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Abstract
This paper studies the application behavior of agents in an environment where

agents are competing for placements (in colleges, in sports teams, etc) and are allowed
to submit multiple applications. It is assumed that agents have identical preferences
over placements and that the agents on the other side of the market (schools, teams,
etc) have identical preferences over applicant quality. With full information this is a
trivial problem to study, but with incomplete information this is no longer so. In par-
ticular, two aspects of incomplete information are considered that make the application
behavior in these environments an interesting decision problem to study: uncertainty
about one’s own quality and noise in the evaluation of applications. First I consider
what happens when agents have some uncertainty about their own quality (interpreted
as their ranking among the pool of applicants) and hence form beliefs about their qual-
ity and based on these they make applications. I show that with a fixed number of
applications, given that the distribution characterizing the belief of the agents satis-
fies the monotone likelihood ratio property (MLRP), there is assortative matching on
the mean belief (expected quality) of the agent in the sense that all applications are
increasing in the mean belief of the agent. When I allow agents to decide how many
applications to make given some application cost, this result breaks down, however. I
show that, even if MLRP holds, it is possible for an agent with a better underlying
quality and a better mean belief to secure a worse placement. I also show that the
number of applications is decreasing in the dispersion of beliefs, and for high enough
dispersion, agents submit no application or submit a single application for the best
placement.

Next, I study what happens when a random element is added to the evaluation of
the applications. I show that agents with low dispersion in their beliefs are the ones to
submit multiple applications. The results thus show that both aspects of incomplete
information imply that low uncertainty agents submit more applications, and hence
secure better placements. In a companion paper I embed the application decision
of the agents into a general equilibrium model of college applications where colleges
optimally chose which students to admit, and study the properties of its equilibrium.

1Department of Economics, Northwestern University, 2003 Sheridan Road, Evanston, IL 60208-2600,
USA, nagypal@northwestern.edu.



1 Introduction

This paper studies the application behavior of agents in an environment where agents are

competing for placements (in colleges, in sports teams, etc) and are allowed to submit mul-

tiple applications. Two aspects of incomplete information are considered that make the

application behavior in these environments an interesting decision problem to study: uncer-

tainty about one’s own quality and noise in the evaluation of applications. First I consider

what happens when agents have some uncertainty about their own quality (interpreted as

their ranking among the pool of applicants) and hence form beliefs about their quality and

based on these they make applications. I show that with a fixed number of applications,

given that the distribution characterizing the belief of the agents satisfies the monotone like-

lihood ratio property (MLRP), there is assortative matching on the mean belief (expected

quality) of the agent in the sense that all applications are increasing in the mean belief of the

agent. When I allow agents to decide how many applications to make given some application

cost, this result breaks down, however. I show that, even if MLRP holds, it is possible for an

agent with a better underlying quality and a better mean belief to secure a worse placement.

I also show that the number of applications is decreasing in the dispersion of beliefs, and for

high enough dispersion, agents submit no application or submit a single application for the

best placement.

Next, I study what happens when a random element is added to the evaluation of the

applications. I show that agents with low dispersion in their beliefs are the ones to submit

multiple applications. This is because agents with high dispersion in their belief rationally

interpret a rejection as a bad signal about their quality making subsequent applications less

profitable in expectation, while agents with low dispersion rationally interpret a rejection as

bad luck without much affecting the expectation about their chance of securing a placement

elsewhere. The results thus show that both aspects of incomplete information imply that

low uncertainty agents submit more applications, and hence secure better placements.

This paper is in the intersection of two strands of the literature. First, it is closely

related to the literature on matching since it considers the decision whom to match with
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in a matching model with two-sided heterogeneity when meetings between partners are

directed (via applications). Most matching models assume that agents are homogeneous

and meetings between agents are random which means that the agents in the model cannot

influence whom they will have an opportunity to match with in the subsequent period (see

the search and matching literature reviewed in Pissarides (2000)). More recently, however, a

literature has developed that focuses on the effects of heterogeneity on matching and search

outcomes. While most papers in this literature still assume random search (for example,

Burdett and Coles (1997)), there are a handful of papers that consider directed search or

directed meetings with heterogeneous agents.2 The starting point for these papers and the

literature on matching with heterogeneous agents is Becker’s famous result (Becker (1973))

in which he establishes that with transferable utility, given that traits of the partners are

complements (i.e., given a supermodular production function), perfectly assortative matching

(PAM) is the optimal matching pattern and it is achieved in equilibrium. Similarly, perfectly

assortative matching is the optimal matching pattern in an environment with heterogeneous

agents, directed meetings, and non-transferable utility. Perfectly assortative matching means

that, in the case of the labor market, the highest quality worker matches with the highest

quality firm, the next highest quality worker matches with the next highest quality firm, and

so on.

This very stark prediction of perfect assortative matching is in contrast with empirical

observations and intuition. There has been considerable effort in the literature to establish

more general conditions under which the PAM result holds or breaks down (for example,

Shimer and Smith (2000)). A recent paper emphasizing the role of coordination frictions in

breaking down PAM is Shimer (2001).

The role of incomplete information has received practically no attention in this discussion.

The only other extension of the matching model with heterogeneous agents, to my knowledge,

2The expression “directed search” is used in the literature to describe a situation in which agents can
influence which agents they meet with and hence have the possibility to form a match with. “Directed
meetings” is an extreme case of “directed search” where agents can exactly determine whom they have the
possibility to form a match with. In a sense, there is no search nor are there search frictions in the case of
“directed meetings”.
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that considers an incomplete information framework is Anderson and Smith (2002). Their

focus is on a different aspect of incomplete information, however. In particular, they show

that in a dynamic setting, PAM may fail even with a supermodular production function

when matches yield not only output but also information about agents’ types. They assume

a much simpler form of belief heterogeneity than the one assumed in this paper (beliefs are

binary in their model) and do not consider multiple applications, hence the questions asked

in this paper about the effects of incomplete information cannot be studied within their

framework.

