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Abstract

In this paper, we show that low trend inflation strongly affects the dynamics of

a standard Neo-keynesian model where monetary policy is described by a standard

Taylor rule. In particular, we show that trend inflation: (i) enlarges the indeter-

minacy region in the parameter space, substantially altering the so-called Taylor

principle; (ii) changes the dynamic responses of the economy. Furthermore, we gen-

eralize the basic analysis to different types of Taylor rules, inertial policy rules and

indexation schemes. The key point is that, whatever the set up, the literature on

Taylor rules cannot disregard average inflation in both theoretical and empirical

analysis.
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1 Introduction

Average inflation in the post-war period in developed countries was moderately different

from zero and varied across countries.1 Nonetheless, most of the vast literature on

monetary policy rules worked with models log-linearized around a zero inflation steady

state (see e.g., Clarida et al., 1999, Galí, 2003, Woodford, 2003, or the book edited by

Taylor, 1999). This paper aims to accomodate this manifest inconsistency.

We generalize a standard Neo-Keynesian model with Calvo staggered price by taking

a log-linear approximation around a general level of steady state inflation.2 Then we

use a Taylor rule to close the model and address the question of how the properties of

our economy change as the trend inflation level varies.3

Our key finding is that trend inflation greatly affects the existing results in the

literature. In particular moderate levels of trend inflation: (i) modify the determinacy

region in the parameters space; (ii) alter the impulse response function of the model

economy after a cost-push shock. As a consequence, trend inflation largely changes also

the (unconditional) variances of key variables, such as inflation and output.

With respect to (i), we show that trend inflation substantially changes the well-

known determinacy condition that the literature labelled the Taylor principle. This

result is due to the distortions trend inflation causes in the long-run properties of the

model and, particularly, in the steady state relationship between inflation and output, a

surprisingly neglected issue in the literature. The long-run Phillips curve is highly non-

linear in the Neo-Keynesian model: it is positively sloped when steady state inflation is

zero, but then turns quite rapidly negative for extremely low value of trend inflation,

because of the strong price-dispersion effect.4 We will show that this has significant

implications on the celebrated Taylor principle. The results in most of the literature

1For example, Schmitt-Grohe and Uribe (2004b) calibrate trend inflation for the U.S. to 4.2%, based

on data from 1960-1998. In the same period Germany, Italy, Spain, and UK exhibit an average inflation

equals to respectively 3.22%, 8.12%, 7.1% and 9% (source: OECD).
2 In this paper, we abstract for other possible form of frictions, since we want to investigate the

relationship between Taylor rules and trend inflation.
3 In the following analysis we shall use indifferently trend inflation or long-run inflation to denote the

level of inflation rate in the deterministic steady state.
4See Ascari (1998) and Ascari (2004).
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are therefore based on a case (i.e., zero steady state inflation) that is both empirical

unrealistic and theoretically very special.

Our key result is then generalized and proved to be robust to: (i) different kinds

of Taylor type rules proposed in the literature (contemporaneous, backward-looking,

forward-looking and hybrid, see e.g., Clarida et al., 2000, Bullard and Mitra, 2002); (ii)

inertial Taylor rules for all the cases in (i); (iii) indexation schemes used in the literature

(see, e.g., Yun, 1996 and Christiano et al., 2005); (iv) different parameter values.

In sum, this paper shows that the literature on monetary policy rules cannot neglect

trend inflation both in the empirical and theoretical analysis, because the specification

of the theoretical model and then all the results are very sensitive to low and moderate

trend inflation levels, as empirically observed in western countries.

Just to give an example, the seminal analysis in Clarida et al. (2000) can be mis-

leading. Indeed, Clarida et al. (2000) data set features an average inflation for the US

economy quite different from zero inflation, while their analysis is based on a theoreti-

cal model that assumes zero trend inflation. On the one hand, positive trend inflation

changes the determinacy region, and then the well-known Taylor principle, such that

in order to label the equilibrium determinate one needs to take trend inflation into ac-

count. On the other hand, once an equilibrium is identified to pass from determinate to

indeterminate or vice versa, it is still to be investigated what is the relative contribution

of a change in the monetary policy regime (i.e, a change in the Taylor rule parameters)

rather than a change in the trend inflation level.

Another contribution of the paper is to offer a detailed presentation of the standard

log-linear Neo-Keynesian model approximated around a general trend inflation level

with and without indexation schemes. As such the paper generalizes the model in

Ascari and Ropele (2004) allowing for indexation schemes, and complements a series of

recent papers. Indeed, only very few papers in the literature allow for positive trend

inflation level. Ascari (2004) illustrates a standard Neo-keynesian model log-linearised

around a general trend inflation level. Ascari and Ropele (2004) analyzes how optimal

short-run monetary policy changes with trend inflation. Khan et al. (2003) instead

solves the optimal monetary policy problem and then investigate the dynamics of the

economy around the given optimal steady state inflation level. Schmitt-Grohe and
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Uribe (2004a,b) simulates the model under different Taylor type rules calibrating average

inflation on US data, but it does not study the effects of changing trend inflation levels.

