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Abstract 

This paper demonstrates that microeconomic price data placed into an empirical (S,s) pricing 

model can convey extra information on inflation dynamics. The model designed to capture the 

deviation between the target and the actual price is applied to a unique, highly disaggregated 

panel data set of consumer prices. Fluctuations in the shape of the cross-sectional density of price 

deviations contribute to short-term inflation. Asymmetry in the density particularly matters.  
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1 Introduction 

 

Especially in countries having adopted inflation targeting as the focus of their monetary regime, 

policymakers are seeking to possess advance knowledge of forthcoming price changes. Analysts 

engaged in projecting the real returns on investment in financial assets are also highly keen to 

learn about future inflation rates. Despite its central importance for policy and business, 

however, understanding the nature of short-term variation in inflation has been a daunting task 

for economists for a long period of time.1  

 While a vast amount of research has been amassed on the determinants of short-term 

inflation over the past decades, some recently documented empirical regularities cast doubt on 

existing approaches to inflation determination.2 First, for example, in a review of standard 

macroeconomic indicators and forecasting techniques, Cecchetti (1995) argues that forecasting 

relationships for aggregate inflation are unstable and time varying. For the period 1982 to 1994 

He concludes that the best, still highly imperfect predictor of inflation appears to be its own past. 

Cecchetti and Groshen (2000) also report on professional forecasters’ prediction of U.S. 

inflation: the standard deviation of the forecast error in one-year-ahead forecast of inflation has 

been well above 1 percent in the 1990s, while inflation averaged at about 3 percent. More 

recently, Atkison and Ohanian (2001) examine standard Phillips curve-based U.S. one-year 

ahead inflation forecasts over the period of 1985 to 2000, and find that these models perform 

quite poorly, even when compared to a simple random walk reference.  

 There are several ways to get around these disappointing developments. Most studies on 

inflation determination tend to abstract from microeconomic considerations and draw on 

aggregate (national or sector) level data. In contrast, the present paper seeks to take a step 

                                                 

1 Short-term here refers to horizons not exceeding one year. 

2 A detailed review of the traditional literature is beyond the scope of this study, so it is omitted. 
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towards examining inflation dynamics from a more structural, hitherto unexplored angle. The 

distinctive features of the project are twofold. First, the empirical approach in it builds on a 

model of pricing behavior that conforms to evidence on microeconomic pricing patterns. Second, 

the data analysis is structured around an explicit aggregation of microeconomic price data.  

 By emphasizing the importance of fixed adjustment costs giving rise lumpiness and 

heterogeneity in micro level pricing decisions, the central object of the analysis is the price 

deviation, the postulated log difference between the actual and the target price level.3,4 

Potentially instrumental in related applications where lumpy and heterogeneous microeconomic 

adjustment is relevant, the main insight in empirically modeling the price deviation is that a 

generalized two-sided (S,s) pricing rule naturally lends itself to a trinomial latent variable 

interpretation of the microeconomic target price. Price deviations then bring about price 

adjustment functions and cross-sectional price deviation densities, all of these objects 

subsequently placed into an accounting framework to arrive at aggregate inflation. Using the 

proposed machinery, two main specific issues of substance are investigated: the shape and the 

intertemporal stability of adjustment functions and cross-sectional densities, and the role of 

fluctuations in price deviation densities in shaping inflation dynamics.  

Besides the displeasing performance of existing methods, what motivates the specific 

approach adopted in this study? First, direct microeconomic evidence shows that nominal price 

sequences exhibit relatively long periods of inaction followed by intermittent and discrete 

adjustments. Lumpiness in the timing of price changes is coupled with a significant element of 

                                                 

3 The target price is the optimal price when adjustment costs momentarily removed. Following 
the rest of the empirical (S,s) literature, the target is assumed to be proportional to the frictional 
price obtained as the solution to the optimal price setting problem with adjustment costs removed 
at all horizons.  

4 What is called price deviation here is often termed as relative or real price in related studies. 
The present terminology appears to be more suitable to describe the behavioral concept at hand 
(cf. Caballero and Engel (1992)). 
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heterogeneity, especially across different stores.5 This basic description of pricing behavior in 

turn suggests that (S,s) pricing models based on fixed cost of price adjustment are likely to serve 

as a particularly suitable framework for modeling microeconomic pricing decisions.6  

Second, several recent studies in the macroeconomics literature have highlighted the 

importance of drawing on microeconomic data in understanding the aggregate economy. For 

instance, Caballero, Engel and Haltiwanger  (1997) examine employment dynamics using a large 

microeconomic data set of firm-level data and find that changes in the cross-sectional 

distribution of the deviation of actual from target employment demand explain a sizeable portion 

of aggregate employment fluctuations in the United States. Drawing on the same data set and 

utilizing a similar analytical framework, Caballero, Engel and Haltiwanger (1995) reach 

analogous conclusions regarding capital demand and investment dynamics. Eberly (1994) shows 

that simulated aggregate durable expenditures obtained from an explicit characterization of the 

cross-section of heterogeneous and lumpy individual automobile purchase decisions are 

consistent with the dynamics in aggregate durable expenditures in the United States in the early 

1990s. The upshot of this line of research is that it is important to account for the degree of 

coordination of lumpy and heterogeneous microeconomic actions in explaining the dynamic 

behavior of macroeconomic aggregates. 

The paper is organized into five further sections. The microeconomic price data set is 

introduced in Section 2. The empirical model is developed in Section 3. The estimation 

procedure is outlined in Section 4. Sections 5 reports on the results, while Section 6 concludes. 

 

                                                 

5 For a survey, see Wolman (2000).  

6 The non-smooth adjustment of nominal prices in (S,s) models originates from fixed adjustment 
costs. See, for instance, Ball and Mankiw (1994) and (1995), Caballero and Engel (1992), Caplin 
and Leahy (1991), Dotsey et al (2000) and Tsiddon (1993).  
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2 Data 

Inferring the history of pricing shocks and their propagation through individual price sequences 

to aggregate inflation requires a long panel of microeconomic price data, ideally of many 

homogenous products sold in several distinct stores. Samples of prices that are representative of 

finished goods markets at large or even of a specific sector of the economy are however rarely 

available in practice. To sidestep the data availability issue, this paper offers a case study of a 

novel store level panel of processed meat product prices.7 

 The data set is a balanced panel of transaction prices of fourteen processed meat products 

sold in eight different, geographically dispersed stores in Budapest, Hungary.8 Out of the eight 

stores, five are larger department stores and three are smaller grocery stores, called Közért. All 

stores sell many other products besides the ones considered here. Whenever a particular store is 

visited, all the fourteen product prices are recorded. Observations in the final sample are at the 

monthly frequency, they start in January 1993 and end in December 1996. Due to a five-month 

intermission in data collection from April 1995 through September 1995, the sample is split into 

two sub-periods covering 27 and 16 months. Throughout the sample period, there was no 

government control of processed meat product prices.9 

While having clear limitations including its size and scope, the sample does serve as an 

excellent laboratory for the purposes of this paper. First, the items are well-defined, important, 

homogeneous food products with essentially no variation in non-price, physical characteristics 

such as quality. Second, the goods have low degrees of processing; producing them requires a 

single basic input component, the underlying raw material. Third, inference about stores’ pricing 

                                                 

7 The shortage of appropriate store level price data may partly explain the paucity of closely 
related research. 

8 The products are boneless chop, center chop, leg, back ribs, thin flank, round, roast, brisket, hot 
dog, sausage for boiling, shoulder, spare ribs, smoked loin-ham, fat bacon. 

