage in high interdiction phases. Our model, and in

particular the variant studied in Section 3.2, rationalizes this behavior as optimal. The

model also has some additional predictions, summarized in Proposition 4, that can used

to validate the model.

First, the most direct implication of our theory (Proposition 4 part (a)) is that

the optimal policing scheme partitions the population in at most two di¤erent groups.

The optimal monitoring strategy involves either monitoring everyone at the same rate

or dividing the population into at most two groups, which are monitored at di¤erent

intensities. In contrast, police behavior (announce crackdowns on some roads on some

days) naturally gives rise to three di¤erent groups: (i) Highway sectors with crackdowns;

(ii) sectors without crackdowns on days in which crackdowns are announced (on other

sectors), and �nally (iii) all sectors on non-announcement days. We now show that

the monitoring intensity is virtually the same in groups (ii) and (iii). Thus, motorists

belonging to groups (ii) and (iii) are treated as if they were in the same group, consistent

with the theoretical prediction of the model.

To illustrate this point, we plot in �gure 3 the histogram of the probabilities with

which police monitors drivers (the plot refers to road A10; the histograms for A14 and

R4 are very similar and are available upon request). This is reported below where the

�rst column of 3 �gures is for the year 2000, the second and third are for 2001 and 2002.

For each year, the top �gure displays the distribution of probabilities of monitoring

if the police has announced the control. The middle �gure depicts the distribution

of probabilities if there was no announcement on that road (A10), but there was an

announcement simultaneously on another road. The bottom �gure has the probability

distribution if there is no announcement on that road (A10) or on any other road. For all

three years, the monitoring intensity when there are announcements (the top �gure for

each year) is much di¤erent from when there is no announcement on that road (middle

and bottom �gures). More importantly, for each year, the monitoring intensities do

not di¤er much between the bottom two �gures. Thus, groups (ii) and (iii) appear

to be monitored with similar intensities, and with sharply lower intensity than group
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Figure 3: Probability of being monitored, highway A10.

(i). Table A5 suggests that having an announcement on another road has opposite

e¤ects on the intensity of unannounced monitoring on the two main roads, and, more

importantly, that the e¤ect is quantitatively negligible. Table A4, which reports the

average predicted probabilities for all three roads, con�rms that probabilities for the

unannounced monitoring are very low (they range between 0:001 and 0:030) and are not

appreciably di¤erent if there is an announcement on another road that day, whereas the

announced monitoring probability pH range between 0:2 and 0:3 for di¤erent roads.

Second, the theory (Proposition 4 part (b)) predicts that with an increase in the

number of tickets, there will be an increase in the fraction of the population subject

to announced controls (�H increases and �L decreases) but no change in the monitoring
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probabilities pH ; pL. In 2001 and 2002, there were large increases in police resources. The

predictions of the model seem to be borne out by the �gures presented above. A simple

comparison of the histograms in columns 1, 2, and 3 reveals no shift in the monitoring

probabilities, even as the number of tickets issued nearly doubled in 2002, and an increase

in the number of vehicles subject to monitoring. This pattern can also be seen in Table

A3, where the estimated coe¢ cients for the year e¤ects are not signi�cant, as well as in

Table A4, which shows the predicted probability of monitoring over the years.

Third, the model predicts that the expected number of successful interdictions per

capita is larger in the crackdown group than in the non-crackdown group (Proposition

4 (c)). The expected number of successful interdictions per capita is equal to the prob-

ability that there is monitoring multiplied by the fraction of motorists who speed. The

expected number of tickets issued per capita is systematically larger on announcement

days than it is on unannounced days. For example, on highway A10 the expected num-

ber of tickets per capita on announcement days is 0:466% whereas on unannounced days

it is 0:035%: Likewise on A14 (1:010% and 0:097% respectively) and R4 (0:994% and

0:039%).

Overall, the fact that all the predictions of Proposition 4 are supported by the data

indicates that the model reasonably approximates police behavior.

4.4 The deterrence e¤ect of announced controls

A major goal of our analysis is to estimate the deterrence e¤ect of announced controls.

Drivers who take to the roads on announcement days are subject to a higher probability of

being caught speeding and can therefore be viewed as the group subject to a crackdown.

