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Abstract

We compare the efficiency of ML and Gaussian PML estimators of the parameters char-
acterising the mean and variance of conditionally heteroskedastic dynamic regression models
with multivariate t innovations. We also propose two alternative sequential estimators of
the degrees of freedom parameter based on those PML estimators, and assess their efficiency
relative to their ML counterpart. In addition, we derive 1-sided and 2-sided LM tests of
conditional homoskedasticity against Arch(p) and Garch(1,1) alternatives, and quantify
the power gains relative to the tests based on Gaussian PML estimators. Finally, we present
Þnite sample comparisons based on Monte Carlo simulations.
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1 Introduction

Many empirical studies with Þnancial time series data indicate that the distribution of as-

set returns is usually rather leptokurtic, even after controlling for volatility clustering effects

(see e.g. Bollerslev, Chou and Kroner (1992) for a survey). This has been long realised, and

two main alternative inference approaches have been proposed. The Þrst one uses a ÒrobustÓ

estimation method, such as the Gaussian pseudo-maximum likelihood (PML) procedure advo-

cated by Bollerslev and Wooldridge (1992), which remains consistent for the parameters of the

conditional mean and variance functions even if the assumption of conditional normality is vi-

olated, or the semiparametric maximum likelihood (SPML) procedures proposed by Engle and

Gonzalez-Rivera (1991) and Drost and Klaassen (1997) among others. The second approach, in

contrast, speciÞes a parametric leptokurtic distribution for the standardised innovations, such

as the student t employed by Bollerslev (1987), and estimates the conditional mean and variance

parameters jointly with the parameters characterising the shape of the assumed distribution by

maximum likelihood (ML). While the second approach will often yield more efficient estimators

than the Þrst one if the assumed conditional distribution is correct, it has the disadvantage that

it may end up sacriÞcing consistency when it is not (see Newey and Steigerwald (1997)). To

the best of our knowledge, though, the trade-offs between efficiency and inconsistency that an

empirical researcher faces in practice remain largely unmeasured. One of the objectives of this

paper is to quantify the efficiency losses from using PML estimators instead of ML ones in the

context of multivariate conditionally heteroskedastic dynamic regression models with student t

innovations. We look in detail at two particular examples: one in which the true conditional

distribution is in fact Gaussian, and another one in which the model of interest is a univariate

nonlinear regression model with Arch disturbances. In this respect, our work is closely re-

lated to Gonzalez-Rivera and Drost (1999), who analysed the asymptotic efficiency of Gaussian

PML estimators in univariate Garch models. However, while they employed as benchmarks

the SPML estimator mentioned above and an infeasible ML estimator that maximises the cor-

rect likelihood function when the shape parameters are known, we use the more realistic ML

procedure that simultaneously estimates the two sets of parameters.

In fact, a non-Gaussian distribution may be indispensable when we are interested in features

of the distribution of asset returns, such as its quantiles, which go beyond its conditional mean

and variance. For instance, empirical researchers and Þnancial market practitioners are often

interested in the so-called Value at Risk of an asset, which is the positive threshold value V

such that the probability of the asset suffering a reduction in wealth larger than V equals some

pre-speciÞed level κ < 1/2. Similarly, in the context of multiple Þnancial assets, one may be
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interested in the probability of the joint occurrence of several extreme events, which is regularly

underestimated by the multivariate normal distribution, especially in larger dimensions. For that

reason, we propose two alternative sequential estimators of the degrees of freedom parameter,

which can be easily obtained from the standardised innovations evaluated at the Gaussian PML

estimators, and assess their asymptotic efficiency relative to their ML counterpart. In particular,

we consider a sequential ML estimator, and a sequential method of moments (MM) estimator

based on the coefficient of multivariate excess kurtosis.

We also assess the relative power of asymptotic tests based on PML estimators vis-a-vis those

based on ML ones. SpeciÞcally, we develop a Lagrange Multiplier (LM) test for Arch effects

in univariate nonlinear regressions when the model is estimated by maximising a student t log-

likelihood function under the null of conditional homoskedasticity, and evaluate the power gains

of our proposed test relative to the standard LM test of Engle (1982). In addition, we also derive

and compare computationally simple LM tests against Garch(1,1) alternatives. Importantly,

in all cases we take into account the one-sided nature of the alternative hypotheses to derive

more powerful Kuhn-Tucker (KT) multiplier tests, which are asymptotically equivalent to the

Likelihood Ratio (LR) and Wald (W) tests.

The rest of the paper is organised as follows. In Section 2, we present closed-form expres-

sions for the score vector and the conditional information matrix of the log-likelihood function

based on the student t, and introduce the two alternative sequential estimators of the degrees

of freedom parameter. Then, we compare the efficiency of the estimators of the parameters

characterising the conditional mean and variance functions and the tail thickness in Sections 3

and 4, respectively. The two score tests mentioned above are discussed in Section 5. A Monte

Carlo evaluation of the different parameter estimators and testing procedures can be found in

Section 6, followed by an illustrative empirical application to 26 U.K. sectorial stock returns in

Section 7. Finally, our conclusions can be found in Section 8. Proofs and auxiliary results are

gathered in an Appendix.

2 Theoretical background

2.1 The model

In a multivariate dynamic regression model with time-varying variances and covariances,

the vector of N dependent variables, yt, is typically assumed to be generated by the following
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equations:

yt = µt(θ0) +Σ
1/2
t (θ0)ε

∗
t ,

µt(θ) = µ(zt, It−1;θ),

Σt(θ) = Σ(zt, It−1;θ),

where µ() and vech [Σ()] are N and N(N + 1)/2-dimensional vectors of functions known up to

the p× 1 vector of true parameter values θ0, zt are k contemporaneous conditioning variables,
It−1 denotes the information set available at t − 1, which contains past values of yt and zt,
Σ
1/2
t (θ) is an N×N Òsquare rootÓ matrix such that Σ1/2t (θ)Σ

1/20
t (θ) = Σt(θ), and ε∗t is a vector

martingale difference sequence satisfying E(ε∗t |zt, It−1;θ0) = 0 and V (ε∗t |zt, It−1;θ0) = IN . As
a consequence,

E(yt|zt, It−1;θ0) = µt(θ0),

V (yt|zt, It−1;θ0) = Σt(θ0).

To complete the model, we need to specify the conditional distribution of ε∗t . In principle,

we could assume that conditional on zt and It−1, ε∗t is independent and identically distributed

as any particular member of the spherical family, which will be characterised by some additional

shape parameters η (see the appendix). However, for the sake of concreteness we shall follow

Bollerslev (1987) in a univariate context, and Harvey, Ruiz and Sentana (1992) in a multivariate

one, and assume that ε∗t follows a standardised multivariate t with ν0 degrees of freedom, or i.i.d.

t(0, IN , ν0) for short. As is well known, the multivariate student t approaches the multivariate

normal as ν0 →∞, but has generally fatter tails. For that reason, it is often more convenient to
use the reciprocal of the degrees of freedom parameter, η0 = 1/ν0, as a measure of tail thickness,

which will always remain in the Þnite range 0 ≤ η0 < 1/2 under our assumptions.

2.2 The log-likelihood function, score vector and information matrix

Let φ = (θ0,η)0 denote the p+1 parameters of interest, which we assume variation free. The

log-likelihood function of a sample of size T (ignoring initial conditions) takes the form LT (φ) =PT
t=1 lt(φ), with lt(φ) = dt(θ) + c(η) + g [ςt(θ), η], where:

dt(θ) = −1
2
ln |Σt(θ)|

corresponds to the Jacobian,

c(η) = ln

∙
Γ

µ
Nη + 1

2η

¶
− ln

µ
1

2η

¶¸
− N
2
ln

µ
1− 2η
η

¶
− N
2
ln 2π
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to the constant of integration of the density, and

g [ςt(θ), η] = −
µ
Nη + 1

2η

¶
ln

∙
1 +

η

1− 2η ςt(θ)
¸

to its kernel , Γ(.) is EulerÕs gamma function, ςt(θ) = ε
∗0
t (θ)ε

∗
t (θ), ε

∗
t (θ) = Σ

−1/2
t (θ)εt(θ) and

εt(θ) = yt − µt(θ). Not surprisingly, it can be readily veriÞed that LT (θ, 0) collapses to a

conditionally Gaussian log-likelihood.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. Fiorentini, Sentana and

Calzolari (2003) show that for η > 0

sθt(φ) =
∂dt(θ)

∂θ
+
∂gt [ςt(θ), η]

∂θ
= [Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
= Zdt(θ)edt(φ)

and

sηt(φ) =
∂c(η)

∂η
+
∂g [ςt(θ), η]

∂η
=

N

2η (1− 2η) −
1

2η2

∙
ψ

µ
Nη + 1

2η

¶
− ψ

µ
1

2η

¶¸
− Nη + 1

2η (1− 2η)
ςt(θ)

1− 2η + ηςt(θ) +
1

2η2
ln

∙
1 +

η

1− 2η ςt(θ)
¸
= ert(φ),

where

elt(φ) = −2∂g [ςt(θ), η]
∂ςt

ε∗t (θ) =
Nη + 1

1− 2η + ηςt(θ)ε
∗
t (θ),

est(φ) = −vec
½
IN + 2

∂g [ςt(θ), η]

∂ςt
ε∗t (θ)ε

∗0
t (θ)

¾
= vec

∙
Nη + 1

1− 2η + ηςt(θ)ε
∗
t (θ)ε

∗0
t (θ)− IN

¸
,

Zlt(θ) =
∂µ0t(θ)
∂θ

Σ
−1/2
t (θ),

Zst(θ) =
1

2

∂vec0 [Σt(θ)]
∂θ

h
Σ
−1/2
t (θ)⊗Σ−1/2t (θ)

i
,

ψ(x) = ∂ lnΓ(x)/∂x is the so-called di-gamma function (or GaussÕ psi function; see Abramowitz

and Stegun (1964)), and the Jacobian matrices ∂µt(θ)/∂θ
0 and ∂vec [Σt(θ)] /∂θ0 depend on the

particular speciÞcation adopted.1

Taking limits as η → 0 from above, they also show that

ert(θ, 0) =
N(N + 2)

4
− N + 2

2
ςt(θ) +

1

4
ς2t (θ),

while sθt(θ,0) reduces to the multivariate normal expression in Bollerslev and Wooldridge (1992)

because

edt(θ, 0) =

∙
elt(θ, 0)
est(θ, 0)

¸
=

½
ε∗t (θ)

vec [ε∗t (θ)ε∗0t (θ)− IN ]
¾
.