9 Appendix A provides further details of the sample. 
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policy is unlikely to be contaminated by major differences across production technologies. 

Finally, although it is more volatile, the sample price index tracks movements in the overall CPI, 

especially its food component.10 The partial correlation coefficient between the sample average 

price level and the food component of the CPI in Hungary is 0.94. The time series properties of 

the sample price index also closely match the properties of a similar sector level index of 

processed meat product prices compiled by the Central Statistical Office, Hungary.  

 

2.1 Descriptive Evidence 

Rátfai (2001) provide a detailed non-parametric description of the sample at hand. To motivate 

the empirical model of price setting, it is instructive to briefly highlight some basic findings 

therein. First, nominal prices remain constant in 58 percent of the cases and the average duration 

of price quotations is about three months with the longest spell being 17 months. With the 

exception of months in the third quarter when the relevant raw material prices happen to spike, 

spells of adjustment are spaced irregularly across stores. The duration of price changes within 

stores is fairly dispersed over time, while contemporaneously it tends to be more synchronized.  

The size of price changes is relatively homogenous across stores and products. The 

average size of non-zero price changes is about 9 percent in the whole sample, with the largest 

size being about 63 percent. The average size of positive changes is 10.85 percent in period 1 

and 11.73 percent in period 2. Average negative changes are smaller: -8.24 percent in period 1 

and -7.32 percent in period 2. 

Finally, visualizing the price sequences indicates that higher, say weekly, frequency price 

data have little extra information to offer on basic pricing patterns. At the same time, given the 

average duration of price quotations, quarterly or lower frequency microeconomic price 

                                                 

10 The series obtained as an unweighted average of price changes is plotted in Figure 1a. 
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observations are likely to be heavily left-censored. Thus price fixity appears to be adequately 

captured at the monthly frequency. 

 

3 The Empirical Model 

The semi-structural model designed to capture the role of lumpiness and heterogeneity in 

microeconomic pricing in inflation dynamics is developed in two stages. First, the 

microeconomic model for the target price and the price deviation is specified. Then, an 

aggregation framework is developed to organize price deviations into an inflation index11. 

 

3.1 Measuring the Deviation 

Potentially, there exist a number of approaches to model the deviation between actual and 

frictionless behavior. Caballero, Engel and Haltiwanger (1995), for instance, derive mandated 

investment, the log deviation between actual and target capital as a function of firm-specific 

variables that are individually highly persistent and argue that a (S,s)-type decision rule is bound 

to make mandated investment mean-reverting. This insight allows them to estimate the 

parameters of mandated investment in a cointegrating framework. Alternatively, Caballero, 

Engel and Haltiwanger (1997) identify the deviation between actual and target employment 

simply as a temporary fluctuation in hours per worker. 

 The hypothesized correlation between various measures, typically the dispersion in cross-

sectional price deviation densities and aggregate inflation is an extensively studied issue in 

macroeconomics. Papers in this literature drawing on microeconomic price data tend to proxy, at 

least implicitly the target price with the across-store average of actual prices or the change in 

                                                 

11 Throughout the data analysis, aggregate inflation refers to aggregate price changes in the 
sample at hand. 
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them (see Lach and Tsiddon (1992)).  There are two related concerns with this ad hoc practice. 

First, in pricing models the target price is driven by the convolution of idiosyncratic and 

aggregate pricing shocks, so there is simply no structural reason to identify the target price with 

the product level average of prices in empirical analysis. Second, even if one abstracts from 

idiosyncratic pricing shocks, the target price tends to systematically differ across stores, due to 

geographical, financing, taxation or other considerations.  

 

3.2 The Microeconomic Pricing Rule 

The empirical framework developed in this paper markedly differs from previous attempts to 

measure the deviation.12 It is based on the idea that fixed costs of changing prices create an 

imbalance between actual and target behavior and make pricing policies state-dependent. When 

shocks to the target price are symmetric, fixed adjustment costs result in a two-sided (S,s) pricing 

rule with the price deviation, the log difference between the actual and the target price typically 

differing from zero. Stores alter their nominal price and pay the fixed cost only when the state 

variable, the price deviation is sufficiently large to exceed one of the optimally determined 

threshold values. When shocks are unable to push the price deviation outside the (S,s) band, the 

current nominal price coincides with the preceding one and no actual pricing action takes place.  

Formally, stores leave their nominal prices unaltered until the price deviation in store i of 

product j at time t, zijt ≡ pij,t-1 - pijt
*, passes one of the two adjustment boundaries, S or s. If pricing 

shocks push zijt outside the band, stores will pay the adjustment cost and alter their nominal price 

                                                 

12 A close relative to this approach is the one explored in Bertola et al (2002) to study durable 
good expenditures. The differences between the current work and Bertola et al (2002) are still 
manifold. In short, they implement one-sided (S,s) policies in estimating  microeconomic 
decision rules, abstract form the potential persistence in unobserved heterogeneity, focus on a 
Tobit specification of decision rules and are mainly concerned with microeconomic implications. 
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either upwards when zijt ≤ s or downwards when zijt ≥ S. The implied observation rule for the log 

nominal price level is then summarized as 

 
*

, 1 , 1
*

, 1 , 1
*

, 1 , 1

ijt

p if p p Sij t ij t ijt

p p if s p p Sij t ij t ijt

p if p p sij t ij t ijt

 < − > − −
 = < − < − −
 > − < − −

. 

 

 This description of pricing behavior suggests that the target price can be viewed as a 

latent variable, with the two-sided (S,s) rule translating into a trinomial probit panel model. 

Notice that the definition of the price deviation involves a special timing convention. As shocks 

to the target price are assumed to take place at the beginning of the current period, the price 

deviation does not to reflect stores’ reaction to any pricing shock.  