Here, the criteria by which the crackdown group is distinguished are time and day of

travelling on the road. To estimate the deterrence e¤ect, we compare the speeding

response on pH days (days with announcements) to the response on low pL days. Our

estimation also allows for possible observed heterogeneity that may a¤ect the police�s

decisions about when and where to monitor and drivers� decisions about whether to

speed. The theoretical model of the last section assumed that monitoring intensity is the

only observable factor a¤ecting speeding, but in reality there are other relevant factors,

such as weather conditions and tra¢ c density. Additionally, there is likely to be some
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variation in the population driving on the roads at di¤erent times. For example, weekend

drivers may di¤er in utility derived from speeding from weekday drivers. Let Z denote

the vector of observables, such as day of the week and month of the year, that are

potential determinants of the monitoring probabilities, P (Z).

We estimate a logistic model for individual drivers�decisions to speed, where the

speeding decision is assumed to depend on the probability of monitoring (p(Z)) and

possibly on some other factors, X:32 Table 2 presents the estimated coe¢ cients obtained

from the logistic regression for three alternative speci�cations. In speci�cation (1) the

speeding decision is assumed to be a function solely of the predicted probability of

monitoring, that was estimated using the method described above. Speci�cation (2) adds

the following set of conditioning variables that may be relevant to the speeding decision:

indicators for di¤erent levels of tra¢ c density, an indicator for poor visibility on the road,

an indicator for morning and evening rush hour weekday tra¢ c, an indicator for whether

the day is a holiday, and �xed e¤ects for days of week and months of year, and year.

Speci�cation (3) includes the same conditioning variables, but the speeding decision is

now assumed to depend only on whether there is an announcement. This speci�cation

estimates the impact of having an announcement, but unlike the other speci�cations, it

does not take into account the information on the length of the monitoring interval.

As seen in Table 2, speeding decreases during announcement periods and is a de-

creasing function of the probability of monitoring. This result is robust to the inclusion

of conditioning variables, although a comparison of the speci�cations that exclude and

include the conditioning variables shows that the estimated deterrence e¤ect is smaller in

the speci�cations that include the covariates. Controlling for covariates has an especially

large e¤ect on the estimated coe¢ cient associated with the probability of monitoring on

highway R4. As expected, individuals are less likely to speed when there is poor visibil-

ity and more likely to speed when there is low tra¢ c density. Speeding also tends to be

higher during weekday rush hour times, on holidays, and on Sundays.

Table 3 translates the estimated coe¢ cients from Table 2 into an estimated average

impact on the probability of speeding. That is, columns (1) and (2) present estimates

of the average predicted decrease in speeding on each road due to announcements.33 As

32Some of the elements of X (such as day of week) coincide with elements of Z:
33The table reports the average (over all drivers) decrease in speeding.
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noted above, the estimated deterrence e¤ects are smaller when additional conditioning

variables are included in the speci�cation. We focus on the coe¢ cients that include the

conditioning variables (reported in columns (2) and (4)), because they likely re�ect addi-

tional determinants of driver�s decisions to speed that need to be taken into account. On

highway A10, the estimated coe¢ cients imply that the fraction of drivers speeding de-

creases on average by 8.4-19.1% due to the announcements. For highway A14, estimates

range from 8.4%-10.2%, and, for highway R4, from 1.6%-3.6%.

We use these estimates to compute the change in the deterrence e¤ect of an increase

in resources on speeding interdiction. The key resource constraint the police face is the

number of tickets issued. Therefore, we examine how the number of speeders varies as

the number of tickets the police are allowed to issue increases, using equation (7) from

the theory. The e¤ect of an increase of 10; 000 tickets is reported in Table 3 for each

of the highways. Depending on the model speci�cation, the reduction in the number of

speeders on highway A10 ranges from 4,746 to 12,123 from 3,954 to 10,291 on highway

A14, and from 668 to 3,831 on R4.

There is a vast literature documenting the e¤ect of speeding on accidents, injuries

and tra¢ c deaths.34 We next use our estimates of the impact of speeding on fatalities

to evaluate whether the police optimally resolve the trade-o¤ between costs and bene�ts

of speeding interdiction. We take an average of the estimated deterrence e¤ects of

10,000 tickets, observed in Table 3, to be about 4,000 speeders. Assuming each deterred

motorists travels the length of a sector (about 40 km), 160,000 km are travelled by

deterred motorists. The expected number of deaths on 480,000 travelled kilometers is

around 1:3
100000000

� 160000 = 0:00208.35 In our data, deterred motorists reduce their speed
by about 8 km/h;36 assuming the probability of injury and death increases by 5% per

34For the US, the National Highway and Transportation Safety Authority (NHTSA) provides estimates

of speed-related crashes.
35We impute the expected number of deaths at 1.3 per 100 million km travelled. See DiGuiseppi et al

(1998). For comparison, in the US, where the speed limit is lower, the expected number of deaths was