1Note that while both Zt(θ) and edt(φ) depend on the speciÞc choice of square root matrix Σ
1/2
t (θ), sθ t(φ)

does not, a property that inherits from lt(φ). The same result is not generally true for non-elliptical distributions
(see Haffner and Rombouts (2004) or Menc�a and Sentana (2004)), in which case we should redeÞne Zst(θ) as
{∂vec0[Σ1/2

t (θ)]/∂θ}[IN⊗Σ−1/20
t (θ)].
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Given correct speciÞcation, the results in Crowder (1976) imply that et(φ) = [e0dt(φ), ert(φ)]
0

evaluated at the true parameter values follows a vector martingale difference, and therefore the

same is true of the score vector st(φ). His results also imply that, under suitable regularity

conditions, which in particular require that φ0 belongs to the interior of the parameter space,

the asymptotic distribution of the feasible ML estimator will be given by the following expression

√
T (�φT −φ0)→ N

£
0, I−1(φ0)

¤
, (1)

where

I(φ0) = p lim
T→∞

1

T

TX
t=1

It(φ0),

It(φ) = V [st(φ)|zt, It−1;φ] = −E [ht(φ)|zt, It−1;φ] = Zt(θ)M(η)Z0t(θ),

ht(φ0) =

µ
hθθt(φ) hθηt(φ)
h0θηt(φ) hηηt(φ)

¶
=
∂st(φ)

∂φ0
=
∂2lt(φ)

∂φ∂φ0
,

Zt(θ) =

µ
Zdt(θ0) 0
00 1

¶
,

and

M(η) =

∙ Mdd(η) Mdr(η)
M0

dr(η) Mrr(η)

¸
= V

½∙
edt(φ)
ert(φ)

¸¯̄̄̄
zt, It−1;φ

¾
= V [et(φ)|zt, It−1;φ] .

In this context, Proposition 1 in Fiorentini, Sentana and Calzolari (2003) states that

Proposition 1

It(φ) =

µ Iθθt(φ) Iθηt(φ)
I 0θηt(φ) Iηηt(φ)

¶
=

µ
Zlt(θ) Zst(θ) 0
00 00 1

¶

×
⎛⎝ Mll(η) 0 0

0 Mss(η) Msr(η)
0 M0

sr(η) Mrrt(η)

⎞⎠⎛⎝ Z0lt(θ) 0
Z0st(θ) 0
00 1

⎞⎠ ,
where

Mll(η) =
ν (N + ν)

(ν − 2) (N + ν + 2)
IN ,

Mss(η) =
(N + ν)

(N + ν + 2)
(IN2 +KNN )− 1

2(N + ν + 2)
vec(IN )vec

0(IN ),

Msr(η) = − 2 (N + 2) ν2

(ν − 2) (N + ν) (N + ν + 2)
vec(IN),

Mrr(η) =
ν4

4

∙
ψ0
³ν
2

´
− ψ0

µ
N + ν

2

¶¸
− Nν4

£
ν2 +N(ν − 4)− 8¤

2 (ν − 2)2 (N + ν) (N + ν + 2)
,

and KNN is the commutation matrix of orders N,N .
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2.3 Pseudo maximum likelihood estimators and sequential procedures

If the interest of the researcher lied exclusively in θ, which are the parameters characterising

the conditional mean and variance functions, then one attractive possibility would be to estimate

an equality restricted version of the model in which η is set to zero. Let �θT = argmaxθ LT (θ,0)

denote such a pseudo-ML (PML) estimator of θ. As we mentioned in the introduction, �θT

remains root-T consistent for θ0 under correct speciÞcation of µt(θ) and Σt(θ) even though

the conditional distribution of ε∗t |zt, It−1,φ0 is not Gaussian. The proof is based on the fact
that in those circumstances, the pseudo log-likelihood score, sθt(θ, 0), is a vector martingale

difference sequence when evaluated at θ0, a property that inherits from edt(θ, 0). Importantly,

this property is preserved even when the standardised innovations, ε∗t , are not stochastically

independent from zt and It−1. The asymptotic distribution of the pseudo-ML estimator of θ

when ε∗t is spherical is stated in the following result:

Proposition 2 Under the regularity conditions A.1 in Bollerslev and Wooldridge (1992),
√
T (�θT − θ0)→ N [0, C(φ0)] ,

where C(φ0) = A−1(φ0)B(φ0)A−1(φ0),

A(φ0) = −E [hθθt(θ0, 0)|φ0] = p lim
T→∞

1

T

TX
t=1

At(φ0),

At(φ) = −E[hθθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(0)Z0dt(θ),

B(φ0) = V [sθt(θ0, 0)|φ0] = p limT→∞
1

T

TX
t=1

Bt(φ0),

Bt(φ) = V [sθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(κ)Z0dt(θ)

K (κ) =
∙
IN 0
0 (κ+ 1) (IN2 +KNN ) + κ · vec(IN)vec0(IN )

¸
, (2)

and

κ =
E
£
ς2t (θ)|φ

¤
N(N + 2)

− 1 (3)

is the population coefficient of multivariate excess kurtosis.

Given that κ = 2/(ν − 4) for the student t distribution (see appendix), it trivially follows
that in our case Bt(φ) reduces to

∂µ0t(θ)
∂θ

Σ−1t (θ)
∂µt(θ)

∂θ0
+

ν − 2
2(ν − 4)

∂vec0 [Σt(θ)]
∂θ

£
Σ−1t (θ)⊗Σ−1t (θ)

¤ ∂vec [Σt(θ)]
∂θ0

+
1

2(ν − 4)
∂vec0 [Σt(θ)]

∂θ
vec

£
Σ−1t (θ)

¤
vec0

£
Σ−1t (θ)

¤ ∂vec [Σt(θ)]
∂θ0

.

Importantly, a necessary condition for B(φ0) to be bounded is that κ0 <∞, which in the student
t case is equivalent to ν0 > 4. Otherwise, the asymptotic distribution of the PML estimator �θT

will be non-standard, unlike that of �θT (see Hall and Yao (2003)).
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Nevertheless, in many circumstances we may be interested in features of the distribution

of asset returns, such as its quantiles, which go beyond its conditional mean and variance.

For instance, empirical researchers and Þnancial market practitioners are often interested in

the so-called Value at Risk of an asset, which is the positive threshold value V such that the

probability of the asset suffering a reduction in wealth larger than V equals some pre-speciÞed

level κ < 1/2. Similarly, in the context of multiple Þnancial assets, one may be interested in the

probability of the joint occurrence of several extreme events, which is regularly underestimated

by the multivariate normal distribution, especially in larger dimensions.

In this respect, we can use �θT to obtain a sequential ML estimator of η as

�ηT = argmaxη
LT (�θT , η),

which will be characterised by the usual Þrst-order KT conditions

s̄ηT (�θT , �ηT ) ≤ 0; �ηT ≥ 0; s̄ηT (�θT , �ηT ) · �ηT = 0,

where s̄ηT (θ, η) is the sample mean of sηt(θ, η). But since they are analogous to the KT con-

ditions of the ML estimator �ηT , then �ηT = 0 if and only if �ηT = 0, in which case �θT = �θT

too.

This sequential ML estimator of η can be given a rather intuitive interpretation. According

to Lemma 1 in Fiorentini, Sentana and Calzolari (2003), if θ0 were known, then the squared

Euclidean norm of the standardised innovations, ςt(θ0), would be independently and identically

distributed over time, with a density function, h [ςt(θ0); η], which will be that of either N(ν0 −
2)/ν0 times an F variate with N and ν0 degrees of freedom when ν0 < ∞, or a chi-square
random variable with N degrees of freedom under Gaussianity. Therefore, we could obtain

the (infeasible) ML estimator of η by maximising with respect to η the F -based log-likelihood

function of the observed ςt(θ0)0s,
PT
t=1 lnh [ςt(θ0); η]. Although in practice the standardised

residuals are usually unobservable, it turns out that �ηT is the estimator so obtained when we

treat ςt(�θT ) as if they were really observed.

The asymptotic distribution of the sequential ML estimator of η is stated in the following

result:

Proposition 3 Under the regularity conditions A.1 in Bollerslev and Wooldridge (1992),
√
T (�ηT − η0)→ N [0,F(φ0)] ,

where
F(φ0) = I−1ηη (φ0) + I 0θη(φ0)C(φ0)Iθη(φ0).
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Importantly, since C(φ0) will become unbounded in the limit as ν0 → 4 from above, the

asymptotic distribution of �ηT will also be non-standard when 2 < ν0 ≤ 4, unlike that of the

feasible ML estimator �ηT .