 The key point in empirically implementing the price deviation model is the specification 

of the target price.13 Besides lumpiness, the raw data suggest two fundamental regularities in 

price setting. First, the technology used to produce processed meat products dictates that the 

relevant raw material prices are basic elements in the product prices. Indeed, a crucial advantage 

of the data set used here is that the aggregate variable driving the target price is readily identified 

as the raw material price.14 Second, certain stores are systematically more (or less) expensive 

than others, perhaps due to variation in the local tax-burden, the general quality of the store or 

simply the affluence of typical customers. Differences in consumer taste or production 

technology also cause certain product prices to be permanently different from others. To capture 

                                                 

13 Appendix B describes a simple model of the log target price, when monopolistically 
competitive stores with no friction in adjustment optimally set the product price. 

14 The raw material prices are the price of cattle for slaughter or pig for slaughter. Dunne and 
Roberts (1992) also emphasize the key role of raw material prices as determinants of plant level 
pricing behavior in the United States. 
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the persistent heterogeneity in price sequences, nominal prices are assumed to have a stochastic, 

time-varying residual term, ωijt, with homoskedastic variance, Ω and a constant store- and 

product-specific intercept term, aij,. The residual term is interpreted as an idiosyncratic pricing 

shock, specific to a particular product, store and month. In this sense the target price is driven by 

a combination of recurrent idiosyncratic and aggregate pricing shocks.  

 To ease estimation by reducing the number of parameters to be separately identified, the 

constant term, aij, is split into two parts: aij = ai + aj where ai is a store-specific and aj is a 

product-specific component. Taken together, these considerations yield the following linear, 

fixed effect panel model for the log target price level: 

 
*
ijt ij jt ijt i j jt ijtp a bm a a bmω ω= + + = + + + ,  

 

where mjt denotes the log raw material price. Conforming to a model of optimal pricing decisions 

in a monopolistically competitive market with no frictions, entry or exit, the economic 

interpretation attached to this specification is one of markup over cost pricing. Overall, the 

fundamental elements of the specification are flexible enough to encompass a large class of two-

sided (S,s) models. 

 

3.3 State Dependence 

The discrete choice decision rule associated with the latent variable framework exhibits both 

what Heckman (1981a) calls true and spurious state-dependence. As the current realization of the 

state variable is directly related to past actions, (S,s) type decision rules naturally give rise to true 

state-dependence by the lagged control variable entering the decision rule via the censoring 

thresholds. Spurious state dependence in general stems from the possibility that past realizations 

of heterogeneous unobservables impact on current decision variables. This type of intertemporal 
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linkage appears here through serially correlated residuals, originating from persistent technology 

or demand driven disturbances. To comply with this characterization of unobservables, the 

residual term in the regression model is assumed to follow an AR(1) process, with a constant 

auto-regressive parameter  

 

ijttijijt ερωω += −1, , 

 

where εijt is N(0, σε2) i.i.d.. Overall, the resulting empirical model of the price deviation to be 

estimated is a multi-period, trinomial, fixed effect panel probit with serial correlation in the 

residual.15 

 

3.4 Aggregation  

At the microeconomic level, aggregate and idiosyncratic pricing shocks are filtered through the 

price deviation in a highly non-linear way. To capture the mechanism propagating 

microeconomic pricing shocks to the aggregate level, an accounting framework defining a 

measure of inflation as a weighted-average of the individual mean price changes with weights 

given by the cross-sectional density of price deviations is introduced. Analogously to Caballero, 

Engel and Haltiwanger (1995), (1997), omitting store- and product specific indices momentarily, 

aggregate inflation is defined as 

                                                 

15 In general, the main advantage of a fixed over a random effect specification is that the former 
approach does not require the independence of latent heterogeneity and observed characteristics 
for consistent estimation. The main potential drawback of fixed effect specifications in many 
non-linear models is the incidental parameter problem: estimates of the individual effects are 
inconsistent for fixed T and this inconsistency is transmitted to other parameter estimates. Monte 
Carlo simulation results of a panel probit model in Heckman (1981b) indicate however that the 
bias is negligible in practice for N = 100 and T  = 8; implying that inconsistency is unlikely to be 
a serious concern in the present application with N = 112, T1 = 27 and T2 = 16.  
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 ∫=Π tttttt dztzfzAz ),()( . (1) 

 

The aggregation formula features two fundamental building blocks, defined later in more detail: 

the cross-sectional empirical density of price deviations, f(zt,t), and the price adjustment function, 

At(zt). The price adjustment function is defined as the mean actual price change measured at 

particular realizations of price deviations normalized by the corresponding price deviation. The 

main advantage of this particular aggregation approach is that it allows for evaluating the role of 

fluctuations in price deviation densities and adjustment functions in inflation dynamics. 

Potentially, it also permits to account for the separate importance of idiosyncratic versus 

aggregate pricing shocks in inflation.16  

 

4 Estimation 

To motivate the estimation strategy, consider first the situation in which the residual in the model 

for the price deviation developed above is identically and independently distributed. In the 

absence of temporal dependence in the residual, the log-likelihood function can be simply 

written as the product of the appropriate marginal probabilities 

 

*

* *
1

1,...,8 1,...,8 ( )
1,..,14 1,...,14

ln ( ,..., ) ln ( )
ijt ijt

ij ijT ijt i j jt ijt
i i p p
j j

L prob p p f p a a bm dp
τ= = =

= =

 
  ≡ = − − − =    

∑ ∑ ∫  

                                                 

16 The resulting weighted measure of inflation is plotted in Figure 1b. It is virtually identical to 
the simple unweighted index of aggregate price changes shown in Figure 1a. The correlation 
coefficient is 0.998. 
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∑ ∫ ∏

 

 

where F(.) denotes the normal cumulative density function. Here standard quadrature based 

Maximum Likelihood procedures serve as a straightforward solution method. Even if temporal 

dependence in the error term is neglected when it is actually present, parameter estimates are 

consistent.17  

 However, if the correlation structure is erroneously specified as i.i.d., and lagged 

dependent variables enter the model as they do here via the censoring thresholds, the standard 

ML estimation of the probit panel model leads to inconsistent parameter estimates (see Keane 

(1993)). This concern is especially troubling in the present application as the estimated 

parameters are used to form the cross-sectional density of price deviations and then aggregate 

inflation. These considerations call for a more careful treatment of the serial correlation in the 

residual. Once this is done, however, the log-likelihood function cannot be factored out in the 

usual fashion as evaluating the joint likelihood of consecutive price observations requires the 

computation of T (the number of time periods) dimensional integrals. Without imposing further 

simplifying restrictions on the covariance structure of residuals, the computation of these high 

dimensional integrals is numerically infeasible by standard procedures. Fortunately, simulation 

estimation techniques offer a suitable remedy. 

