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1 Introduction

Most auction theory ignores the possibility that bidders may be willing to pay for an object more

than the amount of money they have available, i.e. that bidders may be budget constrained. Yet,

budget constraints can play an important role in practice. For example, David Salant (see Salant

[20], page 567), reporting on his experience in the bidding team at GTE during one of the FCC

auctions for the sale of spectrum licenses, writes:

We were very concerned about how budget constraints could affect bidding. Most of

the theoretical literature ignores budget constraints. In the MTA [Major Trading Area]

auction, budget constraints appeared to limit bids.

Salant also explains how, in order to formulate its strategy, the GTE bidding team used a simulation

model in which possible budget levels of the different bidders entered as inputs.

In principle, if the bidders are interested in the objects for investment purposes (this was the

case in the spectrum license auctions), and have access to well functioning capital markets, budget

constraints should not matter. However, frictions in capital markets often make the amount of

available internal funds relevant. Moreover, even when external funding is available at profitable

rates, a bidder may be reluctant to borrow from a third party, because this might require disclosure

of private information about its valuation for the goods, which in turn may put the bidder at a

disadvantage in the auction. Also, a bidder may want to choose to be budget-constrained, in order

to commit to a less aggressive bidding strategy and thus induce better outcomes in terms of final

prices. A recent paper by Benôıt and Krishna [5] highlights this effect by showing that in fact, at

least in some cases, budget constraints may arise endogenously. Finally, financial constraints may

emerge endogenously when bidders act as agents of financing principals (see for example Bolton

and Scharfstein [3], or Holmström and Ricart i Costa [12]). These considerations provide good

theoretical and empirical reasons to think that budget constraints play important roles in auctions.

The introduction of budget constraints in theoretical models of auctions is fairly recent. Pio-

neering work in this area is due to Che and Gale, [6] and [7]. They have analyzed single-object

environments where each buyer has private information about both her willingness and her (pos-

sibly lower) ability to pay. One important insight that emerges from Che and Gale’s work is that

having a buyer with a budget w and a value v for an object is not the same, in general, as having a

buyer with value min {v,w}. Single-object second-price auctions with budget constrained bidders
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have been studied in Fang and Parreiras [10] and [11]. Zheng [23] studies a common value, (sin-

gle object) first-price auction model in which the bidders can borrow at a given rate and default.

Rhodes-Kropf and Viswanathan [18] analyze single object first-price auctions with privately known

values and budgets, in which the bidders can finance their bids with cash or securities. Multiple

objects auctions with budget constrained are analyzed in Benôıt and Krishna [5], but only under

the assumption of complete information about both willingness to pay and budgets.

We will study multi-unit simultaneous ascending-bid auctions under Che and Gale’s information

structure, i.e. under the assumption that each bidder has private information about both her

willingness to pay and her budget. Since 1994, multi-unit simultaneous ascending-bid auctions have

been used repeatedly by the US government to sell licenses for the use of parts of the electromagnetic

spectrum. In a previous paper (Brusco and Lopomo [4]) we have shown that, for a large class of

information and preference structures, these auctions provide the bidders with ample opportunities

for collusion. The basic idea is that, for many distributions of the bidders’ values, trying to win

two objects often yields less expected surplus than buying a single object at a relatively low price.1

In the present paper we will focus on the effect that the possibility (even if small) of binding

budget constraints has both on the highest level of competition sustainable in equilibrium. It is

obvious that the presence of budget constrains reduces the maximum bids that bidder can post. But

the possibility of budget constraints induces an additional ‘demand reduction’ effect, similar to the

one seen in uniform price auctions. Once prices reach levels at which a budget-constrained bidder

is unable to buy more than one object, a high-budget opponent can end the auction immediately

by simply letting the low-budget bidder win one object. This is more profitable than trying to buy

two objects for the high-budget bidder if the willingness to pay for a second object is relatively low.

Demand reduction effects in multiunit sealed-bid auctions with uniform pricing have been noted

by Ausubel and Cramton [1] and Englebrecht-Wiggans and Kahn [9]; and the idea is also present

in Wilson [22]. We study open ascending bid auctions, in which the prices of the objects need

not be equal. Absent budget constraints, in such auctions there is an equilibrium in which the

bidders simply raise the bid on each object up to their values, so that no demand reduction occurs.

Therefore, in our model, the demand reduction effect is entirely attributable to the presence of

1The experimental results in Kwashnica and Sherstyuk [15] corroborate our theoretical results in the case with

no complementarities. For a survey on recent experimantal work on collusion in mult-unit ascending bid auctions,

see Sherstyuk [21]. There is now general consensus that collusion in mult-unit ascending bid auctions is empirically

relevant. See, for example, Cramton and Schwartz [8], or Klemperer [13].
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potentially binding budget constraints.

We find that for a large class of distributions, even if the probability of having potentially

binding budget constraints is arbitrarily small, all high-budget types behave as if they were budget

constrained, hence the bidders’ behavior will be indistinguishable from the case in which it is

common knowledge that all bidders are budget constrained. In these cases, imposing a reservation

price for each object which is high enough to exclude any low-budget bidder from the auction

increases not only the seller’s revenue, but also the expected social surplus2. Without budget

constraints, reservation prices unambiguously reduce social surplus because they prevent potential

gains from trade from being realized. With potentially binding budget constraints however, there

are distributions for which, even in non-collusive equilibria, the bidders split the objects, thus

lowering the social surplus. Sufficiently high reservation prices in this case would prevent budget

constrained bidders from participating in the bidding, thus making it common knowledge that all

active bidders are unconstrained. Therefore, in a non-collusive equilibrium, each object ends up in

the hands of a bidder with the highest value. For sufficiently small probabilities of having binding

budget constraints, the expected gain in social surplus due to the better allocation of the objects

is larger than the expected loss due to the exclusion of budget constrained types.

The insights of our model can also be applied to other situations in which two players compete

for multiple ‘prizes’, and each player’s type is characterized by two variables, one measuring the

value attached to the prizes, and the other referring to a resource constraint which may or may not

preclude the possibility of winning multiple prizes. Our analysis suggests that the mere possibility,

no matter how unlikely, that each player may face a tight resource constraint can induce a significant

reduction in competition, even in non-collusive equilibria. For example, the presence of capacity

constraints in the multi-market contact model developed by Bernheim and Whinston [2] may induce

firms to specialize in separate markets, i.e. to behave in a seemingly collusive fashion, even though

they are using non-collusive equilibrium strategies.

Going outside the realm of economics, consider a military game in which two armies are trying

to occupy two islands. Suppose that each army has private information about its military capacity,

e.g. each army may be ‘small’ or ‘large’, small meaning able to occupy at most one island. This

strategic situation is similar to the one we analyze in this paper, with the small army playing a

2Cramton and Schwartz [8] suggest that reservation prices may be used to upset collusion in multi-unit auctions.

Their paper contains an example with complete information. We show that reservation prices can increase welfare in

noncollusive equilibria when the possibility of binding budget constraints is admitted.
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role similar to the budget constrained bidder. Our results suggest that, even if it is ex ante very

unlikely that each army is small, the final outcome can entail a low degree of competition, with

each army occupying one island.

The rest of the paper is organized as follows. Section ?? presents the model. For simplicity, we

consider only two objects and two bidders, with constant marginal willingness to pay. Section 3

presents the main results, and section 5 concludes. All proofs are relegated to an appendix.

2 The Model

There are two objects, and two bidders. Each bidder i = 1, 2 is characterized by a type θi := (vi, wi),

where vi denotes the utility of each object and wi is the maximum amount of money that she can

spend in the auction. Therefore, the utility of a bidder who obtains n objects paying a total amount

of m is nvi −m, and m cannot exceed wi.

The four variables (v1, v2, w1, w2) are independently distributed, with support [0, 1]
2×W1×W2.

The c.d.f. F of each variable vi has a differentiable density f . The sets Wi are two point sets,

Wi = {wL, wH}, with wL < wH , and we define Pr [wi = wL] := λ ∈ (0, 1).
The objects are sold using a “simultaneous ascending bid auction”, which is a natural extension

of the standard one-object English auction to environments with multiple objects. In each round

t = 1, 2, ... , for each object j = 1, 2, each bidder i can either stay silent or raise the highest bid of

the previous round by at least a minimum amount ε > 0. Formally, i’s bid on object j in round

t, denoted by bij (t) , can either be −∞, which is to be interpreted as “stay silent”, or must be a
number in the interval [bj (t− 1) + ε, +∞), where bj (t− 1) denotes the “current outstanding bid”,
defined recursively by:

bj (0) = 0 and bj (t) := max
n
bj (t− 1) , bij (t) ; i ∈ N

o
.

If at least one bidder increases the outstanding bid on at least one object, i.e. if bj (t) > bj (t− 1)
for some j, then for each of these objects the new highest bid is identified, a potential winner is

selected among the bidders who have made the new highest bid, and the auction moves to the next

round, with the potential winner of all other objects unchanged. If instead all bidders stay silent

on all objects, the auction ends, and each object is sold to the winner selected at the end of the

previous round, for her last bid.