Moreover, Schmitt-Grohe and Uribe (2004a,b) allows for the indexation scheme proposed

by Christiano, Eichenbaum, and Evans (2005), but simulates the model up to second-

order, so that the model is not log-linearised.

Finally, Kiley (2004) is a very related paper to ours. Kiley (2004) investigates the

effect of trend inflation in a model where prices are staggered a là Taylor (1979) and

monetary policy is described by Taylor rules.5 Our paper also complements this very

recent paper by assuming the more popular Calvo (1983) staggered pricing framework,

and by generalizing the results to different Taylor type rules and indexation schemes.

The paper proceeds as follows. Section 2 presents the model and Section 3 displays

the log-linearised version of it. Section 4 then presents the main results of the paper,

by looking at the behavior of the model when monetary policy is described by a con-

temporaneous Taylor rule. Section 5 tests the robustness of our key findings to many

alternative assumptions, as illustrated above. Section 6 concludes.

2 The Model

In this section we describe a simple New Keynesian stochastic general equilibrium model,

similar to Clarida, Galí, and Gertler (1999), Galí (2003) and Woodford (2003), general-

ized to allow for positive trend inflation (as in Ascari, 2004) and indexation.

2.1 Households

The economy is populated by infinitively lived households whose instantaneous utility

function is increasing in the consumption of the final good (Ct) and real money balances

(Mt/Pt) and decreasing in labor (Nt) according to

U

µ
C,

M

P
,N

¶
=

C1−σct − 1
1− σc

+ χm
(Mt/Pt)

1−σm − 1
1− σm

− χn
N1+σn
t

1 + σn
(1)

5We became aware of Kiley (2004) when we already embarked working on this paper. Kiley (2004)

shows that also in Taylor (1979) type of framework, trend inflation influences the determinacy region

and the unconditional variance of inflation. Kiley (2004) model is however quite stylized (two-period

staggering) and the analysis "kept as simple as possible" (p. 26). We therefore complements and

generalizes its results.
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where the positive parameters σc, σm and σn represents the inverse of the intertem-

poral elasticity of substitution in consumption, real money balances and labor supply,

respectively, while χm and χn are positive constants.

At a given period t, the representative household faces the following nominal flow

budget constraint

PtCt +Mt +Bt ≤WtNt +Mt−1 + (1 + it−1)Bt−1 + Ft + TRt (2)

where Pt is the price of the final good, Mt represents holding of nominal money, Bt

represents holding of bonds offering a one-period nominal return it, Wt is the nominal

wage and Ft are firms profits rebated to the households. In addition, each period the

government makes lump-sum nominal transfers to households equal to TRt. The house-

hold’s problem is to maximize the lifetime expected utility subject to budget constraints

(2), that is

maxn
Ct,

Mt
Pt

,Nt,Bt

o∞
t=0

E0

∞X
t=0

βt

Ã
C1−σct − 1
1− σc

+ χm
(Mt/Pt)

1−σm − 1
1− σm

− χn
N1+σn
t

1 + σn

!
(3)

s.t. Ct +
Mt

Pt
+

Bt

Pt
≤ Wt

Pt
Nt +

Mt−1
Pt

+ (1 + it−1)
Bt−1
Pt

+
Ft
Pt
+

TRt

Pt

where β ∈ (0, 1) is the subjective rate of time preference and E0 denotes the expecta-

tion operator conditional on the time t = 0 information set. The resulting first order

conditions yield:

labor supply : χn
Nσn
t

C−σct

=
Wt

Pt
(4)

money demand : χm
(Mt/Pt)

−σm

C−σct

=
it

1 + it
(5)

consumption Euler eq. : 1 = βEt

(
C−σct+1

C−σct

(1 + it)
Pt
Pt+1

)
. (6)

(4), (5), (6) have the usual straightforward economic interpretation.6

6Note that the momentary utiltiy function is additively separable in all the three arguments, con-

sumption, real money balances and labor, so that it follows that real money balances will not enter

in any of the other structural equations of the model. That is, the money demand equation becomes

completely recursive to the rest of the system equations.
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2.2 Final Good Producers

In each period t, a final good Yt is produced by perfectly competitive firms, combining

a continuum of intermediate inputs Yt (i), according to the following standard CES

production function:

Yt =

·Z 1

0
Yt (i)

θ−1
θ di

¸ θ
θ−1

with θ > 1. (7)

Taking prices as given the final good producer chooses the quantities of intermediate

goods Yt (i) that maximize its profits, i.e.,max
Yt(i)

½
Pt

hR 1
0 Yt (i)

θ−1
θ di

i θ
θ−1 − R 10 Pt (i)Yt (i) di¾,

resulting in the following demand function for each intermediate good i:

Yt (i) =

·
Pt (i)

Pt

¸−θ
Yt. (8)

The zero profit condition in the final good sector brings about the following expres-

sion for the aggregate price index

Pt =

·Z 1

0
Pt (i)

1−θ di
¸ 1
1−θ

. (9)

2.3 Intermediate Good Producers

The intermediate inputs Yt (i) are produced by a continuum of firms indexed by i ∈ [0, 1],
with the following production technology with constant returns to scale to labor:

Yt (i) = Nt (i) . (10)

The intermediate goods sector is characterized by the fact that prices are sticky. In

particular, intermediate good producers act as monopolistic competitors and set prices

according to a standard discrete version of the mechanism put forward by Calvo (1983).