A simple approach to consistently estimate model parameters is the direct simulation of 

choice sequence probabilities by the observed frequencies (Lerman and Manski (1981)). The 

problem with the direct simulation approach is that obtaining reasonably precise estimates of the 

possibly quite small probabilities entails a burdensome number of draws and thus excessive 

                                                 

17 Nonetheless, parameter estimates and the estimated standard errors are biased. 
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computational efforts. In the absence of a large number of draws, the frequency simulator of the 

joint choice probabilities is discontinuous in the estimated parameters.18  

The Simulated Maximum Likelihood (SML) estimator drawing on the Geweke-

Hajivassiliou-Keane (GHK) simulator of importance sampling of univariate truncated normal 

variates offers a viable alternative. A brief outline of the GHK procedure tailored to the present 

context is as follows. The log-likelihood function to be maximized is  

 

*

* *
1

1,...,8 1,...,8 ( )
1,..,14 1,...,14

ln ( ,..., ) ln ( )
ijt ijt

ij ijT ijt i j jt ijt
i i p p
j j

L prob p p f p a a bm dp
τ= = =

= =

 
  ≡ = − − −    

∑ ∑ ∫ . 

 

As described above, the serial correlation posited in the residual implies that estimating the 

parameters requires an indirect evaluation of the high dimensional integrals for the cross-

sectional units. Consider now the sequence of prices of a single product in a single store. 

Dropping all subscripts for now, first, let us define recursively the normally distributed structural 

error term, ω, as ω = Ce where C is the lower triangular Cholesky decomposition of Ω satisfying 

C’C = Ω, where e is a univariate i.i.d. standard normal variable. Then, instead of drawing directly 

from the original distribution of serially dependent truncated normals, the variable, e, is sampled 

R times sequentially and independently from the recursively restricted univariate standard 

normal distribution19.  

 Assume that the nominal price remains constant for three consecutive periods. Then the 

draws of standard normal variates, e1,e2,e3, are obtained as 

                                                 

18 Indeed, besides computational feasibility, smoothness (differentiability and continuousness) is 
a fundamental requirement to simulation estimators as it allows for applying standard hill-
climbing or gradient methods in maximizing the log-likelihood function. 

19 In practice, sampling from the uniform distribution and then applying the inverse truncated 
normal distribution function to the outcome generates the required draws from a univariate, 
truncated normal distribution.  
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where At
* = pij,t-1  - S – (ai + aj + bmjt) and Bt

* = pij,t-1 - s – (ai + aj + bmjt). The estimated joint 

probability of a price sequence is then the average of the simulated likelihood contributions 

factored as products of the simulated conditional probabilities: 
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The computationally most burdensome stage of the estimation is the large number of simulations 

to estimate the joint occurrence of a sequence of price realizations. Börsch-Supan and 

Hajivassiliou (1993) report that relatively accurate likelihood estimates are obtained by 

employing a relatively small number of repetitive draws; 20 or 30 draws are often sufficient with 

three to seven alternative choices. In the current application, to use err at the conservative end, 

50 sampling draws are employed. Although estimates of the implied truncated residuals are in 

general biased, the likelihood contribution is correctly simulated. Most importantly, the 

simulated log-likelihood is an unbiased and smooth estimate of the true log-likelihood function.20 

                                                 

20 Extensive comparisons by Börsch-Supan and Hajivassiliou (1993) of the accuracy and bias in 
the various possible simulation estimators of multivariate truncated normal probabilities show 
that the GHK approach performs best among similar estimators. Besides accommodating various 
correlation structures, the SML estimator is continuous in the parameters, relatively quick in 
reaching convergence, and provides consistent and efficient estimates even in the presence of 
lagged endogenous variables.  
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 Identification of the intercept effects requires fixing at least one of the adjustment 

boundary parameters. While its exact position being constrained, the size of the band is still 

determined independently of this restriction. The initial values used in the simulation estimation 

are obtained from estimating the model with no serial correlation in the residual. 

Experimentation with alternative initial values confirms that the estimation results are robust to 

reasonable departures from these particular values.  

 Separately for the two periods, the estimated parameters of interest are reported in Table 

1.21 There are some notable points to highlight. First, the standard errors indicate that the 

parameters are fairly tightly estimated. Second, the autocorrelation parameters are sizeable and 

significantly different from zero, justifying the explicit account for the temporal dependence in 

the unobserved residual. Third, the slope estimates are somewhat larger than one indicating some 

increasing returns at the micro level. Fourth, the implied total size of the band is about 35% and 

26% in the two periods. Finally, with the exception of the band parameters, the important point 

estimates in the two periods are about the same. 

 

5 Results 

5.1.1 The Cross-Sectional Density of Price Deviations 

One of the fundamental implications of state dependent pricing models is that the impact of 

pricing shocks on aggregate price changes depends on the cross-sectional distribution of price 

deviations. In aggregating (S,s) pricing policies, Caplin and Spulber (1986) assume a uniform 

time-invariant distribution of price deviations and conclude that expected monetary policy may 

                                                 

21 The estimations are performed in Gauss. The routine draws on a code simulating multivariate 
normal probabilities in a multinomial probit model supplied by Vassilis Hajivassiliou via his 
anonymous ftp-site. The parameter for the upper boundary is set to S = 0.13 in both periods. The 
results are robust to including monthly dummies in the baseline specification. 
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have no impact on aggregate output even when prices are sticky. Tsiddon (1993) demonstrates in 

a two-sided (S,s) pricing model that a positive trend in the target price forces price deviations to 

spend disproportionately more time closer to the lower adjustment band than to the upper one. 

The pressure exerted by the positive trend thus implies that the stationary distribution of price 

deviations has an asymmetric, in Tsiddon (1993) piece-wise exponential shape.  

 The sample of product prices used in this study appears to be ideal to learn more about 

the shape of price deviation densities observed in the data. To generate the empirical densities, 

one first needs to obtain an estimate of idiosyncratic shocks. While the exact realization of 

idiosyncratic shocks is directly unobserved by construction, their density is readily available. To 

obtain the probabilities defining the truncated densities, first, a discretized state space is defined 

with a bin width of one percent for price deviations between –70 and 60 percents. The 

conditional probabilities generating the truncated densities are evaluated at the middle-point of 

the bin intervals. Given the truncation points of Aijt
* = pij,t-1  - S – (ai + aj + bmjt) and Bijt

* = pij,t-1 - 

s – (ai + aj + bmjt), the probabilities defining the truncated normal densities are then obtained as 

the ratios of the probability of being in a particular bin interval and the probability of 

experiencing a particular pricing action. Averaging then the resulting truncated densities in the 

cross-section results in an empirical distribution of price deviations in each month. 