An important issue in matching models is whether utility between the parties in the match

is transferable, for example via wages, or not. In the model studied I assume that utility

is not transferable between the partners in a match3, hence the model is more appropriate

to study markets where this assumption is more plausible, such as the market for college

admissions. Thus the model is phrased is terms of college application decisions, even though

its implications are more broadly applicable to matching markets with multiple applications.

While the assumption of non-transferable utility does not completely characterize the college

admission process, since colleges actively price discriminate by using financial aid policies,

most admission policies still claim to be “need-blind”. The extent of price discrimination is

also limited by the fact that colleges have set tuition rates, and at their set tuition rates the

demand for selective colleges still far exceeds supply, implying that price discrimination and

hence transferability of utility is far from perfect between colleges and their students.

This brings us to the second strand of the literature to which this paper is closely related,

that on college applications. The decision to apply to college is the first major economic

decision most young adults undertake as they embark upon their adult life. The stakes are

perceived to be large, as is manifested by the tremendous attention paid to the admission

policies of the most selective colleges by students, their parents, and commentators at large.

The evidence available on labor market performance also points in the direction of substantial

labor market payoffs to attending a selective college (Brewer, Eide, and Ehrenberg (1999)).

3A good comparison of models with non-transferable utility to those with transferable utility can be found
in Burdett and Coles (1999).
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Despite the importance that this decision has in the early stage of an individual’s eco-

nomic life, the theoretical literature studying the college application decision is not very

large. The most prominent strand of this literature is the game theory and mechanism de-

sign literature following Gale and Shapley’s seminal work on the so-called “college admission

problem” (see Gale and Shapley (1962)). In the college admission problem students and

colleges have diverse preferences over which colleges to attend and which students to admit

and the task is to design a mechanism that results in an individually rational and stable

outcome (i.e., an outcome in which no agent would prefer to be unmatched and in which no

two agents who are not matched to each other would both prefer to be matched with each

other).

While the heterogeneity of preferences in a complete information environment is certainly

an important aspect of the college application decision, issues relating to incomplete infor-

mation are equally important. There are two important sources of incomplete information

in the college application process. First, high school graduates generally do not fully know

how well they rank in the general pool of college applicants. Of course, they might know

their high school ranking and if they take the SAT (which is itself already a cost of applying

to college) they know their SAT scores and the corresponding percentiles, but these pieces

of information do not fully reveal the quality of a college applicant. Hence, students face

some uncertainty regarding their own quality. Moreover, even if students were fully aware

of their own ranking within the pool of college applicants and had the same preferences over

colleges, one would still expect them not to sort perfectly on quality to the different quality

colleges, due to the presence of “noise” in the admission process. In other words, while the

assessment of a student’s ranking within the college applicant pool across colleges is certainly

correlated, this correlation is far from perfect.

I consider a model where high school graduates (henceforth students) are heterogeneous

in their belief about their own quality. This quality can be thought of as the ranking of

the student among the pool of college applicants. Students’ beliefs are characterized by a

distribution function parameterized by its mean and variance. These students then decide

which colleges, if any, to apply to. Applying to college has a fixed cost and each application
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has a variable cost. Each application gains the possibility for the student of being admitted by

the college she applied to. Colleges are of a finite number of types based on their reputation,

and there are many colleges of each type. Students have the same preferences over colleges,

i.e., they all prefer colleges with better reputations, and this is the only attribute of colleges

that they care about. Better reputation colleges have higher admission standards, meaning

that they have a higher quality cutoff for accepting students. I study two versions of the

model. In the first, colleges observe the actual quality (absolute ranking) of an applicant,

while in the second they do not observe the actual quality (absolute ranking) of an applicant,

instead they observe a noisy realization of it.

In a companion paper I embed the application decision of the agents into a general

equilibrium model of college applications where colleges optimally chose which students to

admit, and study the properties of its equilibrium.

The paper proceeds as follows.

2 A simple model with uncertainty about own quality

There are two colleges in the economy. The two colleges differ in terms of the payoff a

student gets from attending them, i.e., their desirability (which I will call reputation from

now on). The high-reputation college has reputation ηh, while the low-reputation college has

reputation ηl < ηh. The threshold quality requirement of the high-reputation college is qh,

while the threshold quality requirement of the low-reputation college is ql < qh.

Each student in the economy has a distinct quality, µ, that is drawn from a normal

distribution with mean 0 and variance σ2
µ. The student does not know her own quality.

Instead, she gets a signal about her quality, µ̂ = µ + ε, where ε has a distribution N(0, σ2
ε).

Once the student receives this signal, she updates her belief about her quality, and her

posterior belief will be normal with mean

µ̃ =
σ2

µ

σ2
µ + σ2

ε

(µ + ε),
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and variance

σ̃2 =
σ2

εσ
2
µ

σ2
µ + σ2

ε

.

Since there is a one-to-one correspondence between σ2
ε and σ̃2, I can treat the latter as the

primitive of the model, which will turn out to be convenient.

Once the student updates her belief about her quality, she decides whether to apply to any

of the two colleges in the economy. When making this decision, the student is maximizing

her expected payoff. There is a cost of applying to college, c ≥ 0 per application. Since there

are two colleges in the economy, the student submits at most two applications. (There is no

benefit from submitting multiple applications to the same college.) If the student’s quality

is above the threshold quality requirement of a college she applied to, then she is accepted

by that college. Finally, the student decides which college to enroll of the ones that accepted

her, and if the student enrolls college j, then she gets a payoff of ηj > 0. If the student does

not enroll college, her payoff is 0.