In each period, there exists a fixed probability (1− α) according to which a firm can

re-optimize its nominal price. On the contrary, with probability α the firm cannot set

a new price. In the literature, we can distinguish three different hypothesis about what

happens to the price in this latter case: (i) No indexation: the price does not change;

(ii) Indexation to trend inflation (e.g., Yun (1996)): the price is automatically fully

or partially adjusted according to the level of trend inflation; (iii) Indexation to past
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inflation (e.g., Christiano, Eichenbaum, and Evans (2005))7: the price is automatically

fully or partially adjusted according to the past inflation level.

1. No indexation

The problem of a price-resetting firm can be formulated as

max
p∗t (i)

Et

∞X
j=0

αj∆t,t+j

·
p∗t (i)
Pt+j

Yt+j (i)− TCr
t+j (Yt+j (i))

¸

s.t. Yt+j (i) =

·
p∗t (i)
Pt+j

¸−θ
Yt+j

where p∗t (i) denotes the new optimal price of producer i , TCr
t+j (Yt+j (i)) the real total

cost function and ∆t,t+j is the stochastic discount factor. The solution to this problem

yields the familiar formula for the standard optimal resetted price in a Calvo’s setup

p∗t (i) =
θ

θ − 1
Et
P∞

j=0 α
j∆t,t+j

h
P θ
t+jYt+jMCr

t+j (i)
i

Et
P∞

j=0 α
j∆t,t+j

h
P θ−1
t+j Yt+j

i (11)

where MCr
t (i) denotes the real marginal costs function, which, given the production

function (10), is simply MCr
t ≡ ∂TC(i)

∂Y (i) =
Wt
Pt
, and hence equal across producers i. The

real marginal costs thus depends only upon aggregate quantities, namely the real wage.

2. Partial indexation to long-run inflation (LRI)

Under this assumption, a firm that cannot re-optimize its price, update the price

according to this simple rule:

p∗t (i) = π̄εp∗t−1 (i) (12)

where π̄ is the steady state inflation level and ε ∈ [0, 1] is a parameter that measures
the degree of indexation. If ε = 1 there is full indexation, if ε = 0 there is no indexation

and the problem is the same one as in the previous case. The problem then becomes

the following

max
p∗t (i)

Et

∞X
j=0

αj∆t,t+j

·
p∗t (i) π̄εj

Pt+j
Yt+j (i)− TCr

t+j (Yt+j (i))

¸

s.t. Yt+j (i) =

·
p∗t (i) π̄εj

Pt+j

¸−θ
Yt+j

7See also Maury and Sahuc (2004).
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and the FOC is

p∗t (i) =
θ

θ − 1
Et
P∞

j=0 α
j∆t,t+j

h
P θ
t+jYt+jMCr

t+j (i) π̄
−θεj

i
Et
P∞

j=0 α
j∆t,t+j

h
P θ−1
t+j Yt+jπ̄

(1−θ)εj
i (13)

3. Partial indexation to past inflation (PI)

Under this assumption, a firm that cannot re-optimize its price, update the price

according to this simple rule:

p∗t (i) = πεt−1p
∗
t−1 (i) (14)

where πt−1 = Pt−1
Pt−2 is the inflation level in the previous period and ε ∈ [0, 1] is again

a parameter that measures the degree of indexation. The problem then becomes the

following

max
p∗t (i)

Et

∞X
j=0

αj∆t,t+j

·
p∗t (i)Πt,t+j−1

Pt+j
Yt+j (i)− TCr

t+j (Yt+j (i))

¸

s.t. Yt+j (i) =

·
p∗t (i)Πt,t+j−1

Pt+j

¸−θ
Yt+j

where Πt,t+j−1 = πεtπ
ε
t+1...π

ε
t+j−1 =

Qj−1
i=0 πεt+1for j > 0 and equal zero for j = 0. The

FOC of this problem is

p∗t (i) =
θ

θ − 1
Et
P∞

j=0 α
j∆t,t+j

h
P θ
t+jYt+jMCr

t+j (i)Π
−θ
t,t+j−1

i
Et
P∞

j=0 α
j∆t,t+j

h
P θ−1
t+j Yt+jΠ

1−θ
t,t+j−1

i (15)

2.4 Government

The government injects money into the economy through nominal transfers, such that:

TRt =Ms
t −Ms

t−1 (16)

where Ms is aggregate nominal money supply. Most importantly, we assume that in

steady state money supply evolves according to the following fixed rule

Ms
t = π̄Ms

t−1 (17)

where π̄ is the (gross) rate of nominal money supply growth, which in steady state

coincides with steady state inflation.
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As stated in the Introduction, this paper takes the trend inflation rate, π̄, as ex-

ogenous to the model. In the short run, hence, monetary policy aims at stabilizing

inflation and output gap around the long-run targets in response to exogenous shocks

buffeting the economy. Finally, we assume that monetary policy is implemented through

a Taylor-type rule for the control of the short-term nominal interest rate. Therefore,

in the subsequent sections, we will use a Taylor-type rule to close the model and thus

equation (5) will become redundant.8

2.5 Market clearing conditions

The market clearing conditions in the goods markets, in the money market and in the

labour market are simply:

Yt = Ct; Y s
t (i) = Y D

t (i) =

·
Pt (i)

Pt

¸−θ
Yt ∀i (18)

Mt = Ms
t ; and Nt =

Z 1

0
Nt(i)di.

3 The log-linearized model

Log-linearizing (4) and (6) we obtain

σnN̂t + σcŶt = Ŵt − P̂t (19)

Ŷt = EtŶt+1 − σ−1c [̂ıt −Etπ̂t+1] (20)

where hatted variables denote percentage deviations from deterministic steady state and

ı̂t ≡ log
³
1+it
1+ı̄

´
. Moreover, we used the market clearing condition Ŷt = Ĉt to obtain the

standard forward-looking IS curve (20).

3.1 Generalized New Keynesian Phillips Curves

The log-linearization of the equations for optimal price under trend inflation are defi-

nitely more cumbersome than the standard NKPC calculated log-linearising (11) around

zero inflation. In the appendix we show the following results.

8 In the usual sense that we will assume that, given equation (5), the money supply follows the path

necessary to implement the short-term nominal interest rate dictated by the Taylor-rule.
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1. NKPC with no indexation

In the case of no indexation, as in Ascari and Ropele (2004), the log-linearisation of

(11) leads to the following equations

π̂t = βπ̂t+1 + λ(π̄)m̂ct + λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)
Ŷt + λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶
ψ̂t (21)

and

ψ̂t =
³
1− αβπ̄θ

´ h
ûc (t) + Ŷt + m̂ct

i
+ αβπ̄θ

h
θπ̂t+1 + ψ̂t+1

i
(22)

where λ(π̄) = (1−απ̄θ−1)(1−αβπ̄θ).
απ̄θ

.

2. NKPC with partial indexation to long-run inflation

In the case of LRI, the log-linearisation of (13) leads to the following equations

π̂t = βπ̂t+1+λLR(π̄)m̂ct+λLR(π̄)

¡
1− π̄(1−ε)

¢
(1− σc)¡

1− αβπ̄(1−ε)θ
¢ Ŷt+λLR(π̄)

Ã
π̄(1−ε) − 1

1− αβπ̄(1−ε)θ

!
ψ̂t

(23)

and

ψ̂t =
³
1− αβπ̄(1−ε)θ

´h
ûc (t) + Ŷt + m̂ct

i
+ αβπ̄(1−ε)θ

h
θπ̂t+1 + ψ̂t+1

i
. (24)

where λLR(π̄) =
(1−απ̄(1−ε)(θ−1))(1−αβπ̄(1−ε)θ).

απ̄(1−ε)θ . Note that (23) and (24) are the same as

(21) and (22) respectively, where simply π̄ is replaced by π̄(1−ε). Hence, putting ε = 0,

one gets back to the previous case of no indexation.

3. NKPC with partial indexation to past inflation

In the case of PI, the log-linearisation of (15) yields the following equations

π̂t =
ε

1 + βε
π̂t−1 +

β

1 + βε
Etπ̂t+1 + λP (π̄)m̂ct + λP (π̄)

¡
1− π̄1−ε

¢
(1− σc)

1− αβπ̄(1−ε)θ
Ŷt +(25)

+λP (π̄)

µ
π̄1−ε − 1

1− αβπ̄(1−ε)θ

¶
ψ̂t

and

ψ̂t =
³
1− αβπ̄(1−ε)θ

´ h
ûc (t) + Ŷt + m̂ct

i
+ αβπ̄(1−ε)θ

h
θπ̂t+1 − θεπ̂t + ψ̂t+1

i
(26)

where λP (π̄) =
(1−απ̄(1−ε)(θ−1))(1−αβπ̄(1−ε)θ)

(1+βε)απ̄(1−ε)θ .

Looking carefully at the three NKPCs some comments are in order. First, in all

the three examples it appears a new driving variable for the dynamics of inflation: ψ̂t.

As shown in the Appendix, ψ̂t is (the log-deviation of) the numerator in the expression

9



for the optimal resetting price, i.e., (11), (15) and (13) respectively. ψ̂t is therefore

the present discounted value of future marginal costs, where the weights used in the

discounting depend on future expected output and inflation levels. These weights can in

turn be interpreted as the marginal change in demand (and hence production) for a unit

change in the optimal resetted price. Second, looking at (21) the effect of allowing for a

positive trend inflation is evident: it alters dramatically the dynamics of inflation. With

respect to the standard NKPC obtained log-linearizing the model around zero inflation

steady state, (21) both changes the parameters values on the standard NKPC variables

and enriches the dynamic structure, adding more forward looking terms. Ascari (2004)

analyses thoroughly the implications of this fact for the dynamics of a standard sticky

price model. Third, comparing (21) and (23) it is clear the effect of allowing for LRI.