Microeconomic price deviations are constructed by imposing a microeconomic decision 

rule of the (S,s) type on the data. Is the shape of the resulting empirical densities consistent with 

any of the possible approaches to aggregating microeconomic (S,s) pricing rules? First, summary 

statistics show that the average standard deviation of price deviations in the sample is 15.23 

percent, reflecting the fact that there is considerable cross-sectional heterogeneity in pricing both 

across stores and products. The two panels in Figure 2 show the histogram of price deviations in 

the two periods, pooled over time, stores and products22. The density appears to be highly non-

                                                 

22 To facilitate visual inspection, a third degree polynomial is fitted to all empirical densities. 
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uniform and asymmetric, consistently with the presumption made in aggregating two-sided (S,s) 

policies.  

How does the shape of the empirical densities of price deviations evolve over time? To 

ease visual interpretation, first, the quarterly frequency densities are displayed in Figure 3. 

Simple eyeballing of the graphs indicates that the densities tend to have non-uniform, often 

asymmetric shape. Histograms in the third quarter tend to feature leftward warped distributions 

with many price deviations bunching towards the lower end of the density. This shape of the 

distribution is consistent with the presence of strong inflationary pressures. Conversely, the 

rightward bent second quarter histograms typically reflect the pressure on nominal price cuts.  

Changes in the shape of the histograms are suggestive of the evolution of aggregate 

inflation. A few interesting episodes indeed stand out. By many price deviations bunching in the 

neighborhood of the lower adjustment boundary, the histograms in Figure 3 pick up the story of 

accelerating inflation in early 1994 eventually terminated by the middle of 1995. Also, the 

relatively large number of price deviations bunching on the right end of the densities at the 

beginning of 1993 and 1996 witness deflationary pressures on meat product prices. In contrast, in 

the first part of 1994, the histograms rather signal pressure on subsequent price increases. 

 

5.1.2 The Price Adjustment Function 

Dropping store- and product-specific subscripts, the adjustment function is defined as 
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where k denotes the bin points described above. The average price change, DPt (zijt = k, ∀ i, j), is 

computed as a weighted average of all nominal price changes (including zeros) in month t at 

price deviation k, where the weights are obtained from the corresponding cross-sectional 
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densities. The definition implies that At(zt)zt measures the expected size of price changes at 

particular price deviations. 

Models of optimal price setting deliver meaningful predictions on the shape of the 

adjustment function. When stores follow two-sided (S,s) pricing rules, stores are willing to 

tolerate small deviations between the actual and the target price level, but a sufficiently large 

deviation induces them to alter their nominal price. The implication of this reasoning is that one 

observes large price changes in absolute value for extreme price deviations outside the (S,s) 

band, and zero values for a range of intermediate price deviations inside the band. That is, the 

adjustment function takes on a hat (or reverse-U) shape. In reality, stores may not be fully 

intolerant to adjusting at small deviations or not fully adjusting at large ones. Instead, they are 

likely to have average normalized price changes evolving more smoothly outside and in the 

neighborhood of the boundaries, perhaps in a less symmetric manner as well.  

As it determines the extent to which fluctuations in price deviation densities impact on 

inflation, changes in the shape of the adjustment function may have important aggregate 

consequences. If the adjustment function is assumed to be an nth degree polynomial then 

aggregate inflation depends on all the (n+1) moments of price deviations (see Caballero, Engel 

and Haltiwanger (1995), (1997)). For instance, if adjustment costs were nonexistent or simply 

convex, At(zt) would follow a smooth path and be virtually invariant to zt. Then higher moments 

of the cross-sectional density of price deviations would be irrelevant to inflation.  

Figure 4 portrays the total adjustment functions, separately for the two periods. The 

functions are constructed by pooling all price deviations in the two parts of the sample. Visual 

inspection of the graphs suggests that the shape of the adjustment functions is in general 

consistent with the implication of two-sided (S,s) models, taking on a hat-shaped form and 
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reflecting the inaction region implied by the latent variable structure imposed on the data.23 It is 

also apparent that the average adjustment functions are relatively stable across the quarters.  

Figure 5 displays the same information separately for the fourteen quarters available. 

Despite the noise in constructing the graphs, the pictures again indicate that adjustment functions 

are remarkably stable over time and that they are broadly consistent with (S,s) theory motivating 

their construction. The intertemporal stability of the adjustment function indicates that the 

empirical specification imposed on the data captures well the underlying microeconomic 

structure governing stores’ pricing behavior. 

 

5.2 Aggregate Implications 

With fixed price adjustment costs, histories of pricing shocks and the heterogeneous response of 

stores to these shocks are summarized in the cross-sectional density of price deviations, implying 

that the shape of these densities is likely to serve as an important determinant of aggregate price 

dynamics. Drawing on sector level inflation data in the U.S., Ball and Mankiw (1995) indeed 

find that the higher moments of cross-sector relative inflation rate densities impact on inflation. 

They conclude that inflation is primarily related to the asymmetry in the distribution.  

The following analysis also asks how the shape of microeconomic price deviation 

densities determines inflation dynamics. The main focus of analysis is on the dispersion and 

asymmetry in the densities. Dispersion is captured by the standard deviation statistic. Measuring 

asymmetry is less straightforward; it is not a priori obvious what statistic captures best the 

fundamental concept of interest, the relative bunching of price deviations near to the adjustment 

boundaries. In what follows two alternative measures of asymmetry are considered, the standard 

skewness coefficient and the mean-median difference.  

                                                 

23 The discontinuity is due to the assumption that the boundaries are fixed. 
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First, the three panels in Figure 6 show the time path of the dispersion and asymmetry 

measures along with the corresponding aggregate inflation series. The graphs suggest that 

inflation is positively correlated with all the three different measures of the shape of the density. 

Table 2 displaying the unconditional correlation coefficient among the series confirms this 

presumption. Moreover, the correlation is sizeable and significant for both asymmetry measures.  

To assess the robustness of the simple correlation results, conforming to Ball and 

Mankiw (1995), a set of horse-race regressions is run with aggregate inflation as the dependent 

and the various measures of the shape of price deviation densities as independent variables. 

While the specification is clearly simple, it highlights the role higher moments of price deviation 

densities may play in inflation dynamics. The basic regression equation takes the form of 

 

0 1 1 2 3( ) ( )t t t t tb b b StDev z b Asym z u−Π = + Π + + +  

 

where StDev(z) denotes the standard deviation and Asym(z) denotes the asymmetry measure of 

price deviation densities.  

 Six different specifications are considered. All of them include a constant, lagged 

inflation and measures of the shape of price deviation densities as explanatory variables. The 

findings are summarized in Table 3. Estimates from the benchmark AR(1) model reported in the 

first column. The coefficient on the lagged inflation term points to the persistence in the inflation 

process. The R2 statistic indicates a respectable fit. The second column shows results with a 

model appended with the standard deviation in price deviations. Comparing the adjusted R2 

statistics reported in the first two columns indicates that adding the standard deviation provides 

no progress in goodness-of-fit and the standard deviation parameter is insignificant. The results 

for the equation augmented solely by the skewness statistic are displayed in the third column. 