Consider the application policy of the students given the threshold ql < qh of the two col-

leges. (These threshold qualities are considered exogenous in this paper. For an equilibrium

derivation of the threshold qualities, see the companion paper.) A student with posterior

belief (µ̃, σ̃) has four options: she can choose not to apply to any college, she can apply to

the low-reputation college, to the high-reputation college, or to both colleges. The optimal

policy of a student with any belief can be described by comparing the above alternatives,

two at a time, and establishing the values of (µ̃, σ̃) for which each is preferred.
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2.1 Pairwise comparison of alternative policies

2.1.1 Applying to a single college versus not applying

If the student with belief (µ̃, σ̃) applies to the low-reputation college, then her expected

payoff is

F̄

(
ql − µ̃

σ̃

)
ηl − c, (1)

where F̄ is the survival function of the standard normal distribution, i.e., F̄ = 1−F , where

F is the cumulative density function of the standard normal distribution. One necessary

condition for this expected payoff to be higher than 0, the payoff from not applying, is that

c < ηl. This assumption is maintained throughout, since it simply means that the cost

of applying to the low-reputation college is outweighed by the payoff from attending that

college. Then, given this assumption, the expected payoff is higher than 0 if and only if

µ̃ ≥ ql − F−1

(
1− c

ηl

)
σ̃.

This relationship defines a curve in (µ̃, σ̃) space that separates the region where it is better

to apply to the low-reputation college from the one where it is better not to apply. This

curve is either downward- or upward-sloping, depending on the sign of F−1
(
1− c

ηl

)
. This

curve is denoted mnl in Figure 2.

Similarly, if the student with belief (µ̃, σ̃) applies to the high-reputation college, then her

expected payoff is

F̄

(
qh − µ̃

σ̃

)
ηh − c. (2)

Given that c < ηl < ηh, this expected payoff is higher than 0 if and only if

µ̃ ≥ qh − F−1

(
1− c

ηh

)
σ̃.

7



Similarly to the mnl curve, this relationship defines the mnh curve in (µ̃, σ̃) space, as demon-

strated in Figure 2. The slope of the mnh curve is lower than the slope of the mnl curve,

since ηh > ηl.

2.1.2 Applying to the low-reputation college versus applying to both colleges

If the student with belief (µ̃, σ̃) applies to both colleges, then her expected payoff is

F̄

(
qh − µ̃

σ̃

)
ηh +

[
F̄

(
ql − µ̃

σ̃

)
− F̄

(
qh − µ̃

σ̃

)]
ηl − 2c. (3)

Comparing this with the payoff in Equation (1) from applying to just the low-reputation

college, we can see that it is worth applying to both colleges instead of applying to just the

low-reputation college if and only if

F̄

(
qh − µ̃

σ̃

)
(ηh − ηl)− c ≥ 0.

This holds if c < ηh − ηl and

µ̃ ≥ qh − F−1

(
1− c

ηh − ηl

)
σ̃.

This relationship defines the mbl curve in (µ̃, σ̃) space. Its slope is clearly higher than that

of mnh (as in Figure 2).

2.1.3 Applying to the high-reputation college versus applying to both colleges

Comparing the payoff from applying to both colleges in Equation (3) to that from applying

to the high-reputation college in Equation (2), we can see that it is worth applying to both

colleges instead of applying to just the high-reputation college if

F̄

(
ql − µ̃

σ̃

)
− F̄

(
qh − µ̃

σ̃

)
≥ c

ηl

.

This relationship defines the mbh curve in (µ̃, σ̃) space in Figure 2.

8



2.1.4 Applying to the high-reputation versus the low-reputation college

Comparing the payoff from applying to the high-reputation college in Equation (2) versus

that from applying to the low-reputation college in Equation (1), we can see that it is worth

applying to the high-reputation college instead of applying to the low-reputation college if

and only if

F̄
(

qh−µ̃
σ̃

)

F̄
(

ql−µ̃
σ̃

) ≥ ηl

ηh

.

This relationship defines the mlh curve in (µ̃, σ̃) space in Figure 2.

2.2 The role of the application cost

Based on the value of the application cost, c, we can distinguish two cases based on the

value of the model’s exogenous parameters (notably, not based on the value of ql and qh.)

First, if (ηh − ηl)
ηl

ηh
≤ c, then the mbl and mbh curves do not intersect (since that would

imply F̄
(

ql−µ̃
σ̃

) ≥ 1, which is not possible for σ̃ > 0.) This case is represented in Figure 1.

Note that, when ηh − ηl ≤ c, then there is no part of the (µ̃, σ̃) space in which applying to

both colleges is preferred to applying to just the low-reputation college (i.e., there is no mbl

curve), but this is qualitatively the same as when there is an mbl curve that does not intersect

the mbh curve. The empty circles represent (µ̃, σ̃) combinations for which it is preferable to

apply to the low-reputation college, while the small dots represent posterior beliefs for which

it is preferable to apply to the high-reputation college. (Circles with dots in them represent

posterior beliefs for which it is preferable to apply to both colleges, though there are no such

beliefs in this case.)

This is the case when the cost of the second application is prohibitively expensive so that

a second application is never submitted. While this case features no multiple applications, it

demonstrates several interesting results. First, for a given posterior standard deviation, the

PAM result holds in the sense that there is PAM along the posterior means of the agents,

those with high posterior means (good signals) match with the high-reputation college, while

9



those with low posterior means (bad signals) match with the low-reputation college. (An

equivalent result holds in the static version of the model of Anderson and Smith (2002).)