As we noted, (23) and (24) are the same as (21) and (22) respectively, where simply

π̄ is replaced by π̄(1−ε). The effect of allowing for positive trend inflation is therefore

counterbalanced by the indexation parameter. Hence these two effects, positive long-run

inflation and indexation, go in opposite directions completely offsetting each other when

indexation is full. Finally, allowing for PI adds another feature to the NKPC: it alters

its dynamic structure even further, since it produces a change in the dynamics of both

π̂t and ψ̂t. As we know from Christiano, Eichenbaum, and Evans (2005), in this case

lagged inflation enters the NKPC, generating some inflation inertia. Besides, current

inflation enters the dynamic equation for ψ̂t that instead was previously just depending

on future inflation.

3.2 The inefficiency loss

There is however another very important effect that comes into the model when this

latter is generalized to positive trend inflation. To see this, note that at the firm level

it is true that

Yt (i) = Nt (i) =

·
pt (i)

Pt

¸−θ
Yt (27)

10



but at the aggregate level there is no exact correspondence between Yt and Nt. Indeed

integrating the previous equation over i yields

Nt =

Z 1

0
Nt (i) di =

Z 1

0

·
Pt (i)

Pt

¸−θ
Ytdi = Yt

Z 1

0

·
Pt (i)

Pt

¸−θ
di| {z }

st

.

So, the relation between aggregate output and aggregate labour is given by

Yt =
Nt

st

Schmitt-Grohe and Uribe (2004b) shows that st is bounded below one, so that st rep-

resents the resource costs due to relative price dispersion under the Calvo mechanism

with long-run inflation. Indeed, the higher st, the more labour is needed to produce a

given level of output. Note that st can also be rewritten as a ratio between two different

price indexes Pt and ePt
st =

µ
PtePt
¶θ

where ePt = ·Z 1

0
Pt (i)

−θ di
¸−1/θ

as in Yun (1996) and Ascari (2004). Whenever there is price dispersion these two

indexes evolves differently from each other, determining a certain dynamics for st, that

negatively affects the level of production. As Schmitt-Grohe and Uribe (2004a,b) noted,

st would not affect the real variables up to first order whenever there is no trend inflation

(i.e., π̄ = 1) or whenever the resetted price is fully indexed to any variable whose steady

state level grows at the rate π̄.9

For the purpose of this paper, it is important to stress that allowing for positive

trend inflation and partial indexation makes a new variable to come into the model,

i.e., st, that determines: (i) an inefficiency loss in aggregate production due to price

dispersion; (ii) a further change in the dynamics of the model, as we see next.

9 Indeed, if the fixed price is partially indexed to π, Pt and ePt evolve respectively up to first order
according to

P̂t = απ(θ−1)(1−ε) bPt−1 + ³1− απ(θ−1)(1−ε)
´
p̂∗itbeP t = απθ(1−ε)beP t−1 +

³
1− απθ(1−ε)

´
p̂∗it.

Hence it is evident that if either π = 1 (i.e., no trend inflation) or ε = 1 (full indexation), up to first

order the dynamics of the two price indexes are the same. Schmitt-Grohe and Uribe (2004b) also stresses

that this is not the case up to second order.
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3.2.1 Dynamics of st

We show in the Appendix that st has the following backward looking dynamics.

1. No indexation

If there is no indexation then st evolves according to the following law of motion

st = (1− α)

·
P ∗t (i)
Pt

¸−θ
+ απθt st−1 (28)

that the Appendix shows it can be log-linearized to

ŝt =
θ

Ω̄
[π̄ − 1] π̂t + απ̄θŝt−1 (29)

where Ω̄ = 1−απ̄θ−1
απ̄θ−1 .

2. LRI

If instead prices are partially indexed to long-run inflation, then st evolves as

st = (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

³πt
π̄ε

´θ
st−1 (30)

that the Appendix shows it can be log-linearized to

ŝt =
θ

Ω̃

£
π̄1−ε − 1¤ π̂t + απ̄θ(1−ε)ŝt−1 (31)

where Ω̃ = 1−απ̄(θ−1)(1−ε)
απ̄(θ−1)(1−ε) .

3. PI

Similarly, if prices are partially indexed to past inflation, the dynamics of st is

described by

st = (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

µ
πt
πεt−1

¶θ

st−1 (32)

that the Appendix shows it can be log-linearized to

ŝt =
θ

Ω̃

£
π̄1−ε − 1¤ (π̂t − επ̂t−1) + απ̄θ(1−ε)ŝt−1 (33)

where Ω̃ = 1−απ̄(θ−1)(1−ε)
απ̄(θ−1)(1−ε) .

The important thing to note is that ŝt has a backward looking dynamics and such

further changes (and complicate) the dynamic structure of our model economy.