In our analysis we will consider the minimum bid increment ε negligibly small. This will simplify
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the statements and proofs of our propositions, essentially by eliminating the need to consider sub-

cases in which a bidder’s value is larger than the current outstanding bid but smaller than the

current bid plus the minimum increment.

If wL ≥ 2, i.e. if each bidder’s budget is above the highest total amount that she may be willing
to spend in the auction, then the model is a special case of the model studied in Brusco and Lopomo

[4]. In that paper we have established the existence of collusive equilibria which are sustained by

the threat of reverting to non-collusive continuation strategies. Our focus here is on the effect that

the possible presence of budget constraints has on the auction’s equilibrium set. Thus we assume,

without loss of generality, that wL < 2. In order to simplify analysis we also assume wH > 2 and

wL > 1. The first inequality implies that an high-budget bidder is financially unconstrained. The

second implies that even a budget-constrained bidder has always enough money to bid up to her

valuation on a single object. The assumption that budget constrained bidders can always bid up

to their value for a single object (i.e. 1 < wL) is not essential, but it simplifies the analysis (by

limiting the number of sub-cases to be considered).

To keep the formal statements of our results as simple as possible, we will often write that a given

strategy profile σ “forms an equilibrium” to mean that there exists a consistent belief system µ

such that the pair (σ, µ) constitutes a perfect Bayesian equilibrium. In most cases, given a strategy

profile σ it will be easy to find a consistent belief system which supports σ as an equilibrium. We

will be explicit about the belief system that goes together a given strategy profile only in some of

our proofs.

3 The Effect of Budget Constraints

When there are no budget constraints (that is, λ = 0) there is a straightforward equilibrium in

which each bidder bids up to her valuation on each object. This is a consequence of the fact

that there are no complementarities and the prices of the two objects can be set independently.

While this is not the unique equilibrium (see Brusco and Lopomo [4]), this is the equilibrium that

guarantees the efficient allocation of the objects and maximizes the revenue of the seller subject to

incentive compatibility. It is therefore of central interest to know whether an equilibrium with a

similar outcome exists when the possibility of budget constraints is introduced.

To make the question more precise, observe that the probabilility that both agents are uncon-

strained is (1− λ)2. In principle, when both agents are unconstrained it is a feasible outcome that
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both objects end up in the hands of the bidder who values them most. The issue is whether there

is an equilibrium supporting this outcome, that is an equilibrium in which both objects go to the

bidder with the highest value when both bidders are unconstrained. In particular, is it true that

as λ goes to zero the probability that the bidder with the highest value gets both objects goes to

one? We will show that the answer to the qustion is negative: as λ goes to zero, the probability

that the objects are inefficiently split remains bounded away from zero.

3.1 Efficiency, Incentive Compatibility and Budget Constraints

Let us first define the efficient allocation in the presence of budget constraints. Let hL :=
wL
2 be

half of the budget of the ‘poor’ bidder. Given our auction format, if the two bidders have values

vi > hL and they are both budget constrained then the only feasible allocation is that both bidders

get exactly one object. The reason is that a bidder is unwilling to end the auction with zero objects

unless the price for both objects is greater than vi. But if vi > hL and both prices are above vi then

a budget-constrained opponent does not have money enough to pay for both objects. Therefore,

when both agents are budget constrained and min {v1, v2} > hL, each bidder must have exacty one
object. Furthermore, the price paid must be hL, as at that point (that is, when both prices reach

hL) the there is no excess demand for the objects.

Similarly, suppose that one bidder is unconstrained (say, w1 = wH) and the other is constrained

(say, w2 = wL). Then, when v2 > v1 > hL it must again be the case that the the objects are split.

The reason is the same as before: bidder 1 will not accept to let the auction end and win no object

unless the prices of both objects are above v1; but, since v1 > hL, this implies that bidder 2 will

be able to pay for at most one object. In this case, the price for both objects will be v1. These

are natural restrictions on the feasible allocatons. Other than that, we would like both objects to

end up in the ends of the highest type, paying for each object a price equal to the valuation of the

lower type.

The question is whether this can be the outcome of a perfect Bayesian equilibrium of our auction.

As mentioned earlier the answer is no. As a matter of fact, we are going to prove a more general

result: No mechanism can implement this allocation, as it is not incentive compatible.

In order to prove that incentive compatibility fails, let us compute the expected utilities. Let
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U1 (v1, w1, v2, w2) be the utility of bidder 1 under the proposed allocation. We have:

U1 (v1, wH , v2, w2) =

 2 (v1 − v2) if v1 > v2

0 if v1 < v2

To see that the utility is zero whenever v1 < v2 notice that if v1 < hL then the opponent will get

both objects at v1, while if v1 > hL then each bidder will have one object at a price of v1. In both

cases the utility of the first bidder is zero. Consider now the low-budget bidder. We have

U1 (v1, wL, v2, wL) =


2 (v1 − v2) if v1 > v2 and v2 < hL

v1 − hL if v2 > hL and v1 > hL

0 otherwise

U1 (v1, wL, v2, wH) =


2 (v1 − v2) if v1 > v2 and v2 < hL

v1 − v2 if v1 > v2 and v2 > hL

0 otherwise

For this to be the outcome of a Bayesian equilibrium of some mechanism, it must be the case that

in the direct mechanism in which the bidders report their types and their budgets, truthtelling is

an equilibrium.

In a direct mechanism the bidders announce a pair (vi, wi), and the allocation is decided accord-

ing to the above-mentioned rules. If the opponent is behaving truthfully then it is clearly optimal,

for any given budget announcement, to tell the truth about the valuation vi. The issue is therefore

whether it can be profitable to announce a false budget. The assumption of ‘money on the table’

implies that the only deviation we have to worry about is that of an high-budget bidder pretending

to be a low-budget bidder. We therefore have to check the following inequality:

E [U (v1, wH , v2, w2)] ≥ E [(v1, wL, v2, w2)] ,

for each value v1. The two sides of the inequality differ only if v1 > hL. In this case the inequality

becomes:

2

Z v1

0
(v1 − v2) f (v2) dv2 ≥ (1− λ)

"Z hL

0
2 (v1 − v2) f (v2) dv2 +

Z v1

hL

(v1 − v2) f (v2) dv2
#

+λ

"Z hL

0
2 (v1 − v2) f (v2) dv2 +

Z 1

hL

(v1 − hL) f (v2) dv2
#
.

After rearrangement we obtain:

(1− λ)

Z v1

hL

(v1 − v2) f (v2) dv2 ≥ λ

·
(v1 − hL) (1− F (hL))− 2

Z v1

hL

(v1 − v2) f (v2) dv2
¸

(1)
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This can be interpreted as follows. By pretending to be low-budget, a bidder in hgeneral loses when

the opponent is high budget but has a chance to gain when the opponent is low-budget. On the

RHS of inequality (1) we have the expected utility loss when a bidder pretends to be low-budget and

meets a high-budget opponent. In this case she buys one object rather than 2, and pays the price

v2 whenever v2 < v1. One the LHS we have the net expected gain when a low-budget opponent is

met. In this case, by pretending to be low-budget the bidder is able to get one object at a price

hL for each v2 ≥ hL. Notice that in this case a positive utility of v1 − hL is obtained even in the
case v2 > v1. This has to be compared to the utility attained when the bidder declares a budget

wH and a low-budget opponent is met, which is 2
R v1
hL
(v1 − v2) f (v2) dv2. Inequality (1) therefore

requires that the expected cost from falsely announcing wL be greater that the expected benefit.

At v1 = hL the two sides are worth zero, so that the inequality is satisfied. Consider the function:

ψ (v1,λ) = (1 + λ)

Z v1

hL

(v1 − v2) f (v2) dv2 − λ (v1 − hL) (1− F (hL))

Then the allocation is incentive compatible if ψ (v1,λ) ≥ 0 for each v1 ≥ hL. For each λ we have

ψ (hL,λ) = 0 and:

ψ0 (v1,λ) = (1 + λ) [F (v1)− F (hL)]− λ (1− F (v1))

At v1 = hL we have ψ
0 (hL,λ) = −λ (1− F (hL)). This implies that for each λ > 0, there will be a

right neighborhood of hL over which the incentive compatibility condition is not satisfied, and the

high budget bidder finds it convenient to pretend to be a low budget bidder. The intuition can be

better captured rewriting inequality (1) as:

(1− λ)

Z v1

hL

v1 − v2
v1 − hL f (v2) dv2 ≥ λ

·
(1− F (hL))− 2

Z v1

hL

v1 − v2
v1 − hL f (v2) dv2

¸
(2)

where the gains and losses are written as a proportion of (v1 − hL). As v1 converges to hL the two
integrals converge to F (v1)−F (hL) (this is just the derivative of

R v1
hL
(v1 − s) f (s) ds with respect

to v1) and therefore to zero. Thus, for v1 sufficiently close to hL the only term that matters is

λ (1− F (hL)). Intuitively, when v1 is close to hL the loss in utility due to the fact that one object
less is bought at a price v2 ∈ (hL, v1) is of second order with respect to the gain in utility resulting
from the fact that one object more is acquired at a price hL for each v2 > v1 when the opponent

has a low budget.

