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Abstract

In the data, individual prices change frequently and by large amounts. In standard

sticky price models, frequent and large price changes imply a fast response of the aggre-

gate price level to nominal shocks. This paper presents a model in which price setting

firms optimally decide what to observe, subject to a constraint on information flow.

When idiosyncratic conditions are more variable or more important than aggregate

conditions, firms pay more attention to idiosyncratic conditions than to aggregate con-

ditions. When we calibrate the model to match the large average absolute size of price

changes observed in the data, prices react fast and by large amounts to idiosyncratic

shocks, but prices react only slowly and by small amounts to nominal shocks. Nominal

shocks have persistent real effects. We use the model to investigate how the optimal

allocation of attention and the dynamics of prices depend on the firms’ environment.
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“An optimizing trader will process those prices of most importance to his de-

cision problem most frequently and carefully, those of less importance less so,

and most prices not at all. Of the many sources of risk of importance to him,

the business cycle and aggregate behavior generally is, for most agents, of no

special importance, and there is no reason for traders to specialize their own

information systems for diagnosing general movements correctly.” (Lucas, 1977,

p. 21)

1 Introduction

In the data, individual prices change frequently and by large amounts. Bils and Klenow

(2004) and Klenow and Kryvtsov (2004) study micro data on consumer prices that the U.S.

Bureau of Labor Statistics collects to compute the consumer price index. Bils and Klenow

find that half of all non-housing consumer prices last less than 4.3 months. Klenow and

Kryvtsov find that, conditional on the occurrence of a price change, the average absolute

size of the price change is over 13 percent.1

At the same time, the aggregate price level responds slowly to monetary policy shocks.

A variety of different schemes for identifying monetary policy shocks yield this result (e.g.

Christiano, Eichenbaum and Evans (1999), Leeper, Sims and Zha (1996) and Uhlig (2004)).

Uhlig (2004) finds that only about 25 percent of the long-run response of the U.S. GDP

price deflator to a monetary policy shock occurs within the first year after the shock.

This combination of empirical observations is difficult to explain with standard models

of sticky prices. Consider the popular time-dependent model of price setting due to Calvo

(1983). The Calvo model can explain why the aggregate price level responds slowly to

monetary shocks if: (a) individual firms in the model adjust prices infrequently;2 or (b)

individual firms in the model adjust prices by small amounts. See Woodford (2003) for

1The finding that individual prices change frequently and by large amounts is robust to whether temporary

price changes reflecting sales are included or not. When Bils and Klenow net out the impact of sales, the

median price duration rises from 4.3 to 5.5 months. When Klenow and Kryvtsov net out the impact of sales,

the average absolute size of price changes falls from 13.3 to 8.5 percent.
2Galí and Gertler (1999) estimate the Calvo model using quarterly aggregate U.S. data. The estimated

model implies that a typical firm waits about 5-6 quarters before changing its price.
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reasons why firms can find it optimal to adjust prices by small amounts in response to

shocks. However, neither (a) nor (b) seems to be true in the data.

Golosov and Lucas (2003) conduct a quantitative experiment with a state-dependent

model of price setting. They calibrate a menu cost model with idiosyncratic productivity

shocks and monetary shocks to match the frequency and size of price changes reported in

Klenow and Kryvtsov (2004). In the calibrated model, the aggregate price level responds

quickly to a monetary shock. The reason is that a firm setting a new price in a menu cost

model takes into account current values of all shocks. Hence, frequent price adjustment

implies a fast response of prices to all shocks, including monetary shocks.

This paper presents a model that can explain why individual prices change frequently

and by large amounts and, at the same time, the aggregate price level responds slowly to

monetary shocks. We study price setting by firms under “rational inattention” in the sense

of Sims (2003). Firms can change prices every period at no cost. The profit-maximizing

price depends on the aggregate price level, real aggregate demand and an idiosyncratic state

variable (reflecting consumers’ tastes or the firm’s technology). We let firms decide what to

observe. Firms choose the number of signals that they receive every period as well as the

stochastic properties of these signals. Firms face the constraint that the information flow

between the sequence of signals and the sequence of states of the economy is bounded. Other

properties of the signals are up to the firms. In particular, since the state of the economy is

multidimensional, firms decide which variables to observe with higher precision. We close

the model by specifying exogenous stochastic processes for nominal aggregate demand and

the idiosyncratic state variables.

The model makes the following predictions. Firms adjust prices every period and yet

impulse responses of prices to shocks are sticky — dampened and delayed relative to the

impulse responses under perfect information. The extent of dampening and delay in a par-

ticular impulse response depends on the amount of attention allocated to the type of shock.

When idiosyncratic conditions are more variable or more important than aggregate condi-

tions, firms pay more attention to idiosyncratic conditions than to aggregate conditions. In

this case, price reactions to idiosyncratic shocks are strong and quick, but price reactions

to aggregate shocks are dampened and delayed. This can explain why individual prices
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change frequently and by large amounts while the aggregate price level responds slowly to

monetary shocks. In addition, there is a feedback effect. When firms pay little attention

to aggregate conditions, the aggregate price level moves little and therefore firms find it

optimal to pay even less attention to aggregate conditions. The feedback effect makes the

aggregate price level even more sticky.

We calibrate the model to match the average absolute size of price changes reported

in Klenow and Kryvtsov (2004). We find that prices react fast and by large amounts to

idiosyncratic shocks, but prices react only slowly and by small amounts to nominal shocks.

Nominal shocks have persistent real effects. The reason is the following. To match the

large average absolute size of price changes observed in the data, idiosyncratic shocks in

the model must have a large variance or must be very important for pricing decisions. This

implies that firms allocate most of their attention to idiosyncratic conditions.

We use the model to investigate how the optimal allocation of attention and the dy-

namics of prices depend on the firms’ environment. As the variance of nominal aggregate

demand increases, the firms’ tracking problem becomes more difficult and their profits

decrease. Firms react by reallocating attention to aggregate conditions away from idiosyn-

cratic conditions. Firms track both aggregate and idiosyncratic conditions less well. The

fall in profits suggests that costs of aggregate instability in the real world may be due to

the fact that aggregate instability makes the firms’ tracking problem more difficult. As the

variance of the idiosyncratic state variables increases, firms reallocate attention to idiosyn-

cratic conditions away from aggregate conditions. Therefore the model predicts that firms

operating in more unstable idiosyncratic environments track aggregate conditions less well.

Sims (1998) was the first to propose information flow constraints as a source of inertial

behavior. Sims (2003) works out some implications of adding information flow constraints

to economic models. The firms’ problem of deciding what to observe in our model is similar

to the quadratic control problem with an information flow constraint studied in Sims (2003,

Section 4). However, there are important differences. One difference is that firms in our

model track a multidimensional state of the economy. Thus firms have to decide how to

allocate attention across different variables. Another difference is that firms in our model

track an endogenous variable — the aggregate price level. This introduces the feedback effect
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described above.3

Our work is also related to the literature on information imperfections and the real

effects of monetary shocks. In Lucas (1973), firms observe prices in their markets but not

the aggregate price level. Firms rationally misinterpret unexpected inflation for a relative

price increase and react by raising output. Monetary shocks have real effects until they

become public information. Since changes in monetary policy are published with little

delay, it has been argued that the Lucas model cannot explain persistent real effects of

monetary policy shocks.

Woodford (2002) points out that there is a difference between public information —

information that is available in principle to anyone who chooses to look it up — and the

information of which decisionmakers are actually aware. He follows Sims (2003) in arguing

that agents have limited capacity to acquire and process information. Woodford uses this

idea to motivate a model in which firms observe nominal aggregate demand with idiosyn-

cratic noise. If strategic complementarity in price setting is strong, the real effects of a

nominal shock can be large and persistent. While Woodford assumes that firms pay little

attention to aggregate conditions, we derive the optimal allocation of attention. This allows

us to identify the circumstances under which firms find it optimal to pay little attention to

aggregate conditions. Furthermore, this allows us to study how the optimal allocation of

attention and the dynamics of prices vary with changes in the firms’ environment.4

Mankiw and Reis (2002) develop a different model in which firms are imperfectly in-

formed about the state of the economy. Mankiw and Reis assume that every period an

exogenous fraction of firms obtains perfect information about all current and past distur-

bances, while all other firms continue to set prices based on old information. Reis (2004)

provides microfoundations for this kind of slow diffusion of information. He assumes that

3Moscarini (2003) studies a univariate quadratic control problem with an information flow constraint.

In contrast to Sims (2003), Moscarini assumes that the decisionmaker can only meet the information flow

constraint by infrequent sampling. Moscarini analyzes the optimal sampling frequency. The information

that the decisionmaker receives once he or she samples is given exogenously.
4Woodford’s (2002) model has been extended in a number of directions. Hellwig (2002) studies the role of

public information. Gumbau-Brisa (2003) studies the effects of a Taylor rule. Adam (2004) studies optimal

monetary policy.
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firms face a fixed cost of obtaining perfect information, implying that firms decide to obtain

information infrequently. In Mankiw and Reis (2002) and Reis (2004), prices react with

equal speed to all disturbances. In contrast, in our model firms optimally decide to receive

more precise information concerning some shocks and less precise information concerning

other shocks. Therefore in our model prices react quickly to some shocks but only slowly to

other shocks. This can explain the combination of empirical observations that motivate our

paper. Note that in a model with a fixed cost of obtaining information, the cost of obtaining

information is independent of the stochastic properties of the variables to be tracked. In a

model with an information flow constraint, tracking a variable with a higher variance well

uses up a larger fraction of the available information flow.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 derives the firms’ price setting behavior. In Section 4 we solve a special case of the

model analytically. In Sections 5 and 6 we return to the model in its general form. In

Section 5 we study the firms’ decision problem of what to observe given aggregate variables.