Finally, we just need an expression for the real marginal cost, which in the present

case is common to all firms and simply equals to the real wage. Using the first order
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condition for consumption/labour choice, i.e., (19), the resource constraint Yt = Ct and

Nt = stYt yields

MCt =
Wt

Pt
= χ

Nσn
t

C−σct

= χsσnt Y σc+σn
t . (34)

We then log-linearize it to obtain

σnŝt + (σc + σn) Ŷt = m̂ct. (35)

According to the assumed indexation scheme, we have three model economies. Each

of them is described by five log-linearised equations. (20) and (35) are common to all

models. The other three equations, instead, regards the dynamics of π̂t, ψ̂t and ŝt, and

thus they depend on the indexation scheme: (i) (21), (22) and (29) in the no indexation

case; (ii) (23), (24) and (31) in the LRI case; (iii) (25), (26) and (33) in the PI case. The

endogenous variables are: π̂t, Ŷt, m̂ct, ψ̂t, ŝt, plus the instrument of monetary policy ı̂t.

To close the model and to endogenize the policy instrument we will consider the most

commonly employed Taylor-type rules in the literature.

Note that with respect to the standard case that assumes π̄ = 1, allowing for positive

trend inflation and partial indexation makes the model economy more realistic, and also

much richer both in terms of convolution of parameters and, above all, in terms of

dynamic structure. In particular, the model has now two more variables that are absent

in the standard case. They significantly alters the dynamic structure of our model

economy: ψ̂t is a forward-looking variable, while ŝt is a backward-looking one. It is

therefore not surprising that the dynamic properties of these models under Taylor-rule

policies could be quite different from the standard case. This is what we move next.10

4 Contemporaneous Rule

The first Taylor-type rule we analyze is the classic contemporaneous monetary policy

rule that, as in Taylor (1993, 1999), portrays the central bank as setting the nominal

10Moreover, note that substituting the dynamic equation for ŝt into (35), we can obtain a dynamic

equation for the marginal cost that is just function of the aggregate variables. Above all, this equa-

tion implies a backward-looking dynamics, that is a persistent behaviour of the marginal cost. The

implication of this is the subject of ongoing research.
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interest rate as function of current inflation and output gap, that is

ı̂t = φππ̂t + φY Ŷt. (36)

Moreover, we set α = 0.75, β = 0.99, θ = 11, σc = 1 and σn = 1.

In what follows we will first consider the effects of trend inflation on determinacy

in the no indexation case. Second, we then will generalize these results to the cases of

partial (and full) indexation. Third, we will consider inertial Taylor rules. Fourth, we

will present a dynamic analysis displaying the impulse response functions and analyzing

how the dynamic response of the economy changes with trend inflation. Finally, we will

consider the resulting unconditional variances of π̂t and Ŷt.

4.1 Indeterminacy and the Taylor principle

Figure 1 depicts determinacy regions in the parameter space (φπ, φY ) in the no index-

ation case for different levels of annualized trend inflation, 0%, 2%, 4%, 6% and 8%.11

As stated in footnote 1, the average inflation in developed countries in post-war period

fits in this range. A first result is visually very evident.

Result 1 Indeterminacy. Positive levels of long run inflation greatly and unambigu-

ously affect the determinacy properties of the rational expectation equilibrium. In

particular, as π̄ increases determinate regions fairly rapidly contract, ruling out

implementable policy rules and increasing the likelihood of sunspots fluctuations.12

Figure 1 well-renders how moderate levels of long-run inflation severely narrow the

determinacy region, whose boundaries close like scissors. Besides, Table I gives a flavour

about the considerable strength of this effect, by calculating the number of pairs (φπ, φY )

that delivers determinacy given the step of our grid search in the simulations. Indeed,

mildly increasing trend inflation from 0% to 2%, for example, produces a marked turn

11 In Figure 1, as well as the following ones, we let φπ [0, 5] and φY [−1, 5]. The grid search we use to
discern determinate combinations of φπ and φY takes a step increase of 0.05. This means that in each

run of our routine we check 12 221 different interest rate rule specifications.
12Note that instability, in the sense of explosive behavior, never arises in this region of the parameter

space.
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of determinacy frontier in Figure 1 with associated a cospicuous removal of determi-

nate pairs which drop from 9232 down to 4293, approximately −53.5%. For economies
featuring levels of trend inflation of 4% or 6%, the shrinking is by far more dramatic.

Finally, at 8% trend inflation level, the only possible option for monetary policy to keep

control of the economy is to strongly react to inflation and not to react to output gap.

With respect to the zero trend inflation case the region shrinks by a striking 99%, mean-

ing that only 1% of the pairs (φπ, φY ) that lead to a determinate equilibrium in that

case continue to deliver determinacy when π̄ = 8%. In such a case, there is hardly any

possible choice available to monetary policy to design an eventually optimal one.

Having shown trend inflation makes more likely indeterminacy, we now turn to dis-

cuss the implications from the point of view of the shape of determinacy regions. A

second key result is stated in the following.

Result 2 The “Taylor principle”. Restrictions on policy coefficients valid under

zero inflation steady state do not generalize to the case of positive trend inflation.

In particular, the original “Taylor (1993, 1999) principle” (i.e., φπ > 1) breaks

down. A generalized Taylor principle, however, still holds, but it is no longer a

sufficient condition (in the positive orthant of the space φπ, φY ).