1.51 per 100 million of highway miles travelled in 2002 (see Motor Vehicle Tra¢ c Crash Fatality Counts

and Injury Estimates for 2003 ).
36Average speeds among speeders are 142 and 144 respectively for A10 and A14. Assuming that

deterred motorists travel at the maximal non-ticketed speed (135km/h), deterred motorists reduce their

speed by 7 - 9km/hr.
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km/hour, in our case, interdiction is expected to reduce the number of deaths by 40%,

or by 0:00208 � 0:4 = 8:32 � 10�4. On the cost side, writing 10,000 more tickets costs
$5,000 in administrative costs and wastes about 1 minutes per deterred driver, or a total

of about 67 hours. Given a wage of $10/h (the opportunity cost of time), the total costs

of interdiction is $5; 000 + 670.

If the police were resolving optimally the trade-o¤ between marginal cost of inter-

diction and marginal bene�ts, in terms of statistical lives saved, then the implied value

of a statistical life is 5670
8:32�10�4 = 6:8 million dollars. This value is within the range of

commonly accepted estimates of the value of a statistical life, indicating that the use of

resources in policing may be e¢ cient.37

5 Discussion and some extensions

This section compares our theory to some other existing theories of crackdowns. It also

extends the model to capture an environment in which crime is not a binary decision but

rather a continuous choice and the utility of the citizens is not necessarily linear (thus

allowing for risk aversion). All the previous results carry over to these more general

settings.

5.1 Alternative theories of deterrence

The model analyzed in this paper is a model of perfectly rational risk assessment, in

which motorists form a Bayesian update of the probability of being monitored based on

the available information. In this environment, we have shown that crackdowns may be

part of the optimal deterrence policy.

Alternatives to our theory exist that can rationalize crackdowns. These theories are

typically based on some form of non-standard (at least from an economist�s viewpoint)

rationality. For example, an alternative model of the e¤ect of crackdowns is the following.

37For example, Murphy and Topel (2003) report a range of $3 million to $7 million. The Environmental

Protection Agency in the U.S. uses an estimate of 4.5 million. (Murphy and Topel, 2003). If we do

the same calculation using an estimated e¤ect of 12,000 vehicles deterred per 10,000 tickets, we get an

implied value of a statistical life of 2:86 million dollars.
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Suppose that absent a crackdown, the probability of monitoring is so small as to be

ignored by the driver. Crackdowns raise the speeder�s probability of detection to the point

where it is not negligible, and in the process the motorist becomes alert to the detection

risk which was previously unforeseen. If this increased alertness persists even when a

crackdown is not in force, crackdowns help reduce speeding. In our speeding application,

this theory of deterrence would suggest that motorists on announcement days would be

reminded of the possibility of being monitored and therefore slow down. According to

this theory, speeding should also go down even on roads that are not monitored due to

the increased alertness from announcements on other roads. This implication, however,

is refuted because we �nd that the fraction of speeders on non-monitored roads does not

decrease during monitoring days (see Table A4).

Criminologists have justi�ed crackdowns using an alternative theory of deterrence,

based on subjective risk assessment. This theory, developed in Ross (1984) and Sher-

man (1990), highlights the distinction between risk (which is accurately perceived by

motorists) and uncertainty (which is not accurately perceived). The idea is that crack-

downs, because they are �eeting, generate doubt in the mind of the motorist about the

interdiction intensity at any particular time, thus boosting the uncertainty component in-

volved in the decision to speed. According to this theory, using crackdowns may magnify

the deterrence e¤ect obtained from a given amount of resources.38 According to this the-

ory, an e¤ective policing strategy would leave motorists in as much in doubt as possible

as to the location and timing of the crackdowns, in order to maximize their uncertainty.

This implication appears to contrast with the actual policy of liberal information dissem-

ination observed in our application. Note that, consistent with the observed pattern of

information dissemination, the optimal policy in our model is to inform motorists about

the crackdowns.39 It would be interesting to derive further testable implications from

the subjective risk assessment model, but we feel that this model is too vague to yield

38Sherman (1990) goes further and argues that the bene�cial e¤ect of crackdowns on the motorists�

uncertainty about interdiction actually persists even after a crackdown period is over. He call this e¤ect

�residual deterrence,�and argues that residual deterrence is an important component in the e¤ectiveness

of the crackdowns.
39Our model predicts the e¤ectiveness of the crackdown is directly proportional to the fraction of

motorists who are aware of it. If no motorist were aware of the crackdown, all motorists would expect

the average amount of interdiction and there would be no e¤ect of crackdowns on speeding.
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testable implications that would allow us to validate or falsify the model using the data

at hand.