In Section 6 we compute the rational expectations equilibrium for a variety of different

economies. Section 7 concludes. Appendix A introduces the tools that we use to state

the firms’ information flow constraint. The remaining appendices contain the proofs of the

results used in the main text and details of how to solve the model numerically.

2 The model

2.1 Description of the economy

Consider an economy with a continuum of firms indexed by i ∈ [0, 1]. Time is discrete and
indexed by t.

Firm i sells a good also indexed by i. Every period t = 1, 2, . . ., the firm sets the price

of the good, Pit, so as to maximize

Eit

" ∞X
τ=t

βτ−tπ (Piτ , Pτ , Yτ , Ziτ )

#
, (1)

where Eit is the expectation operator conditioned on the information of firm i in period t,

β is a scalar between zero and unity and π (Pit, Pt, Yt, Zit) are real profits of firm i in period
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t. The real profits depend on the price set by the firm, Pit, the aggregate price level, Pt,

real aggregate demand, Yt, and an idiosyncratic state variable, Zit. The variable Zit reflects

consumers’ valuation of good i or the firm-specific state of technology. We assume that the

function π is twice continuously differentiable and homogenous of degree zero in its first

two arguments. Thus real profits only depend on the relative price Pit/Pt.5

The information of firm i in period t is given by the sequence of all signals that the firm

has received up to that point in time

sti = {s1i , si2, ..., sit}. (2)

Here sit denotes the signal that firm i receives in period t. The signal can be vector valued.

Furthermore, s1i denotes the sequence of signals that firm i receives in period one. We allow

for the possibility that the firm receives a sequence of signals in period one.

The firm can change the price of the good every period at no cost and takes as given

the stochastic process for the aggregate price level, {Pt}, the stochastic process for real
aggregate demand, {Yt}, and the stochastic process for the idiosyncratic state variable,
{Zit}. Therefore the price setting problem of firm i in period t is a purely static problem

max
Pit

Eit[π (Pit, Pt, Yt, Zit)]. (3)

The aggregate environment of firms is specified by postulating an exogenous stochastic

process for nominal aggregate demand.6 Let

Qt ≡ PtYt (4)

denote nominal aggregate demand and let qt ≡ lnQt− ln Q̄ denote the log-deviation of nom-
inal aggregate demand from its deterministic trend. We assume that qt follows a stationary

Gaussian process with mean zero and absolutely summable autocovariances.
5To give an example, in a standard model of monopolistic competition

π (Pit, Pt, Yt, Zit) = Yt

µ
Pit
Pt

¶1−θ
− C

Ã
Yt

µ
Pit
Pt

¶−θ
, Yt, Zit

!
,

where Yt is the Dixit-Stiglitz index of real aggregate demand, Pt is the corresponding price index and

Yt
³
Pit
Pt

´−θ
is the demand for good i with θ > 1. Real production costs C depend on the firm’s output and

may depend on real aggregate demand through factor prices. Here Zit is a productivity index.
6This approach is common in the literature. For example, Lucas (1973), Woodford (2002), Mankiw and

Reis (2002) and Reis (2004) also postulate an exogenous stochastic process for nominal aggregate demand.
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The log of the aggregate price level is defined as

lnPt ≡
1Z
0

lnPitdi. (5)

One obtains the same equation in a standard model of monopolistic competition after a

log-linearization.7

The idiosyncratic environment of firms is specified by postulating an exogenous sto-

chastic process for the idiosyncratic state variables. Let zit ≡ lnZit − ln Z̄ denote the

log-deviation of the idiosyncratic state variable of firm i from its deterministic trend. We

assume that the processes {zit}, i ∈ [0, 1], are mutually independent and independent of
{qt}. Furthermore, we assume that the zit, i ∈ [0, 1], follow a common stationary Gaussian
process with mean zero and absolutely summable autocovariances. Since the zit, i ∈ [0, 1],
for given t are mutually independent and identically distributed random variables with mean

zero and finite variance, we have8
1Z
0

zitdi = 0. (6)

One could close the model by making an assumption about the information that firm i

obtains in period t. That is what is typically done in the literature.9 In contrast, we would

like to capture the fact that firms can decide what to observe. Therefore we let each firm

choose the stochastic process for the signal sit. We refer to this choice as the choice of the

information system. Formally, we assume that firm i solves in period zero

max
{sit}∈Γ

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
, (7)

subject to

P ∗it = argmax
Pit

E[π (Pit, Pt, Yt, Zit) |sti], (8)

7 In a standard model of monopolistic competition, the aggregate price level is defined as Pt ≡³R 1
0
P 1−θ
it di

´ 1
1−θ

. Log-linearizing this equation around any point with the property that all the Pit are

equal yields equation (5).
8See Uhlig (1996), Theorem 2.
9For example, the perfect information case obtains when sit = (Pt, Yt, Zit)

0 for all i, t. In a signal-

extraction model, sit would equal the variables of interest plus exogenous noise. In an information-

delay model, sit = (Pt−n, Yt−n, Zit−n)
0 for some n > 0. In a sticky information model, sit =

(P1, ..., Pt, Y1, ..., Yt, Zi1, ..., Zit)
0 with some probability ρ and sit = sit−1 with probability 1− ρ.
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and the information flow constraint

I ({Pt} , {Yt} , {Zit} ; {sit}) ≤ κ. (9)

The firm can choose the stochastic process for the signal from the set Γ defined below. The

firm chooses the stochastic process for the signal so as to maximize the expected discounted

sum of profits, taking into account how the choice of the information system affects the

price setting behavior in future periods. We follow Sims (2003) in assuming that agents

have limited ability to acquire and process information. The information flow constraint

(9) imposes an upper bound on the information flow between the sequence of signals and

the sequence of states of the economy. The information flow between stochastic processes

is defined in Appendix A.

The information flow constraint implies that the firm cannot decide to observe the

multidimensional state of the economy perfectly in every period. The firm can decide to

observe some variables with a higher precision than other variables, as long as the total

information flow does not exceed the parameter κ.10 This formalizes the idea that agents

can focus on some variables at the cost of not focusing on other variables. See the remark

by Lucas (1977) quoted at the beginning of this paper.

The definition of the set Γ captures additional assumptions about how firms acquire and

process information. The set Γ is defined as the set of all stochastic processes that have the

following four properties. First, the signals contain no information about future innovations

to nominal aggregate demand and future innovations to the idiosyncratic state variables.

Second,

sit = (s1it, s2it)
0 , (10)

where

{s1it} , {Pt} , {Yt} are independent of {s2it} , {Zit} . (11)

The vector of signals that firm i receives in period t consists of a first set of signals concerning

aggregate conditions, s1it, and a second set of signals concerning idiosyncratic conditions,

s2it. A signal concerning aggregate conditions contains no information about idiosyncratic

10 In the model, the ability of a firm to acquire and process information is exogenous. It is straightforward

to extend the model by specifying a cost function for κ and letting each firm choose the optimal κ.
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conditions and vice versa. This assumption captures the idea that acquiring information

about aggregate conditions and acquiring information about idiosyncratic conditions are

two separate activities.11 Third,

{s1it, s2it, pt, yt, zit} is a stationary Gaussian vector process, (12)

where pt denotes the log-deviation of the aggregate price level from its deterministic trend

and yt denotes the log-deviation of real aggregate demand from its deterministic trend.

It seems reasonable that in a Gaussian economy Gaussian signals are optimal. In special

cases, this is easy to prove. In the general case, we have not proved this yet. Therefore

we state (12) as an assumption.12 Fourth, all noise in signals is idiosyncratic. Thus we

follow Sims (2003) and Woodford (2002) in supposing that the critical bottleneck is not the

public availability of information but instead the limited ability of private decisionmakers

to acquire and process correctly all relevant information.

Finally, we make a simplifying assumption. We assume that firms receive a long sequence

of signals in period one after having chosen the information system in period zero

s1i = {si−∞, . . . , si1} . (13)

This assumption implies that the price set by a firm follows a stationary process. This

simplifies the analysis.13

11We think that most signals in the real world approximately satisfy the independence assumption (11).

Consider a manager who has to set a price. There is no signal in the real world that would simply tell the

manager the optimal price. The manager has to collect different pieces of information (he may delegate

this task). For example, the manager may read about the aggregate state of the economy in a financial

newspaper. To give another example, the manager may commission a marketing report about tastes of

customers. Reading a financial newspaper gives the manager very little information about whether customers

like a particular good, what production of the good would cost and whether competitors might produce the

good more cheaply. A marketing report gives the manager very little information about the aggregate state

of the economy.
12Note that assumption (12) can only be satisfied when {pt, yt, zit} is a stationary Gaussian vector process.