Taylor (1993, 1999) suggests that the monetary policy rule (36) should feature a

value of φπ bigger than one. In this case, the nominal interest rate rises by more than

the increase of inflation, determining an increase in the real interest rate that will curb

aggregate demand, thus guiding inflation expectations back to the rational expectation

equilibrium. The literature then labelled the condition φπ > 1 as the Taylor principle.

If φπ, φY > 0, however, it is well-known that in the standard microfounded Neo-

Keynesian model featuring zero-inflation steady state a contemporaneous interest rate

rule delivers a determinate rational expectations equilibrium if and only if (see, e.g.,

Bullard and Mitra, 2002, and Woodford, 2003, chp. 4)

φπ +
(1− β)

κ
φY > 1 (37)

where κ represents the elasticity of inflation to the output gap in the standard NKPC.

As stressed by Bullard and Mitra (2002) and Woodford (2001, 2003) among others,
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condition (37) still corresponds to the Taylor principle in the sense that the nominal

interest rate should rise by more than the increase of inflation in the long run. In-

deed, as thoroughly discussed in Woodford (2003, chp. 4.2.2), (1−β)κ corresponds to the

long run multiplier of the inflation rate on output in a standard NKPC log-linearized

around the zero-inflation steady state. Hence the right-hand side of (37) “represents the

long-run increase in the nominal interest rate prescribed [...] for each unit permanent

increase in the inflation rate” (Woodford, 2003, p. 254). Therefore “The Taylor prin-

ciple continues to be a crucial condition for determinacy, once understood to refer to

cumulative responses to a permanent inflation increase” (Woodford, 2003, p. 256). As

such, some authors identify the original Taylor principle (i.e., φπ > 1) with the more

general condition (37).

Interestingly, we can generalize further more the discussion in Woodford (2003) to

the trend inflation case. More generally, we can write (37) as

∂ı̂

∂π̂
|LR = φπ + φY

∂Ŷ

∂π̂
|LR > 1 (38)

(where LR stands for long run). Appendix 7.5.1 calculates ∂Ŷ
∂π̂ |LR in our model econ-

omy, to get “the long-run increase in the nominal interest rate prescribed [...] for each

unit permanent increase in the inflation rate”. ∂Ŷ
∂π̂ |LR is a complicated expression (see

equation (89)) that: (i) depends on trend inflation; (ii) for standard calibration values,

it turns negative very soon as trend inflation is positive; (iii) for standard calibration

values, it increases in absolute value as trend inflation increases. Moreover, plotting

then (38) for different values of trend inflation, we exactly obtain the left-lateral frontier

in Figure 1.

The Taylor principle therefore continues to be a crucial condition for determinacy

in its general form (38), even in the case of trend inflation.13 Trend inflation, however,

significantly changes the implications of (38).

Indeed, in a zero inflation steady state, condition (38) reads as (37) and it is a

necessary and sufficient condition in the positive orthant of the space (φπ, φY ). Besides,

the monetary policy literature amply focussed and discussed two main implications of

restriction (37). First, it implies a trade off between φπ and φY : values of φπ less than

13Again see the discussion in footonote 27, p. 256, in Woodford (2003).
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one are admissible if the central bank appropriately compensate with relatively higher

values of φY , thus becoming more aggressive on output deviations. Second, actually

this trade-off is very weak. Since β is usually calibrated to be very close to one in

quantitative analysis, and since φπ > 1 is a sufficient condition for (37) to be satisfied,

then the so-called Taylor principle is often practically referred to φπ > 1. Indeed, the

literature mainly concentrated on φπ, and so in what follows we will refer to the Taylor

principle as φπ > 1. As a consequence, the value of φY has always been considered as

unimportant for determinacy.

As soon as one moves to non-zero steady state inflation economies, however, condi-

tion (38) ceases to be a sufficient condition in the positive orthant of the space (φπ, φY ).

The lower bound frontier, in fact, shifts upwards and it crosses the line defined by condi-

tion (38) in the positive orthant. More importantly, both the implications of condition

(37) are rapidly and steadily turned upside down. First, even for moderate levels of

π̄ the aforementioned negative relation between φπ and φY on the left-lateral frontier

immediately turns into positive, such that there is no trade-off between the two (while

the lower-bound frontier turns counter clockwise). Indeed, along that frontier, if the

central bank wants to lower φπ it must at the same time respond less aggressively to

the output gap to avoid indeterminacy. Equivalently, a central bank much concerned

with output variations it has to be even tighter on inflation. Moreover, the higher trend

inflation the flatter the left-lateral frontier and the larger the increase in φπ per unit of

φY .