The conclusion is that the proposed allocation is not incentive compatible: there is an interval

(hL, v
∗) such that types (vi, wH) with vi ∈ (hL, v∗) who are better off announcing (vi, wL).
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How important is this effect? The exact value of v∗ depends on λ, and one may ask if the effect

becomes negligible when the probability of meeting a low-budget opponent goes to zero. In other

words, does v∗ converge to hL when λ goes to zero? We now show that this is not the case, that is

limλ→0 v∗ (λ) > hL.

If the value of v∗ belongs to the interval (hL, 1) then it must be the value at which a high-budget

bidder is indifferent between announcing wH and wL when all the high-budget bidders with valuation

in (hL, v
∗) announce wL. Otherwise, we set v∗ = 1, so that all high-budget bidders are better off

announcing a low budget. If it is true that limλ→0 v∗ (λ) = hL then, for λ sufficiently small, the

value of v∗ (λ) is determined by the following equation:

2

Z v∗

hL

(v∗ − v2) f (v2) dv2 = (1− λ)

"Z v∗

hL

(v∗ − hL) f (v2) dv2
#

+λ

·Z 1

hL

(v∗ − hL) f (v2) dv2
¸
.

or:

2

Z v∗

hL

(v∗ − v2) f (v2) dv2 = (v∗ − hL) [(F (v∗)− F (hL)) + λ (1− F (v∗))] .

One solution to this equation is hL and we look at the solution larger than hL, if it exists. Define:

Γ (v∗) = 2
Z v∗

hL

(v∗ − v2) f (v2) dv2 − (v∗ − hL) [F (v∗)− F (hL) + λ (1− F (v∗))] .

Then:

Γ0 (v∗) = [F (v∗)− F (hL)]− λ (1− F (v∗))− (v∗ − hL) (1− λ) f (v∗) .

so that Γ0 (hL) = −λ (1− F (hL)) < 0. The second derivative is:

Γ00 (v∗) = 2λf (v∗)− (v∗ − hL) (1− λ) f 0 (v∗) .

Define v0 (λ) be the first point at which Γ0
¡
v0
¢
= 0. Since we are assuming that v∗ (λ) ∈ (hL, 1)

such a point must exists. In fact, since Γ (hL) = 0 and Γ0 (hL) < 0, it must be the case that

v∗ (λ) > v0 (λ), that is the first point at which the function reaches a value of zero must be to the

right of the first local minimum. Therefore, if we can prove limλ→0 v0 (λ) > hL we are done. The

function v0 (λ) satisfies the equation:h
F
³
v0
´
− F (hL)

i
= λ

³
1− F

³
v0
´´
+
³
v0 − hL

´
(1− λ) f

³
v0
´

(3)
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for each λ. Since we have assumed that the density f is differentiable, v0 (λ) is differentiable.

Suppose that than limλ→0 v0 (λ) = hL. Dividing both sides by λ we have:

F
¡
v0
¢− F (hL)
λ

=
³
1− F

³
v0
´´
+

¡
v0 − hL

¢
λ

(1− λ) f
³
v0
´

Taking the limit as λ→ 0 on both sides and assuming v0 → hL we obtain:

f (hL)
dv0

dλ

¯̄̄̄
¯
λ=0

= (1− F (hL)) + f (hL) dv
0

dλ

¯̄̄̄
¯
λ=0

which is impossible since hL < 1.

The conclusion is that the measure of the set of types who inefficiently split the objects remains

bounded away from zero as λ goes to zero, that is limλ→0 v∗ (λ) ≥ limλ→0 v0 (λ) > hL.

Since at λ = 0 there is a Bayesian equilibrium in which the objects are allocated efficiently, it is

important to understand why there is such a discontinuity. The reason is that at λ > 0, no matter

how small, the new incentive compatibility constraint (1) has to be satisfied. We have seen that

for every λ there is an interval
h
hL, v

(1)
i
of high-budget types who do not satisfy the constraint.

Thus, the probabilty that a bidder faces an opponent who behaves as a low-budget type goes to

λ + (1− λ)
h
F
³
v(1)

´
− F (hL)

i
. We can now compute another interval

h
hL, v

(2)
i
of high-budget

types who prefer to behave as low-budget. Continuing this process, we converge to a value v∗ (λ)

such that all high-budget types in the interval [hL, v
∗ (λ)] prefer to behave as low-budget types.

In other words, given any λ > 0 there is a ‘multiplier effect’: some high-budget types will always

pretend to be low-budget, and this in turn induces more high-budget types to pretend to be low-

budget and so on. When λ = 0 the incentive compatibility condition 1 disappears, and there is no

‘starting point’ on which to build the multiplier effect.

4 Equilibria in the Auction

The previous analysis implies that, when budget constraints are possible, some inefficient splitting

of the objects occurs even in the case in which both agents happen to be unconstrained.

In this section we want to analyze the existence of perfect Bayesian equilibria implementing the

allocation described above (that is, the objects are split if the types are low-budget or high-budget

with a type in an interval [hL, v
∗], for some v∗ > hL).

The bidders’ behavior on the equilibrium path is as follows. The auction starts with both

outstanding bids increasing at the same pace, up to min {v1, v2, hL}. More precisely, for each
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i = 1, 2, bidder i increases the outstanding bid by the minimum increment ε on object i in any

odd round, and on object 3− i in any even round, up to min {vi, hL}. Thus the auction progresses
with each bidder being the potential winner of one object in each round, until the outstanding

bids reach either the lowest of the bidders’ values, or hL. In the first case, the bidder with the

lowest value stays silent, and the auction ends with her opponent winning both objects. Otherwise,

i.e. if hL < min {v1, v2}, the behavior of each bidder depends on whether her type is “tough”,
i.e. high-budget and with value above a threshold v∗ > hL, or “soft”, i.e. either low-budget, or

high-budget and with value between hL and v∗. Once the bids reach hL, all soft types remain silent.

All tough types instead continue to raise the outstanding bid on any object which is assigned to

the opponent, up to a threshold which depends on the opponent’s behavior.

Thus, if both bidders are soft, they stay silent and the auction ends with each bidder buying one

object and paying hL. If both bidders are tough, the bidding continues as in the initial phase and

the bidder with the highest value wins both objects. Finally, if one bidder is tough and the other is

soft, the soft bidder starts to bid “defensively,” i.e. she bids on one of the objects with the lowest

current outstanding bid if she is losing both objects, and stays silent otherwise. The tough bidder

instead tries to win both objects until the bids reach an optimally chosen threshold. The auction

then ends with the tough bidder buying both objects if her threshold is above her opponent’s value,

and with the bidders splitting the objects otherwise.

Define the “stopping” function s (vi, wi; b1, b2) which determines the highest price that a bidder

of type (vi, wi) who has observed a pair of bids (b1, b2) is willing to pay in order to get both

objects. Notice that with incomplete information on the budget levels, each bidder’s optimal

stopping time depends on her opponent’s behavior. While it is clear that a low-budget opponent

will bid defensively, the behavior of a high-budget opponent will depend on her beliefs. Some, but

not necessarily all, high-budget types will play “soft,” thus mimicking the behavior of low-budget

bidders. Therefore each bidder needs to formulate a conjecture about the stopping function used

by her opponent in order to compute her own stopping function, and the symmetric equilibrium

stopping function has to be computed as the solution of a fixed point problem.

For all low budget types things are simple. The function s (vi, wL; b1, b2) prescribes to stop

immediately if any of the bids is above min {vi, hL}, and keep trying to buy both objects otherwise.
Since the function s is defined for vi ≥ hL, we have:

s (vi, wL; b1, b2) ≡ vi.
For the high budget types things are more complicated. We first characterize the optimal stopping
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function on the equilibrium path. Suppose that the current bids are (b, b), with b > hL, and that,

when the bids reached the level (hL, hL), bidder 1 played ‘tough’, meaning she raised the bid on

the object she was not winning, and bidder 2 played ‘soft’, i.e. she remained silent. The beliefs of

the two bidders are as follows. Bidder 2 believes that w1 = wH with probability 1, and that v1 is

distributed according to the posterior c.d.f. determined by the optimal stopping function and by

F . Bidder 1’s beliefs about her opponent’s are as follows:

Pr (w2 = wL| soft) = λ [1− F (b)]
λ [1− F (b)] + (1− λ)max {F (v∗)− F (b) , 0} ,

Pr (w2 = wH | soft) = (1− λ)max {F (v∗)− F (b) , 0}
λ [1− F (b)] + (1− λ)max {F (v∗)− F (b) , 0} ;

and the conditional densities on v2 are:

g (v2| b, wL) ≡


f(v)
1−F (b) v2 ∈ [b, 1] ,
0 otherwise;

g (v2| b, wH) ≡


f(v)
F (v∗)−F (b) v2 ∈ [min {b, v∗} , v∗] ,
0 otherwise.