We will verify that this is true in equilibrium. Similarly, condition (11) can only be satisfied when {Pt} and
{Yt} are independent of {Zit}. Again we will verify that this is true in equilibrium.
13One can show that observing a long sequence of signals in period one does not change the information

flow.
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2.2 Equilibrium

An equilibrium of the model are stochastic processes for the signals, {sit}, for the prices,
{Pit}, for the aggregate price level, {Pt}, and for real aggregate demand, {Yt}, such that:

1. Each firm i ∈ [0, 1] chooses the stochastic process for the signal optimally in period
t = 0 and sets the price for the good that it sells optimally in periods t = 1, 2, . . .,

taking as given {Pt}, {Yt} and {Zit}.

2. In every period t = 1, 2, . . . and in each state of nature, the aggregate price level is

given by (5) and real aggregate demand satisfies (4).

3 Price setting behavior

In this section, we look at the firms’ price setting behavior for a given choice of the infor-

mation system.

The first-order condition for optimal price setting by firm i in period t is

E[π1 (P
∗
it, Pt, Yt, Zit) |sti] = 0, (14)

where π1 denotes the derivative of the function π with respect to its first argument. In order

to obtain a closed-form solution for the price set by the firm, we work with a log-quadratic

approximation to the profit function around the solution of the non-stochastic version of

the model.

The solution of the non-stochastic version of the model is as follows. Suppose that

Qt = Q̄ for all t and Zit = Z̄ for all i, t. In this case, there is no uncertainty and all firms

solve the same price setting problem. Therefore, in equilibrium, it has to be true that

π1
¡
Pt, Pt, Yt, Z̄

¢
= 0. (15)

Multiplying by Pt > 0 yields14

π1
¡
1, 1, Yt, Z̄

¢
= 0. (16)

14Recall that the profit function π is homogeneous of degree zero in its first two arguments. Therefore the

function π1 is homogeneous of degree minus one in its first two arguments.
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The last equation characterizes equilibrium real aggregate demand, denoted Ȳ .15 The

equilibrium aggregate price level, denoted P̄ , is given by

P̄ =
Q̄

Ȳ
. (17)

Next we compute the log-quadratic approximation to the profit function around the

non-stochastic solution of the model. Let xt ≡ lnXt − ln X̄ denote the log-deviation of

a variable from its value at the non-stochastic solution. Note that Xt = X̄ext and define

the function π̂ via π̂ (pit, pt, yt, zit) = π
¡
P̄ epit , P̄ ept , Ȳ eyt , Z̄ezit

¢
. Compute a second-order

Taylor approximation to the function π̂ around the point (pit, pt, yt, zit) = (0, 0, 0, 0). This

yields the log-quadratic approximation to the profit function

π̃ (pit, pt, yt, zit) = π̂ (0, 0, 0, 0) + π̂1pit + π̂2pt + π̂3yt + π̂4zit

+
π̂11
2
p2it +

π̂22
2
p2t +

π̂33
2
y2t +

π̂44
2
z2it

+π̂12pitpt + π̂13pityt + π̂14pitzit

+π̂23ptyt + π̂24ptzit + π̂34ytzit, (18)

where π̂1, for example, denotes the derivative of the function π̂ with respect to its first

argument evaluated at the point (pit, pt, yt, zit) = (0, 0, 0, 0). It is straightforward to show

that π̂1 = 0, π̂11 < 0 and π̂12 = −π̂11.
After the log-quadratic approximation to the profit function, the solution to the price

setting problem of firm i in period t is16

p∗it = E[pt|sti] +
π̂13
|π̂11|E[yt|s

t
i] +

π̂14
|π̂11|E[zit|s

t
i]. (19)

The log of the price set by firm i in period t is a linear function of the conditional expectation

of the log of the aggregate price level, the conditional expectation of the log of real aggregate

demand and the conditional expectation of the log of the idiosyncratic state variable.

For comparison, the solution to the price setting problem of firm i in period t under

perfect information is

pfit = pt +
π̂13
|π̂11|yt +

π̂14
|π̂11|zit. (20)

15Here we assume that equation (16) has a unique solution.
16Take the derivative of E

£
π̃ (pit, pt, yt, zit) |sti

¤
with respect to pit, set the derivative equal to zero and

solve for pit. Recall that π̂1 = 0, π̂11 < 0 and π̂12 = −π̂11. This yields equation (19).
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Whenever the price (19) differs from the price (20) there is a loss in profits due to imperfect

information. More precisely, the period t loss in profits due to imperfect information is

π̃
³
pfit, pt, yt, zit

´
− π̃ (p∗it, pt, yt, zit) =

|π̂11|
2

³
pfit − p∗it

´2
. (21)

The firm can affect this loss by choosing the information system.

Before we turn to the choice of the information system, two additional observations will

be helpful. First, let us define ∆t ≡ pt +
π̂13
|π̂11|yt. The following equations show that the

variable ∆t summarizes all the firm would like to know about aggregate conditions. The

prices (19) and (20) can be expressed as

p∗it = E[∆t|sti] +
π̂14
|π̂11|E[zit|s

t
i], (22)

and

pfit = ∆t +
π̂14
|π̂11|zit. (23)

Second, computing the integral over all i of the price (20) and using equation (6) as well

as yt = qt − pt yields the following expression for the aggregate price level under perfect

information

pft =

µ
1− π̂13

|π̂11|
¶
pt +

π̂13
|π̂11|qt. (24)

The fixed point of this mapping is the equilibrium aggregate price level under perfect infor-

mation. Assuming π̂13 6= 0, the unique fixed point is

pft = qt. (25)

Hence, the equilibrium aggregate price level under perfect information moves one for one

with nominal aggregate demand.

4 Analytical solution when exogenous processes are white

noise

In this section, we solve the model under the assumption that log-deviations of nominal

aggregate demand and log-deviations of the idiosyncratic state variables follow white noise

processes. In this special case, the model can be solved analytically. We illustrate the main
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mechanisms of the model with the help of this simple example. Afterwards, we solve the

model under more realistic assumptions concerning the exogenous processes.

In this section, we assume that qt follows a white noise process with variance σ2q > 0

and the zit, i ∈ [0, 1], follow a common white noise process with variance σ2z > 0. We guess
that in equilibrium

pt = αqt, (26)

and

yt = (1− α) qt, (27)

where α ∈ [0, 1]. The guess will be verified.
Suppose that firm i can choose among signals of the form

s1it = ∆t + εit, (28)

s2it = zit + ψit, (29)

where {εit} and {ψit} are Gaussian white noise processes with variances σ2ε and σ2ψ, respec-
tively. The processes {εit} and {ψit} are mutually independent and independent of {qt} and
{zit}. We think of the noise in the signals as reflecting observational errors and processing
errors. The firm can reduce the amount of noise in a particular signal by devoting more

attention to that variable. Choosing among signals of the form (28)− (29) is more restric-
tive than choosing a stochastic process for the signal from the set Γ. Later we will prove

the following result (see Proposition 3). When ∆t and zit follow white noise processes,

there exist optimal signals of the form (28) − (29) and all optimal signals imply the same
price setting behavior. Therefore, in the special case analyzed in this section, restricting

the firms’ choice to signals of the form (28)− (29) does not change the equilibrium of the

model.

The variables pt, yt and ∆t are perfectly correlated and the variables ∆t, zit, s1it and

s2it follow white noise processes. In this case, the information flow constraint (9) becomes

1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
+
1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
≤ κ. (30)

See Appendix B. The information flow constraint places a restriction on the signal-to-noise

ratios, σ2∆/σ
2
ε and σ2z/σ

2
ψ. When the information flow constraint is binding, the firm faces
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a trade-off: Increasing one signal-to-noise ratio requires reducing the other signal-to-noise

ratio.

Let κ1 = 1
2 log2

³
σ2∆
σ2ε
+ 1
´
denote the information flow allocated to aggregate conditions

and let κ2 = 1
2 log2

µ
σ2z
σ2ψ
+ 1

¶
denote the information flow allocated to idiosyncratic condi-

tions. A given allocation of the information flow (κ1 and κ2) is associated with the following

variances of noise

σ2ε =
σ2∆

22κ1 − 1 , (31)

σ2ψ =
σ2z

22κ2 − 1 . (32)

These variances of noise imply the following price setting behavior

p∗it =
σ2∆

σ2∆ + σ2ε
s1it +

π̂14
|π̂11|

σ2z
σ2z + σ2ψ

s2it

=
¡
1− 2−2κ1¢ (∆t + εit) +

π̂14
|π̂11|

¡
1− 2−2κ2¢ (zit + ψit) , (33)

where the first equality follows from a standard linear projection argument and the second

equality follows from equations (31) − (32). This price setting behavior is associated with
the following expected losses in profits due to imperfect information

E

" ∞X
t=1

βt
n
π̃
³
pfit, pt, yt, zit

´
− π̃ (p∗it, pt, yt, zit)

o#

=
∞X
t=1

βt
|π̂11|
2

E

·³
pfit − p∗it

´2¸

=
β

1− β

|π̂11|
2

(
2−2κ1σ2∆ +

µ
π̂14
π̂11

¶2
2−2κ2σ2z

)
, (34)

where the first equality follows from equation (21) and the second equality follows from

equation (23) and equations (31)− (33).
Therefore the optimal allocation of the information flow (the optimal allocation of at-

tention) is the solution to the strictly convex minimization problem

min
κ1∈[0,κ]

β

1− β

|π̂11|
2

(
2−2κ1σ2∆ +

µ
π̂14
π̂11

¶2
2−2(κ−κ1)σ2z

)
. (35)
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Assuming π̂14 6= 0, the unique solution to this problem is

κ∗1 =


κ if x ≥ 22κ
1
2κ+

1
4 log2 (x) if x ∈ £2−2κ, 22κ¤

0 if x ≤ 2−2κ
, (36)

where x ≡ σ2∆/

µ³
π̂14
π̂11

´2
σ2z

¶
. Hence the firm’s optimal choice of the information system is

to observe the signals (28)− (29) with variances of noise (31)− (32) and optimal allocation
of the information flow given by equation (36).