5.2 Non-linear utility function of citizens

The model developed in this paper assumes that the utility function was linear in the

bene�t, x, from committing a crime. We next show that the linearity assumption can

be relaxed. Suppose citizens have a utility function u that is increasing in x. Then they

will commit a crime i¤

(1� p)u (x) + pu (x� T ) > u (0) :

Consider the set of values of x such that the inequality is satis�ed, and denote by H (p)

the measure of this set. The function H (p) represents the crime rate. Note that since u

is increasing, the left hand side is increasing in x and, also, u (x) > u (x� T ) whereby
the left hand side is decreasing in p. Therefore, the set of values of x such that the

inequality is satis�ed decreases as p increases. This means that H (p) is decreasing in p.

The analysis of Sections 2 and 3 can then be carried out replacing F with H.

5.3 Continuous crime

Suppose that instead of a binary problem (committing a crime or not), each citizen solves

a more complicated problem involving not only whether to commit a crime, but also the

degree to which to commit it. For example, a motorist may choose to speed and how

much to speed. Suppose that the penalty for driving at s miles per hour above the speed

limit is an nondecreasing function T (s) (which could be equal to zero below the speed

limit) and that the agent�s utility from exceeding the speed limit by s is an increasing

function x (s). We allow di¤erent individuals to have di¤erent functions x (s). Given a

certain level of interdiction p, an agent with a given function x (�) solves

max
s
x (s)� pT (s) :

Denote with s� (p) the maximizer of this problem. Denote by eF (sjp) the fraction of
individuals who choose to travel at or below speed s for given p. The quantity eF (sjp)
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will depend on the distribution of the functions x (�) that is present in the population.
It is easy to see, however, that the optimal speed s� (p) is decreasing (or at least not

increasing) in p : s0(p) = T 0= (x00 � pT 00) is negative by the concavity of x � pT at the
maximum. This means that any motorist, regardless of his or her x (�) ; will decrease
his or her optimal speed as the probability of being monitored increases. The functioneF (sjp) is therefore increasing in p.
If police cared not only about the fraction of people who exceed the speed limit, but

also about their speeding levels, the police�s objective function would be represented by

the function

D (p) �
Z
K (s) d eF (sjp) ;

where K (s) is some nondecreasing function. The function K (s) represents the disutility

that the police receives from having one motorist travel at speed s. Because eF (sjp) is
increasing in p, the function D (p) is decreasing in p. Now, rewrite problem (2) replacing

1 � F (p) with D (p). This yields a mathematical formulation of the problem in which

motorists can choose the amount of speeding and police care not only about the fraction

of speeders but also about their speed. From a formal viewpoint this new formulation

is similar to the original problem. Therefore, all the qualitative features of the solution

to the original problem carry over, including the optimality of crackdowns when the

function D (p) exhibits non-convexities.

6 Conclusions

This paper presents a theory of crackdowns in interdiction. Our analysis shows that

even if all citizens look identical to police, the optimal monitoring strategy may involve

dividing the population into two groups and monitoring the groups at di¤erent intensities.

Here, we assume that police do not directly observe citizen heterogeneity, so the division

into groups would have to be implemented in practice using some arbitrary criteria (such

as place, time of day, or day of month). For this division to be e¤ective in curtailing

crime, it is important that the group subjected to the crackdown be made aware when

they are being monitored at the higher rate. This explains why police would announce

when and where crackdowns will occur. We compared several variants of the policing
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model according to the likelihood that crackdowns arise as an optimal policy.

We showed how crackdowns o¤er an opportunity to obtain a measure of the deter-

rence e¤ect of policing in the absence of exogenous variation in police resources. The

methodology we propose di¤ers from the frameworks currently used to estimate deter-

rence e¤ects of policing. The technique most commonly used in the economics literature

relies on exogenous variation in police resources.40 While this approach can be successful,

it is di¢ cult to �nd plausibly exogenous sources of resource variation. In the criminol-

ogy literature, there have also been some attempts to evaluate the e¤ects of changing

resources using randomized experiments, usually by randomly allocating policing �hot

spots." 41 The drawback of the experimental approach is that few researchers are in a

position to generate these controlled experiments, which require the police to actually

change their policing behavior for the sake of the evaluation.42

The methodology we propose in this paper has advantages vis-a-vis the existing

approaches. Consideration of the police�s objective function implies that, under some

conditions, optimal monitoring behavior on the part of the police leads them to engage

in random crackdowns, which provide a variable source of information for identifying

deterrence e¤ects. Our results can be interpreted as lightening the burden of proof

involved in showing that the source of exogenous variation is truly exogenous. That is,

�natural experiments" can arise endogenously out of optimal behavior.