Letting G (·| ·, ·) denote the c.d.f. corresponding to the densities g, we can write bidder 1’s expected
surplus from stopping at s as:

U (v1, s; v∗, b) = Pr (wL| soft)
·
2

Z s

b
(v1 − y) dG (y| b, wL) + (v1 − s) [1−G (s| b,wL)]

¸

+Pr (wH | soft)
·
2

Z s

b
(v1 − y) dG (y| b, wH) + (v1 − s) [1−G (s| b, wH)]

¸
After substitutions and ignoring multiplicative constants we can write the objective function as:

• for b < v∗:
U (v1, s; v∗, b) = λ

·
2

Z s

b
(v1 − y) dF (y) + (v1 − s) [1− F (s)]

¸
(4)

+ (1− λ)

"
2

Z min{s,v∗}

b
(v1 − y) dF (y) + (v1 − s) [F (v∗)− F (min {s, v∗})]

#
;

• for b ≥ v∗:
U (v1, s; v∗, b) = 2

Z s

b
(v1 − y) dF (y) + (v1 − s) [1− F (s)] . (5)

13



We now define the set

R (v1, wH ; v∗, b) ≡ argmax
s

U (v1, s; v∗, b) , (6)

and, since we are interested in the ‘most competitive’ equilibrium, we consider the ‘stopping rule’

given by:

r (v1; v∗, b) ≡ max R (v1, wH ; v∗, b) . (7)

When v∗ is an equilibrium value, and the bids b1 = b2 = b are reached along the equilibrium path,

we set:

s (v1, wH ; b, b) ≡ r (v1; v∗, b) .

For any given threshold v∗ we can compute the expected surplus of each player from playing ‘tough’

and ‘soft’ (once the bids reach hL) when her opponent conjectures that all high-budget types above

v∗ play tough and all high-budget types below v∗ play soft. In equilibrium, v∗ must be such that

the conjecture is confirmed. We now discuss more in depth the existence of an equilibrium with

the characteristics just described.

4.1 Existence of the Equilibrium

In order to complete the analysis we have to accomplish two tasks. First, we have to show that a

threshold value v∗ exists, i.e. we have to show that a fixed point exists. That is, it must be true

that when bidder 1 conjectures a threshold value v∗ for the opponent, then all types v1 < v∗ are

willing to play soft and all types v1 > v∗ are willing to play tough. As we will see, this requires an

additional assumption. Second, we have to describe the out of equilibrium behavior.

For the moment, let it be taken for granted that a threshold value v∗ exists, so that an optimal

stopping function s (vi, wH ; b, b) can be computed along the equilibrium path. We now proceed to

generalize the bidding behavior for any arbitrary pair (b1, b2).

As in the previous two sections, we specify that a bidder stays silent when winning both objects,

and raises the bid on (one of) the lowest priced object(s) when losing both objects (provided the

lowest bid is below her value). Thus, it remains to specify the behavior at pairs (b1, b2) at which

the two bidders are winning one object each.

Consider the following three cases:

14



1. max {b1, b2} < hL. In this case the strategies are as in the standard ‘competitive’ equilibrium,
i.e. s (vi, wi; b1, b2) = vi.

2. max {b1, b2} ≥ hL and (b1, b2) can be reached on the equilibrium path. In this case the beliefs
are updated using Bayes’ rule. The stopping rule for all types with vi ≥ v∗ remains the

same. Those with vi < v∗ play defensively and have no interest in triggering the ‘competitive’

equilibrium, since the opponent has a higher value.

3. max {b1, b2} ≥ hL and (b1, b2) is out of the equilibrium path. We specify the beliefs so that,

whenever a bidder observes the other deviating, she puts probability 1 on wi = wH , and this

belief is maintained in case further deviations are observed. Furthermore, low-budget bidders

cannot hope to win both objects, so that they stay silent whenever they win at least one.

Note that this implies that any attempt on the part of a bidder to buy both objects signals

that the bidder has a high budget. There are 3 sub-cases, depending on how many bidders

have deviated.

(a) Both bidders deviated from the prescribed strategy. In this case both bidders assign

probability 1 to the fact that the other bidder has a high budget, and this fact is common

knowledge. In this case the ‘competitive’ equilibrium is triggered. Therefore we set

s (vi, wH ; b1, b2) = vi.

(b) If the other bidder deviated then bidder i assigns probability 1 to v3−i = bb, where bb
is the highest bid ever made by bidder 3 − i, and assumes that bidder 3 − i will never
make a bid on any object if she becomes convinced that the type of the other bidder

is higher. Since by making a bid on the other object bidder i signals that her type is

greater than bb (remember that max {b1, b2} ≥ bb and i bids on both objects) then it is

rational for i to bid myopically on both objects, i.e. assuming that the other bidder will

not make any further bid. This in turn justifies a myopic behavior on the part of bidder

3 − i. Notice that this cannot make a deviation profitable, since by deviating bidder
3− i only obtains a more aggressive behavior on the part of bidder i. We can therefore
set s (vi, wH ; b1, b2) = vi in this case as well.

(c) The last case we have to deal with is the one in which a deviation occurred only on part

of agent i. Since max {b1, b2} > hL any counterbid by 3 − i signals that she is of type
wH and v3−i ≥ bb (i), where bb (i) is the highest bid ever made by i up to that round.
Also, in that case bidder 3 − i starts bidding myopically. Then bidding myopically is
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a best reply on part of agent i. The conclusion is that in this case as well we can set

s (vi, ; v∗, b1, b2) = vi.

Essentially, out of the equilibrium path the bidders raise the bids whenever the value of the object

is superior to their current bids. Along the equilibrium path, the bidders adopt optimal stopping

times.

We now come to the issue of the existence of a threshold value v∗. Let µ (vi) ≡ 1−F (vi)
f(vi)

be the

inverse hazard rate. We make the following assumption.

Assumption 1 For each vi > hL, we have:

2f (vi) ≥ f (vi + µ (vi))
£
1 + µ0 (vi)

¤
whenever vi + µ (vi) < 1 and 1 + µ

0 (vi) > 0.

Assumption 1 is immediately satisfied when either vi+µ (vi) ≥ 1 or 1+µ0 (vi) ≤ 0 for each vi ≥ hL.
The latter holds, for example, in the uniform case. More generally, if µ0 (vi) ≤ 0 (non-decreasing
hazard rate), then a sufficient condition for Assumption 1 is that, for all vi > hL, we have

2f (vi) ≥ f (x) , for each x > vi.

This is satisfied by any distribution without large peaks. In particular, if vmin and vmax are respec-

tively the points at which the density achieves the maximum and the minimum over the interval

[hL, 1] then a sufficient condition is:

2f (vmin) ≥ f (vmax) .

The next proposition characterizes the non-collusive equilibrium.

Proposition 1 If Assumption 1 is satisfied, then there exists a value v∗ and a corresponding stop-

ping function s (vi, wi; b1, b2) such that the following strategy profile forms an equilibrium. At any

stage in which the current outstanding bids are b1 and b2, each type (vi, wi) of bidder i increases

the bid by the minimum increment:

• on the object with the lowest outstanding bid, breaking ties in favor of object i, if she is not
the winner on any object, the current outstanding bids are different, and

min {b1, b2} < min {vi, wi} ;
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• on object j, if she is winning object 3− j only, and

bj < min

½
s (vi, wi; b1, b2) ,

wi
2
, wi − b3−j

¾
;

• on no object, otherwise.

As in the case with known and asymmetric budgets, a “demand reduction” effect is present in the

non-collusive equilibrium of Proposition 1. On the equilibrium path, the stopping function is such

that s (vi, wH ; hL, hL) = hL, for all vi ∈ [hL, v∗). Thus a set of high-budget types with sufficiently
low values mimic the behavior of low budget types. Furthermore, s (vi, wH ; hL, hL) < vi for vi ≥ v∗,
hence even high budget types with high values reduce their demand.

We now show that, if the density function f is non-decreasing on [hL, 1], the demand reduction

is actually quite dramatic.

4.2 Non-decreasing Densities

Suppose that the density f is non-decreasing on the interval [hL, 1]. We want to show that in this

case the strategy described in Proposition 1 is an equilibrium if, and only if, v∗ = 1. First, we show

that there is no equilibrium with v∗ < 1.

For any v∗ ∈ (hL, 1], the problem of bidder 1’s type (v1, wH), conditional on the bids having

reached (hL, hL) , and the opponent having played soft, can be written as:

max
s

U (v1, s; v∗, hL) = λ

·
2

Z s

hL

(v1 − v2) dF (v2) + (v1 − s) [1− F (s)]
¸

+(1− λ)

"
2

Z min{s,v∗}

hL

(v1 − v2) dF (v2) + (v1 − s) [F (v∗)− F (min {s, v∗})]
#
.