An alternative sequential method of moments (MM) estimator of η, ùηT say, can be ob-

tained from MardiaÕs (1970) sample coefficient of multivariate excess kurtosis of the estimated

standardised residuals

κ̄T (�θT ) =
T−1

PT
t=1 ς

2
t (�θT )

N(N + 2)
− 1,

by exploiting the theoretical relationship κ = 2/(ν − 4). SpeciÞcally, if we deÞne the estimating
function

mηt(θ, η) =
ς2t (θ)

N(N + 2)
− 1− 2η
1− 4η ,

and its sample mean as m̄ηT (θ, η), then the Þrst-order KT conditions characterising ùηT will be

m̄ηT (�θT , ùηT ) ≤ 0; ùηT ≥ 0; m̄ηT (�θT , ùηT ) · ùηT = 0 ,

from where we obtain

ùηT = max

"
0,

κ̄T (�θT )

4κ̄T (�θT ) + 2

#
.

The asymptotic distribution of the sequential MM estimator ùηT is stated in the following

result:

Proposition 4 If ν0 > 8, then under the regularity conditions A.1 in Bollerslev and Wooldridge
(1992) √

T (ùηT − η0)→ N [0,G(φ0)]
where

G(φ0) =
E(φ0) + F 0(φ0)C(φ0)F(φ0) + 2F 0(φ0)A−1(φ0)D(φ0)

N 2(φ0)
,

D(φ0) = Zs(θ0)× 4(ν0 − 2)(N + ν0 − 2)
N(ν0 − 4)(ν0 − 6) vec(IN),

E(φ0) =
(ν0 − 2)2
(ν0 − 4)4

∙
(N + 6)(N + 4)

N(N + 2)

(ν0 − 2)(ν0 − 4)
(ν0 − 6)(ν0 − 8) − 1

¸
,

F(φ0) = Zs(θ0)× 4(ν0 − 2)
N(ν0 − 4)vec(IN),

N (φ0) =
∂mηt(θ0, η0)

∂η
=

2ν20
(ν0 − 4)2 ,

and

Zs(θ0) = p lim
T→∞

1

T

TX
t=1

Zst(θ0).
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In this respect, note that since G(φ0) will diverge to inÞnity as ν0 converges to 8 from above,
the asymptotic distribution of the sequential MM estimator of η, ùηT , will be non-standard for

4 < ν0 ≤ 8. Moreover, since the coefficient of excess kurtosis is inÞnity for 2 < ν0 ≤ 4, ùηT will
not even be root-T consistent in that case.

In this respect, note that since

m̄ηT (�θT , 0) =
4

N(N + 2)
s̄ηT (�θT , 0) +

2

N

h
ς̄T (�θT )−N

i
,

where ς̄T (θ) is the sample mean of ςt(�θT ), then ùηT and �ηT will not necessarily be 0 simultaneously

in any given sample. However, we can use a generalisation of Proposition 1 in Fiorentini, Sentana

and Calzolari (2004) to show that h
ς̄T (�θT )−N

i
= op(T

−1/2)

if and only ς2t (θ0)−N can be written as an exact, time-invariant, linear combination of sθt(θ,0),

in which case zero estimates of ùηT and �ηT will tend to happen together in large samples. As an

extreme example, ς̄T (�θT ) will be identically N in nonlinear regression models with conditionally

homoskedastic disturbances estimated by Gaussian PML, in which the covariance matrix of the

innovations, Σ, is unrestricted and does not affect the conditional mean, and the conditional

mean parameters, δ say, and the elements of vech(Σ) are variation free. More generally, Fioren-

tini, Sentana and Calzolari (2004) establish that the aforementioned condition is indeed satisÞed

by many univariate Arch models, including the Garch-m family analysed by Hentschel (1995),

as well as the Quadratic Garch-m model of Sentana (1995), but not by all.

Finally, if we were to iterate the sequential ML procedure, and achieved convergence, then

we would obtain fully efficient ML estimators of all model parameters. In fact, a single scoring

iteration without line searches that started from �θT and �ηT (or any other consistent estimators)

would suffice to yield an estimator of φ that would be asymptotically equivalent to the full-

information ML estimator �φT , at least up to terms of order Op(T
−1/2). SpeciÞcally, we would

have that µ
θ̈T − �θT
η̈T − �ηT

¶
=

∙ Iθθ(φ0) Iθη(φ0)
I 0θη(φ0) Iηη(φ0)

¸−1
1

T

TX
t=1

∙
sθt(�θT , �ηT )

sηt(�θT , �ηT )

¸
.

If we use the partioned inverse formula, then it is easy to see that

θ̈T − �θT =

"
Iθθ(φ0)−

Iθη(φ0)I 0θη(φ0)
Iηη(φ0)

#−1
1

T

TX
t=1

∙
sθt(�θT , �ηT )−

Iθη(φ0)
Iηη(φ0)

sθt(�θT , �ηT )

¸

= Iθθ(φ0)
1

T

TX
t=1

sθ|ηt(�θT , �ηT ),
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where

sθ|ηt(θ, η) = sθt(θ, η)− Iθη(φ0)Iηη(φ0)
sθt(θ, η)

= Zdt(θ)edt(φ)− Zd(θ)
∙

0
Msr(η0)/Mrr(η0)

¸
ert(φ), (4)

with Zd(θ) = p limT→∞ 1
T

PT
t=1Zdt(φ), is the residual from the unconditional theoretical regres-

sion of the score corresponding to θ, sθt(φ0), on the score corresponding to η, sηt(φ0). This

residual score sθ|ηt(θ, η) is sometimes called the parametric efficient score, and its variance,

Iθθ(φ0)−
Iθη(φ0)I 0θη(φ0)

Iηη(φ0)
= Iθθ(φ0)−

4(N + 2)2ν4

(ν − 2)2(N + 2)2(N + ν + 2)2Mss(η0)
Zd(θ)

∙
0

vec(IN )

¸ £
00 vec0(IN )

¤
Z0d(θ),

the marginal information matrix of θ, or the feasible parametric efficiency bound. In this

respect, note that the inverse of this matrix coincides with the Þrst block of I−1(φ0), Iθθ(φ0),
which gives us the asymptotic variance of the feasible ML estimator, �θT . Therefore, unless

sθt(φ0) and sηt(φ0) are uncorrelated, the asymptotic variance of �θT will generally be larger

than I−1θθ (φ0), which is the asymptotic variance of the infeasible ML estimator considered by
Engle and Gonzalez-Rivera (1991), Gonzalez-Rivera and Drost (1999) and Hafner and Rombouts

(2004). As we shall see in Section 3.2, though, it is possible to Þnd situations in which the

asymptotic distribution of some elements of �θT is unaffected by the estimation of η (see also

Lange, Little and Taylor (1989)).

2.4 Semiparametric estimators of θ

It is worth noting that the last summand of (4) coincides with Zd(θ0) times the theoretical

least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally orthog-

onal to edt(θ0, 0). Such an interpretation immediately suggests alternative estimators of θ that

replace our parametric assumption on the shape of the distribution of the standardised innova-

tions ε∗t by non-parametric or semi-parametric alternatives. In this section, we shall consider

two such estimators.

The Þrst one is fully non-parametric, and therefore replaces the linear span of ert(φ) by

the so-called unrestricted tangent set, which is the Hilbert space generated by all the time-

invariant functions of ε∗t with bounded second moments that have zero conditional means and are

conditionally orthogonal to edt(θ, 0). The following proposition, which generalises Propositions

2, 3 and 4 in Hafner and Rombouts (2004) to models in which the conditional mean is not

identically zero, describes the resulting semiparametric efficient score and the corresponding

efficiency bound:

10



Proposition 5 The semiparametric efficient score is given by the following expression:

Zdt(θ)edt(φ)− Zd(θ)
£
edt(φ)−K (0)K+ (κ) edt(θ, 0)

¤
, (5)

where + denotes Moore-Penrose inverses, while

Iθθ(φ0)− Zd(θ0)
£Mdd (η0)−K (0)K+ (κ0)K (0)

¤
Z0d(θ0)

is the semiparametric efficiency bound.

Although these formulae are actually valid for any elliptical distribution, if we exploit the

expressions for κ and edt(φ) that we have derived before for the case of the student t, then it is

straightforward to prove that in our case the semiparametric efficient score will be

Zlt(θ)elt(φ)− Zl(θ)
∙

Nη + 1

1− 2η + ηςt(θ) − 1
¸
ε∗t (θ)

+Zst(θ)est(φ)− Zs(θ)vec
½∙

Nη + 1

1− 2η + ηςt(θ) −
1− 4η
1− 2η

¸
ε∗t (θ)ε

∗0
t (θ)

+
2η

1− 2η
∙

1− 4η
2(N − 2)η + 2 ·

ςt(θ)−N
1− 2η + ηςt(θ) − 1

¸
IN

¾
,

while

Mdd (η0)−K (0)K+ (κ0)K (0) =
1

N(ν-2)(N+ν+2)(N+ν-2)

×
∙
2(N+2)(ν-2)IN 0

0 .5N(N+4)(N+ν-2) (IN2 +KNN )−N (N+6-ν) vec(IN)već(IN)
¸
.

In practice, however, edt(φ) has to be replaced by a nonparametric estimator obtained from

the density of the standardised innovations ε∗t (θ), which suffers from the curse of dimensionality.

For this reason, several authors have suggested to limit the admissible distributions to the

class of spherically symmetric ones. As a consequence, the tangent set in this case becomes the

Hilbert space generated by all time-invariant functions of ςt(θ0) with bounded second moments

that have zero conditional means and are conditionally orthogonal to edt(θ0, 0). The following

proposition, which corrects and extends Proposition 7 in Hafner and Rombouts (2004), pro-

vides the resulting elliptically symmetric semiparametric efficient score and the corresponding

efficiency bound:

Proposition 6 The elliptically symmetric semiparametric efficient score is given by the follow-
ing expression:

Zdt(θ)edt(φ)− Zd(θ)
h
ûedt(φ)− ûK (0) ûK+ (κ)ûedt(θ, 0)

i
, (6)

while
Iθθ(φ0)− Zd(θ0)

h
ûMdd (η0)− ûK (0) ûK+ (κ0) ûK (0)

i
Z0d(θ0)

11



is the elliptically symmetric semiparametric efficiency bound, whereûedt(φ) = E [edt(φ) |ςt(θ) ],
ûedt(θ, 0) = E [ûedt(θ, 0) |ςt(θ) ],

ûK (κ) =
(N + 2)κ+ 2

N

µ
0 0
0 vec(IN)vec

0(IN)

¶
,

ûMdd (η0) =
4

N2
V

½
∂ lnh [ςt(θ0); η0]

∂ςt(θ0)
ςt(θ0)

¯̄̄̄
φ0

¾µ
0 0
0 vec(IN )vec

0(IN)

¶
,

and h [ςt(θ0); η0] is the density function of ςt(θ0).

Although these formulae are again valid for any elliptical distribution, if we exploit the

expressions for κ and edt(φ) that we have derived before for the case of the student t, then it is

easy to see that in our case the ellyptically symmetric semiparametric efficient score will be

Zlt(θ)elt(φ)

+Zst(θ)est(φ)− Zs(θ)
½∙

Nη + 1

1− 2η + ηςt(θ) −
(1− 4η)

1 + (N − 2)η
¸
ςt(θ)

N
− (N + 2)η

1 + (N − 2)η
¾
vec(IN),

while

ûMdd (η0)− ûK (0) ûK+ (κ0) ûK (0) =
8(N + 2)

N(N + ν + 2)(N + ν − 2)
∙

0
vec(IN )

¸ £
00 vec0(IN )

¤
.