-
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Figure 1: Optimal application policy of students as a function of pos-
terior mean and standard deviation in the case when (ηh − ηl)

ηl

ηh
≤ c2.

More interestingly, however, we can see from Figure 1 that students with the same pos-

terior mean but different posterior standard deviation might follow different application

policies. For very high values of the posterior standard deviation, students will “take long

shots” and apply to the high-reputation college or not apply, without considering to apply

to the low-reputation college for any value of the posterior mean. For lower values of the

posterior standard deviation, students with intermediate values of the posterior mean will

“play it safe” and apply to the low-reputation college. This means that some students with

the same posterior mean will follow different application policies and potentially will en-

roll different colleges. Thus Becker’s result no longer holds in the simple sense of PAM on

posterior means.

The second case, when c < (ηh − ηl)
ηl

ηh
, is displayed in Figure 2. In this case the mbl and

mbh curves intersect. Once again, the empty circles represent (µ̃, σ̃) combinations for which

it is preferable to apply to the low-reputation college, the small dots represent posterior
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beliefs for which it is preferable to apply to the high-reputation college and the circles with

dots in them represent posterior beliefs for which it is preferable to apply to both colleges.
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Figure 2: Optimal application policy of students as a function of pos-
terior mean and standard deviation in the case when c < (ηh − ηl)

ηl

ηh
.

This case is more interesting than the previous one in the sense that it features multi-

ple applications for some posterior beliefs. The (µ̃, σ̃) combinations for which students will

choose to apply to both colleges are relatively low values of the posterior standard deviation

coupled with posterior means around the cutoff of the high-reputation college. These stu-

dents have a quite precise idea about their own quality and realize that being so close to the

cutoff of the high-reputation college, they run the risk of “just not making it”, i.e., ending

up with a quality that is just below the cutoff.
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3 The general model

There are a continuum of colleges in the economy that differ in their threshold quality

requirement, q. Moreover, the colleges differ in terms of the payoff a student gets from

attending them, their desirability, denoted by η(q). It is assumed that, over a relevant range,

η(q) is increasing, meaning that colleges that are more stringent in their quality requirement

provide a higher payoff to students attending them.4

Assumption 1. η(q) is continuous with η(q) = η = 0 on q ∈ (−∞, q), η′(q) > 0 on

q ∈ (q, q̄), and η(q) = η̄ > 0 on q ∈ (q̄,∞) for some q and q̄.

Each student has a belief about her own quality characterized by the distribution function

F (µ). Instead of specifying how a student arrives to having the beliefs she has, I make more

general assumptions on the distribution function F (µ) that allow me to derive results about

the application behavior of students. F (µ) can, of course, be the result of Bayesian updating

as in the above examples, but this need not be the case.

Assumption 2. F (µ) is a probability distribution function with support on (−∞,∞). F (µ)

is continuous, strictly increasing and continuously differentiable.

Assumption 3. F (µ) belongs to a class of distribution functions parameterized by µ̃ and σ̃

such that

F (µ | µ̃, σ̃) = F

(
µ− µ̃

σ̃
| 0, 1

)
.

Assumption 4. F (µ | µ̃, σ̃) satisfies the strict monotone likelihood ratio property, i.e., for

any µ1 < µ2,
F̄(µ2−µ̃

σ̃ )
F̄(µ1−µ̃

σ̃ )
is strictly increasing in µ̃.

Next, I consider two alternative assumptions about the application behavior of student.

In Section 3.1, I consider the case when students can submit a fixed number of applications,

4In a companion paper, I consider the optimizing behavior of colleges when setting their admission stan-
dards and the resulting equilibrium. I show there that, taking the payoffs of the colleges — the distribution
of η — as the primitives of the model, the equilibrium admission standard, q(η), is in fact increasing in η.
The inverse notation used in this paper is more convenient for the problem at hand.
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while in 3.2 I endogenize the application intensity by allowing students to submit any number

of applications given some application cost.

3.1 Fixed number of applications

Assumption 5A. A student can submit a fixed N number of applications.

Given that η′(q) > 0 on (q, q̄), it immediately follows that all student will submit the

maximum allowed number of applications. Let us introduce the following notation. Let us

denote the ordered optimal acceptance set of a student with belief F (µ̃, σ̃) by A(µ̃, σ̃) and

its ith element by q∗i (µ̃, σ̃). Moreover, let us denote the highest element of A(µ̃, σ̃) by h(µ̃, σ̃)

and its lowest by l(µ̃, σ̃).

Theorem 1 (Assortative matching given fixed number of applications). Given

Assumptions 1 through 4 and 5A, for a given σ̃, q∗i (µ̃, σ̃) (and hence h(µ̃, σ̃) and l(µ̃, σ̃)) is

increasing in µ̃.

Proof of Theorem 1. Let us fix σ̃ = 1 (it is easy to show that this simply makes the notation

a little less cumbersome and is without loss of generality ). Given a fixed N number of

applications, the objective of the student is to choose q1 < q2 < ... < qN to maximize

N∑
i=1

F (qi − µ̃) [η(qi)− η(qi−1)].

(For notational convenience let us use the notation q0 = −∞ and qN+1 = ∞, so that

η(q0) = 0 and F (qN+1 − µ̃) = 0.) The optimal choices q∗ = [q∗1, ..., q
∗
N ] (the arguments of

which are suppressed) satisfy the necessary first-order conditions

[
F (qi − µ̃)− F (qi+1 − µ̃)

]
η′(qi)− f (qi − µ̃) [η(qi)− η(qi−1)] = 0.

The second-order condition for a maximum requires that the Hessian evaluated at q∗ be
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negative definite:

H =




d1 o1 0 0 . . .

o1 d2 o2 0 0 . .