We applied our theoretical model to study speeding interdiction in Belgium. The

data provide support for several implications of the model. Among these are, �rst, that

the announcement strategy of the police indeed amounts to dividing the population into

exactly two groups, and, second, that when police resources are increased, the frequency

of crackdowns increases but the probability of being policed during a crackdown does not

change. We then used the model to estimate the deterrence e¤ect of additional resources

devoted to speeding interdiction in the form of 10,000 additional speeding tickets. Our

back-of-the-envelope calculation suggests that the marginal bene�t, in terms of statistical

40See, e.g., Levitt (1997).
41See, e.g., Sherman and Weisburd (1995).
42Also, in some applications of randomized �hot spots,�there is a reasonable concern that criminals

simply take their criminal activity to other locations that are not being monitored by the experiment

or that are, possibly, part of the control group sites.
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lives saved, is close to the marginal cost of deterrence (it is exactly equal if we take the

value of a statistical life to be 6.85 million dollars). Thus, the current level of speeding

interdiction is arguably in line with socially optimal use of resources.

We believe our theory lends itself to investigating other situations where disparate

treatment of identical groups may be an e¢ cient way of allocating resources. Disparate

treatment of an arbitrarily chosen subgroup of the population can be applied to other

contexts, such as the auditing of �rms for tax purposes or the security screening of pas-

sengers at airports. For example, the crackdown theory would imply that instead of

auditing �rms which are observably similar in the same way, it can be optimal to divide

�rms arbitrarily into groups, one of which is audited more intensely (e.g. subjected to

more frequent inspections) and the other less intensely.43 In the case of airport security,

this may lead to publicly announcing that speci�c �ights will be screened more intensely

than others, rather than screening passengers on all �ights with the same average inten-

sity. This crackdown policy may be helpful if, like in our introductory example, potential

terrorists are not su¢ ciently deterred at average levels of interdiction.44

43This assumes that the goal of auditors is to minimize tax evasion subject to a constraint on the

amount of auditing resources, see Chander and Wilde (1998).
44Consistent with the theory, it is not easy for a potential terrorist to game the system by selecting

an alternative route in response to the crackdown announcement, because police can easily detect last

minute changes in reservations away from crackdown �ights.
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Table 1a 
Number of Vehicles Subject to Announced and Unannounced  

Monitoring by Year 
 2000 2001 2002 2003 (first 

half of year) 
     

Announced 266,240 394,540 1,746,340 1,777,977 
unannounced 406,941 319,650 526,422 1,139,428 
Total 673,181 714,190 2,272,762 2,917,405 
number of ticketed 
speeders 

 
33,951 

 
45,264 

 
78,136 

 
48,795 

 
 

Table 1b 
Number of Announced/Total Monitoring Observations 

by Highway and Year 
 2000 2001 2002 2003 (first 

half of year) 
     

A10 18/46 23/52 33/214 125/158 
A14 38/138 51/105 156/244 150/218 
R4 10/34 1/24 0/5 0/2 

 
Total 

 
66/218 

 
75/181 

 
189/463 

 
275/376 

 
 



 
Table 2 

Estimated coefficients from logistic regression of probability of speeding 
(Standard errors in parentheses) 

Variable (1) (2) (3) 
    

Intercept -3.38 
(0.52) 

-3.43 
(0.01) 

-3.26 
(0.02) 

indicator for A14 0.52 
(0.08) 

0.23 
(0.008) 

0.04 
(0.007) 

indicator for R4 0.30 
(0.02) 

-0.21 
(0.02) 

-0.42 
(0.02) 

announcement on highway A10 … … -0.36 
(0.008) 

announcement on highway A14 … … -0.12 
(0.006) 

announcement  on highway R4 … … -0.04 
(0.05) 

probability of monitoring – A10 -1.17 
(0.04) 

-0.47 
(0.04) 

… 

probability of monitoring – A14 -0.97 
(0.02) 

-0.40 
(0.02) 

… 

probability of monitoring – R4 -0.38 
(0.15) 

-0.07 
(0.15) 

… 

traffic density 3 … -0.27 
(0.06) 

-0.09 
(0.05) 

traffic density 4 … 0.30 
(0.03) 

0.48 
(0.03) 

traffic density 5 … 0.24 
(0.01) 

0.29 
(0.01) 

poor visibility … 0.97 
(0.03) 

0.92 
(0.03) 

morning rush hour*weekday … -0.47 
(0.02) 

-0.47 
(0.02) 

evening rush hour*weekday … 0.02 
(0.006) 