The information flow allocated to aggregate conditions, κ∗1, is increasing in x — the ratio

of the variance of the perfect information price due to aggregate shocks divided by the

variance of the perfect information price due to idiosyncratic shocks. See equation (23).

When idiosyncratic conditions are more variable or more important than aggregate condi-

tions, the firm pays more attention to idiosyncratic conditions than to aggregate conditions,

κ∗1 < (1/2)κ < κ∗2.17 In this case, price reactions to idiosyncratic shocks are strong, but

price reactions to aggregate shocks are weak. See equation (33). This can explain why

individual prices change by large amounts and, at the same time, individual prices react

only weakly to aggregate shocks.

Computing the integral over all i of the price (33) yields the following expression for the

aggregate price level

p∗t =
³
1− 2−2κ∗1

´
∆t, (37)

where κ∗1 is given by equation (36). The equilibrium aggregate price level is the fixed point of

the mapping between the guess (26) and the actual law of motion (37). Assuming π̂13 > 0,

the unique fixed point is

p∗t =


(22κ−1) π̂13

|π̂11|
1+(22κ−1) π̂13

|π̂11|
qt if λ ≥ 2−κ + (2κ − 2−κ) π̂13

|π̂11|¡
1− 2−κλ−1¢ qt if λ ∈

h
2−κ, 2−κ + (2κ − 2−κ) π̂13

|π̂11|
i

0 if λ ≤ 2−κ
, (38)

17More precisely, κ∗1 < (1/2)κ < κ∗2 if and only if x < 1. The reason for x < 1 can be that idiosyncratic

conditions are more variable than aggregate conditions (σ2z > σ2∆), or that idiosyncratic conditions are more

important for the pricing decision than aggregate conditions (|π̂14/π̂11| > 1), or both.
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where λ ≡
r³

π̂13
π̂14

´2 σ2q
σ2z
. The extent to which the aggregate price level moves with nominal

aggregate demand is increasing in λ. The reason is the optimal allocation of attention. When

the idiosyncratic state variable has a higher variance or is more important than nominal

aggregate demand, firms pay more attention to idiosyncratic conditions than to aggregate

conditions. This makes prices react little to innovations in nominal aggregate demand. In

addition, there is a feedback effect. When firms pay little attention to aggregate conditions,

the aggregate price level moves little and therefore firms find it optimal to pay even less

attention to aggregate conditions. Formally, the smaller the variance of pt, the smaller

the variance of ∆t =
³
1− π̂13

|π̂11|
´
pt +

π̂13
|π̂11|qt and the smaller is the attention allocated to

aggregate conditions. The feedback effect is stronger the smaller is (π̂13/ |π̂11|).
The feedback effect involving the optimal reallocation of attention is new in the liter-

ature. To illustrate its quantitative importance, consider a simple example. Suppose that

σ2q = σ2z = 10, (π̂13/ |π̂11|) = 0.15, (π̂14/ |π̂11|) = 1 and κ = 3. If all other firms set the per-

fect information price, then pt = qt and σ2∆ = σ2q = σ2z. In this case, the optimal allocation

of attention for an individual firm would be fifty-fifty, κ1 = (1/2)κ = κ2. In equilibrium,

the variance of pt is smaller than the variance of qt implying σ2∆ < σ2q = σ2z. Therefore, in

equilibrium, firms allocate only 20% of their attention to aggregate conditions.

Finally, if λ is very small or very large, the equilibrium allocation of attention is a

corner solution. If λ is very small, firms allocate no attention to aggregate conditions and

the aggregate price level equals its deterministic trend at each point in time. If λ is very

large, firms allocate all attention to aggregate conditions.

It is straightforward to compute equilibrium real aggregate demand from equation (38)

and the equation yt = qt − pt.

5 The firms’ decision of what to observe

Next we show how to solve the model in the general case when the log-deviations of nominal

aggregate demand and the log-deviations of the idiosyncratic state variables follow station-

ary Gaussian moving average processes. In this section, we focus on the firms’ choice of the

information system given the aggregate behavior of the economy. In the next section, we
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derive the rational expectations equilibrium processes for the aggregate price level and real

aggregate demand. We guess that in equilibrium

{pt} and {yt} are independent of {zit} , ∀i ∈ [0, 1] , (39)

and

{pt, yt} is a stationary Gaussian vector process. (40)

These guesses will be verified in the next section.

The firm chooses the information system so as to maximize the expected discounted

sum of profits (7).

Lemma 1 (Expected discounted sum of profits) Let the profit function be given by (18) and

suppose that (39)− (40) hold. Then

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
= E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#
− β

1− β

|π̂11|
2

E

·³
pfit − p∗it

´2¸
.

(41)

Proof. See Appendix C.

The expected discounted sum of profits equals the expected discounted sum of prof-

its under perfect information (the first term on the right-hand side) minus the expected

discounted sum of losses in profits due to imperfect information (the second term on the

right-hand side). The expected discounted sum of losses in profits is increasing in the mean

squared difference E
·³

pfit − p∗it
´2¸

. Thus the firm chooses the information system so as to

minimize this mean squared difference.

The firm has to respect the information flow constraint (9).

Lemma 2 (Information flows) Suppose that (39)− (40) hold. Then

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) (42)

≥ I ({∆t} ; {s1it}) + I ({zit} ; {s2it}) (43)

≥ I
³
{∆t} ;

n
∆̂it

o´
+ I ({zit} ; {ẑit}) , (44)

where ∆̂it ≡ E
£
∆t|st1i

¤
and ẑit ≡ E[zit|st2i]. If {s1it} and {s2it} are univariate processes,

then inequality (44) holds with equality. If s1it = ∆t+ εit where {εit} is a stochastic process
independent of {pt}, then inequality (43) holds with equality.
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Proof. See Appendix D.

Equality (42) says that the information flow between the signals and the states of the

economy equals the information flow between the first set of signals and aggregate conditions

plus the information flow between the second set of signals and idiosyncratic conditions.

This result follows from the independence assumption (11) and implies that one can make

statements of the sort: “The firm allocates X percent of the information flow to aggregate

conditions and 1-X percent of the information flow to idiosyncratic conditions.” Inequality

(43) states that the signals concerning aggregate conditions contain weakly more informa-

tion about the aggregate price level and real aggregate demand than they contain about

the variable ∆t alone. The relationship holds with equality when the signals concerning

aggregate conditions contain information about ∆t only. Inequality (44) states that the

signals contain weakly more information than the conditional expectations computed from

the signals. The relationship holds with equality when the signals are scalars.

Lemma 1, Lemma 2 and equations (22)− (23) imply that the firm’s problem of choosing
the information system can be stated in the following way.

Proposition 1 (The problem of firm i) Let the profit function be given by (18) and suppose

that (39) − (40) hold. Then the firm’s problem of choosing the information system can be

stated as

min
{(s1it,s2it)0}∈Γ

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

, (45)

subject to

I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) ≤ κ. (46)

Proof. See Appendix E.

The firm’s problem of choosing the information system looks similar to the problem

studied in Sims (2003, Section 4). There the decisionmaker chooses a process for Yt to track

Xt with loss E
h
(Xt − Yt)

2
i
subject to a constraint on the information flow between the two

processes. However, there are important differences between the two problems. First, in

Sims (2003) the same variables appear in the objective function and in the information flow

constraint. In contrast, the objective function (45) depends on conditional expectations,

∆̂it = E
£
∆t|st1i

¤
and ẑit = E[zit|st2i], whereas the information flow constraint (46) applies
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to the underlying signals, s1it and s2it. Second, the problem of the firm is a collection of

two quadratic control problems with a single information flow constraint. Thus the firm

has to decide how to allocate the available information flow across the problem of tracking

aggregate conditions and the problem of tracking idiosyncratic conditions.18 Third, the firm

tracks an endogenous variable, ∆t. This introduces the feedback effect.

The following proposition presents a procedure for solving the firm’s problem of choosing

the information system.

Proposition 2 (Solving the problem of firm i) Let the profit function be given by (18)

and suppose that (39)− (40) hold. Then a stochastic process for the signal obtained by the
following two-step procedure is an optimal information system.