But once again, in practice edt(φ) has to be replaced by a semiparametric estimate obtained

from the joint density of ε∗t . However, the elliptical symmetry assumption allows us to obtain

such an estimate from a nonparametric estimate of the univariate density of ςt, h [ςt(θ0); η],

avoiding in this way the curse of dimensionality.

3 The relative efficiency of the different estimators of θ

In the previous sections we have effectively considered Þve different estimators of θ: (1)

the infeasible ML estimator, whose implementation requires knowledge of ν0; (2) the feasible

ML estimator, which simultaneously estimates η; (3) the elliptically symmetric semiparametric

estimator, which restricts ε∗t (θ0) to be spherical, but does not impose any structure on the

distribution of ςt(θ0); (4) the unrestricted semiparametric estimator, which does not constrain

ε∗t (θ0) in any sense; and (5) the PML estimator, which imposes η = 0 even though the true

conditional distribution of ε∗t (θ0) may not be Gaussian. The following proposition ranks the

inverses of the asymptotic variances of those Þve estimators:

Proposition 7 The infeasible parametric efficiency bound is at least as large as the feasible
parametric efficiency bound, which in turn is at least as high as the elliptically symmetric semi-
parametric efficiency bound, which is not lower than the semiparametric efficiency bound, which
in turn weakly dominates the Gaussian pseudo-maximum likelihood efficiency bound C−1(φ0).

12



Under correct speciÞcation, the ML estimator �θT is efficient, which implies that

√
T (�θT − �θT )→ N

h
0, C(φ0)− Iθθ(φ0)

i
,

where C(φ0)−Iθθ(φ0) is a positive semideÞnite matrix. However, the magnitude of the difference
between these two matrices is unclear. In the rest of this section, we shall compare the relative

asymptotic efficiency of �θT and �θT in two situations of practical interest.

But before, it is important to note that the difference between �θT and �θT immediately

suggests a Hausman speciÞcation test of the model, which will be given by the quadratic form:

HθT = T (�θT − �θT )0
h
C(φ0)− Iθθ(φ0)

i+
(�θT − �θT ).

Under correct speciÞcation of the conditional distribution of εt, HθT will be asymptotically dis-

tributed as a chi-square with degrees of freedom equal to the rank of the matrix
£C(φ0)− Iθθ(φ0)¤.

3.1 Estimation under conditional normality

Suppose that we decide to maximise the student t likelihood when, in fact, the true con-

ditional distribution is Gaussian. As shown by Fiorentini, Sentana and Calzolari (2003), it

turns out that the information matrix is block-diagonal between θ and η when η0 = 0, which

means that as far as θ is concerned, there is no asymptotic efficiency loss in estimating η. More

formally:

Proposition 8 If η0 = 0, then

V [sφ(θ0, 0)|θ0, 0] =
∙
V [sθt(θ0, 0)|θ0, 0] 0

00 N(N + 2)/2

¸
where

V [sθt(θ0, 0)|θ0, 0] = −E [hθθt(θ0, 0)|θ0, 0] = A(θ0, 0) = B(θ0, 0)

In fact, in large samples the ML estimator of θ will be numerically identical to the PML

estimator approximately half the time because η = 0 lies at the boundary of the admissi-

ble parameter space (see e.g. Andrews (1999) and the references therein). More speciÞcally,

when η0 = 0,
√
T�ηT will have an asymptotic normal distribution with mean 0 and variance

2/ [N(N + 2)] censored from below at 0. Consequently,
√
T (�θT − �θT ) will be identically 0 with

probability approaching 1/2, and op(1) the rest of the time. As a result, the Hausman test HθT

will also be identically 0 with probability approaching 1/2. However, since C(�φT )−Iθθ(�φT ) will
generally be different from 0 when �θT is not equal to �θT , HθT might be numerically unstable

the rest of the time.
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3.2 Estimation of the parameters of a univariate ARCH(q) nonlinear regres-
sion model

Consider the following univariate model:

yt = µt(δ0) + σt(δ0,γ0)ε
∗
t

µt(δ) = µ (zt, It−1; δ)

σ2t (θ) = ω +

qX
j=1

αj
£
yt−j − µt−j(δ)

¤2
ε∗t |zt, It−1 ∼ i.i.d. t(0, 1, ν0)

DeÞne α = (α1, . . . , αq)
0 and γ = (ω,α0)0, and partition θ conformably as

¡
δ0, ω,α0

¢0
=

(δ0,γ0)0. Given that σ2t (θ) is symmetric in εt−j(θ), and the distribution of ε∗t conditional on zt

and It−1 is also symmetric, we can use an argument similar to the one in the proof of Theorem

4 in Engle (1982) to show that

E

∙
1

σ4t (θ0)

∂σ2t (θ0)

∂δ

∂σ2t (θ0)

∂γ0

¯̄̄̄
φ0

¸
= 0.

But since ∂µt(δ)/∂γ = 0 by assumption, this means that Iδγ (φ0) = Aδγ(φ0) = Bδγ (φ0) =
Cδγ (φ0) = 0, so that both the ML and PML estimators of the conditional mean and variance
parameters (δ and γ, respectively) are asymptotically independent. A similar argument shows

that

E

∙
1

σ2t (θ0)

∂σ2t (θ0)

∂δ

¯̄̄̄
φ0

¸
= 0,

which implies that Iδη(φ0) = 0, and thus, that the ML estimators of the conditional mean

parameters are also independent from the ML estimator of the tail thickness index η.

But despite the block diagonality of I(φ0) and C(φ0), the inefficiency ratios for �θT are rather
complicated to obtain, since in general there are no closed form expressions for the unconditional

information matrix, and one has to resort to numerical methods (cf. Engle and Gonzalez-Rivera

(1991) and Gonzalez-Rivera and Drost (1999)). Nevertheless, apart from the case in which

η0 = 0 discussed in the previous subsection, another important exception arises when α0 = 0.

In that case, we can use Proposition 1 in Demos and Sentana (1998)2 to show that if ν0 > 4,

then

C(δ0, ω0,0, η0) =
⎡⎣ Cδδ(δ0, ω0,0, η0) 0 0

00 ω20 [q + 2 (ν0 − 1) / (ν0 − 4)] −ω0ι0q
0 −ω0ιq Iq

⎤⎦
where

Cδδ(δ0, ω0,0, η0) =
(
p lim
T→∞

1

T

TX
t=1

1

ω0

∂µ0t(δ0)
∂δ

∂µt(δ0)

∂δ0

)−1
2There is a missing scalar term in front of the expression for Cγγ(φ0) in their paper.

14



and ιq is a vector of q ones.

As for the ML estimator, we can establish the following result:

Proposition 9 If α0 = 0, then

Iθθ(δ0, ω0,0, η0) =
⎡⎣ I−1δδ (δ0, ω0,0, η0) 0 0

00 Iωω(δ0, ω0,0, η0) Iωα(δ0, ω0,0, η0)
0 Iωα0(δ0, ω0,0, η0) Iαα(δ0, ω0,0, η0)

⎤⎦
where

Iδδ(δ0, ω0,0, η0) =
ν0(ν0 + 1)

(ν0 − 2)(ν0 + 3)

(
p lim
T→∞

1

T

TX
t=1

1

ω0

∂µ0t(δ0)
∂δ

∂µt(δ0)

∂δ0

)
and

Iαα(δ0, ω0,0, η0) =
(ν0 + 3) (ν0 − 4)
ν0(ν0 − 1) Iq

Therefore, under conditional homoskedasticity, the efficiency ratio of the ML estimator of

the conditional mean parameters δ can be characterised by the scalar quantity

(ν0 − 2)(ν0 + 3)
ν0(ν0 + 1)

while the efficiency ratio of the ML estimator of the q Arch parameters α is given by the scalar

quantity
(ν0 + 3) (ν0 − 4)
ν0(ν0 − 1) (7)

Both these ratios are monotonically increasing in ν0, and approach 1 from below as ν0 →∞.
For ν0 = 9, for instance, they take the value of 14/15 and 5/6 respectively, while for ν0 = 5,

their values are only 4/5 and 2/5.

4 The relative power of testing procedures based on ML and
pseudo-ML estimators of θ

4.1 An LM test for ARCH(q) in univariate regression models

Let us consider again the univariate Arch(q) nonlinear regression model analyzed in Section

3.2. Given that the score with respect to the Arch parameters α is

sαjt(φ) =
1

2

∙
(η + 1) ε∗2t (θ)
1− 2η + ηε∗2t (θ)

− 1
¸
ε∗2t−j(θ) (j = 1, . . . , q),

and that Iαα(φ0) is proportional to the identity matrix under the null from Proposition 4,

the information matrix version of a two-sided LM test for Arch will be given by the following

expression

(1 + 3η̄T ) (1− 4η̄T )
(1− η̄T )

qX
j=1

(√
T

T

1

2

TX
t=1

∙
(η̄T + 1) ε

∗2
t (θ̄T )

1− 2η̄T + η̄T ε∗2t (θ̄T )
− 1
¸
ε∗2t−j(θ̄T )

)2
(8)
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where φ̄T = (δ̄
0
T , ω̄T ,0

0, η̄T ) = argmaxδ,ω,η LT (δ, ω,0, η) are the student t-based restricted ML

estimators of φ obtained under the null of conditional homoskedasticity. Under suitable regu-

larity conditions (see e.g. Crowder (1976)), the asymptotic distribution of (8) will be χ2q when

α0= 0.

As usual, there are asymptotically equivalent versions of (8) which are simpler to compute.