-0.007 
(0.006) 

holiday … 0.51 
(0.007) 

0.49 
(0.007) 

includes fixed effects for days of 
week 

No yes yes 

includes fixed effects for months of 
year 

No yes yes 

includes fixed effects for year No 
 

yes 
 

yes 

p-value from joint test that all 
coefficients equal 0 

<0.0001 <0.0001 <0.0001 

 



Table 3 
Decrease in speeding due to crackdown and the deterrence effect  

of increasing the number of tickets 
  Model Specification 

Highway  (1) (2) (3) 
A10 Predicted % speeding above threshold 

on unannounced days 
 

3.3 3.0 3.2 

pH=0.2007 
pL=0.0084 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

0.20 0.25 0.60 

 Decrease as a % of speeding on 
unannounced days 
 

6.1% 8.4% 19.1% 

 Slope of 1-F -1.04% -1.30% -3.12% 
     
 Effect of additional 10,000 tickets -3,364 -4,746 -12,123 
A14 Average % speeding on unannounced 

days 
 

5.4 5.0 5.0 

pH=0.2441 
pL=0.0167 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

1.01 0.41 0.50 

 Decrease as a % of speeding on 
unannounced days 
 

18.9% 8.4% 10.2% 

 slope of 1-F 
 

-4.44% -1.80% -2.20% 

 Effect of additional 10,000 tickets  -10,291 -3,954 -4,926 
R4 Average % speeding on unannounced 

days 
 

4.4 4.3 4.3 

pH=0.2576 
pL=0.0091 

Decrease in speeding on announcement 
days implied by estimated coefficients 
 

0.38 0.07 0.16 

 Decrease as a % of speeding on 
unannounced days 
 

8.6% 1.6% 3.6% 

 slope of 1-F 
 

-1.53% -0.28% -0.64% 

 Effect of additional 10,000 tickets -3,831 -668 -1,563 
* Total number of vehicles on each highway for the entire year (Driver Pop) was estimated from 
the data collecting on monitoring events. The estimation was performed by regressing the number 
of vehicles per hour on conditioning variables (quarter of the year, day of the week, time of day 
(morning, afternoon, evening) holiday indicator, and an indicator for holiday*weekend). The 
fitted regression was used to impute numbers of vehicles for days/times when there was no 
monitoring.  
 



Appendix A: Proofs

Theorem 6 Let the function f : [0; S] ! [0; 1] be continuous and strictly increasing.

Let the function g : [0; S] ! R be continuous. Let P�g denote the set of probability
distributions de�ned on the interval [0; S] that solve the following linear problem

max
�

Z S

0

f (p)� (p) dp

s.t.
Z S

0

g (p)� (p) dp � C: (8)

For given f; let Fg denote the set of all functions f with the property that all �� 2 P�g
place all the probability on one or two points in [0; S]. Then, the set Fg is dense in the
set of all continuous functions g equipped with the supnorm.

If, moreover, the solution requires that probability mass be placed on two points in

[0; S], then the same two points receive all the probability when C is slightly increased.

Proof: Consider �rst the easy case in which the constraint is not binding at the

optimal solution. In that case, a generic f will have exactly one strict maximum, and so

the optimal �� will put mass one on exactly one point (the strict maximum).

Let us now consider the more di¢ cult case in which the constraint is binding at the

optimal solution. In that case, there exists a number � > 0 such that �� maximizes the

Lagrangean

L(�; �) =
Z S

0

[f (p)� �g (p)]� (p) dp+ �C:

We will show that, if �� 2 P�g puts positive mass on more than two points, then f is
non-generic. To this end, let A denote the set of p�s that is de�ned by

A = argmax
p
[f (p)� �g (p)] :

By de�nition of A, there is a number M such that

f (p)� �g (p) =M for p 2 A
f (p)� �g (p) < M for p =2 A

If �� puts positive mass on more than two points, then the cardinality of A would have to
exceed 2. Consider the transformation ' (p) = f�1 (p=S). The function ' is a one-to-one



mapping of [0; S] onto itself. We can therefore write

f (' (p))� �g (' (p)) =M for ' (p) 2 A
f (' (p))� �g (' (p)) < M for ' (p) =2 A;

or, with the obvious meaning of symbols,

p
S
� �g (' (p)) =M for p 2 '�1 (A)

p
S
� �g (' (p)) < M for p =2 '�1 (A) :

Note that the set '�1 (A) has the same cardinality of A. Thus, if A has cardinality

greater than 2, it means that the two numbers � and M are such that the negatively-

sloped straight line identi�ed by 1
�

�
p
S
�M

�
is tangent to the function g (f�1 (p=S))

at more than two points and never exceeds it. This means that there is a tangent

hyperplanes to the set

Y =
�
(p; y) : y � g

�
f�1 (p=S)

�	
which makes contact with the set Y at more than two points and has negative slope.