This specification substantially improves goodness-of-fit when compared to either of the first 

two models. In addition, the parameter estimates for skewness are significant at any conventional 

level. The findings for the model that includes both skewness and standard deviation as 
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independent variables are summarized in the fifth column. Having both measures in the 

regression equation leaves the standard deviation parameter insignificant and the fit of the model 

virtually unchanged. The final two models use the alternative measure of asymmetry in the price 

deviation distribution, the mean-median difference. The regression results for the model without 

the standard deviation statistic are in column four, the ones with it are in column six. First, the 

parameter estimates are of the expected sign, the ones for the asymmetry measure are statistically 

significant and. The model in column four results in a better fit than either the AR(1) or the pure 

standard deviation one, but in a poorer fit then implied by the models with the skewness variable. 

Indeed, the regression with only the standard skewness statistics provides a better fit than the one 

including both the standard deviation and the mean-median difference measure.  

 It is instructive to examine how fluctuations in At(zt) and f(z,t) shape inflation dynamics 

from yet another angle. The idea is to construct counterfactual aggregate inflation series by 

replacing the actual monthly frequency cross-sectional distributions and adjustment functions 

with their seasonal (i.e. quarterly) or overall average counterpart, and then compare the 

proximity of these counterfactual series with the true one. For example, replacing the actual 

adjustment function, At(zt) in the aggregating framework with the corresponding seasonal 

average amounts to shutting down cyclical but retaining seasonal fluctuations in it. Suggested by 

Caballero, Engel and Haltiwanger (1997), the goodness-of-fit measure used to evaluate the 

proximity of the resulting counterfactual and actual price dynamics is 
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where Πt
cf (cf = s (seasonal), oa (overall average)) is the counterfactual, Πt is the actual aggregate 

price change and σ2 denotes the time-series variance of the series. To the extent that it is not 



22 

constrained by zero from below, the statistic is different from the traditional goodness-of-fit 

measure, R2.24 

Table 4 displays the goodness-of-fit results. First, shutting down cyclical and keeping 

only seasonal movements in f(z,t) distracts aggregate inflation from its true dynamics by a much 

larger extent than playing down similar cyclical fluctuations in At(zt). In the former case, 

reflecting again the intertemporal stability of the adjustment function, G(.) falls by 26 percent, 

while in the latter case only by 10 percent. Entries in the top right and bottom left corner of the 

table show the goodness-of-fit measures obtained by removing all (seasonal and non-seasonal) 

fluctuations in the cross-sectional density or in the adjustment function, respectively. The results 

indicate a dramatic deterioration in fit in the former case, G(.) falling to 0.37. In contrast, the 

proximity of the two series is only moderately reduced with no time-series variation in the 

adjustment function. The goodness-of-fit statistic is 0.79 here. Indeed, removing all fluctuations 

in the adjustment function and keeping the original density results in a better fit than taking away 

only cyclical and leaving seasonal fluctuations in the cross-sectional distributions.  

The results overall indicate that swings in both the cross-sectional density and the 

adjustment function are non-trivial ingredients of aggregate price dynamics. Seasonal and 

cyclical fluctuations in the adjustment function contribute relatively little to aggregate price 

dynamics, while fluctuations in the cross-sectional distribution are fundamental both at the 

seasonal and the cyclical frequency. 

 

5.3 Idiosyncratic Shocks 

In a frictionless neoclassical economy the aggregate impact of idiosyncratic shocks cancels out 

by relative price adjustment. Although they still average to zero by definition, the impact of 

                                                 

24 The reason for this is that the residual part here is not necessarily uncorrelated with the 
predicted part.  
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idiosyncratic shocks on pricing decisions is not neutral any more if there are fixed costs to price 

adjustment. Many small idiosyncratic shocks in one direction may have no aggregate effect at 

all, while only a few large ones in one direction actually does have. 

How important idiosyncratic shocks are in shaping aggregate price dynamics? In 

particular, what fraction of fluctuations in inflation can be attributed to idiosyncratic shocks, 

after having them filtered through the cross-sectional density of price deviations?25 To address 

this issue, first, idiosyncratic shocks are suppressed in computing the counterfactual price 

deviation densities, f(y), under the maintained assumption that adjustment functions remain the 

same as in the baseline case, A(a). Then the counterfactual inflation series are obtained as a 

weighted average of price changes with weights provided by f(y).  

Figure 7 displays the counterfactual series together with the actual one. A simple visual 

inspection of the graph suggests that the series closely moves together. This impression is 

confirmed by the partial correlation coefficient of 0.88. Figure 7 also suggests that idiosyncratic 

shocks alter the size of inflation changes. Had idiosyncratic shocks not mitigated aggregate 

surprises, for instance, inflation would have been higher by 3 to 9 percents between July and 

October 1994. At the same time, during the first six months of 1993 idiosyncratic shocks seem to 

have prevented an even more drastic deflation in processed meat product prices. The proximity 

of the true and the counterfactual series is also assessed by the goodness-of-fit statistic 

introduced earlier. The figure of 0.62 reported in Table 5 indicates that eliminating all variation 

in idiosyncratic disturbances fundamentally alters the size of inflation changes, though not their 

direction. Finally, Figure 8 displays the empirical density when price deviations are fully purged 

from idiosyncratic shocks. The graph features a non-uniform distribution suggesting that it is not 

                                                 

25 Idiosyncratic shocks are identified with the residual obtained in the panel model. Eliminating 
idiosyncratic shocks means that the only source of heterogeneity in counterfactual price 
deviations stems from individual effects. 
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the particular functional form imposed on the residual term that drives the basic shape of price 

deviation densities.  

 

5.4 A Comparison 

Given the simplicity and popularity of the approach to proxy the target price in an ad hoc 

manner, it is worthwhile asking the question: does higher cross-sectional moments of price 

deviations contain information on inflation, when the target price is defined as the across-store 

average of actual prices? To address the issue, a set of univariate linear regression models are 

estimated again with inflation as the dependent and measures of the shape of the deviation 

densities as independent variables 

 

0 1 1 2 3( ) ( )t t t t tb b b StDev x b Asym x u−Π = + Π + + + . 

 

StDev(x) again denotes the standard deviation and Asym(x) one of the usual asymmetry measures 
of the density. The price deviation is defined as , 1ijt ij t jtx p p−= − , where jtp  is the across-store 

average of actual prices for product j.  