In particular, given that the Þrst order condition deÞning ω̄T will be

TX
t=1

∙
(η̄T + 1) ε

∗2
t (θ̄T )

1− 2η̄T + η̄T ε∗2t (θ̄T )
− 1
¸
= 0

the LM test for Arch in (23) is proportional to the sum from j = 1 to q of the squares of the

sample covariances between (η̄T + 1) ε
∗2
t (θ̄T )/

£
1− 2η̄T + η̄T ε∗2t (θ̄T )

¤
and ε∗2t−j(θ̄T ). But since

these samples covariances are asymptotically independent under the null in view of Proposition

4, an asymptotically equivalent test can be computed as the sum from j = 1 to q of the square

t ratios in the regression of (η̄T + 1) ε
∗2
t (θ̄T )/

£
1− 2η̄T + η̄T ε∗2t (θ̄T )

¤
on a constant and ε∗2t−j(θ̄T )

(j = 1, . . . , q).

Not surprisingly, when η̄T = 0 the test statistic in (8) numerically coincides with the infor-

mation matrix version of the Gaussian-based two-sided LM test for Arch(q) derived by Engle

(1982). However, that version of EngleÕs test is incorrectly sized if the conditional distribution

is not normal (cf. Koenker (1981)). Since the conditional distribution of ε∗t is homokurtic, the

correct ÒstudentisedÓ version of the Gaussian-based LM test for Arch(q) is"√
T

T

TX
t=1

s0αt(ùφT )

#
Aαα (φ0) C−1αα (φ0)Aαα (φ0)

√
T

T

TX
t=1

sαt(ùφT )

=
(1− 4η0)2
(1− η0)2

qX
j=1

(√
T

T

1

2

TX
t=1

h
ε∗2t (ùθT )− 1

i
ε∗2t−j(ùθT )

)2
(9)

where ùφT = (ùδ
0
T , ùωT ,0

0, 0) = argmaxδ,ω LT (δ, ω,0, 0) are the restricted PML estimators of φ

obtained under the null of conditional homoskedasticity (see Demos and Sentana (1998)). In

practice, an asymptotically equivalent test to (9) can be computed as the sum from j = 1 to

q of the square t ratios in the regression of ε∗2t (ùθT ) on a constant and ε∗2t−j(ùθT ). Therefore,

from a numerical point of view, the main difference between the t-based and Gaussian-based

LM tests for Arch(q), apart from the obvious fact that they use different estimators of δ

and ω to evaluate the standardised residuals, is that the dependent variable in the former is

(η̄T + 1) ε
∗2
t (θ̄T )/

£
1− 2η̄T + η̄T ε∗2t (θ̄T )

¤
, while the dependent variable in the latter is ε∗2t (ùθT ).

In order to measure the relative power of the LM test obtained under normality vis-a-vis the

one obtained using the student t likelihood, we can compare their non-centrality parameters for

a sequence of local alternatives. Since the results in Section 3.2 imply that the non-centrality
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parameter of the Gaussian test for Arch is given by Tα0α, while the non-centrality parameter

of the student t-based test for Arch is given by {ν0(ν0 − 1)/ [(ν0 + 3) (ν0 − 4)]}Tα0α, the
ratio of non-centrality parameters will also be given by (7). Intuitively, the power gains accrue

from the fact that the variance of ε∗2t (θ0) (= 2(ν0 − 2)/(ν0 − 4)) is larger than the variance
of (η0 + 1) ε

∗2
t (θ0)/

£
1− 2η0 + η0ε∗2t (θ0)

¤
(= 2ν0/(ν0 + 3)). Since the former increases without

bound as ν0 → 4+ while the latter remains bounded, those gains could be substantial when the

number of degrees of freedom is low.

Finally, note that since the inequality constraints α1 ≥ 0, . . . , αq ≥ 0 must be satisÞed to

guarantee nonnegative conditional variances of an Arch(q) model, an even more powerful test

can be obtained if we test H0 : α1 = 0, . . . , αq = 0 versus H1 : α1 ≥ 0, . . . , αq ≥ 0, with at

least one strict inequality. An argument analogous to the one in Demos and Sentana (1998)

shows that a version of the KT multiplier test can be simply computed as the sum of the square

t-ratios associated with the positive estimated coefficients in the regression of (η̄T + 1) ε
∗2
t (θ̄T )/£

1− 2η̄T + η̄T ε∗2t (θ̄T )
¤
on a constant and the Þrst q lags of ε∗2t (θ̄T ). The asymptotic distribution

of such a test, which coincides with the asymptotic distribution of the LR and W tests, will be

given by the following mixture of q + 1 independent χ20s

gLR ∼ �W ∼
qX
i=0

¡q
i

¢
2q
χ2i

whose critical values for q = 1, . . . , 12 can be found in Table 1 in that paper.

4.2 Tests for GARCH(1,1)

Let us now consider testing conditional homoskedasticity vs. the Garch(1,1) speciÞcation

σ2t (θ) = ω + α
£
yt−j − µt−j(δ)

¤2
+ βσ2t−1(θ)

under the maintained assumption that mean and variance parameters are variation free. Since

σ2t is effectively computed as ϕ+α
Pt−2
j=0 β

jε2t−j−1+β
t−1(σ21−ϕ), where ϕ = ω/(1−β), it is clear

that constant conditional variances are obtained if α = 0 and β = 0. But since the inequality

constraints α ≥ 0 and β ≥ 0 must be satisÞed to guarantee nonnegative conditional variances
under the alternative, we should again consider one-sided tests. In particular, we should test

H0 : α = 0, β = 0 versus H1 : α ≥ 0, β ≥ 0, with at least one strict inequality.
However, as Bollerslev (1986) noted, one cannot derive the LM test for conditional ho-

moskedasticity versus Garch(1,1) in the usual way, because the block of the information matrix

whose inverse is required is singular under the null. Econometric wisdom suggests that singu-

larity of the information matrix must be somewhat related to parameter unidentiÞability under

the null. This is indeed the case, at least asymptotically. From the expression for σ2t above, the
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time-varying conditional variance is simply ϕ+ βt−1(σ21 − ϕ) when α = 0. Hence, σ2t converges
to ϕ as t → ∞ for any β ∈ [0, 1), although it may take a long time to settle down if β and
σ21 − ϕ are large. In contrast, if we set σ21 = ϕ to start up the recursions, σ2t = ϕ ∀t. In this
speciÞc case, we have a testing situation in which the parameter β is only identiÞed under the

alternative. Note, though, that since σ2t = ϕ+ α
Pt−2
j=0 β

jε2t−j−1, α has to be positive under the

alternative to guarantee nonnegative variances everywhere, we should still test H0 : α = 0 vs.

H1 : α ≥ 0 even if we knew β.
There are two standard solutions to testing situations with unidentiÞed parameters under

the null. The Þrst one involves computing the LM test statistic for many values of β in the

range [0,1), which are then combined to construct an overall test statistic. Such a solution was

initially suggested by Davies (1977, 1987), who proposed using the supβ LR test. More recently,

Andrews (2001) discusses ways of obtaining critical values for such tests. His procedure is based

on regarding the different LR, W and LM statistics as continuous stochastic processes indexed

with respect to the parameter β.

The second solution, which is the one we shall follow in this paper, involves choosing an

arbitrary value of β, β̄ say, to carry out a one-sided LM test as T �R2 from the regression

of either (η̄T + 1) ε
∗2
t (θ̄T )/

£
1− 2η̄T + η̄T ε∗2t (θ̄T )

¤
or �ε2t on a constant and the distributed lagPt−2

j=0 β̄
j
ε2t−j−1 (see Demos and Sentana (1998)). Such tests are asymptotically distributed as a

50 : 50 mixture of χ20 and χ
2
1 irrespective of the value of β̄. Obviously, the chosen value of β̄

inßuences the small sample power of this test, achieving maximum power when β̄ coincides with

its true value, β0. In this context, an attractive possibility is to choose β̄ equal to the decay

factor recommended by RiskMetrics (1996) to obtain their widely used exponentially weighted

average volatility estimates (e.g. β̄ = .94 for daily observations). In this respect, note that

since the RiskMetrics volatility measure is proportional to
Pt−2
j=0 β̄

j
ε2t−j−1, in effect our pro-

posed Garch(1,1) tests differ from the Arch(q) tests discussed before in that a few lags of the

squared residuals are replaced by the RiskMetrics volatility estimate in the auxiliary regressions.

5 The relative efficiency of ML and sequential estimators of η

The asymptotic distribution of the ML estimator of η, �ηT , will be given from (1) by the

following expression
√
T (�ηT − η0)→ N [0, Iηη(φ0)] ,

where

Iηη(φ0) =
£Iηη(φ0)− I 0θη(φ0)I−1θθ (φ0)I 0θη(φ0)¤−1 .
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Once more, Iηη(φ0) can be understood as the inverse of the residual variance in the theo-
retical regression of the log-likelihood score corresponding to η, sηt(φ0), on the log-likelihood

score corresponding to θ, sθt(φ0). As a result, unless sθt(φ0) and sηt(φ0) are uncorrelated,

the asymptotic variance of �ηT will generally be larger than I−1ηη (φ0), which is the asymptotic
variance of the F -based ML estimator of η that we could compute if the ςt(θ0)0s were directly

observed.

On the basis of well-known results from Durbin (1970), we would expect that �ηT will be gen-

erally inefficient relative to the ML estimator �ηT . Similarly, we would also expect the sequential

method of moments estimator ùηT to be generally inefficient relative to the ML estimator �ηT (see

e.g. Ogaki (1993)).

The following proposition explains the ranking of the asymptotic covariance matrices of the

four estimators of η that we have studied:

Proposition 10 £Iηη(φ0)− I 0θη(φ0)I−1θθ (φ0)I 0θη(φ0)¤−1 ≥ I−1ηη (φ0)
I−1ηη (φ0) + I 0θη(φ0)C(φ0)I 0θη(φ0) ≥

£Iηη(φ0)− I 0θη(φ0)I−1θθ (φ0)I 0θη(φ0)¤−1
E(φ0) + F 0(φ0)C(φ0)F(φ0) + 2F 0(φ0)A−1(φ0)D(φ0)

N 2(φ0)
≥ I−1ηη (φ0) + I 0θη(φ0)C(φ0)I 0θη(φ0)

Under correct speciÞcation, the ML estimator �ηT is also efficient, which implies that

√
T (�ηT − �ηT )→ N [0,F(φ0)− Iηη(φ0)] ,

where F(φ0) − Iηη(φ0) is a non-negative scalar. As a result, the asymptotic variance of the
sequential ML estimator �ηT will usually be underestimated by Iηη(φ0). However, the magnitude
of the difference between these two asymptotic variances is generally unclear. Nevertheless, since

Iθη(φ0) = 0 under normality from Proposition 3, it is clear that �ηT will be as asymptotically

efficient as �ηT when η0 = 0. SpeciÞcally, under conditional normality both estimators will share

the same half normal asymptotic distribution, although they would not numerically coincide

when they are not both zero.