We now show that, the set of f�s such that this property does not hold is dense. To

this end, and without loss of generality, let us assume that S = 1. Our task, then, is

to show that if a negatively-sloped tangent hyperplanes to Y make contact with Y in

more than two points, there is a function ~f close to f with the property that no tangent

hyperplane has more than two contact points. Let H denote the set of hyperplanes that

have more than two contact points with Y . Elements of H are identi�ed by their slope

h. For every hyperplane h 2 H, take the sup and the inf of the �rst dimension of all its
contact points and call those ah and bh. Consider now a continuous function dg (p) which

is equal to 0 for every p unless p 2 (ah; bh) for some h 2 H, in which case dg (p) assumes
values strictly between zero and 1. Let ~f" (p) � [1 + " � dg (p)] � f (p). For any " > 0,

the set ~Y" =
n
(p; y) : y � ~f" (p)

o
has exactly the same set of tangent hyperplanes as Y .

This follows from the fact that since the functions f and g are continuous, hyperplane h

makes contact with Y at ah and bh. Moreover, by construction no hyperplane is tangent

to ~Y" at more than two points. Since the function ~f" (p) can be made arbitrarily close to

f (p) in the supnorm by choosing " to be small, the set Fg is dense.
Let us now turn to the second part of the statement. For given C, suppose that the

solution requires placing probability mass on two points pL < pH . Then, the constraint



must be binding. To see this, de�ne

pm � arg min
p2fpH ;pLg

f (p)

pM � arg max
p2fpH ;pLg

f (p) :

Since f is strictly monotone, f (pM) > f (pm), and the only reason why it is optimal to

place any probability mass on pm is to help satisfy the constraint. It must therefore be

g (pM) > C > g (pm) : At the optimal solution, moreover, it cannot be optimal to place

anything but the smallest probability mass on pm so that the constraint is just satis�ed

(with equality). Denote by �� the Lagrange multiplier associated to this programming

problem. Since f is strictly monotone, �� > 0:

Suppose now that the constraint is relaxed slightly, by increasing C to eC = C + "

with " a small positive number. The solution to the programming problem is a saddle

point
�e�; e�� for the Lagrangean. We now proceed to construct this saddle point. We

start by keeping the Lagrange multiplier unchanged, e� = ��. Because of this choice, thee� that maximizes the Lagrangean still places probability mass on pM and pm only, which

is what we wanted to prove. To conclude the proof we need to �nish the construction

of the saddle point. To this end, observe that in order for e� = � > 0 to minimize the
Lagrangean, the Lagrangean must be constant with respect to �, which is equivalent to

g (pm) e� (pm) + g (pM) e� (pM) = eC (9)

Since g (pM) > C > g (pm), for " su¢ ciently small also g (pM) > eC > g (pm). Therefore,
it is possible to choose e� (pm) and e� (pM) = 1� e� (pm) so that equation (9) is satis�ed.
Choosing e� accordingly concludes the proof.
Corollary 7 If f is increasing and the solution requires that probability mass be placed

on two points in [0; S], the probability mass placed on the largest point increases when C

is slightly increased.

Proof. >From the proof of Theorem 6 we know that the constraint (8) is binding both

at C and at C + ". This means that for c = C;C + " , the probability mass �c placed on

pH must solve

g (pH)�c + g (pL) (1� �c) = c:

Since f is increasing, pM = pH and thus g (pH) > g (pL) : The result follows.



Appendix B: Additional Tables 
 
 

Table A1 
Number of Monitoring and Announcement  

Observations by Month of Year on all Highways 
 2000 2001 2002 2003 (first half of 

year) 
 Ann Unann Ann Unann Ann Unann Ann Unann 

 
January 3 7 10 12 15 17 41 3 
February 10 12 7 9 17 9 45 9 
March 5 6 5 3 19 26 32 24 
April 3 18 6 4 24 21 36 24 
May 3 10 6 8 29 11 64 21 
June 4 14 4 11 27 8 57 20 
July 7 13 6 10 31 6 * * 
August 8 7 7 8 32 1 * * 
September 4 9 6 7 29 6 * * 
October 3 18 5 5 41 12 * * 
November 3 17 6 13 36 6 * * 
December 13 21 7 16 37 3 * * 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
275 

 
101 

 
 