. . . . . . .

. 0 oi−1 di oi 0 .

. . . . . . .

. . 0 0 on−2 dn−1 on−1

. . . 0 0 on−1 dn




,

where

di =
[
F (q∗i − µ̃)− F

(
q∗i+1 − µ̃

)]
η′′(q∗i )− f ′ (q∗i − µ̃) [η(q∗i )− η(q∗i−1)]− 2f (q∗i − µ̃) η′(q∗i ),

and

oi = f(q∗i+1 − µ̃)η′(q∗i ).

Notice that oi needs to be strictly positive since f(q∗i ) > 0 by Assumption 2 and η′(q∗i ) > 0,

i = 1, ..., n− 1 since, given Assumption 1, the optimal school choices feature q ≤ q∗1 < ... <

q∗N−1 < q∗N ≤ q̄.

Totally differentiating the N first-order conditions with respect to µ̃ and suppressing µ̃

in what follows, we get

[f(q∗i )− f(q∗i+1)]η
′(q∗i ) + f ′(q∗i )[η(q∗i )− η(q∗i−1)] + oi−1

dq∗i−1

dµ̃
+ di

dq∗i
dµ̃

+ oi

dq∗i+1

dµ̃
= 0,

or in matrix notation

p + Hg = 0,
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where p is a vector of length N with general element

pi =
[
f(q∗i )− f(q∗i+1)

]
η′(q∗i ) + f ′(q∗i )[η(q∗i )− η(q∗i−1)]

and g is a vector of length N with general element

gi =
dq∗i
dµ̃

.

Multiplying by the inverse of H and rearranging, we get an expression for the gradient vector

g = −H−1p. (4)

First notice that every element of p is positive given a distribution function satisfying strict

MLRP, because

pi

f(qi)[η(qi)− η(qi−1)]
=

[f(qi)− f(qi+1)]η
′(qi)

f(qi)[η(qi)− η(qi−1)]
+

f ′(qi)

f(qi)
=

f(qi)− f(qi+1)

F (qi)− F (qi+1)
+

f ′(qi)

f(qi)
=

=
− ∫ qi+1

qi
f ′(q)dq∫ qi+1

qi
f(q)dq

+
f ′(qi)

f(qi)
=
− ∫ qi+1

qi

f ′(q)
f(q)

f(q)dq∫ qi+1

qi
f(q)dq

+
f ′(qi)

f(qi)
>

>
−f ′(qi)

f(qi)

∫ qi+1

qi
f(q)dq∫ qi+1

qi
f(q)dq

+
f ′(qi)

f(qi)
= 0,

where the second equality follows from the first-order condition, while the inequality follows

from the fact that a distribution function satisfies strict MLRP iff f ′(x)
f(x)

is strictly declining.

To show that all the elements of g are positive, it is then sufficient to show that all the

elements of H−1 are negative. Since H is negative definite, we know that it is true for an

arbitrary vector k = [k1, ..., kN ]′ that

k′Hk < 0, or
N∑

i=1

dik
2
i +

N−1∑
i=1

2oikiki+1 < 0.

Now consider the jth column of H−1, [h1j, ..., hNj]
′. From the fact that H−1 is the inverse of

15



H, we know that

d1h1j + o1h2j = 0

oN−1hN−1j + dNhNj = 0.

oi−1hi−1j + dihij + ojhi+1j = 0 for i = 2, ..., j − 1, j + 1, .., N − 1, and

oj−1hj−1j + djhjj + ojhj+1j = 1 (5)

Now consider the vector [h1j, ..., hkj, 0, .., 0]′ for any k < j. Since H is negative definite, we

know that

k∑
i=1

dih
2
ij +

k−1∑
i=1

2oihijhi+1j < 0,

or

h1j(d1h1j + o1h2j) + h2j(o1h1j + d2h2j + o2h3j) + ...+

+ hk−1j(ok−2hk−2j + dk−1hk−1j + ok−1hkj) + hkj(ok−1hk−1j + dkhkj) < 0,

which together with (5) implies that

−hkjokhk+1j < 0.

Since ok is positive, this means that hkj and hk+1j have the same sign. Since this holds for

any k < j, this means that h1j through hjj all have the same sign.

Now considering the vector [0, ..., 0, hkj, .., hNj]
′ for any k > j, we can similarly establish

that hjj through hNj all have the same sign, hence all the elements of column j have the

same sign. Since H−1 is symmetric (it is the inverse of a symmetric matrix), this means that

all the elements of H−1 have the same sign. Finally, since H−1 is negative definite (it is the

inverse of a negative definite matrix), this means that all the elements of H−1 are negative.

Given (4), this in turn implies that all the elements of g are positive. (If the assumption of

strict MLRP were to be substituted with the assumption of MLRP, then the same argument
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would show that the elements of g are non-negative, since then the elements of p need not

be strictly positive, just non-negative.)

3.2 Endogenous number of applications

Now let us assume that instead of submitting a fixed number of applications, a student can

submit any number of applications given some application cost.

Assumption 5B. A student can submit any number of applications at a cost of c per ap-

plication.

Theorem 2 (Non-assortative matching given an endogenous number of applica-

tions). Given Assumptions 1 through 4 and 5B, for a given σ̃, neither h(µ̃, σ̃) nor l(µ̃, σ̃)

need to be increasing in µ̃.

This means that even if the assumption of monotone likelihood ratio property holds,

which was the key to assortative matching with one or a fixed number of applications, once

the application intensity is internalized, assortative matching need not hold, not even in the

weak sense of the highest or lowest quality application increasing in the belief of the student.