Once more, the difference between �ηT and �ηT suggests an alternative Hausman speciÞcation

test of the model, which will be given by the following expression:

HηT = T (�ηT − �ηT )2 [F(φ0)− Iηη(φ0)]+ ,

where the Moore-Penrose generalised inverse in this scalar case is simply the reciprocal of F(φ0)−
Iηη(φ0) if F(φ0) − Iηη(φ0) is positive, and 0 otherwise. Under correct speciÞcation of the
conditional distribution of εt, HηT will be asymptotically distributed as a chi-square with one
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degree of freedom when η0 > 0. In contrast, HηT will be identically 0 approximately half the

time when η0 = 0. However, since F(�φT )− Iηη(�φT ) will generally be different from 0 when �θT

is not equal to �θT , HηT might also be numerically unstable the other half.

Finally, it is worth mentioning that the asymptotic distribution of ùηT will also tend to be

half normal as the sample size increases when η0 = 0, since κ̄T (�θT ) is root-T consistent for κ,

which is 0 in that case. In fact, it is possible to prove that ùηT will be as efficient as both �ηT and

�ηT under conditional Gaussianity.

6 A Monte Carlo comparison

In this section, we assess the Þnite sample performance of the different estimators and testing

procedures discussed above by means of an extensive Monte Carlo exercise, with an experimental

design borrowed from Bollerslev and Wooldridge (1992). SpeciÞcally, the model that we simulate

and estimate is given by the following equations:

yt = µt(δ0) + σt(δ0,γ0)ε
∗
t

µt(δ) = π + ρyt−1

σ2t (δ,γ) = ω + α
£
yt−1 − µt−1(δ)

¤2
+ βσ2t−1(δ,γ)

ε∗t |It−1 ∼ i.i.d. t(0, 1, ν0)

where δ0 = (π, ρ), γ0 = (ω,α, β), π0 = 1, ρ0 = .5, ω0 = .05, α0 = .15 and β0 = .8. As for

η0, we consider three different values: 0, .125 and .25, which correspond to the Gaussian limit,

and two student tÕs with 8 and 4 degrees of freedom respectively. Although we have considered

other sample sizes, for the sake of brevity we only report the results for T = 250 and T = 1, 000

observations based on 10,000 Monte Carlo replications.

Following Fiorentini, Sentana and Calzolari (2003), our estimation procedure employs the

following mixed approach: initially, we use a scoring algorithm with a fairly large tolerance

criterion; then, after ÒconvergenceÓ is achieved, we switch to a Newton-Raphson algorithm to

reÞne the solution. Both stages are implemented by means of the NAG Fortran 77 Mark 19

library E04LBF routine (see Numerical Algorithm Group 2001 for details), with the analytical

expressions derived in Section 2 of that paper. Standard errors are computed using analytical

derivatives based on the expressions in Bollerslev and Wooldridge (1992) in the Gaussian case,

and Proposition 1 in the case of the t.

Figures 1a, 1b and 1c display kernel estimates of the sampling distributions of the ML

(solid) and PML (dashed) estimators of the autoregressive coefficient ρ for ν0 = ∞, 8 and
4, respectively, constructed with the automatic bandwidth choice given in expression (3.28) of
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Silverman (1986). As expected from Proposition 3, the distribution of the two estimators is

almost identical under normality, even for the smaller sample size, which is not very surprising

given that they are numerically identical over half the time. However, they progressively differ

as the degrees of freedom decrease. In this respect, it is important to mention that since the

asymptotic distributions of �δT and �δT are independent from the asymptotic distributions of the

remaining parameters, as discussed in Section 3.2, the distribution of the PML estimator of ρ,

�ρT , remains Gaussian even when ν0 = 4.

Figures 2a-c and 3a-c display the corresponding kernel estimates of the sampling distributions

of the ML and PML estimators of the Arch and Garch parameters α and β, respectively.

Again, there is no noticeable difference between ML and PML estimators in the Gaussian case,

but the differences become apparent as the distribution of the standardised innovations becomes

more leptokurtic. In fact, when ν0 = 4 the shape of the distribution of the PML estimators

�αT and �βT remains non-normal even for T = 1, 000, as discussed in Section 3. Nevertheless,

since we have imposed during estimation the usual inequality restrictions on α and β that are

compatible with positive, non-explosive variances, those distributions remain bounded between

0 and 1.

Given the large number of parameters involved, we summarise the performance of the es-

timators of the asymptotic covariance matrix of the estimators of the conditional mean and

variance parameters θ by computing the experimental distribution of a very simple W test sta-

tistic. In particular, the null hypothesis that we test is that all Þve parameters are equal to

their true values. Importantly, the asymptotic distribution of such a test will be χ25 regardless

of whether or not η0 = 0. Our results are summarised in Figures 4a-4c using Davidson and

MacKinnonÕs (1998) p-value discrepancy plots, which show the difference between actual and

nominal test sizes for every possible nominal size. Not surprisingly, the ML standard errors are

more reliable than the PML ones, specially when η0 = 0. In fact, while the performance of the

ML standard errors seems not to be too sensitive to the value of η0, the performance of the

ÒrobustÓ PML standard errors notoriously deteriorates as η0 increases, which is not surprising

given that Bγγ(φ0) becomes unbounded as ν → 4 from above.

Finally, Figures 4a, 4b and 4c display kernel estimates of the sampling distributions of the

ML (solid), sequential ML (dashed) and sequential MM (dash-dotted) estimators of η when

ν0 = ∞, 8 and 4, respectively, together with the fraction of parameter values estimated at the
lower bound of 0. Given that there is considerable probability mass on or near the origin, we

have used the reßection methods discussed by Silverman (1986) to construct those densities in

order to guarantee that they integrate to 1. As can be seen, the proportions of zero estimates
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of η usually exceed the theoretical values of 1/2, 0 and 0 for η0 = 0, .125 and .25, respectively,

especially for the smaller sample size. Although the three estimators behave similarly under

Gaussianity, they are radically different in the other two cases. As explained in Section 4, while

�ηT is asymptotically normally distributed in those two cases, ùηT is not when ν0 = 8, and not

even root-T consistent when ν0 = 4, in which case �ηT is not asymptotically normal either.

7 Conclusions

In the context of the general multivariate dynamic regression model with time-varying vari-

ances and covariances considered by Bollerslev and Wooldridge (1992), our main contributions

are:

1. We compare the relative efficiency of ML and PML estimators of the conditional mean

and variance parameters in order to assess the trade-off between efficiency and robustness

facing a researcher who is only interested in estimating those parameters. In this respect,

we show that there are no efficiency gains or losses in simultaneously estimating the degrees

of freedom of a student t model when in fact the conditional distribution is Gaussian. At

the same time, in the context of a univariate Arch nonlinear regression model, we show

that the efficiency gains could be substantial, but only if the number of degrees of freedom

is low.

2. We propose two computationally simple estimators of the reciprocal of the degrees of

freedom parameter of the student t, which can be easily obtained from the Euclidean

norm of the standardised residuals evaluated at the PML estimators. In particular, we

consider a sequential ML estimator, and a sequential MM estimator based on the coefficient

of multivariate excess kurtosis. We also assess the efficiency of these estimators relative to

their ML counterpart.

3. We derive an LM test for Arch(q) in univariate nonlinear regression models, and measure

its asymptotic power gains against sequences of local alternatives relative to the Gaussian-

based test introduced by Engle (1982). We show that those gains could be important when

the conditional distribution is rather leptokurtic.

4. We also derive a simple LM test for Garch(1,1) in the same context, which uses as

regressor the Exponentially Weighted Moving Average volatility estimate popularised by

RiskMetrics, and widely used by practitioners.
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Appendix

Proofs and auxiliary results

Some useful distribution results

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,
we can standardise ε◦t by setting E(e2t ) = N , so that E(ε◦t ) = 0, V (ε◦t ) = IN . SpeciÞcally, if ε◦t
is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
p
(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4t ) < ∞, then the coefficient of multivariate excess kurtosis
κ0 reduces to E(e4t )/N(N + 2) − 1. For instance, κ0 = 2/(ν0 − 4) in the Student t case, and
κ0 = 0 under normality. In this respect, note that since E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-

Schwarz inequality, with equality if and only if et =
√
N so that ε◦t is proportional to ut, then

κ0 ≥ −2/(N + 2), the minimum value being achieved in the uniformly distributed case.

Then, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of the spherically symmetric distribution are given by

E(ε◦tε
◦
t
0 ⊗ ε◦t ) = 0, (A1)

and

E(ε◦tε
◦
t
0 ⊗ ε◦tε◦t 0) = (κ0 + 1) (IN2 +KNN ) + κ0vec (IN) vec

0 (IN ) , (A2)

respectively.

In what follows, we shall also make extensively use of the fact that ζt/(ξt + ζt) has a beta

distribution with parameters N/2 and ν0/2, which is independent of ut. As is well known, if

a random variable X deÞned between over [0, 1] has a beta distribution with parameters (a, b),

where a > 0, b > 0, then its density function is

fX(x) =
1

B(a, b)
xa−1(1− x)b−1,

where

B(a, b) =

Z 1

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)

Γ(a+ b)
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is the usual beta function. Fortunately, it is often trivial to Þnd apparently complex moments

of a beta random variable from Þrst principles. For instance,

E[Xp(1−X)q] = 1

B(a, b)

Z 1

0
xp(1− x)qxa−1(1− x)b−1dx = B(a+ p, b+ q)

B(a, b)

for any real values of p and q such that a+p > 0 and b+ q > 0. Another particularly convenient

moment for our purposes is E[Xp ln(1−X)]. But sinceZ 1

0
ln(1− x)xa+p−1(1− x)b−1dx = ∂

∂b

Z 1

0
xa+p−1(1− x)b−1dx = ∂

∂b
B(a+ p, b),

then we can write

E[Xp ln(1−X)] = B(a+ p, b)

B(a, b)

∂ lnB(a+ p, b)

∂b
=
B(a+ p, b)

B(a, b)
[ψ(b)− ψ(a+ p+ b)] ,

where we have used the deÞnition of the beta function in terms of the gamma function given

above.