 
Table A2 

Number of Monitoring and Announcement  
Observations by Day of Week on all Highways 

 2000 2001 2002 2003 (first half of 
year) 

 Ann Unann Ann Unann Ann Unann Ann Unann 
 

Saturday 8 38 23 27 40 19 42 8 
Sunday 17 29 10 34 64 31 31 24 
Monday 8 17 6 11 24 12 50 11 
Tuesday 7 15 12 8 68 17 40 17 
Wednesday 10 16 13 9 58 14 41 20 
Thursday 6 19 7 9 39 22 47 11 
Friday 10 18 4 8 44 11 42 18 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
293 

 
109 

 
 
 
 
 

 



 
Table A3 

Estimated Logistic Model for the Probability of Monitoring  
when no announcement was made by Year and by Road 

 Highway 
 A10 A14 R4 

Intercept -2.50 
(0.36) 

-2.48 
(0.36) 

-4.36 
(0.58) 

quarter 1 0.37 
(0.25) 

-0.11 
(0.44) 

0.46 
(0.45) 

quarter 2 -0.19 
(0.28) 

0.44 
(0.20) 

0.55 
(0.43) 

quarter 3 -1.91 
(0.49) 

-0.48 
(0.22) 

0.10 
(0.44) 

announced last week  0.15 
(0.35) 

-0.12 
(0.20) 

0.04 
(0.49) 

announced yesterday -0.22 
(0.41) 

-0.27 
(0.23) 

… 

monitored last week 0.79 
(0.40) 

2.04 
(0.37) 

2.10 
(0.34) 

monitored yesterday 0.37 
(0.36) 

0.46 
(0.19) 

-1.21 
(0.64) 

some announcement same 
day on any road 

0.64 
(0.23) 

-0.96 
(0.21) 

-1.36 
(0.49) 

year 2001 -0.16 
(0.29) 

-0.67 
(0.20) 

0.27 
(0.34) 

year 2002 -0.08 
(0.32) 

0.30 
(0.20) 

-0.27 
(0.54) 

year 2003 -0.01 
(0.31) 

0.51 
(0.25) 

… 

* All specifications also include fixed effects for day of week. The 
variable “holiday” was not included in the above specifications because 
of too few observations.  
 

 
Table A4 

Average Predicted Probability of Monitoring 
 

Year 
 

highway 
 

no-announcement 
no-announcement this 

sector, announced other 
sector 

 
announcement 

 
2000 

 
A10 

 
0.004 

 
0.009 

 
0.27 

 A14 0.011 0.003 0.26 
 R4 0.009 0.002 0.29 

2001 A10 0.004 0.007 0.30 
 A14 0.011 0.003 0.30 
 R4 0.014 * 0.35 

2002 A10 0.008 0.010 0.20 
 A14 0.027 0.007 0.25 
 R4 0.001 0.001 * 

2003 A10 0.011 0.018 0.19 
 A14 0.030 0.020 0.23 
 R4 * * * 

* Too few observations in the cell. 
 



 
Table A5 

Estimated Logistic Model for the Probability of Announcement by Highway 
 Highway 
 A10 A14 R4 

intercept -3.76 
(0.36) 

-4.94 
(0.40) 

-3.83 
(0.82) 

quarter 1 0.08 
(0.21) 

-0.004 
(0.20) 

-0.89 
(1.18) 

quarter 2 0.22 
(0.21) 

0.02 
(0.20) 

-0.03 
(0.83) 

quarter 3 -0.23 
(0.22) 

-0.01 
(0.20) 

0.10 
(0.79) 

holiday 2.23 
(0.47) 

0.98 
(0.27) 

… 

announced last week 0.34 
(0.36) 

-0.18 
(0.21) 

0.13 
(0.95) 

announced yesterday -0.52 
(0.29) 

0.19 
(0.21) 

… 

monitored last week 1.38 
(0.41) 

2.65 
(0.38) 

0.88 
(0.75) 

monitored yesterday 0.25 
(0.27) 

-0.31 
(0.19) 

… 

year 2001 0.06 
(0.03) 

0.42 
(0.23) 

-1.68 
(1.08) 

year 2002 2.13 
(0.30) 

1.55 
(0.22) 

-12.13 
(214) 

year 2003 2.12 
(0.30) 

2.16 
(0.24) 

… 

p-value from test of joint 
significance of all 
covariates, except year 
indicators 

 
<0.0001 

 
<0.0001 

 
0.7923 

*All specifications include fixed effects for days of week. Some days of week indicators are 
significant for A10 and A14 in 2000 and for A14 in 2001. 
**There is only one announcement day during 2001 on R4. 
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