Suppose that v∗ < 1, and consider type v1 = v∗. Since the derivative ∂U
∂s , evaluated at v1 = v∗, and

for s < v∗, is proportional to:

(v∗ − s) f (s)− [λ+ (1− λ)F (v∗)− F (s)] ,

we have that the (left) derivative at s = v∗ is strictly negative. Furthermore, the second derivative
∂2U
∂2s

on the interval (hL, v∗) is proportional to:

(v∗ − s) f 0 (s) .
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Given the assumption that f 0 (s) ≥ 0 for each s ≥ hL, we have that ∂U
∂s is non-decreasing on (hL, v∗) ,

and strictly negative at v∗; hence strictly negative over (hL, v∗). Therefore, the optimal stopping

time for v∗ must be hL. This remains true for types v∗ + δ0, with δ0 small enough. Therefore, a

set of types (v∗, v∗ + δ), with δ > 0, will choose a stopping time of hL. This is a contradiction,

since Lemma 5 in the Appendix establishes that the stopping time must be strictly greater than

hL. Thus, it can never be the case that v∗ < 1.

Thus the only possible candidate for an equilibrium is v∗ = 1. In fact, we can readily check

that we have an equilibrium for v∗ = 1. In this case, the expected utility of playing soft is v1− hL.
Playing tough is now an out of equilibrium action, and we specify that, faced with a tough opponent,

each bidder plays defensively. (This is optimal for any belief which assigns a high probability to

high values of the opponent). Then the highest utility which can be obtained by opening tough

and then choosing s is obtained solving:

max
s

·
2

Z s

hL

(v1 − v2) f (v2) dv2 + (v1 − s) (1− F (s))
¸
.

Again, it can checked that at s = v1 the derivative is negative, and that, since f (v2) is non-

decreasing, the derivative must be negative over (hL, v1). Thus, the optimal stopping time turns

out to be s = hL. The deviation is therefore not profitable.

The equilibrium has the remarkable property that it does not depend on λ, the fraction of

budget-constrained players. That is, for any λ > 0 the most competitive equilibrium has all the

high-budget bidders mimicking the low-budget bidders when the bids reach (hL, hL). This implies

a discontinuity in the equilibrium set. When λ = 0 then a “competitive” equilibrium exists in

which each bidder pushes up the bid on each object up to their value. However, for any λ > 0 this

equilibrium disappears, and it becomes impossible to induce competition among bidders at prices

higher than hL.

4.3 Increasing Welfare by Excluding Low-budget Bidders

The outcome of the non-collusive equilibrium described above for non-decreasing densities is in-

efficient. As the probability (1− λ)2 that both bidders are not constrained increases toward 1,

efficiency requires that the probability with which both objects be assigned to the bidder with

the highest value also approach 1. In the limit, the welfare loss is equal to the expected value of

|v2 − v1|, conditional on min {v1, v2} ≥ hL.
For small values of λ, measures restricting the participation of low-budget bidders can increase
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the expected social surplus, as well as the seller’s expected revenue. For example, the seller may

impose a reserve price for each object above wL, or require each bidder to deposit an amount of

wH at the beginning of the auction. Once the possibility that any participating bidder is budget

constrained is ruled out, the high-budget bidders cannot ‘hide’ behind budget constrained types;

hence the non-collusive equilibrium produces the socially efficient outcome. For sufficiently small

values of λ, the cost of excluding low-budget bidders is lower than the gain in social surplus obtained

by inducing the efficient allocation of the objects.

As an example, suppose that the distribution is F (v) = v4, and take hL = 0.35. First, we

check that there is no equilibrium with v∗ < 1, and that it is an equilibrium for the bidders to

split the objects when the two values are above 0.35. This does not follow immediately from the

previous analysis because we now have wL < 1. The additional complication in this case is that

the low-budget types with value greater than wL can offer at most wL for a single object. We now

show that, as in the case where wL ≥ 1, the equilibrium threshold v∗ cannot be strictly less than 1.

First note that, if v∗ < 0.7, or s < 0.7, the analysis of the previous subsection applies immedi-

ately. Thus consider v∗ ∈ (0.7, 1) and s > 0.7. Then the optimal stopping time for the type v∗ is
obtained solving:

max
s

λ

·Z 0.7

0.35
2 (v∗ − y)

³
4y3

´
dy + 2 (v∗ − 0.7)

³
1− (0.7)4

´¸
+

(1− λ)

"Z min{s,v∗}

0.35
2 (v∗ − y)

³
4y3

´
dy + (v∗ − s)

³
v4∗ − s4

´#
The derivative is strictly negative for each s < v∗, so that the optimal stopping time is 0.7. The

expected utility of playing tough is therefore:

U (tough) = λ

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4dy + 2 (v∗ − 0.7)
1− (0.7)4
1− (0.35)4

#
+

(1− λ)

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4dy + (v∗ − 0.7)
v4∗ − (0.7)4
1− (0.35)4

#

=

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4dy
#
+

+
h
2λ
³
1− (0.7)4

´
+ (1− λ)

³
v4∗ − (0.7)4

´i v∗ − 0.7
1− (0.35)4

The expected utility of opening soft is

U (soft) =

Ã
λ+ (1− λ)

v4∗ − (0.35)4
1− (0.35)4

!
(v∗ − 0.35)
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As λ goes to zero we have:

U (tough) =

"Z 0.7

0.35
2 (v∗ − y) 4y32

1− (0.35)4dy
#
+ (v∗ − 0.7) v

4∗ − (0.7)4
1− (0.35)4

U (soft) =
v4∗ − (0.35)4
1− (0.35)4 (v∗ − 0.35)

It can now be checked that:

U (soft) > U (tough)

for each v∗ ∈ [0.7, 1]. Thus, any equilibrium must have v∗ = 1. It is now straightforward to check

that v∗ = 1 can in fact be supported in equilibrium.

When λ is close to 1, the expected social welfare is approximately:

W a =

Z 0.35

0

Z v1

0
2v1

³
4v32

´
dy +

Z 1

v1
2v2

³
4v32

´
dv2

³
4v31

´
dv1

+

Z 1

0.35

µZ 0.35

0
2v1

³
4v32

´
dv2 +

Z 1

0.35
(v1 + v2)

³
4v32

´
dv2

¶³
4v31

´
dv1 = 1.6156.

If a reservation price of 0.7 is imposed, then all low budget types, as well as the high budget

types with value lower than 0.7, do not participate. In this case, since it is common knowledge that

the participants are not budget constrained, there is a competitive equilibrium in which the bidder

with the highest value wins both objects, and the expected social welfare is:

W b = (0.7)4 ×
µZ 1

0.7
2v2

³
4v32

´
dv2

¶
+

+

Z 1

0.7

µZ v1

0
2v1

³
4v32

´
dv2 +

Z 1

v1
2v2

³
4v32

´
dv2

¶³
4v31

´
dv1 ∼= 1.706

To see how the expression is computed, notice that when v1 < 0.7, which happens with probability

(0.7)4, then the two objects go to bidder 2 iff v2 > 0.7; this is the first term. When v1 > 0.7 then

the two objects go to the highest bidder (second term). SinceW b > W a, in this case the imposition

of a reservation price increases efficiency.

4.4 Other Changes in the Auction Format

In this paper we have examined a specific auction format, and have not tried to find the optimal

mechanism (either under the point of view of social welfare or under the point of view of revenue)

for the sale of multiple objects when bidders can be budget constrained. The analysis of section
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3, however, was general and it applies to any auction format. Therefore, we can conclude that the

allocation in which the two objects are assigned to the highest-valuation bidder, at the price of the

second valuation, whenever the agents are not budget constrained cannot be the outcome of any

auction format. Quite simply, the problem is that such an allocation is not incentive compatible.

While a discussion of the optimal mechanism is beyond the scope of this paper, it is instructive

to briefly analyze what would happen under some simple modifications of the auction rules.

One possible modification is irrevocable exit. This would correspond to a ‘button auction’ in

which each bidder controls two buttons, each one corresponding to one of the objects. According

to this auction format, the price on a given object goes up as long as both bidders keep pressing

the corresponding button; as soon as one bidder i releases the button, the object is adjudicated to

bidder 3− i at the price at which the other bidder drops out.
Let us first observe that the equilibrium analyzed in section 4 would remain virtually unchanged

if the buttons referred to the number of objects that a bidder is willing to buy, as opposed to

a specific object. In this case each bidder has one button saying ‘two objects’ and one button

saying ‘one object’. Each agent starts pressing the ‘two’ button, and a switch to the ‘one’ button

is irreversible. However, the price on both objects goes up as long as there is excess demand (in

particular, one agent pressing ‘two’ and the other pressing ‘one’). Under this auction format, the

same incentives for price reduction present in the equilibrium discussed in section 4 would remain.

As a matter of fact, as this would be basically a uniform-price auction, the results of Ausubel and

Cramton [1] apply: demand reduction would be present even in the absence of budget constraints.

Suppose now that each button is object-specific, so that whenever a button is released the

corresponding object is assigned to the remaining bidder at the drop-out price of the other bidder.

Consider the following strategy:

• keep the button on object i pressed as lond as pi ≤ min
©
vi,

wi
2

ª
.

• as soon as p reaches wi2 then exit the auction on object i. Remain in the auction for the other
object as long as the price is p ≤ vi.