1. Derive stochastic processes
n
∆̂∗it
o
and {ẑ∗it} that solve

min
{∆̂it},{ẑit}

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

, (47)

subject to

I
³
{∆t} ;

n
∆̂it

o´
+ I ({zit} ; {ẑit}) ≤ κ, (48)n

∆t, ∆̂it

o
and {zit, ẑit} are independent, (49)n

∆t, ∆̂it, zit, ẑit

o
is a stationary Gaussian vector process. (50)

2. Show that there exist signals of the form

s1it = ∆t + εit, (51)

s2it = zit + ψit, (52)

that have the property

∆̂∗it = E
£
∆t|st1i

¤
, (53)

ẑ∗it = E[zit|st2i], (54)

where {εit} and {ψit} are idiosyncratic stationary Gaussian moving average processes
that are mutually independent and independent of {pt}, {yt} and {zit}.

18Sims (2003) only considers multivariate tracking problems within the simplified recursive framework of

Section 5 of his paper.
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Proof. See Appendix F.

The first step consists of solving a standard constrained minimization problem. This is

explained in detail in Appendix H. The second step amounts to inverting a signal extraction

problem. Instead of computing conditional expectations for given signals, we search for

signals that generate certain processes as conditional expectations.

The processes
n
∆̂∗it
o
and {ẑ∗it} have standard properties of a linear projection.

Proposition 3 (Properties of a solution) A solution to the program (47)− (50) satisfies

E
h
∆t − ∆̂∗it

i
= 0, (55)

E [zit − ẑ∗it] = 0, (56)

and, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0, (57)

E
£
(zit − ẑ∗it) ẑ

∗
it−k

¤
= 0. (58)

Proof. See Appendix G.

The expected “forecast errors” are zero and the “forecast errors” are orthogonal to

all current and past ∆̂∗it and ẑ∗it. This suggests that there exist signals that have the

property (53)−(54). We will always verify numerically that such signals exist. Furthermore,
Proposition 3 implies that, when ∆t and zit follow white noise processes, then ∆̂∗it and ẑ∗it
also follow white noise processes. In this case, restricting the firm’s choice to signals with

i.i.d. noise does not change the equilibrium of the model. We used this result in Section 4.

6 Numerical solutions when exogenous processes are serially

correlated

In this section we show numerical solutions of the model. We compute the solutions as

follows. First, we make a guess concerning the stochastic process for the aggregate price

level. Second, we solve for the optimal information system of an individual firm. Namely,

we derive the stochastic processes
n
∆̂∗it
o
and {ẑ∗it} and we show that there exist signals of

the form (51)− (52) that have the property (53)− (54). See Proposition 2 and Appendix H.
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Third, we compute the individual prices from equation (22) and the aggregate price level

from equation (5). Fourth, we compare the stochastic process for the aggregate price level

that we obtain to our guess. We update the guess until a fixed point is reached.

6.1 The benchmark economy

See Table 1 for the parameter values of the benchmark economy. The ratio (π̂13/ |π̂11|)
determines the sensitivity of individual prices to real aggregate demand, yt. This is a stan-

dard parameter in models with monopolistic competition. Woodford (2003) recommends a

value between 0.1 and 0.15. In the benchmark economy we set (π̂13/ |π̂11|) = 0.15. Later
we show how changes in (π̂13/ |π̂11|) affect the solution.

The ratio (π̂14/ |π̂11|) determines the sensitivity of individual prices to the idiosyncratic
state variable, zit. Since changes in the value of (π̂14/ |π̂11|) have the same effects on
equilibrium as changes in the variance of the idiosyncratic state variable, we normalize

(π̂14/ |π̂11|) to one and we only calibrate the variance of zit.
We calibrate the stochastic process for qt using quarterly U.S. nominal GNP data from

1959:1 to 2004:1.19 We take the natural log of the data and detrend the data by fitting a

second-order polynomial in time. We then estimate the equation qt = ρqt−1 + νt, where qt

is 100 times the deviation of the natural log of nominal GNP from its fitted trend. The

estimate of ρ that we obtain is, after rounding off, 0.95 and the standard deviation of the

error term is 1. This implies the moving average representation qt =
P∞

l=0 ρ
lνt−l. Since

with geometric decay shocks die out after a very large number of periods and computing

time is fast increasing with the number of lags, we approximate the estimated process by a

process that dies out after twenty periods: qt =
P20

l=0 alνt−l, a0 = 1 and al = al−1 − 0.05,
for all l = 1, ..., 20.20

We calibrate the stochastic process for zit so as to make the model match the average

absolute size of price changes in the data. Recall that Bils and Klenow (2004) find that the

median firm changes its price about every 4 months. Furthermore, Klenow and Kryvtsov

(2004) find that, conditional on the occurrence of a price change, the average absolute size of

19The source are the National Income and Product Accounts of the United States.
20For the benchmark parameter values, we also solved the model without applying the approximation.

We set qt =
P80

l=0 ρ
lνt−l. While computing time was many times larger, the results were affected little.
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the price change is 13.3% or 8.5% (depending on whether sales are included or excluded). We

know from the analytical solution that a larger variance of the idiosyncratic state variable

makes the aggregate price level more sticky. We also know that under rational inattention

compared to perfect information a larger variance of the idiosyncratic state variable is

required to generate a given average absolute size of price changes. We take a conservative

approach and choose the standard deviation of zit such that the average absolute size of price

changes under perfect information is 8.5% per period.21 This yields a standard deviation

of zit that is ten times the standard deviation of qt.22

We set the parameter that bounds the information flow to κ = 3 bits. Our choice is

motivated by two considerations. First, κ = 3 is sizable compared to the amount of uncer-

tainty in the model. If firms in the model wanted to, they could track aggregate conditions

extremely well.23 Second, with this value of κ the model predicts a negligible difference

between the price set by a firm under rational inattention and the profit-maximizing price.

We find this prediction realistic.

Table 1 and Figures 1-2 summarize the results for the benchmark economy. The average

absolute size of price changes is 8.2% per period. Firms allocate 94% of their attention to

idiosyncratic conditions. This optimal allocation of attention implies the following price

setting behavior. Figure 1 shows the impulse response of the price set by firm i to an

innovation in the idiosyncratic state variable. Comparing the price reaction under rational

inattention (the line with squares) to the price reaction under perfect information (the

line with points), we see that under rational inattention the price reaction to idiosyncratic

shocks is almost as strong and fast as under perfect information. The line with crosses is

the impulse response of the price set by firm i to noise in the signal concerning idiosyncratic

conditions.

Figure 2 shows the impulse response of the price set by firm i to an innovation in nominal

aggregate demand. Comparing the price reaction under rational inattention (the line with

21Recall that one period in the model is one quarter.
22We assume the same rate of decay in the zit process as in the qt process.
23To illustrate this point, consider a simple example. Suppose that qt was a white noise process with

variance 10, which is the variance of qt in the data. Then allocating 3 bits of information flow to tracking

qt implies that the variance of qt conditional on the signal is 0.15. Thus the variance is reduced by 98.5%.
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squares) to the price reaction under perfect information (the line with points), we see that

under rational inattention the price reaction to nominal shocks is dampened and delayed.

Note that, since all firms choose the same stochastic process for the signal, the line with

squares is also the impulse response of the aggregate price level to an innovation in nominal

aggregate demand. The aggregate price level responds weakly and slowly to innovations

in nominal aggregate demand. The reasons are the following. Since idiosyncratic condi-

tions are more variable than aggregate conditions, firms allocate most of their attention to

idiosyncratic conditions. In addition, there is the feedback effect. When firms pay little

attention to aggregate conditions, the aggregate price level moves little and therefore firms

find it optimal to pay even less attention to aggregate conditions. As a result, the equilib-

rium aggregate price level under rational inattention differs markedly from the equilibrium

aggregate price level under perfect information. Finally, the line with crosses in Figure 2 is

the impulse response of the price set by an individual firm to noise in the signal concerning

aggregate conditions.24

The effect of an innovation in nominal aggregate demand on real aggregate demand

equals the difference between the perfect-information impulse response in Figure 2 and the

rational-inattention impulse response in Figure 2. It is apparent that the real effect of an

innovation in nominal aggregate demand is persistent.

Figures 3-4 show simulated price series. Figure 3 shows a sequence of prices set by

an individual firm under rational inattention (diamonds) and the sequence of prices that

the firm would have set if it had had perfect information (crosses). Firms in the bench-

mark economy track the profit-maximizing price extremely well. Figure 4 shows sequences

of aggregate price levels. The equilibrium aggregate price level under rational inattention

24The reader interested in the impulse response of inflation to an innovation in nominal aggregate demand

should note the following. In the benchmark economy, the peak response of inflation occurs on impact.

Below we conduct experiments in which the impulse response of the aggregate price level becomes more

dampened and delayed than in the benchmark economy. In these experiments, the impulse response of

inflation becomes hump-shaped. See the experiment with larger variance of the idiosyncratic state variable

(section 6.3) and the experiment with more strategic complementarity in price setting (section 6.4). We read

the evidence from structural VARs as indicating clearly that the aggregate price level responds slowly to a

monetary policy shock. We read the evidence as less conclusive regarding whether the impulse response of

inflation to a monetary policy shock is hump-shaped (see Uhlig (2004)).
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(diamonds) differs markedly from the equilibrium aggregate price level under perfect infor-

mation (crosses). The reason is the optimal allocation of attention in combination with the

feedback effect.