 The findings summarized in Table 6. Besides the ones for lagged inflation, all parameter 

estimates prove to be statistically insignificant. The point estimates for the asymmetry 

parameters even have the wrong sign. In addition, as indicated by the adjusted R2 statistics, 

higher moments of price deviation densities are in general unable to improve the goodness of fit 

of the benchmark AR(1) model. These results are disappointing; they are unable to go anywhere 

close to the ones reported by Ball and Mankiw (1995) using more aggregated data, or to the 

current results employing a more structural measure of the price deviation. 
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6 Conclusions 

Are (S,s) pricing models originally designed to provide behavioral foundations for business cycle 

analysis able to carry implications for the understanding of inflation dynamics? By applying an 

empirical technique rooted directly in (S,s) considerations to a unique, highly disaggregated 

panel sample of consumer prices, the study gives an affirmative answer.  

 The empirical model is specifically aimed at recovering and quantifying information 

potentially lost by merely taking averages of individual prices when modeling inflation 

determination. What can one carry away from the analysis? The findings in general confirm the 

argument that an explicit aggregation of intermittent and heterogeneous individual pricing 

actions yields new insights for a more adequate understanding of aggregate price changes. More 

in particular, first, the shape of the price adjustment function is relatively stable over time. 

Second, fluctuations in the shape of the cross-sectional distribution of price deviations contribute 

to aggregate inflation dynamics. Asymmetry in the cross-sectional density particularly matters. 

Finally, though idiosyncratic shocks do not alter the direction of aggregate inflation dynamics, 

they do determine the magnitude of fluctuations. 

Provided that the appropriate microeconomic price data are available on a timely basis, 

the analysis also has clear implications for monetary policy making. In formulating short-term 

inflation forecasts, central banks currently rely on only histories of aggregate variables, often 

mainly inflation itself. Prior evidence indicates however that the usual macroeconomic variables 

are unable to reliably forecast short-term aggregate price changes. In contrast, the findings of this 

study show that even when no particular pattern is observed in past average prices, the latent 

pressure built up in directly unobservable price deviations can provide a useful signal for 

forthcoming inflation. In practice, detecting the correct signal requires a careful specification of 
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the target price for the product prices at hand and a forecasting procedure that accounts for the 

specific features of the timing of microeconomic data release.26 

Finally, a clear limitation of the analysis is the specificity and the size of the sample. 

Future research should also investigate a richer sample of prices with a broader set of product 

categories and more stores involved. 

                                                 

26 Implications of the model for out-of-sample forecasting are the subject of ongoing research. 
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APPENDIX A – DATA IMPUTATION 

The data were originally collected for commercial purposes by the price-watch service of 

Solvent Rt. (Solvent Inc.), Budapest. The current sample consists of the consumer prices of 14 

products in 8 stores over 27 (Period 1) and then 16 (Period 2) months (see Rátfai (2001) for 

further details). The sample is unbalanced in month-store specific observations with no two 

consecutive observations missing. Observations are missing only when no price data was 

recorded in a particular store in a particular month. That is, when a product-store-month specific 

observation is missing, it is missing along with all other observation in the particular store-month 

specific entry. Despite their sporadic occurrence27 missing price data pose a significant obstacle 

to the Simulated Maximum Likelihood estimation procedure. To resolve this issue, missing 

observations have to be imputed to produce a balanced panel of price data. 

The imputation issue can potentially be resolved in a number of different ways. First, the 

analysis could be restricted to stores with no missing observation. Unfortunately, this approach 

would lead to the loss of all but one store in the sample. Second, the last available price could be 

carried forward to the present. This procedure would extend the actual frequency of observations 

to two months in the particular instances and so introduce a bias towards having artificially long 

intervals of inaction.  

To avoid the shortcomings associated with the above two options, missing data are 

actually imputed the following way.28 Assume that pijt is missing. The case when pij,t-1 = pij,t+1 is 

straightforward, pijt is simply set to pijt = pij,t-1 = pij,t+1. If pij,t-1 ≠ pij,t+1 then pijt is computed in one 

of the following ways: (a) pijt = pij,t-1, (b) pijt = pij,t+1, (c) (pijt- pij,t-1)/pij,t-1)/((pij,t+1- pijt)/pijt) = ((p-

i
ijt- p-i

ij,t-1)/p-i
ij,t-1)/( p-i

ij,t+1- p-i
ijt)/p-i

ijt), where superscript –i denotes the average price level in all 

                                                 

27 They take place in 11 out of the total of 344 month-store specific data points; that is, in about 
3.2 percent of the cases. 

28 Admittedly, the approach adopted is still ad hoc. Developing an endogenous procedure 
imputing missing data within the simulation estimation framework is the subject of current 
research. 
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the stores but store i. If the number of non-missing price changes between period t-1 and t and 

between t and t+1 in all stores other than store i exceeds the number of unchanged prices in these 

periods then option (c) is selected. This approach is based on the implicit assumption that the 

ratio of the unobserved price changes between periods t-1 and t and periods t and t+1 in store i 

corresponds to the similar ratio of the average of non-missing price changes.  

If the number of non-missing price changes between period t-1 and t and between t and 

t+1 does not exceed the number of unchanged prices then the choice is between the first options 

(a) and (b). Option (a) is selected if the number of pairs of non-missing observations with price 

fixity between month t-1 and t outnumbers the number of similar cases between month t and t+1. 

Otherwise, option (b) is selected.  
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APPENDIX B – THE TARGET PRICE 

Assume that the profit of a multi-product store is separable across products and that no explicit 

aggregate demand linkage is allowed to exist across product markets: a particular store- and 

product-specific price sequence is treated as the outcome of a single-product store’s optimal 

decision. Store- and product-specific profit centers are assumed to operate a two-factor Cobb-

Douglas technology with unit factor prices of raw materials (M) and of other inputs. e.g. labor 

(W). Markets are imperfectly competitive, ηij is the unit specific demand elasticity of product j 

sold in store i and δijt is a multiplicative demand shock. In the absence of adjustment costs, a 

single-product store maximizes its profit subject to a demand constraint as 

 
1max

ijt

b b
ijt ijt ijt jt t ijtP
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The first order condition easily simplifies to the frictionless optimal log price as29 
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The model suitable for estimation is obtained by specifying cijt as the sum of an idiosyncratic 

residual term ωijt with variance Ω and a store- and product-specific dummy, aij, the latter 

decomposed into a store-specific (ai) and product-specific (aj) component. These considerations 

combined with the assumption that the target price is proportional to the frictionless optimal 

price yield a fixed effect empirical specification for the target price: 

 
*
ijt ij jt ijt i j jt ijtp a bm a a bmω ω= + + = + + + . 