The allocation resulting from this strategy is the following:

• A high-budget bidder gets 2max {vi − v3−i, 0} when the opponent is also high-budget, and
max {vi − v3−i, 0}+max {vi −min {v3−i, hL} , 0} when the opponent is low-budget.
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• A low-budget bidder gets 2max {vi − v3−i, 0} if v3−i < hL. If the opponent is high-budget

with v3−i ≥ hL then she gets max {vi − v3−i, 0}, and the opponent is low-budget with v3−i ≥
hL then she gets max {vi − hL, 0}.

It can be checked that this allocation is incentive compatible, and in particular that the inequality:

E [U (vi, wH , v3−i, w3−i)] ≥ E [(vi, wL, v3−i, w3−i)] ,

is satisfied for a high budget type. Also, it is not difficult to find beliefs and out-of-equilibrium

strategies making this allocation the outcome of a perfect Bayesian equilibrium in the object-specific

button auction.

This however may not be revenue maximizing for the seller. The trade off is due to the fact that

a tough high-budget bidder in the auction in which re-entering is allowed always pays the opponent

player value vi on both objects, while the irrevocable exit auction implies a payment of vi on one

object and hL on the other object.

Consider now a sequential auction. Suppose that in both auctions each bidder bids up to

min
©
vi,

wi
2

ª
. Then, whenever two bidders are not budget constrained the two auctions have the

same outcome, the bidder with the highest value gets both objects. Is the allocation of the irrevo-

cable exit auction an equilibrium?

Suppose the low-budget bidder goes for the object in the first period. This cannot be an

equilibrium because you have an incentive to increase the price in order to deplete your opponent’s

budget, in case it is budget constrained. Now suppose that a low-budget agent bids up to hL

in the first auction and up to the valuation (in case no object was won) in the second auction.

This appear to be an equilibrium. If I allow my opponent to win at hL nothing changes if she is

high-budget (I can get at most one object at a price v3−i, so my utility is max {vi − v3−i, 0}). If
she is low-budget then the price will be hL in the second period as well. Therefore, a low budget

bidder is indifferent between winning one object in the first period or in the second (this argument

does not work if there is discounting, as the low budget bidder would prefer to win in the first

period; in this case, the equilibrium would probably be that the price in the first auction when two

low-budget meet is higher than in the second auction).
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5 Conclusions

We have explored the effects that the possibility of binding budget constraints may have on auctions

with multiple objects. It is clear that budget constraints reduce the level of competition because

the bidders have a lower ability to pay: we have shown that competition is further reduced due to

strategic reasons. In fact even the slightest possibility of having binding budget constraints implies

that a set with strictly positive measure of high-budget bidders will pretend to be low-budget, so

that the objects are inefficiently split far more often than what would be implied by the pure effect

of budget constraints. In fact, the outcome of the auction appears to be collusive, with the bidders

splitting the objects at low prices. This effect appears to be robust to the auction format, as it

stems from the fact that the budget-constrained efficient allocation is not incentive-compatible.

Thus, in any equilibrium of any mechanism some high-budget types will pretend to be low-budget

types. The problem is created by the fact that low-budget bidders have strictly positive proba-

bility, thus introducing an additional incentive compatibility constraint. It follows that measures

which exclude budget-constrained bidders from participating can be welfare enhancing, since they

stimulate competition and favor a more efficient allocation of the objects.

23



Appendix

Proof of Proposition 1. In order to prove that an equilibrium exists, we have to show that a

type v∗ ≥ hL exists, such that all types vi ∈ [hL, v∗) prefer to play ‘soft’ when prices reach hL,
while all types [v∗, 1] prefer to play ‘tough’. We begin by establishing some preliminary results. Let

U (v1, s; v∗, b) be the function defined by (4) and (5), R (v1; b, v∗) the correspondence defined by (6)

and s (v1; b, v∗) the function defined by (7). In our first lemma we characterize some properties of

the optimal stopping rule.

Lemma 1 The optimal stopping rule satisfies the following properties:

• The correspondence R (v1; b, v∗) is upper-hemicontinuous in v1 and v∗ and compact valued.

• The function s (v1; b, v∗) is non-decreasing and s (v1; b, v∗) < v1 whenever v1 ∈ (b, 1).

• If s (v1; b, v∗) is constant over an interval [v1, v1 + δ) then either s (v1; b, v∗) = b or s (v1; b, v∗) =

v∗.

• Let K ⊂ [b, 1] be the set of points of discontinuity of s (v1; b, v∗) and let ψ be a measure defined
on [b, 1] which is absolutely continuous with respect to the Lebesgue measure. Then ψ (K) = 0.

Proof. The properties of the correspondence R follow from the Maximum Theorem and the

continuity of U (v1, s; v∗, b).

Since the function U (v1, s; v∗, b) satisfies increasing differences in (s; v1), we have that s (v1; b, v∗)

is non-decreasing in v1 (see e.g. Milgrom and Shannon [16]). It is obvious that s (v1; b, v∗) ≤ v1. To
see that s (v1; b, v∗) < v1 whenever v1 ∈ (b, 1) observe that U (v1, s; v∗, b) is always left-differentiable
with respect to s at s = v1, and the left derivative

∂−U(v1,s;v∗,b)
∂s

¯̄̄
s=v1

is strictly negative whenever

v1 < 1. Thus s = v1 cannot be optimal.

Suppose now that s (v1; b, v∗) is constant over an interval [v1, v1 + δ). When b ≥ v∗ then the
function U (v1, s; v∗, b) is everywhere differentiable in s. Therefore, for s to be optimal it must be

the case that:
∂U

∂s
= (v1 − s) f (s)− [1− F (s)] ≤ 0.
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Let s = s (v1; b, v∗). If ∂U
∂s (v1, s; b, v∗) = 0 then, for each v01 > 0 we have ∂U

∂s (v
0
1, s; b, v∗) > 0, so

that s cannot be the optimal stopping time on an interval (v1, v1 + δ). If ∂U
∂s (v1, s; b, v∗) < 0 then

it must be the case that s = b.

Consider now the case b < v∗. The function is differentiable in s except at s = v∗. The derivative

at s 6= v∗ is:

∂U

∂s
=


(v1 − s) f (s)− [λ+ (1− λ)F (v∗)− F (s)] if s < v∗

λ [(v1 − s) f (s)− (1− F (s))] if s > v∗

Thus, suppose that at v1 we have s = s (v1; b, v∗). If s < v∗ then we can apply the same reasoning

as above to conclude that the function can only be constant if s = b. Suppose now s = v∗. Notice

that at v∗ the function U is both left and right differentiable, and we have:

∂−U
∂s

¯̄̄̄
¯
s=v∗

= (v1 − v∗) f (v∗)− λ (1− F (v∗))

∂+U

∂s

¯̄̄̄
¯
s=v∗

= λ [(v1 − v∗) f (v∗)− (1− F (v∗))]

Since λ ∈ (0, 1), it is possible to have ∂−U
∂s

¯̄̄
s=v∗

> 0 > ∂+U
∂s

¯̄̄
s=v∗

over a set [v1, v1 + δ). In this

case v∗ can be the optimal stopping time for each v1 in the set, and the optimal stopping time can

therefore be constant. Next, suppose s > v∗. Then s can be optimal only if the derivative is zero,

and this in turn implies that s cannot be the optimal stopping time if v01 > v1.

To prove the last point observe that a non-decreasing function defined on a compact set has at

most countably many points of discontinuity (Kolmogorov-Fomin, page 316, Theorem 3), and a

countable set has Lebesgue measure zero.

Suppose now that we are on the equilibrium path, and the bids have just reached the level hL.

Each bidder is winning one object. At this point, each bidder has to signal whether she is “soft,”

by remaining silent, or “tough,” by bidding on the object she is not winning. Fix an arbitrary

threshold v∗ ∈ (hL, 1] , and assume that bidder 1 conjectures that her opponent plays soft if and
only if w2 = wL, or w2 = wH and v2 < v∗. Let G (v2) ≡ F (v2)−F (hL)

1−F (hL) .

Suppose that bidder 1 plays tough. If bidder 2 is not budget constrained, then with probability

1−G (v∗) she also plays tough: each bidder then bids up to her value for both objects, and bidder
1 earns 2max {v1 − v2, 0}. With probability G (v∗) , the high-budget opponent plays soft. In this
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case, by trying to win both objects until the bids arrive at level s bidder 1 earns 2 (v1 − v2) if
v2 < s, and v1 − s otherwise. Thus the expected payoff for bidder 1 when facing a high-budget
opponent is:

TH (v1; s, v∗) = 2
Z min{v∗,s}

hL

(v1 − v2) dG (v2) +
Z v∗

min{v∗,s}
(v1 − s) dG (v2)

+2

Z 1

v∗
max {v1 − v2, 0} dG (v2) .

If instead bidder 2 is budget constrained, she will also play soft, and bidder 1 can push both bids

up to s, thus earning on average:

TL (v1; s, v∗) ≡ 2
Z s

hL

(v1 − v2) dG (v2) + (v1 − s) [1−G (s)] .

The overall expected payoff of playing tough, and selecting a stopping time s against a soft opponent

is:

λTL (v1; s, v∗) + (1− λ)TH (v1; s, v∗) .

Now let

T (v1; v∗) ≡ max
s∈[hL,1]

λTL (v1; s, v∗) + (1− λ)TH (v1; s, v∗) .