In the benchmark economy, prices react fast and by large amounts to idiosyncratic

shocks, but prices react only slowly and by small amounts to nominal shocks. Thus the

model can explain why individual prices change frequently and by large amounts and, at

the same time, the aggregate price level responds slowly to monetary shocks. To match

the large average absolute size of price changes observed in the data, idiosyncratic shocks

in the model must have a large variance or must be very important for pricing decisions.

This in turn implies that firms in the model allocate most of their attention to idiosyncratic

conditions.

We turn to examining how changes in parameter values affect the optimal allocation of

attention and the dynamics of the economy.

6.2 Increasing the variance of nominal aggregate demand

In Table 2 and Figure 5 we show what happens when the variance of nominal aggregate de-

mand increases. Firms reallocate attention to aggregate conditions away from idiosyncratic

conditions (κ∗1 increases). Firms track both aggregate and idiosyncratic conditions less well.

Profits decrease. The real effects of changes in nominal aggregate demand increase. The

fall in profits suggests that costs of aggregate instability in the real world may be due to

the fact that aggregate instability makes the firms’ tracking problem more difficult.

These predictions differ from the Lucas (1973) model. In the Lucas model, an increase

in the variance of nominal aggregate demand implies that prices that firms observe become

more precise signals of nominal aggregate demand and less precise signals of idiosyncratic

conditions. Therefore firms in the Lucas model track nominal aggregate demand better and

idiosyncratic conditions worse. The real effects of changes in nominal aggregate demand

become smaller.
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6.3 Increasing the variance of the idiosyncratic state variable

In Table 2 and Figure 6 we show what happens when the variance of the idiosyncratic state

variable increases. Firms reallocate attention to idiosyncratic conditions away from aggre-

gate conditions (κ∗1 decreases). Firms track both idiosyncratic and aggregate conditions less

well. The reaction of the aggregate price level to a nominal shock becomes more dampened

and delayed.

The model predicts that firms operating in more unstable idiosyncratic environments al-

locate less attention to aggregate conditions, and therefore respond more slowly to aggregate

shocks. This result is consistent with the empirical finding of Bils, Klenow and Kryvtsov

(2003) according to which firms that change prices relatively frequently react more slowly

to monetary policy shocks than firms that change prices relatively infrequently. The finding

of Bils, Klenow and Kryvtsov is difficult to reconcile with other models of sticky prices.

The reader may wonder whether these predictions continue to hold in a model with an

endogenous κ. Suppose that firms can choose the information flow, κ, facing an increasing,

strictly convex cost function, C (κ). Now consider again the effects of increasing the variance

of the idiosyncratic state variable. The marginal value of information about idiosyncratic

conditions increases. Therefore firms choose a higher κ and the marginal cost of information

increases. This implies that the marginal value of information about aggregate conditions

has to increase as well — the information flow allocated to aggregate conditions has to fall.

Hence, both idiosyncratic and aggregate conditions get tracked less well.

6.4 Changing the degree of strategic complementarity in price setting

The third and fourth example in Table 2 and Figure 7 show what happens when the ratio

(π̂13/ |π̂11|) changes.25 As (π̂13/ |π̂11|) decreases, the impulse response of the aggregate price
level becomes more dampened and delayed. The reason is the following. Under rational

inattention, the aggregate price level is less variable than nominal aggregate demand. Thus

decreasing (π̂13/ |π̂11|) lowers the variance of ∆t =
³
1− π̂13

|π̂11|
´
pt +

π̂13
|π̂11|qt. Firms react by

25 It is common in the literature to refer to the ratio (π̂13/ |π̂11|) as a measure of the degree of strategic
complementarity in price setting, where a smaller value of (π̂13/ |π̂11|) corresponds to a larger degree of
strategic complementarity in price setting.
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reallocating attention to idiosyncratic conditions away from aggregate conditions.

6.5 The effects of serial correlation

Decreasing the serial correlation of nominal aggregate demand (holding constant its vari-

ance) leads to a fall in profits, because the firms’ tracking problem becomes more difficult.

This suggests that there is a payoff from “interest rate smoothing” by central banks. We

obtained ambiguous predictions concerning the effect of a decrease in the serial correlation

of nominal aggregate demand (holding constant its variance) on the allocation of attention.

We found that the marginal return from allocating attention to aggregate conditions may

go up or down. The reason is that decreasing the serial correlation of nominal aggregate de-

mand makes firms track aggregate conditions less well (for a given allocation of attention),

but also lowers the improvement in tracking that can be achieved by reallocating attention

to aggregate conditions.26

6.6 Optimal signals

We always verify numerically that there exist signals of the form (51)− (52) that have the
property (53)− (54). Figures 8 and 9 present optimal signals for the benchmark economy,
by plotting the parameters of the moving average representations of ∆t, εit, zit and ψit.

A common assumption in the literature is that signals are equal to the true state plus

exogenous i.i.d. noise. We always find optimal signals that have the structure “true state

plus a moving average noise process”. However, only in some cases we find optimal signals

that have the structure “true state plus i.i.d. noise”. For example, the optimal idiosyncratic

signal depicted in Figure 9 has the form “true state plus i.i.d. noise”, but the optimal

aggregate signal shown in Figure 8 does not.27

26We obtained the same results when we changed the serial correlation of the idiosyncratic state variable.
27Note that optimal signals are not unique. For example, applying any one-sided linear filter to the signals

depicted in Figures 8 and 9 yields new optimal signals. The reason is that applying a one-sided linear filter

changes neither the conditional expectations computed from the signals nor the information flow.
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7 Conclusions and further research

That individual prices move frequently and by large amounts in the data does not imply

that the aggregate price level must react fast to monetary policy shocks. When idiosyncratic

conditions are more variable or more important than aggregate conditions, rationally inat-

tentive firms optimally allocate more attention to idiosyncratic conditions than to aggregate

conditions. As a result, prices react fast and by large amounts to idiosyncratic shocks, but

prices react only slowly and by small amounts to nominal shocks. Innovations in nominal

aggregate demand have persistent real effects.

In standard sticky price models, frequent and large price changes imply a fast response

of the aggregate price level to nominal shocks. In our model, frequent and large price

changes imply a slow response of the aggregate price level to nominal shocks. The same

empirical observation on the frequency and size of individual price changes leads to the

opposite aggregate prediction. Therefore our model can simultaneously explain the micro

and the macro evidence.

Our model makes several testable predictions that we plan to compare to data. For ex-

ample, according to the model, firms operating in more unstable idiosyncratic environments

react more slowly to nominal shocks.

The model can be extended in a variety of directions. For example, the model in its

current form abstracts from physical costs of repricing. This implies that prices in the model

change every period. It would be interesting to add menu costs. This is likely to increase

the real effects of nominal disturbances even further.28

Furthermore, it will be interesting to develop a richer general equilibrium model with

rational inattention and compare its predictions to, for example, Altig, Christiano, Eichen-

baum and Linde (2005), Christiano, Eichenbaum and Evans (2005) and Smets and Wouters

(2003).

28See Dotsey, King and Wolman (1999) for a general equilibrium model with menu costs.
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A Quantifying information flows

This appendix introduces the tools that we use to quantify information flows. We borrow

the tools from Shannon’s (1948) information theory. For a textbook on information theory,

see Cover and Thomas (1991). For an application in economics, see Sims (2003).

In economics the payoff of a decisionmaker often depends on the realization of a random

variable. One can quantify the uncertainty by using the concept of entropy. The entropy of a

random variable is a measure of the uncertainty of the random variable. The entropy H (X)

of a random variable X with density function p(X) is defined by H (X) = −E[log2 p(X)].
Entropy is measured in bits. For example, the entropy of a normally distributed random

variable X with variance σ2 is

H (X) =
1

2
log2

¡
2πeσ2

¢
.

In this simple example, entropy is a strictly increasing function of the variance.29

The definition of entropy extends to random vectors. In the definition of entropy, sim-

ply replace the density function by the joint density function. For example, applying the

definition of entropy to a set of random variables X1, ...,XT that have a multivariate normal

distribution with covariance matrix ΩXX yields

H (X1, ...,XT ) =
1

2
log2[(2πe)

T detΩXX ]. (59)

The entropy of the random vector depends on the number of random variables and on their

covariance matrix. A larger determinant of the covariance matrix implies a larger entropy.

For given variances, the entropy is largest when the random variables are uncorrelated.

In economics a decisionmaker often observes a random vector that is correlated with

the random vector of interest. One can quantify the conditional uncertainty by using the

concept of conditional entropy. For example, suppose that a decisionmaker is interested

in X1, ...,XT and observes Y1, ..., YT , where X1, ...,XT and Y1, ..., YT have a multivariate

normal distribution with covariance matrix Ω. Then the entropy of X1, ...,XT conditional

29The definition of entropy can be derived from axioms — requirements that a “reasonable” measure of

uncertainty should satisfy (see e.g. Ash (1990)). Moreover, entropy arises as the answer to a number of

natural questions in communication theory and statistics (see e.g. Cover and Thomas (1991)).
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on Y1, ..., YT is

H (X1, ...,XT | Y1, ..., YT ) = 1

2
log2{(2πe)T det[ΩXX −ΩXYΩ

−1
Y YΩY X ]}. (60)

The expression in square brackets is the covariance matrix of X1, ...,XT conditional on

Y1, ..., YT .