                                                 

29 Assuming a Leontief technology would produce the same result. 
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Table 1
Estimation Results

PERIOD 1 PERIOD 2

AR(0) AR(1) AR(0) AR(1)

sigma 0.216 0.161 0.155 0.120

(0.011) (0.009) (0.009) (0.007)

b 1.211 1.124 1.185 1.081

(0.025) (0.024) (0.043) (0.049)

S 0.349 0.248 0.213 0.151

(0.023) (0.02) (0.017) (0.015)

rho - 0.340 - 0.332

- (0.025) - (0.031)

lnL -87.930 -84.649 -89.729 -86.342

Notes: 1. Trinomial Probit panel regressions with actual nominal prices as 
   dependent and raw material prices as explanatory variables.
2. The AR(0) model is estimated by ML, the AR(1) by SML.
3. sigma: standard deviation of residual, rho: autocerrelation parameter,
    b: slope parameter, s: lower adjusment boundary, lnL: mean log-likelihood.
4. The lower adjustment boundary is fixed at s = -0.11.
5. Estimations are carried out in Gauss. Standard errors are in parenthesis.

Table 2
Partial Correlation

Π mm(z) stdev(z) skew(z)
Π 1.000

mm(z) 0.352 1.000
stdev(z) 0.219 -0.106 1.000
skew(z) 0.336 0.689 0.036 1.000

Note: Π  denotes inflation, stdev(z)  denotes standard deviation, skew(z)  denotes skewness, 
mm(z)  denotes the mean-median difference in price deviation densities.



Table 3
Higher Moments of Price Deviations. The Baseline Case

Π t  = b 0  + b 1Π t-1 + b 2 StDev(z) t  + b 3 Asym(z) t  + u t

b 0 0.51 -1.69 0.45 0.45 -1.55 -2.94
0.51 2.81 0.48 0.51 3.38 3.58

b 1 0.60 0.58 0.58 0.54 0.56 0.51
0.12 0.13 0.11 0.12 0.12 0.13

b 2 - 1.46 - - 1.33 2.25
- 2.37 - - 2.22 2.35

b 3 - - 3.83 5.83 3.81 6.48
- - 1.42 3.51 1.44 3.62

Adjusted R 2 0.34 0.33 0.42 0.36 0.42 0.36

F 24.57 12.30 17.58 14.10 11.67 9.69

Notes:   Estimated parameters are underlied. Standard errors are underneath the corresponding parameter estimates.

  StDev  denotes standard deviation, Asym  asymmetry in the price deviation distribution. 

 For the latter variable, the standard skewness coefficient is used in the third and the fifth columns

 and the mean-median difference in the fourth and the sixth columns.

Table 4
Counterfactual Inflation with Time Variation in f(.)  and A(.)  Suppressed

G(.) A(oa) A(s) A(a)

f(oa) 0.08 0.32 0.37

f(s) 0.50 0.69 0.74

f(a) 0.79 0.90 1.00

Note:   a  denotes actual, s  seasonal average, oa  overall average

Table 5
Counterfactual Inflation with No Idisyncratic Shock

f(a)

f(y)

Note: a  denotes actual, no-idios  denotes no idiosyncratic shocks

         The counterfactual series is constructed by removing idiosyncratic

          shocks in price deviation densities

G(.)

1

0.72



Table 6
Higher Moments of Price Deviations. The Ad Hoc  Case

Π t  = b 0  + b 1Π t-1 + b 2 StDev(z) t  + b 3 Asym(z) t  + u t

b 0 0.37 -2.36 0.49 1.59 -2.05 -0.42
0.38 2.58 0.43 5.93 2.73 6.20

b 1 0.54 0.56 0.52 0.53 0.54 0.55
0.13 0.13 0.13 0.13 0.13 0.13

b 2 - 0.37 - - 0.33 0.38
- 0.34 - - 0.35 0.35

b 3 - - -0.09 -0.49 -0.55 -0.83
- - 0.14 2.39 1.40 2.40

Adjusted R 2 0.276 0.278 0.266 0.260 0.262 0.263
F 18.155 9.684 9.148 8.901 6.313 6.364

Notes: Price deviations are computed the as the log deviation of actual prices from the average price.
Estimated parameters are underlied. Standard errors are underneath the corresponding parameter estimates.
StDev  denotes standard deviation, Asym  asymmetry in the price deviation distribution. 
For the latter variable, the standard skewness coefficient is used in the third and the fifth columns
and the mean-median difference in the fourth and the sixth columns.



Figure 1a
Inflation, month-to-month

(unweighted average of price changes)
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Figure 1b
Inflation, month-to-month

(price changes weighted by price deviation densities)
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Note: The lower adjustment band is fixed at s=-0.11, the upper one estimated to be S=0.248.

Note: The lower adjustment band is fixed at s=-0.11, the upper one estimated to be S=0.151.

Figure 2

Empirical Density of Price Deviations
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Empirical Density of Price Deviations
Period 2
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Figure 3
Empirical Densities of Price Deviations - Quarterly

1993 1994 1995 1996
Q1 Q5 Q9 Q13

Q2 Q6 Q10 Q14

Q3 Q7 Q11 Q15

Q4 Q8 Q12 Q16

NotesThe solid lines are third degree polynomials fitted to the empirical densities.
Data from Q10 and Q11 are missing. The lower adjustment bands are fixed at s=-0.11.
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Note: The lower adjustment band is fixed at s=-0.11, the upper one estimated to be S=0.248.

Note: The lower adjustment band is fixed at s=-0.11, the upper one estimated to be S=0.151.

Figure 4

Adjustment Function
Period 1
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Figure 5
Adjustment Functions - Quarterly

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q1

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q2

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q3

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q4

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q5

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q6

-100

-80

-60

-40

-20

0

-0
.7

-0
.7

-0
.6

-0
.6

-0
.5

-0
.5

-0
.4

-0
.4

-0
.3

-0
.3

-0
.2

-0
.2

-0
.1

-0
.1

-0 0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

Q7

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q8

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q9

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q12

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q13

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q14

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q15

-100

-80

-60

-40

-20

0

-0
.7
1

-0
.6
6

-0
.6
1

-0
.5
6

-0
.5
1

-0
.4
6

-0
.4
1

-0
.3
6

-0
.3
1

-0
.2
6

-0
.2
1

-0
.1
6

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Q16



Dispersion, Asymmetry and Aggregate Inflation

Notes:  Inflation, month-to-month (DP-m) is measured on the left axes, 
other variables on the right ones.
  "stdev(z)" and "skew(z)" denote the standard deviation and the skewness of
 the distribution of price deviations, respectively.
  "mm(z)" denotes the mean-median difference in the distribution 
of price deviations.
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Figure 7
True vs. Counterfactual Aggregate Inflation

Note : The dashed line is the true aggregate inflation series, the solid line is the counterfactual one. The counterfactual is constructed by replacing the 

            benchmark cross-sectional density of price deviations with the one computed by suppressing idiosyncratic shocks.

           

Figure 8
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