Theorem 2 implies that — in a Bayesian updating environment — it is possible that

student A is of better underlying quality than student B and student A gets a better signal

about quality than student B, nonetheless student B ends up enrolling a better quality college

than student A. To show that this is the case, let us consider the following example.

Example 1. Let the application cost be equal to c = .117, let the distribution function be

normal with mean m̃u and variance 1 and let the payoff function be piece-wise linear.

η(q) =





0 q ∈ (−∞,−4/3]

1 + .75q q ∈ (−4/3, 0]

1 + .35q q ∈ (0,∞)

Figure 3 plots difference between the value of optimally applying to college given that

the student submits one application and the value applying to college given that the student
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submits two applications. (In this example, it is never beneficial for the student to submit

more than two applications.)
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Figure 3: Value of submitting a second application as a function of the
mean of the student’s belief.

Figure 4 plots the optimal application behavior of a student as a function of µ̃.

Now let us assume that the underlying quality distribution in the population is N(0, 2),

and the student receive signals that are contaminated by an error with a distribution N(0, 2).

Now let us assume that student A has inherent quality µA = .30, while student B has inherent

quality µB = .20 < µA. Student A receives a signal µA + εA = .30 + .30 = .60 and — using

the simple Bayesian updating formulas above — updates her belief to N(.30, 1), while student

B receives a signal µB + εA = .20+ .20 = .40 and updates his belief to N(.20, 1). This implies

that student A will optimally apply and get into school qA = 0, while student B will optimally

apply to schools qB1 = −.51 and qB2 = .174, get into both and enroll school qB2 = .174, a

better school than the one attended by student A.
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Figure 4: Optimal choice of school(s) as a function of the mean of the
student’s belief.
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Theorem 3. There exists σ̂ < ∞ such that for all µ̃ ∈ R and σ̃ > σ̂ the acceptance set is

A(µ̃, σ̃) = {q̄} or A(µ̃, σ̃) = ∅.

4 Noise in the evaluation of applications

Now consider the following alternative scenario. There are again two colleges in the economy.

These two colleges now, however, are exactly the same in terms of the payoff a student gets

from attending them. The threshold quality requirement of each college is q. The information

structure on the side of the student is the same as in Section 2, hence the student’s belief

about her quality is normal with mean µ̃ and variance σ̃2.

Once the student updates her belief about her quality, she decides how many of the

colleges to apply to, if any. If a student applies to a college, then that college receives a

signal about the student µ̂ = µ+νj, where νj is independent across colleges and students and

is distributed N(0, 1).5 If this signal is above the threshold q, then the student is accepted,

otherwise she is rejected.

Once again, the student is maximizing her expected payoff and again the cost per appli-

cation is c. Since there are two colleges in the economy, the student submits at most two

applications. A student with posterior belief (µ̃, σ̃) has three options: she can choose not to

apply to any college, she can apply one college or to two colleges. The optimal policy of a

student with any belief can be described by comparing the above alternatives, two at a time,

and establishing the values of (µ̃, σ̃) for which each is preferred.

Intuitively, the decision of students to make multiple applications is driven by the fact

that the extra payoff from applying to an additional college of the same quality is higher

if the correlation between the signals that the colleges receive is lower. In the extreme, if

the signals are perfectly correlated, then there is no reason for students to submit multiple

applications.

The unconditional correlation between the signals that the two colleges receive is
σ2

µ

σ2
µ+1

.

5Assuming that the noise has a variance of 1 is without loss of generality, since what is important in the
inference process is its relative magnitude compared to σµ, which is allowed to take on any value.
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The correlation conditional on the information available to the student is lower, however, it

is

σ̃2
µ

σ̃2
µ + 1

,

which is clearly increasing in σ̃2
µ. Hence students with higher precision about their own

quality (lower posterior variance) will perceive the correlation between the signals about

them that the colleges receive to be lower. This means that it is these students that will

benefit more from making multiple applications. To put it differently, if a college rejects a

high uncertainty student with a given posterior mean, she rationally interprets it as a signal

that she is in fact not good enough to get into that quality college, while if a college rejects

a low uncertainty student with the same posterior mean, she rationally interprets it as “bad

luck”, i.e. a low realization of the noise term νj. This is because the admission decision of a

college carries lower information content for a well-informed student.

The probability of getting into college if making just one applications is P1(µ̃, σ̃), where

this is equal to

P1(µ+ν1 > q | µ̃, σ̃) =

∫ ∞

−∞

1

σ
f

(
µ− µ̃

σ̃

)
P (ν1 > q−µ)dµ =

∫ ∞

−∞

1

σ
f

(
µ− µ̃

σ̃

)
F̄ (q − µ) dµ.

Proposition 4. P1(µ̃, σ̃) is increasing in µ̃ and is increasing in σ̃ if and only if µ̃ ≤ q.

Proof: See Appendix.

Proposition 4 implies that in (σ̃, µ̃)-space, the indifference curve between applying to a single

college versus not applying at all is monotone. If it intersects the µ̃ axis below q, which occurs

if P1(q, 0)η − c ≥ 0, i.e., if c ≤ η
2
, then the indifference curve is downward-sloping. On the

contrary, if it intersects the µ̃ axis above q, which occurs if c ≥ η
2
, then the indifference curve

is upward-sloping.

The probability of getting into college if making two applications is P2(µ̃, σ̃), where this
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is equal to

P2(µ + ν1 > q or µ + ν2 > q | µ̃, σ̃) =

=

∫ ∞

−∞

1

σ
f

(
µ− µ̃

σ̃

)
[1− P (ν1 < q − µ)P (ν2 < q − µ)] dµ =

=

∫ ∞

−∞

1

σ
f

(
µ− µ̃

σ̃

) [
1− F (q − µ)2] dµ.