Now one can quantify the amount of information that one random vector contains

about another random vector. Mutual information is the reduction in the uncertainty of

one random vector due to the knowledge of another random vector. The mutual information

between X1, ...,XT and Y1, ..., YT is

I (X1, ...,XT ;Y1, ..., YT ) = H (X1, ...,XT )−H (X1, ...,XT | Y1, ..., YT ) . (61)

It is also straightforward to quantify the information flow between stochastic processes.

Let X1, ...,XT denote the first T elements of the stochastic process {Xt}. Let Y1, ..., YT
denote the first T elements of the stochastic process {Yt}. The processes {Xt} and {Yt}
can be vector processes. The information flow between the processes {Xt} and {Yt} can be
defined by

I ({Xt} ; {Yt}) = lim
T→∞

1

T
I (X1, ...,XT ;Y1, ..., YT ) . (62)

The information flow between stochastic processes is the average amount of information

per unit of time that one stochastic process contains about another stochastic process. The

limit in (62) exists when the processes {Xt} and {Yt} are jointly stationary.
In the Gaussian case, an analytical expression exists for the information flow. If {Xt} and

{Yt} are univariate, jointly stationary, jointly Gaussian processes with absolutely summable
autocovariance matrices then

I ({Xt} ; {Yt}) = − 1
4π

πZ
−π
log2 [1− CX,Y (ω)] dω, (63)

where CX,Y (ω) is the coherence between the processes {Xt} and {Yt} at frequency ω. This
follows from equations (59)−(62) and the asymptotic properties of determinants of Toeplitz
matrices. See Cover and Thomas (1991, pp. 273-274), Gray (2002, pp. 62-63) or Sims

(2003). Note that the coherence lies between zero and one, 0 ≤ CX,Y (ω) ≤ 1 for all ω. It
follows that the information flow in (63) is bounded below by zero and is unbounded above.
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B Information flow constraint in the white noise case

Assumptions (10)− (11) imply

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) .

This general result is proved below. See Lemma 2. Furthermore, equations (26) − (27)
imply that {pt} and {yt} can be calculated from {∆t} and vice versa. It follows that

I ({pt} , {yt} ; {s1it}) = I ({∆t} ; {s1it}) .

The signal concerning aggregate conditions is given by equation (28). Equation (63) applies

I ({∆t} ; {s1it}) = − 1
4π

πZ
−π
log2 [1− C∆,s1i (ω)] dω,

where C∆,s1i (ω) is the coherence between the processes {∆t} and {s1it} at frequency ω.

The processes {∆t} and {s1it} are white noise processes. Therefore the coherence simply
equals the squared correlation coefficient and

I ({∆t} ; {s1it}) = −1
2
log2

¡
1− ρ2∆,s1i

¢
.

Using (28) yields

I ({∆t} ; {s1it}) = 1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
.

The same arguments yield

I ({zit} ; {s2it}) = 1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
.

The information flow constraint becomes

1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
+
1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
≤ κ.
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C Proof of lemma 1

First, when the profit function is given by equation (18), the expected discounted sum of

profits equals

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
= E

" ∞X
t=1

βtπ̃ (p∗it, pt, yt, zit)

#

= E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#
−E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#

+E

" ∞X
t=1

βtπ̃ (p∗it, pt, yt, zit)

#

= E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#
−E

" ∞X
t=1

βt
|π̂11|
2

³
pfit − p∗it

´2#
,

where the last equality follows from equation (21). Second, the difference between the price

set under perfect information (20) and the price set under imperfect information (19) equals

pfit − p∗it = pfit −E
h
pfit|sti

i
.

The joint normality of pfit and sti = {s1i , si2, ..., sit} implies that the conditional expectation
equals the linear projection. The joint stationarity of pfit and sti = {s1i , si2, ..., sit} and
assumption (13) imply that the linear projection coefficients are independent of t

pfit − p∗it = pfit − [µ+ α (L) sit] ,

where µ is a constant and α (L) is an infinite order vector lag polynomial. Hence, pfit − p∗it
follows a stationary process. Thus E

·³
pfit − p∗it

´2¸
does not depend on t and

E

" ∞X
t=1

βt
|π̂11|
2

³
pfit − p∗it

´2#
=

β

1− β

|π̂11|
2

E

·³
pfit − p∗it

´2¸
.

D Proof of lemma 2

First, since {Pt} , {Yt} , {Zit} can be calculated from {pt} , {yt} , {zit} and vice versa, we
have

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} , {zit} ; {sit}) .
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Applying the definition of the information flow (62) yields

I ({pt} , {yt} , {zit} ; {sit}) = lim
T→∞

1

T
I
¡
pT , yT , zTi ; s

T
i

¢
,

where pT ≡ (p1, . . . , pT ), yT ≡ (y1, . . . , yT ), zTi ≡ (zi1, . . . , ziT ) and sTi ≡
¡
s1i , si2, . . . , siT

¢
.

The assumption (10) implies

I
¡
pT , yT , zTi ; s

T
i

¢
= I

¡
pT , yT , zTi ; s

T
1i, s

T
2i

¢
,

equation (61) implies

I
¡
pT , yT , zTi ; s

T
1i, s

T
2i

¢
= H

¡
pT , yT , zTi

¢−H
¡
pT , yT , zTi |sT1i, sT2i

¢
,

and conditional entropy equals

H
¡
pT , yT , zTi |sT1i, sT2i

¢
= H

¡
pT , yT , zTi , s

T
1i, s

T
2i

¢−H
¡
sT1i, s

T
2i

¢
.

See, for example, Cover and Thomas (1991), p. 230, equation 9.33. We arrive at

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT , zTi

¢−H
¡
pT , yT , zTi , s

T
1i, s

T
2i

¢
+H

¡
sT1i, s

T
2i

¢
.

The entropy of independent random variables or independent random vectors equals the

sum of the entropies. See, for example, Cover and Thomas (1991), p. 232, equation 9.59.

Therefore assumption (11) implies

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT

¢
+H

¡
zTi
¢−H

¡
pT , yT , sT1i

¢−H
¡
zTi , s

T
2i

¢
+H

¡
sT1i
¢
+H

¡
sT2i
¢
.

The last equation can also be expressed as

I
¡
pT , yT , zTi ; s

T
i

¢
= I

¡
pT , yT ; sT1i

¢
+ I

¡
zTi ; s

T
2i

¢
.

Dividing by T on both sides and taking the limit as T →∞ yields

I ({pt} , {yt} , {zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) .

Second, since {pt} , {yt} can be calculated from {pt} , {∆t} and vice versa, we have

I ({pt} , {yt} ; {s1it}) = I ({pt} , {∆t} ; {s1it}) .
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Applying the definition of the information flow (62) yields

I ({pt} , {∆t} ; {s1it}) = lim
T→∞

1

T
I
¡
pT ,∆T ; sT1i

¢
.

Equation (61) implies

I
¡
pT ,∆T ; sT1i

¢
= H

¡
pT ,∆T

¢−H
¡
pT ,∆T |sT1i

¢
.

The terms on the right-hand side can be expressed as

H
¡
pT ,∆T

¢
= H

¡
∆T
¢
+H

¡
pT |∆T

¢
,

H
¡
pT ,∆T |sT1i

¢
= H

¡
∆T |sT1i

¢
+H

¡
pT |∆T , sT1i

¢
.

See, for example, Cover and Thomas (1991), p. 230, equation 9.33. We arrive at

I
¡
pT ,∆T ; sT1i

¢
= H

¡
∆T
¢
+H

¡
pT |∆T

¢−H
¡
∆T |sT1i

¢−H
¡
pT |∆T , sT1i

¢
.

The last equation can also be expressed as

I
¡
pT ,∆T ; sT1i

¢
= I

¡
∆T ; sT1i

¢
+ I

¡
pT ; sT1i|∆T

¢
.

Finally,

I
¡
pT ; sT1i|∆T

¢ ≥ 0,
with equality if and only if pT and sT1i are conditionally independent given ∆

T . See, for

example, Cover and Thomas (1991), p. 232, first corollary to theorem 9.6.1. Hence,

I ({pt} , {∆t} ; {s1it}) ≥ I ({∆t} ; {s1it}) ,

with equality if pT and sT1i are conditionally independent given ∆
T for all T .

Third, applying the definition of the information flow (62) yields

I ({zit} ; {s2it}) = lim
T→∞

1

T
I
¡
zTi ; s

T
2i

¢
.

Equation (61) implies

I
¡
zTi ; s

T
2i

¢
= H

¡
zTi
¢−H

¡
zTi |sT2i

¢
.

Furthermore, since ẑTi = (ẑi1, . . . , ẑiT ) can be calculated from sT2i, we have

H
¡
zTi |sT2i

¢
= H

¡
zTi |sT2i, ẑTi

¢
.

34



In addition, since conditioning reduces entropy, we have

H
¡
zTi |sT2i, ẑTi

¢ ≤ H
¡
zTi |ẑTi

¢
.

See, for example, Cover and Thomas (1991), p. 232, second corollary to theorem 9.6.1. We

arrive at

I
¡
zTi ; s

T
2i

¢ ≥ I
¡
zTi ; ẑ

T
i

¢
.