This function is bidder 1’s expected surplus of opening tough when she conjectures that her oppo-

nent plays tough if and only if w2 = wH and v2 > v∗.

Lemma 2 The function T (v1; v∗) is continuous in (v1, v∗).

Proof. This follows from the Maximum Theorem and the fact that the function λTL (v1; s, v∗) +

(1− λ)TH (v1; s, v∗) is continuous in v1, s and v∗.

Suppose now that bidder 1 plays soft. If w2 = wL, or if w2 = wH and v2 < v∗, bidder 2 also

plays soft, and the auction ends immediately with one object going to each bidder. Bidder 1’s

surplus in this case is v1 − hL. The probability of this happening is λ+ (1− λ) G (v∗).

If instead w2 = wH and v∗ ≤ v2, bidder 2 plays tough, i.e. bids on her second object, and

continues to do so until the bids reach s (v2;hL, v∗), if bidder 1 responds by bidding “defensively”,

i.e. if by bidding on one object only when she is losing both. At any given round however, bidder

1 may decide to bid on a second object. This constitutes an out of equilibrium action, and our

equilibrium specifies that in this case the two bidders will simply bid up to their values.
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It is clear that, if v1 ≤ v∗, no such deviation is profitable for bidder 1, since her opponent has a
higher value: v1 ≤ v∗ < v2. If instead v∗ < v1, suppose that bidder 1 bid defensively until the bids
reach level ba and then try to win both objects. In this case her expected payoff is:

S (v1, ba; v∗) = [λ+ (1− λ)G (v∗)] (v1 − hL) + (1− λ) SH (v1, ba; v∗) ,

where:

SH (v1, ba; v∗) ≡
Z v(ba)

v∗
[v1 − s (v2;hL, v∗)] dG (v2) + 2

Z v1

min{v(ba),v1}
(v1 − v2) dG (v2) .

and:

v (ba) := sup {v2| s (v2;hL, v∗) ≤ ba}

is the highest type of bidder 2 with a stopping time inferior to ba.

To be part of a sequentially rational strategy the point ba has to be chosen optimally. In order

to analyze this problem, it is useful to reformulate it in terms of the choice of an optimal “stopping

type” va = v (ba). In this case we write

SH (v1, va; v∗) ≡
Z va

v∗
[v1 − s (v2;hL, v∗)] dG (v2) + 2

Z v1

min{va,v1}
(v1 − v2) dG (v2) .

For a given v∗ and corresponding function s (v2;hL, v∗), define:

v+ = inf {v2 ∈ [v∗, 1]| s (v2;hL, v∗) > hL}

v = sup {v2 ∈ [v∗, 1]| s (v2;hL, v∗) < v∗}

v = inf {v2 ∈ [v∗, 1]| s (v2;hL, v∗) > v∗}

By Lemma 1 the function s (v2;hL, v∗) can be flat only over an initial interval [v∗, v+] and another

interval [v, v] at which s = v∗, and it is strictly increasing elsewhere. Therefore choosing a “trigger

point” ba is equivalent to choosing a “trigger type” va in the set:

A (v∗) = {v∗} ∪
£
v+, v

¤ ∪ [v, 1] .
Recall that we are analyzing what happens in the round after the bids have reached (hL, hL), bidder

2 has played tough, and bidder 1 has remained silent.

At this point, a choice of v∗ can be interpreted as “trigger the fight immediately”, by bidding

on both objects (this is equivalent to choosing ba = hL + ε as triggering bid). A choice of v+ can
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be interpreted as bidding defensively after the opponent has made a bid to hL+ ε, so that the bids

reach (hL + ε, hL + ε), then wait to see if the opponent counterbids and in that case trigger the

war (equivalent to choosing ba = hL + 2ε as triggering bid). A choice of va ∈ (v+, v] simply means
“trigger the fight as soon as the bids reach s (va;hL, v∗)”, where s (va;hL, v∗) ∈ (hL, v∗]. A choice
of v means “trigger the fight as soon as the bids reach v∗+ ε, and so on. Observe that the function

SH (v1, va; v∗) is continuous in va and that A (v∗) is compact. Now define:

SH (v1; v∗) = max
va∈A(v∗)

SH (v1, va; v∗) .

We have the following result.

Lemma 3 The function S (v1; v∗) is continuous in (v1, v∗).

Proof. It suffices to show that the function SH (v1, va; v∗) is continuous with respect to (v1, va; v∗),

and that the correspondence A (v∗) is continuous. Then the result follows from the Maximum

Theorem.

Continuity in v1 and va is immediate. In order to show that SH (v1, va; v∗) is continuous in v∗ it

is enough to show that:

H (v1, va; v∗) ≡
Z va

v∗
s (v2;hL, v∗) dG (v2)

is continuous in v∗, which in turn is implied by the fact that s is continuous almost everywhere,

since G is atomless. To establish continuity of s almost everywhere, suppose that at a point v2 we

have

lim
n→∞ s (v2;hL, vn) = s

∗ 6= s (v2;hL, v∗) ,

where {vn} is a sequence converging to v∗. It must be s∗ ∈ R (v2;hL, v∗), since the correspondence
R (v2;hL, vn) is upper-hemicontinuous in vn (Lemma 1). This in turn implies s

∗ < s (v2;hL, v∗),

since s (v2;hL, v∗) is the maximum of R (v2;hL, v∗). Thus v2 must be a point of discontinuity of

s (v2;hL, v∗). But we have already established in Lemma 1 that, since s is non-decreasing in v2,

the set of discontinuity points has measure zero.

We come now to the continuity of A (v∗). The only complications here are created by the ‘flat’

parts of the stopping function s, which generate ‘gaps’ in the interval. We will analyze the case in

which the only flat part is at v∗, as it is always the case in equilibrium. Extending the analysis to

incorporate the possibility of a flat part at hL is immediate.
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With no flat part at hL, we have A (v∗) = [hL, v]∪ [v, 1]. Consider a sequence {vn} converging to
v∗, and let A (vn) = [hL, vn]∪ [vn, 1]. To prove the continuity of the correspondence A (·) it suffices
to show that vn → v and vn → v.

As a preliminary result, we first prove that if v < v, so that there is an open set (v, v) of types

having v∗ as optimal stopping time, then v∗ is the unique optimal stopping time for all types in the

set. Suppose not, so that s∗ 6= v∗ is also an optimal stopping time for a type v0 ∈ (v, v). This means
U (v0, s∗;hL, v∗) = U (v0, v∗; v∗, hL), since both s∗ and v∗ are optimal stopping times. Furthermore,

since v∗ is the highest stopping time, it must be s∗ < v∗, so that:

U
¡
v0, s∗; v∗, hL

¢
= 2

Z s∗

hL

¡
v0 − y¢ dF (y) + ¡v0 − s¢ (λ+ (1− λ)F (v∗)− F (s∗))

Now observe that:

∂U (v0, s∗; v∗, hL)
∂v0

= 2F (s∗)− 2F (hL) + (λ+ (1− λ)F (v∗)− F (s∗))

On the other hand, when the optimal stopping time is v∗ we have:

U
¡
v0, v∗; v∗, hL

¢
= 2

Z v∗

hL

¡
v0 − y¢ dF (y) + λ

¡
v0 − s¢ (1− F (v∗))

so that:
∂U (v0, v∗; v∗, hL)

∂v0
= 2F (v∗)− 2F (hL) + λ (1− F (v∗))

Thus
∂U (v0, s∗; v∗, hL)

∂v0
<

∂U (v0, v∗; v∗, hL)
∂v0

Since U (v0, s∗;hL, v∗) = U (v0, v∗; v∗, hL), this implies that there is a type v00 sufficiently close to v0

such that v00 ∈ (v, v) and U (v00, s∗;hL, v∗) > U (v00, v∗; v∗, hL), a contradiction.
We now come back to proving the continuity of the correspondence A (·). Suppose first that

v = v. This happens when there is a single value bv such that s (bv;hL, v∗) = v∗ (that is, no flat

part), so that we have A (v∗) = [hL, 1]. Suppose now that limn→∞ vn = bv < limn→∞ vn = bv.
For each type v0 ∈

³bv, bv´ it must be the case that limn→∞ s (v0; vn, hL) = k, a constant, and

k ∈ R (v0; v∗, hL). Since no open interval of types can have a common optimal stopping time other
than v∗, we conclude that v∗ is an optimal stopping time for types in

³bv, bv´. Then bv < bv, since
s (bv;hL, v∗) = v∗ and s is non-decreasing. Moreover, all types in v0 ∈ ³bv, bv´ must have both v∗ and
another (higher) point as optimal stopping times. But this cannot be true since, as proved above,

if v∗ is an optimal stopping time for an open interval of types then it has to be unique.
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We now come to the case in which there is an open set (v, v) of types having v∗ as optimal

stopping time when the threshold is v∗. We will prove that for each v0 ∈ (v, v), there is N large

enough such that v0 has vn as optimal stopping time for each n > N . Furthermore, if v0 and v00

have vn as optimal stopping time then all types in the set (v0, v00) have vn as optimal stopping time.