Proposition 2

The proof is based on a straightforward application of Proposition 1 in Bollerslev and

Wooldridge (1992) to the spherically symmetric case. Since sθt(θ0, 0) = Zdt(θ0)edt(θ0, 0), and

edt(θ0, 0) is a vector martingale difference sequence, then to obtain Bt(φ0) we only need to
compute V [edt(θ0, 0)|zt, It−1;φ0]. But since∙

elt(θ0, 0)
est(θ0, 0)

¸
=

µ
ε∗t (θ0)

vec [ε∗t (θ0)ε∗0t (θ0)− IN ]
¶
=

∙
etut

vec(e2tutu
0
t−IN)

¸
for any spherical distribution, then it follows from (A1) and (A2) that

V [edt(θ0, 0)|zt, It−1;φ0] =
∙
IN 0
0 (κ0+1) (IN2+KNN )+κ0vec(IN)vec0(IN)

¸
= K (κ0) . (A3)

As for At(φ0), we know that its formula, which is valid regardless of the exact nature of the true
conditional distribution, coincides with Bt(φ0) when κ0 = 0 by the (conditional) information

matrix equality. ¤

Proposition 3

The Þrst-order conditions that jointly deÞne the PML estimator of θ and the sequential ML

estimator of η (assuming an interior solution) are:

√
T

µ
s̄θT (�θT , 0)

s̄ηT (�θT , �ηT )

¶
=

µ
0
0

¶
,

where the overbar denotes the corresponding sample mean. If we linearise these conditions

around φ0, then we obtain using standard arguments that

√
T

µ
�θT − θ0
�ηT − η0

¶
= −

µ
h̄θθT (θ0, 0) 0
h̄0θηT (θ0, η0) h̄ηη(θ0, η0)

¶−1√
T

µ
s̄θT (θ0, 0)
s̄ηT (θ0, η0)

¶
+ op(1),
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where we have used the fact that sθt(θ, 0) does not vary with η when regarded as the estimating

function for �θT . In addition, given that we can write

sηt(φ0) = −
ν20
2η20

½
ln

µ
1− ζt

ξt + ζt

¶
−
∙
ψ

µ
ν0 +N

2

¶
− ψ

³ν0
2

´¸¾
−ν

2
0 (ν0 +N)

2(ν0 − 2)
∙

ζt
ξt + ζt

− N

(ν0 +N)

¸
,

(see Fiorentini, Sentana and Calzolari (2003)), we can use the properties of the beta distribution

and the martingale difference nature of sθt(θ0, 0) and sηl(θ0, η0) to prove that

E [sθt(θ0, 0)sηl(θ0, η0)|φ0] = 0 ∀t, l,

which conÞrms that edt(θ, 0) is conditionally orthogonal to ert(φ). Finally, the expression for

F(φ0) follows from the deÞnitions of A(φ0), B(φ0), Iηη(φ0), and Iθη(φ0). ¤

Proposition 4

In this case, the Þrst-order conditions that jointly deÞne the PML estimator of θ and the

sequential MM estimator of η (assuming an interior solution) are:

√
T

µ
s̄θT (�θT , 0)

m̄ηT (�θT , ùηT )

¶
=

µ
0
0

¶
.

A Taylor expansion analogous to the one used in the proof of Proposition 3 leads to

√
T

µ
�θT − θ0
ùηT − η0

¶
= −

µ
h̄θθT (θ0, 0) 0

∂m̄ηT (θ0, η0)/∂θ
0 ∂m̄ηT (θ0, η0)/∂η

¶−1√
T

µ
s̄θt(θ0, 0)
m̄ηt(θ0, η0)

¶
+op(1),

where

∂mηt(θ, η)

∂η
= − 2

(1− 4η)2
∂mηt(θ, η)

∂θ0
=

2ςt(θ)

N(N + 2)

∂ςt(θ)

∂θ0
,

∂ςt(θ)

∂θ
= −2∂µ

0
t(θ)

∂θ
Σ−1t (θ)εt(θ)−

∂vec0 [Σt(θ)]
∂θ

h
Σ−1t (θ0)⊗Σ−1t (θ0)

i
vec

£
εt(θ)ε

0
t(θ)

¤
But since

ςt(θ0) = (ν0 − 2)ζt/ξt,

we can write

mηt(θ0, η0) =
(ν0 − 2)2 ζ2t
N(N + 2)ξ2t

− ν0 − 2
ν0 − 4 ,

and

∂ςt(θ0)

∂θ
= −2∂µ

0
t(θ0)

∂θ
Σ
−1/2
t (θ0)

h
Σ
−1/2
t (θ0)⊗Σ−1/2t (θ0)

is(ν0 − 2) ζt
ξt

ut

−∂vec
0 [Σt(θ0)]
∂θ

h
Σ
−1/2
t (θ0)⊗Σ−1/2t (θ0)

i (ν0 − 2) ζt
ξt

vec
¡
utu

0
t

¢
.
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Then, we can combine again the martingale difference character of sθt(θ0, 0) and the serial

independent nature of ςt(θ0) with the properties of the beta distribution to prove that

E

∙
∂mηt(θ, η)

∂θ

¯̄̄̄
zt, It−1,φ0

¸
= −∂vec

0 [Σt(θ0)]
∂θ

vec
¡
Σ−1t (θ0)

¢ 2(ν0 − 2)
N(ν0 − 4) ,

E [sθt(θ0, 0) ·mηt(θ0, η0)| zt, It−1,φ0] =
∂vec0 [Σt(θ0)]

∂θ
vec

¡
Σ−1t (θ0)

¢ 2(ν0 − 2)(N + ν0 − 2)
N(ν0 − 4)(ν0 − 6) ,

and

E [mηt(θ0, η0)mηl(θ0, η0)|φ0] = I(t = l)
(ν0 − 2)2
(ν0 − 4)4

∙
(N + 6)(N + 4)

N(N + 2)

(ν0 − 2)(ν0 − 4)
(ν0 − 6)(ν0 − 8) − 1

¸
,

where I(.) denotes the usual indicator function. Finally, the expression for G(φ0) follows from
the deÞnitions of A(φ0) and B(φ0). ¤

Proposition 5

First of all, we can use the conditional version of the generalised information matrix equality

(see e.g. Newey and McFadden (1994)) to show that

E
£
sθt(θ, 0)s

0
θt(φ)

¯̄
zt, It−1;φ

¤
= −E

∙
∂sθt(θ, 0)

∂θ0

¯̄̄̄
zt, It−1;φ

¸
= −E [hθθt(θ; 0)| zt, It−1;φ] = At(φ),

from where we can immediately see that

E
£
edt(θ, 0)e

0
dt(φ)|zt, It−1;φ

¤
= K (0) (A4)

regardless of the conditional distribution of ε∗t .

Therefore, it trivially follows from (A3) and (A4) that

E
©£
edt(φ0)−K (0)K+ (κ0) edt(θ0, 0)

¤
e0dt(θ0, 0) |zt, It−1;φ0

ª
= 0

for any spherically symmetric distribution. In addition, we also know that

E
©£
edt(φ0)−K (0)K+ (κ0) edt(θ0, 0)

¤ |zt, It−1;φ0ª = 0.
Hence, the second summand of (5), which can be interpreted as Zd(θ0) times the residual from

the theoretical regression of edt(φ0) on a constant and edt(θ0, 0), belongs to the unrestricted

tangent set, which is the Hilbert space spanned by all the time-invariant functions of ε∗t with zero

conditional means and bounded second moments that are conditionally orthogonal to edt(θ0, 0).

Now, if we write (5) as

[Zdt(θ)− Zd(θ)] edt(φ) + Zd(θ)K (0)K+ (κ0) edt(θ, 0),
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we can use the law of iterated expectations to show that the semiparametric efficient score (5)

evaluated at the true parameter values will be unconditionally orthogonal to the unrestricted

tangent set because so is edt(θ0, 0) and E [Zdt(θ0)− Zd(θ0)|φ0] = 0.
Finally, the expression for the semiparametric efficiency bound will be

E

∙ {Zdt(θ)edt(φ0)− Zd(θ) [edt(φ0)−K (0)K+ (κ0) edt(θ0, 0)]}
×{edt(φ0)0Z0dt(θ)− [e0dt(φ0)− e0dt(θ0, 0)K+ (κ0)K (0)]Z0d(θ)}

¯̄̄̄
φ0

¸
= E

£
Zdt(θ)edt(φ0)e

0
dt(φ0)Zdt(θ)|φ0

¤
−E ©Zdt(θ)edt(φ0) £e0dt(φ0)− e0dt(θ0, 0)K+ (κ0)K (0)¤Z0d(θ)|φ0ª
−E ©Zd(θ) £edt(φ0)−K (0)K+ (κ0) edt(θ0, 0)¤ edt(φ0)0Z0dt(θ)|φ0ª

+E
©
Zd(θ)

£
edt(φ0)−K (0)K+ (κ0) edt(θ0, 0)

¤ £
e0dt(φ0)− e0dt(θ0, 0)K+ (κ0)K (0)

¤
Z0d(θ)|φ0

ª
= Iθθ(φ0)− Zd(θ0)

£Mdd (η0)−K (0)K+ (κ0)K (0)
¤
Z0d(θ0)

by virtue of (A3), (A4) and the law of iterated expectations. ¤

Proposition 6

First of all, it is easy to show that for any spherical distribution

ûedt(θ0, 0) = E

∙
elt(θ0, 0)
est(θ0, 0)

¯̄̄̄
ςt(θ0)

¸
= E

½
ε∗t (θ0)

vec [ε∗t (θ0)ε∗0t (θ0)− IN ]
¯̄̄̄
ςt(θ0)

¾
= E

∙
etut

vec(e2tutu
0
t−IN)

¯̄̄̄
e2t

¸
=

∙
ςt(θ0)

N
− 1
¸ ∙

0
vec(IN)

¸
, (A5)

and

ûedt(φ0) = E

∙
elt(φ0)
est(φ0)

¯̄̄̄
ςt(θ0)

¸
= −E

½
2∂g [ςt(θ0), η0] /∂ςt · ε∗t (θ0)

vec [IN + 2∂g [ςt(θ0), η0] /∂ςt · ε∗t (θ0)ε∗0t (θ0)]
¯̄̄̄
ςt(θ0)

¾
= −E

½
2∂g [ςt(θ0), η0] /∂ςt · etut

vec(IN + 2∂g [ςt(θ0), η0] /∂ςt · e2tutu0t)
¯̄̄̄
e2t

¾
=

−
½
2∂g [ςt(θ0), η0]

∂ςt

ςt(θ0)

N
+ 1

¾ ∙
0

vec(IN )

¸
, (A6)

where we have used the fact that E(ut) = 0, E(utu0t) = N−1IN , and et =
p
ςt(θ0) and ut are

stochastically independent.