Dividing by T on both sides and taking the limit as T →∞ yields

I ({zit} ; {s2it}) ≥ I ({zit} ; {ẑit}) .

The same arguments yield

I ({∆t} ; {s1it}) ≥ I
³
{∆t} ;

n
∆̂it

o´
.

Next, suppose that {s1it} is a univariate process. Then

∆̂it = µ1 + α1 (L) s1it,

where µ1 is a constant and α1 (L) is an infinite order lag polynomial. See proof of Lemma

1. Thus
n
∆̂it

o
is obtained from {s1it} by applying a one-sided linear filter (and possibly

adding a constant). Standard results on linear filters imply

C∆,∆̂i
(ω) = C∆,s1i (ω) ,

where C∆,∆̂i
(ω) denotes the coherence between the processes {∆t} and

n
∆̂it

o
at frequency

ω. This result in combination with equation (63) yields

I
³
{∆t} ;

n
∆̂it

o´
= I ({∆t} ; {s1it}) .

The same arguments yield that, if {s2it} is a univariate process, then

I ({zit} ; {ẑit}) = I ({zit} ; {s2it}) .

E Proof of proposition 1

The objective function (45) follows from Lemma 1, equations (22)− (23) and the orthogo-
nality of ∆t − ∆̂it and zit − ẑit. The information flow constraint (46) follows from equation

(42).
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F Proof of proposition 2

First, when the profit function is given by (18) and (39)− (40) hold, the firms’ problem of

choosing the information system can be stated as the program (45)− (46). See Proposition
1. The objective function (45) and the objective function (47) are identical. Furthermore,

the constraint (46) implies the inequality (48). See Lemma 2. In addition, assumption (11)

implies condition (49) and assumptions (12)− (13) imply condition (50). Hence, a solution
to the program (45)− (46) cannot make the firm better off than a solution to the program

(47)− (50).
Second, signals of the form (51)− (52) are an element of the set Γ. Furthermore, signals

of the form (51) − (52) imply that inequalities (43) − (44) hold with equality. Hence, if
signals of the form (51) − (52) have the property (53) − (54), then they are a solution to
the program (45)− (46).

G Proof of proposition 3

First, the mean of the process
n
∆̂it

o
affects E

·³
∆t − ∆̂it

´2¸
but does not affect the in-

formation flow I
³
{∆t} ;

n
∆̂it

o´
. See equation (63). Therefore a solution to the program

(47)− (50) has to satisfy
E
h
∆̂∗it
i
= E [∆t] .

The same arguments yield that a solution to the program (47)− (50) has to satisfy

E [ẑ∗it] = E [zit] .

Second, a solution to the program (47)− (50) has to satisfy, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0.

Take a process
n
∆̂0it
o
that does not have this property. Formally, for some k ∈ {0, 1, 2, . . .},

E
h³
∆t − ∆̂0it

´
∆̂0it−k

i
6= 0.

Then one can define a new process
n
∆̂00it
o
as follows

∆̂00it =
³
1 + αLk

´
∆̂0it,
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where L is the lag operator and α is the projection coefficient in the linear projection of

∆t − ∆̂0it on ∆̂0it−k. The new process has the property

I
³
{∆t} ;

n
∆̂00it
o´

= I
³
{∆t} ;

n
∆̂0it
o´

,

because applying a one-sided linear filter to a stochastic process does not change the infor-

mation flow. See proof of Lemma 2. Furthermore, the new process has the property

E

·³
∆t − ∆̂00it

´2¸
< E

·³
∆t − ∆̂0it

´2¸
.

Thus the process
n
∆̂0it
o
cannot be a solution to the program (47)− (50). It follows that a

solution has to satisfy, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0.

The same arguments yield that a solution has to satisfy, for all k = 0, 1, 2, . . .,

E
£
(zit − ẑ∗it) ẑ

∗
it−k

¤
= 0.

H Numerical solution procedure

Let the moving average representations for qt and zit be given by

qt =
∞X
l=0

alνt−l,

zit =
∞X
l=0

blξit−l,

where {νt} and {ξit} are Gaussian white noise processes with unit variance. We make a
guess concerning the stochastic process for the aggregate price level

pt =
∞X
l=0

clνt−l. (64)

Applying Proposition 2 , we solve the following constrained optimization problem

min
d,f,g,h

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

,

37



subject to− 14π
πZ
−π
log2

h
1− C∆,∆̂i

(ω)
i
dω

+
− 14π

πZ
−π
log2 [1− Czi,ẑi (ω)] dω

 ≤ κ,

with

∆t =

µ
1− π̂13

|π̂11|
¶ ∞X

l=0

clνt−l +
π̂13
|π̂11|

∞X
l=0

alνt−l,

∆̂it =
∞X
l=0

dlνt−l +
∞X
l=0

flηit−l,

ẑit =
∞X
l=0

glξit−l +
∞X
l=0

hlζit−l,

where {ηit} and {ζit} are Gaussian white noise processes with unit variance that are mu-
tually independent and independent of {νt} and {ξit}. Here we make use of equation (63)
to express information flow as a function of coherence.

Consider, as an example, the choice of the gl and hl, for all l = 0, 1, . . .. The following

simplifications are helpful. Observe that in the objectiveµ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i
=

µ
π̂14
π̂11

¶2 " ∞X
l=0

(bl − gl)
2 +

∞X
l=0

h2l

#
,

and in the constraint

Czi,ẑi (ω) =

·
G(e−iω)G(eiω)
H(e−iω)H(eiω)

¸
h
G(e−iω)G(eiω)
H(e−iω)H(eiω)

i
+ 1

,

where the polynomials G
¡
eiω
¢
and H

¡
eiω
¢
are defined as G

¡
eiω
¢ ≡ g0+ g1e

iω+ g2e
i2ω+ ...

and H
¡
eiω
¢ ≡ h0+ h1e

iω + h2e
i2ω + .... The first-order condition with respect to gl for any

l is µ
π̂14
π̂11

¶2
2(bl − gl) = − µ

4π ln(2)

πZ
−π

∂ ln [1− Czi,ẑi (ω)]
∂gl

dω,

where µ is the Lagrange multiplier. The first-order condition with respect to hl for any l isµ
π̂14
π̂11

¶2
2hl =

µ

4π ln(2)

πZ
−π

∂ ln [1− Czi,ẑi (ω)]
∂hl

dω.

We obtain a system of nonlinear equations in d, f , g, h and µ that we solve numerically.
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Table 1: Parameters and main results for the benchmark economy

Parameters Interpretation

(bπ13/ |bπ11|) = 0.15 Determines the sensitivity of prices to real aggregate demand yt

(bπ14/ |bπ11|) = 1 Determines the sensitivity of prices to the idiosyncratic state variable zit
qt =

P20
l=0 alνt−l, νt ∼ N (0, 1) , The MA representation of nominal aggregate demand qt

with a0 = 1, al = al−1 − 0.05, l = 1, ..., 20
zit =

P20
l=0 blξit−l, ξit ∼ N (0, 1) , The MA representation of the idiosyncratic state variable zit

with b0 = 10, bl = bl−1 − 0.5, l = 1, ..., 20
κ = 3 The upper bound on the information flow

Main results Interpretation

8.2% The average absolute size of price changes per period

κ∗1 = 0.19, κ
∗
2 = 2.81 94% of attention allocated to the idiosyncratic state

E

·³
∆t − ∆̂∗it

´2¸
= 0.39 Expected loss from imperfect tracking of ∆t³bπ14bπ11

´2
E
h
(zit − bz∗it)2i = 2.1 Expected loss from imperfect tracking of zit



Table 2: Varying parameter values

Changes in parameter values Changes in results
relative to the benchmark economy in Table 1

a0 = 50, al = al−1 − 2.5, l = 1, ..., 20 The average absolute size of price changes per period is 35%

Larger variance of nominal aggregate demand κ∗1 increases to 76% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 75.6,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 54

b0 = 12, bl = bl−1 − 0.6, l = 1, ..., 20 The average absolute size of price changes per period is 10%

Larger variance of the idiosyncratic state variable κ∗1 decreases to 4% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.44,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 2.7

(bπ13/ |bπ11|) = 0.1 The average absolute size of price changes per period is 8.2%

More strategic complementarity in price setting κ∗1 decreases to 5% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.31,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 1.9

(bπ13/ |bπ11|) = 0.3 The average absolute size of price changes per period is 8.2%

Less strategic complementarity in price setting κ∗1 increases to 9% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.62,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 2.3
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Figure 1: Impulse responses of an individual price to an innovation in the idiosycratic state variable, benchmark economy
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Figure 2: Impulse responses of an individual price to an innovation in nominal aggregate demand, benchmark economy
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Figure 3: Simulated price set by an individual firm in the benchmark economy
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Figure 4: Simulated aggregate price level in the benchmark economy
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Figure 5: Impulse responses of an individual price to an innovation in the idiosycratic state variable
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Figure 6: Impulse responses of the aggregate price level to an innovation in nominal aggregate demand
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Figure 7: Impulse responses of the aggregate price level to an innovation in nominal aggregate demand
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Figure 9: An optimal idiosyncratic signal, benchmark economy
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