This is turn implies that vn → v and vn → v.

Since v∗ is the unique optimum for v0, it must be the case that:

∂−U (v0, s;hL, v∗)
∂s

¯̄̄̄
¯
s=v∗

=
¡
v0 − v∗

¢
f (v∗)− λ (1− F (v∗)) > 0

∂+U (v0, s;hL, v∗)
∂s

¯̄̄̄
¯
s=v∗

= λ
£¡
v0 − v∗

¢
f (v∗)− (1− F (v∗))

¤
< 0

This in turn implies that

∂−U (v0, s;hL, vn)
∂s

¯̄̄̄
¯
s=vn

=
¡
v0 − vn¢ f (vn)− λ (1− F (vn)) > 0

∂+U (v0, s;hL, vn)
∂s

¯̄̄̄
¯
s=vn

= λ
£¡
v0 − vn¢ f (vn)− (1− F (vn))¤ < 0

for n large enough, and it also implies that if the inequalities hold for two types v0 and v00 then they

must hold for all types in the interval (v0, v00). This in turn implies that vn is a local maximum for an

open interval of types (v0, v00). Now suppose that there is a different global maximum s (v0;hL, vn).

Since vn is the only point of non-differentiability with respect to s, it must be the case that the

derivative with respect to s computed at the optimal point s (v0;hL, vn) 6= vn must be zero.
Fix now a neighborhood of I (v∗) such that ∂U(v0,s;hL,v∗)

∂s 6= 0 for each s ∈ I (v∗) at which U
is differentiable. For n large enough, we also have ∂U(v0,s;hL,vn)

∂s 6= 0 for each s ∈ I (v∗) such
that U is differentiable. Now observe that, given the upper-hemicontinuity of the best response

correspondence, it must be the case that s (v0;hL, vn)→ v∗, since v∗ is the unique optimal stopping

time s (v0;hL, v∗). This in turn implies that for n large enough, we have s (v0;hL, vn) ∈ I (v∗). This
is a contradiction, since at s (v0;hL, vn) the derivative is supposed to be zero.

Lemma 4 For any v∗ > hL there exists a δ > 0 such that all types v1 ∈ (hL, hL + δ) prefer playing

soft to playing tough.

Proof. For any v∗ we have T (hL; v∗) = S (hL; v∗) = 0. Assume v∗ > hL and consider δ such that

hL + δ < v∗. Then the utility of playing soft is:

S (v1; v∗) = (λ+ (1− λ)G (v∗)) (v1 − hL) + (1− λ)SH (v1; v∗)
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The utility of playing tough for a type v1 is:

T (v1; s, v∗) = λ

·
2

Z s

hL

(v1 − v2) dG (v2) + (v1 − s) (1−G (s))
¸

+(1− λ)

·
2

Z s

hL

(v1 − v2) dG (v2) + (v1 − s) (G (v∗)−G (s))
¸

Now observe that, for a small enough δ and for all types v1 < hL + δ,

∂T

∂s
= λ [(v1 − s) g (s)− (1−G (s))]

+ (1− λ) [(v1 − s) g (s)− (G (v∗)−G (s))] < 0,
for each s ∈ [hL, hL + δ]. Then the utility of playing tough is exactly:

HL (v1; s, v∗) = (λ+ (1− λ)G (v∗)) [(v1 − hL)] .

This is less than or equal to S (v1; v∗).

Lemma 5 Suppose that v∗ is an equilibrium threshold, and let s (v1;hL, v∗) be the corresponding

stopping function defined for v1 ∈ [v∗, 1]. Then limv1↓v∗ s (v1;hLv∗) > hL.

Proof. Since s (v1;hLv∗) is monotone a limit exists. Suppose that the claim of the lemma is not

true, so that limv1↓v∗ s (v1;hL, v∗) = hL. It must be the case that all types v1 > v∗ prefer playing

tough to playing soft. When we consider the utility of playing soft we have:

lim
v1↓v∗

S (v1; v∗) = (λ+ (1− λ)G (v∗)) (v∗ − hL)

+ (1− λ)

Z 1

v∗
max {v∗ − s (v2;hL, v∗) , 0} dG (v2)

while when we look at the utility of playing tough we have:

lim
v1↓v∗

T (v1; v∗) = (λ+ (1− λ)G (v∗)) (v∗ − hL)

Since there is a set with positive measure such that s (v2;hL, v∗) < v∗, we conclude that:

lim
v1↓v∗

S (v1; v∗) > lim
v1↓v∗

T (v1; v∗)

a contradiction.

The last lemma implies that, when v∗ is actually an equilibrium value, then the corresponding

stopping function s (v1;hL; v∗) cannot take the value hL over an interval. Combined with Lemma

1, it implies that the only value at which the stopping function can be constant is v∗.
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Lemma 6 For any equilibrium threshold value v∗, there is a set [hL, hL + δ] such that for each

v1 ∈ [hL, hL + δ] we have

S (v1; v∗) = T (v1; v∗)

Proof. By Lemma 5, for every possible equilibrium threshold v∗ there is δ0 > 0 such that

limv1↓v∗ s (v1; v∗) = hL + δ0. This implies that all types v1 ∈ [hL, hL + δ0], when playing soft or

tough can possibly win something only if they meet a soft type. Therefore

S (v1; v∗) = (λ+ (1− λ)G (v∗)) (v1 − hL) .

When we look at the utility of playing tough, we know by Lemma 4 that for a set of types [hL, hL + δ]

the optimal stopping time is hL. Therefore, for this set T (v1; v∗) = S (v1; v∗), thus yielding the

result.

Define now:

D = {δ ∈ [hL, 1] | S (v1; δ) ≥ T (v1; δ) for all v1 ∈ [hL, δ]}
We know by Lemma 6 that the set D is non-empty. Since by Lemma 3 the functions S (v1; δ) and

T (v1; δ) are continuous in δ, the set D is a closed interval. Then we define:

v∗ = max D (8)

If v∗ = 1 then we are done.

Suppose now v∗ < 1. By definition of v∗, all types v1 < v∗ prefer to play soft. The final step is

to show that, for all types v1 ≥ v∗ we have T (v1; v∗) ≥ S (v1; v∗). This is done in the next lemma,
which makes use of Assumption 1.

Lemma 7 Let v∗ be defined by (8), and suppose v∗ < 1. Then, if assumption 1 is satisfied, we

have T (v1; v∗) ≥ S (v1; v∗) for each v1 > v∗.

Proof. Consider the function

Ψ (v1) = T (v1; v∗)− S (v1; v∗) .

Since both T and S are continuous, so is Ψ. Also, we know that there exists ε > 0 such that

T (v1; v∗) > S (v1; v∗) for each v1 ∈ (v∗, v∗ + ε). Thus it is enough to show that

∂Ψ (v1)

∂v1
=

∂T (v1; v∗)
∂v1

− ∂S (v1; v∗)
∂v1

≥ 0

32



at each point of differentiability of Ψ. We start observing that, since T (v∗; v∗) = S (v∗; v∗), then

for any ε > 0 there must be some v1 ∈ (v∗, v∗ + ε) such that ∂Ψ(v1)
∂v1

> 0.

By the previous analysis we have

∂T

∂v1
= λ (1 +G (s)) + (1− λ) [2G (v1)−G (v∗) +G (min {s, v∗})] ,

and
∂S

∂v1
= λ+ (1− λ) [G (va) + 2max {G (v1)−G (va) , 0}] .

Suppose first va ≤ v1. Then
∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [G (va)−G (v∗) +G (min {s, v∗})]

which is positive since va ≥ v∗.
Consider next va > v1 (in which case va = sup {v2 |s (v2;hL, v∗) ≤ v1 }). Now

∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [2G (v1)−G (v∗)−G (va) +G (min {s, v∗})]

Since va > v1 > v∗ then v1 must be on a strictly increasing part of the stopping function, hence

the following first order condition must hold :

(va − v1) g (v1) = 1−G (v1) .

This is the condition ensuring that v1 is the optimal stopping time for type va. (Since v1 > v∗, the

FOC that we apply is the one relative to the case s > v∗). The FOC can be rewritten as

va = v1 + µ (v1) .

Substituting into the expression above for ∂Ψ(v1)
∂v1

, we have

∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [G (min {s, v∗})−G (v∗)]

+ (1− λ) [2G (v1)−G (v1 + µ (v1))] .

Now observe that, since s is increasing, the function

λG (s) + (1− λ) [G (min {s, v∗})−G (v∗)]

is increasing. Furthermore, assumption 1 implies that

2G (v1)−G (v1 + µ (v1))
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is increasing. We can then conclude that the expression of the derivative in this case is increasing.

Thus, in order to prove that ∂Ψ(v1)
∂v1

is positive, it is enough to show that at any v01 < v1 the

expression is positive. Now remember that in a right neighborhood of v∗ the function Ψ is strictly

increasing. Furthermore, for v01 sufficiently close to v∗ it must be the case that va > v01 (it would

not make sense to trigger a war). Then, there must be some point v01 at which
∂Ψ(v01)
∂v1

> 0. This

completes the proof.
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