In addition, we can use the law of iterated expectations to show that

E
£
ûedt(φ)e

0
dt(θ, 0)|φ

¤
= E

£
edt(φ)ûe

0
dt(θ, 0)|φ

¤
= E

£
ûedt(φ)ûe

0
dt(θ, 0)|φ

¤
and

E
£
ûedt(θ, 0)e

0
dt(θ, 0)|φ

¤
= E

£
edt(θ, 0)ûe

0
dt(θ, 0)|φ

¤
= E

£
ûedt(θ, 0)ûe

0
dt(θ, 0)|φ

¤
.

Hence, to compute these matrices we simply need to obtain the scalar moments

E

½∙
ςt(θ)

N
− 1
¸ ∙
2∂g [ςt(θ), η]

∂ςt

ςt(θ)

N
+ 1

¸¯̄̄̄
φ

¾
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and

E

(∙
ςt(θ)

N
− 1
¸2 ¯̄̄̄¯φ

)
.

In this respect, we can use (3) to show that the latter is simply [(N + 2)κ+ 2]/N , so that

ûK (κ) = E £ûedt(θ, 0)e0dt(θ, 0)|φ¤ .
As for the former, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of ςt(θ) as

h[ςt(θ); η] =
πN/2

Γ(N/2)
[ςt(θ)]

N/2−1 exp {c(η) + g[ςt(θ)]} ,

where exp {g[ςt(θ), η]} gives us the kernel of the density of ε∗t as a function of ςt(θ) and the
tail parameter(s) η, while exp [c(η)] is the corresponding constant of integration. We can then

exploit this relationship to show that∙
2∂g [ςt(θ), η]

∂ςt

ςt(θ)

N
+ 1

¸
=
2

N

∙
1 +

∂ lnh [ςt(θ)]

∂ςt
ςt(θ)

¸
. (A7)

On this basis, we can use the fact that we have standardised the spherical variable in such a

way that

E[ςt(θ)|φ] =
Z ∞

0
ςt(θ)h [ςt(θ)] = N

to show that

E

∙
ςt(θ)

∂ lnh [ςt(θ)]

∂ςt(θ)

¯̄̄̄
φ

¸
=

Z ∞

0
ςt(θ)

∂h [ςt(θ)]

∂ςt
= −1.

Similarly, we can also use the deÞnition (3) to show that

E

∙
ς2t (θ)

∂ lnh [ςt(θ)]

∂ςt

¯̄̄̄
φ

¸
=

Z ∞

0
ς2t (θ)

∂h [ςt(θ)]

∂ςt
= −2N.

As a result, we will have that for any spherically symmetric distribution

E

½∙
ςt(θ)

N
− 1
¸ ∙
2∂g [ςt(θ), η]

∂ςt

ςt(θ)

N
+ 1

¸¯̄̄̄
φ

¾
=
2

N
,

so that

ûK (0) = E £ûedt(φ)e0dt(θ, 0)|φ¤ ,
which coincides with the value of E [ûedt(θ, 0)e0dt(θ, 0)|φ] under normality.

Therefore, it trivially follows from the expressions for ûK (0) and ûK (κ0) above that

E
nh
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

i
e0dt(θ0, 0) |zt, It−1,φ0

o
= E

nh
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

i
ûe0dt(θ0, 0) |zt, It−1,φ0

o
= 0
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for any spherically symmetric distribution. In addition, we also know that

E
nh
ûedt(φ)− ûK (0) ûK+ (η0)ûedt(θ, 0)

i
|zt, It−1

o
= 0,

Hence, even though
h
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

i
is the residual from the theoretical re-

gression ofûedt(φ) on a constant andûedt(θ, 0), it turns out that the second summand of (5) be-

longs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant

functions of ςt(θ0) with bounded second moments that have zero conditional means and are

conditionally orthogonal to edt(θ0, 0).

Now, if write (6) as

Zdt(θ0)edt(φ)− Zd(θ0)ûedt(φ0) + Zd(θ0)ûK (0) ûK+ (η0)ûedt(θ0, 0),

then we can use the law of iterated expectations to show that the elliptically symmetric semi-

parametric efficient score is indeed unconditionally orthogonal to the restricted tangent set.

Finally, the expression for the semiparametric efficiency bound will be

E

⎡⎣ n
Zdt(θ)edt(φ0)− Zd(θ)

h
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

io
×
n
edt(φ0)

0Z0dt(θ)−
h
ûe0dt(φ0)−ûe0dt(θ0, 0)ûK+ (κ0) ûK (0)

i
Z0d(θ)

o ¯̄̄̄¯̄φ0
⎤⎦

= E
£
Zdt(θ)edt(φ0)e

0
dt(φ0)Zdt(θ)|φ0

¤
−E

n
Zdt(θ)edt(φ0)

h
ûe0dt(φ0)−ûe0dt(θ0, 0)ûK+ (κ0) ûK (0)

i
Z0d(θ)|φ0

o
−E

n
Zd(θ)

h
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

i
edt(φ0)

0Z0dt(θ)|φ0
o

+E
n
Zd(θ)

h
ûedt(φ0)− ûK (0) ûK+ (κ0)ûedt(θ0, 0)

i h
ûe0dt(φ0)−ûe0dt(θ0, 0)ûK+ (κ0) ûK (0)

i
Z0d(θ)|φ0

o
= Iθθ(φ0)− Zd(θ0)

h
ûMdd (η0)− ûK (0) ûK+ (κ0) ûK (0)

i
Z0d(θ0)

by virtue of the law of iterated expectations, and the deÞnitions of ûMdd (η0), ûK (0) and ûK (κ0).
In this sense, note that

ûM (η0) = E
£
ûedt(φ0)ûe

0
dt(φ0)|φ0

¤
because of (A7) and the expression forûedt(φ0) in (A6). ¤

Proposition 7

The proof that Iθθ(φ0) is at least as large as
£Iθθ(φ0)¤−1 in the positive semideÞnite matrix

sense follows trivially from the fact that

4(N + 2)2ν4

(ν − 2)2(N + 2)2(N + ν + 2)2Mrr(η)

∙
0

vec(IN)

¸ £
00 vec0(IN)

¤
is a positive semideÞnite matrix because

Mrr(η) =
ν4

4

∙
ψ0
³ν
2

´
− ψ0

µ
N + ν

2

¶¸
− Nν4

£
ν2 +N(ν − 4)− 8¤

2 (ν − 2)2 (N + ν) (N + ν + 2)
> 0
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for any ν > 2.

As for the difference between the feasible parametric efficiency bound, and the elliptically

symmetric semiparametric efficiency bound, it suffices to prove that

4(N + 2)2ν4

(ν − 2)2(N + 2)2(N + ν + 2)2Mrr(η0)
− 8(N + 2)

N(N + ν + 2)(N + ν − 2)
is non-negative for any 0 ≤ η < 1/2.

Now, the elliptically symmetric semiparametric efficiency bound will be larger than the

regular one if

N(N + 4)(N + ν − 2)
2N(ν − 2)(N + ν + 2)(N + ν − 2)(IN2 +KNN)

− N (N + 6− ν)
N(ν − 2)(N + ν + 2)(N + ν − 2)vec(IN )već(IN )−

8(N + 2)

N(N + ν + 2)(N + ν − 2)vec(IN)vec
0(IN )

is positive semideÞnite.

Finally, the positive semideÞniteness of

Iθθ(φ)− Zd(θ)
£Mdd (η)−K (0)K+ (κ)K (0)

¤
Z0d(θ)−A(φ)B−1(φ)A(φ)

can be proved along the same lines as Proposition 3 in Hafner and Rombouts (2004). ¤

Proposition 9

Since
∂σ2t (θ)

∂δ
= −2

qX
j=1

αj
£
yt−j − µt−j(δ)

¤ ∂µt−j(δ)
∂δ

then ∂σ2t (δ, ω,0)/∂δ = 0. Hence, the expression for Iδδ(φ) trivially follows from Proposition 1,

and the fact that σ2t (δ, ω,0) = ω. In view of the block diagonality of the conditional information

matrix between δ and the remaining parameters, we can concentrate on ω,α and η in what

follows without loss of generality.

Given that
1

σ2t (θ)

∂σ2t (θ)

∂γ
=

∙
1

σ2t (θ)
, ε∗2t−1(θ), . . . , ε

∗2
t−q(θ)

¸0
it is straightforward to prove that

E [Iγγt(δ, ω,0, η)| δ, ω,0, η] = ν

2(ν + 3)

∙
ω−2 ω−1ι0q
ω−1ιq 2(ν − 1)(ν − 4)−1Iq + ιqι0q

¸
since the εt(θ0)0s constitute a serially independent sequence under conditional homoskedasticity.

Similarly, we can show that

E [Iγηt(δ, ω,0, η)| δ, ω,0, η] = 3ν2

(ν − 2)(ν + 1)(ν + 3)
µ
ω−1

ιq

¶
Finally, the partitioned inverse formula yields the required expression for Iγγ(δ, ω,0, η). ¤
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