It is preferable to apply to two colleges as opposed to just one if the payoff from doing so is

higher, i.e., when

P2(µ̃, σ̃)η − 2c ≥ P1(µ̃, σ̃)η − c,

or

P2(µ̃, σ̃)− P1(µ̃, σ̃) =

∫ ∞

−∞

1

σ
f

(
µ− µ̃

σ̃

)
F (q − µ) F̄ (q − µ) dµ ≥ c

η
.

Proposition 5. P2(µ̃, σ̃) − P1(µ̃, σ̃) is increasing in µ̃ if and only if µ̃ ≤ q. Moreover, for

each µ̃, there exists a 0 ≤ σ̂(µ̃) ≤ 2 | q − µ̃ | such that P2(µ̃, σ̃)− P1(µ̃, σ̃) is decreasing in σ̃

for any σ̃ ≥ σ̂(µ̃).

Proof: See Appendix.

Proposition 5 implies that if any student applies to two colleges, it will be the ones with

posterior means close to the cutoff of the colleges and with low posterior variances. Moreover,

if for some student finds it profitable to apply to two colleges, then the student who is

certain about her quality and has a quality equal to the cutoff quality of the colleges must

find it profitable to apply to two colleges.6 This student finds two applications profitable if

(P2(q, 0)− P1(q, 0)) η ≥ c, or c ≤ η
4
.

Hence, based on the magnitude of the application costs, we can distinguish between three

cases. When c ≥ η
2
, the indifference curve between applying to one college and not applying

6This is because from Proposition 5 it follows that P2(µ̃, σ̃)− P1(µ̃, σ̃) ≤ P2(q, σ̃)− P1(q, σ̃) ≤ P2(q, 0)−
P1(q, 0).
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is upward-sloping and the application cost is so high that no student finds it preferable

to apply to two colleges as opposed to applying to just one. When η
4
≤ c < η

2
the same

indifference curve is downward-sloping though there are still no multiple applications. This

latter case is depicted in Figure 5.
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Figure 5: Optimal application policy of students as a function of pos-
terior mean and standard deviation when there is noise in the decision
process in the case when η

4
≤ c < η

2
.

In the last case, some students find it preferable to apply to two colleges as opposed to

applying to just one, i.e., c < η
4
. This is the case depicted in Figure 6.
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Figure 6: Optimal application policy of students as a function of pos-
terior mean and standard deviation when there is noise in the decision
process in the case when c ≤ η

4
.
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A Appendix

Proof of Theorem 3. The payoff from applying to school q̄ is

F̄

(
q̄ − µ̃

σ̃

)
η(q̄)− c.

This payoff is increasing in µ̃, hence at any given σ̃ for a high enough value of µ̃, a student

with belief F (µ̃, σ̃) will prefer to apply to school i than not to apply at all as long as η(q̄) > c,

while for low enough value of µ̃, a student with belief F (µ̃, σ̃) will prefer to not apply at all

to college to applying to school q̄.

The difference in payoff from applying to the best school q̄ and to a lower quality school

q̂ < q̄ is

F̄

(
q̄ − µ̃

σ̃

)
η(q̄)− F̄

(
q̂ − µ̃

σ̃

)
η(q̂) =

= F̄

(
q̄ − µ̃

σ̃

)
[η(q̄)− η(q̂)]−

[
F̄

(
q̂ − µ̃

σ̃

)
− F̄

(
q̄ − µ̃

σ̃

)]
η(q̂)

≥ F̄

(
q̄ − µ̃

σ̃

)
[η(q̄)− η(q̂)]−

[
F̄

(
q̂ − q̄

2σ̃

)
− F̄

(
q̄ − q̂

2σ̃

)]
η(q̂),

where the inequality follows from the fact that, for a given a, F (x + a)−F (x) is maximized

at x = −a/2. Notice that since F̄
(

q̂−q̄
2σ̃

)− F̄
(

q̄−q̂
2σ̃

)
is decreasing in σ̃ with limσ̃→∞ F̄

(
q̂−q̄
2σ̃

)−
F̄

(
q̄−q̂
2σ̃

)
= 0 and F̄

(
q̄−µ̃

σ̃

)
is increasing in σ̃ with limσ̃→∞ F̄

(
q̄−µ̃

σ̃

)
= F̄ (0), the lower bound

on the difference is increasing in σ̃ with a strictly positive limit as σ̃ → ∞, hence there

exists σ̂ < ∞ such that for all σ̃ > σ̂ it is preferable for a student to apply only to the

best school than to apply only to one of the other schools. Depending then on whether the

value from applying to the best school is positive or not, the acceptance set for any µ̃ ∈ R

is A(µ̃, σ̃) = {q̄} or A(µ̃, σ̃) = ∅.

Proof of Proposition 4. Notice that P1( µ̃, σ̃) can be rewritten as

P1(µ̃, σ̃) =

∫ ∞

−∞
f (ν) F̄

(
µ− µ̃− ν

σ̃

)
dν.
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Then

dP1(µ̃, σ̃)

dµ̃
=

1

σ̃

∫ ∞

−∞
f (ν) f

(
µ− µ̃− ν

σ̃

)
dν ≥ 0.

To determine the sign of dP1(µ̃,σ̃)
dσ̃

, notice that

dP1(µ̃, σ̃)

dσ̃
=

∫ ∞

−∞
f (ν) f

(
µ− µ̃− ν

σ̃

)
µ− µ̃− ν

σ̃2
dν =

=

∫ µ−µ̃

−∞
f (ν) f

(
µ− µ̃− ν

σ̃

)
µ− µ̃− ν

σ̃2
dν +

∫ ∞

µ−µ̃

f (ν) f

(
µ− µ̃− ν

σ̃

)
µ− µ̃− ν

σ̃2
dν =

=

∫ ∞

µ−µ̃

(
f (ν)− f(2(µ− µ̃)− ν)

)
f

(
µ− µ̃− ν

σ̃

)
µ− µ̃− ν

σ̃2
dν, (A-1)

where the second equality follows from the fact that f
(

µ−µ̃−ν

σ̃

)
µ−µ̃−ν

σ̃2 = −f
(

ν−(µ−µ̃)

σ̃

)
ν−(µ−µ̃)

σ̃2 .

Notice that µ − µ̃ − ν is always negative over the interval [q − µ̃,∞), and if µ̃ ≤ q then

f (ν) − f(2(µ − µ̃) − ν) is negative over the same interval, otherwise it is positive. This

establishes the second part of Proposition 4.

Proof of Proposition 5. Notice that

d(P2(µ̃, σ̃)− P1(µ̃, σ̃))

dµ̃
= − 1

σ̃2

∫ ∞

−∞
f ′

(
µ− µ̃

σ̃

)
F (q − µ) F̄ (q − µ) dµ =

= − 1

σ̃2

∫ ∞

µ̃

f ′
[
F (q − µ) F̄ (q − µ)− F (q − (2µ̃− µ)) F̄ (q − (2µ̃− µ))

]
dµ =

= − 1

σ̃2

∫ ∞

µ̃

f ′ [F (q − µ + 2(µ− µ̃))− F (q − µ)] [F (µ− q + 2(q − µ̃))− F (µ− q)] dµ,

where the argument of f ′ is suppressed and where the second equality follows from the

fact that f ′(x) = −f ′(−x), and the third equality follows from x(1 − x) − y(1 − y) =

(y− x)(y− (1− x)). Clearly, for µ ≥ µ̃, the second term in the integrand is always positive,

while the third term is positive if and only if µ̃ ≤ q. Hence d(P2(µ̃,σ̃)−P1(µ̃,σ̃))
dµ̃

is positive if and

only if µ̃ ≤ q.
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To determine the sign of d(P2(µ̃,σ̃)−P1(µ̃,σ̃))
dσ̃

, notice that

d(P2(µ̃, σ̃)− P1(µ̃, σ̃))

dσ̃
= − 1

σ̃2

∫ ∞

−∞

[
f + f ′

µ− µ̃

σ̃

]
F (q − µ) F̄ (q − µ) dµ =

=
1

σ̃2

∫ ∞

−∞
f

[
(µ− µ̃)2

σ̃2
− 1

]
F (q − µ) F̄ (q − µ) dµ,

where once again the arguments of f and f ′ are suppressed, and where the second equal-

ity follows from the property of the normal distribution that f ′(x) = −f(x)x. Since

f
(

µ−µ̃
σ̃

) [
(µ−µ̃)2

σ̃2 − 1
]

is symmetric around µ̃, takes on negative values on [µ̃ − σ̃, µ̃ + σ̃] and

positive values otherwise, and given
∫∞
−̃∞ f

(
µ−µ̃

σ̃

) [
(µ−µ̃)2

σ̃2 − 1
]
dµ = 0, we know that

∫ µ̃+σ̃

µ̃

f

(
µ− µ̃

σ̃

)[
1− (µ− µ̃)2

σ̃2

]
dµ =

∫ ∞

µ̃+σ̃

f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
dµ,

and

∫ µ̃

µ̃−σ̃

f

(
µ− µ̃

σ̃

)[
1− (µ− µ̃)2

σ̃2

]
dµ =

∫ µ̃−σ̃

−∞
f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
dµ.

Now consider the case when µ̃ ≤ q. Then F
(

q−µ
σν

)
F̄

(
q−µ
σν

)
is increasing over the interval

(−∞, µ̃], hence
∫ µ̃−σ̃

−∞
f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ ≤

≤
∫ µ̃−σ̃

−∞
f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − (µ̃− σ̃)

σν

)
F̄

(
q − (µ̃− σ̃)

σν

)
dµ =

=

∫ µ̃

µ̃−σ̃

f

(
µ− µ̃

σ̃

)[
1− (µ− µ̃)2

σ̃2

]
F

(
q − (µ̃− σ̃)

σν

)
F̄

(
q − (µ̃− σ̃)

σν

)
dµ ≤

≤
∫ µ̃

µ̃−σ̃

f

(
µ− µ̃

σ̃

)[
1− (µ− µ̃)2

σ̃2

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ,

which implies that

∫ µ̃

−∞
f

(
µ− µ̃

σ̃

) [
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ ≤ 0. (A-2)

Similarly, if σ̃ ≥ 2(q − µ̃), then F
(

q−µ
σν

)
F̄

(
q−µ
σν

)
≥ F

(
q−(µ̃+σ̃))

σν

)
F̄

(
q−(µ̃+σ̃)

σν

)
for any µ ∈
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[µ̃, µ̃ + σ̃], and hence
∫ µ̃+σ̃

µ̃

f

(
µ− µ̃

σ̃

)[
1− (µ− µ̃)2

σ̃2

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ ≥

≥
∫ ∞

µ̃+σ̃

f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ,

which implies that

∫ ∞

µ̃

f

(
µ− µ̃

σ̃

)[
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ ≤ 0,

which together with Equation (A-2) means that

∫ ∞

−∞
f

(
µ− µ̃

σ̃

) [
(µ− µ̃)2

σ̃2
− 1

]
F

(
q − µ

σν

)
F̄

(
q − µ

σν

)
dµ ≤ 0,

establishing the second part of Proposition 5.
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