Second, restriction φπ > 1 is clearly shown to be not sufficient for determinacy,

because the smallest determinate value of φπ positively co-moves with π̄. In the case of

6% inflation, for example, φπ needs to be roughly higher than two. In addition, and

more importantly, the coefficient on output gap now plays a key role, even for low values

of trend inflation. As an example, in Figure 1 we evidentiate with a dot the point that

corresponds to the canonical Taylor rule where φπ = 1.5 and φY = 0.5. As evident

from the graph, as soon as trend inflation is bigger than 2% the Taylor rule creates

indeterminacy. Hence, in real world application, the value of φY cannot be neglected

and it should basically be very low for realistic values of trend inflation.
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To fully understand the results above, it is crucial to stress they basically depend on

the long-run properties of the model and, particularly on the steady state relationship

between inflation and output, a surprisingly neglected issue in the literature. The long-

run Phillips curve is highly non-linear in the Neo-Keynesian model. As discussed in

Ascari (1998) and Ascari (2004), it is positively sloped when π̄ = 1 (because of a

discounting effect), but then turns quite rapidly negative even for extremely low value

of trend inflation, because of the strong price-dispersion effect. As we show above, this

has quite radical implications on the celebrated Taylor principle. The results in most of

the literature are therefore based on a case (i.e., π̄ = 1) that is theoretically very special

(as well as empirically unrealistic).

All in all, Figure 1 persuasively suggests that as trend inflation takes up higher values

implementable monetary rules are characterized by an increasingly large and positive

coefficient on inflation deviations and a very small, if not zero, coefficient on output gap.

Essentially, this translates in the envision of a central bank that, as π̄ increases, should

increasingly be more concerned with inflation variations and eventually becomes a strict

inflation targeting.

Furthermore, note that these results are in line with the analysis of Schmitt-Grohe

and Uribe (2004a,b) and of Bullard and Mitra (2002). Even if dealing with two very dif-

ferent problems, both these papers robustly suggest monetary policy rule characterized

by a high coefficient on φπ and a close to zero coefficient on φY . Despite our analysis

tackles still another issue, it does deliver the same policy prescription for central banks

behavior. Indeed, we find that whenever π̄ is allowed to be positive, the determinate

region shrinks towards those values being the only admissible ones.

Finally, it follows that allowing for positive trend inflation puts into question the

validity of the leaning against the wind optimal policy in Clarida et al. (1999). As trend

inflation increases, central bank can not afford to respond to output, but is should just

concentrate on inflation. Ascari and Ropele (2004) indeed shows this to be true also for

the optimal policy and provides basic intuition of why this happens.
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4.2 Indexation

In this section we look at how our results change if we allow non-adjusting firms to index

their prices. As in the previous section, Figure 2 shows the determinacy regions in the

space (φπ, φY ) for different levels of annualized trend inflation, 0%, 2%, 4%, 6% and 8%

allowing for partial indexation (ε = 0.5) and full indexation in the two cases described

in Section 2.3.

Result 3 Allowing for indexation counteracts the effects of trend inflation described in

the previous Section.

The qualitative results of the previous section are still valid, while not surprisingly

partial indexation tends to mitigate the effect of π̄ on the determinacy regions. As

illustrated in panels (a) and (b) of Figure 2, when εLR = εP = 50%, positive levels of

trend inflation do still narrow down determinacy regions although the contraction is now

more sluggish. Importantly, indexation makes the lowest possible value of φπ much less

sensitive to trend inflation. Indeed, in Figure 1 φπ needs to be at least 2 or greater than

3 to guarantee determinacy in the cases of 6% and 8% trend inflation respectively. When

partial indexation is allowed, instead, the smallest implementable value for φπ moves

only slightly from 1. Finally, and paralleling the case of no indexation, the overall picture

shows once again that as trend inflation increases the central bank has a smaller set of

available implementable policies that force the monetary authority to respond more to

inflation deviations and less to output gap, implying no trade-off between φπ and φY .

Note that full indexation completely neutralize any effect of trend inflation, since it

is clear from Section 2.3 that when ε = 1 trend inflation does not enter any structural

equations. Therefore, whatever the value of π̄, full indexation (both in the case of past

and long-run indexation) makes the model behaves as in the case of zero trend inflation

and full indexation.14

14 Indeed, the reader should be careful here. By looking at the formulas in Section 3.1, it is easy

to check that: (i) in the case of indexation to long-run inflation, the structural equations under zero

inflation and no indexation coincides with the ones under full indexation; (ii) this is instead not true for

the case of indexation to past inflation. In this latter case, in fact, indexation changes the dynamics of

the structural equations (see (25)) and hence the dynamic properties of the model economy. If indexation

if full, then, trend inflation does not matter for the dynamic properties of the model economy (since the
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Result 4 For a given level of trend inflation, indexation to past inflation always de-

livers a set of implementable policies greater that the case of long-run indexation.

Moreover, full indexation to past inflation restores the original Taylor principle

(φπ > 1) a necessary and sufficient condition for determinacy.

A final point we make regards the differences that characterize the two indexation

schemes. Table 1 reports the number of implementable rules with partial indexation.

For any level of trend inflation, partial PI is less likely to deliver sunspots fluctuations

than the case of LRI. Moreover, even under long-run price stability (i.e., π̄ = 0), full PI

exhibits a bigger set of implementable policies with respect to the other two cases (i.e.,

no indexation and LRI, which are indistinguishable when π̄ = 0).

Having said that, it is worth observing that the set of implementable policies in the

case of PI is enlarged with respect to the case of LRI mainly because the lower bound

frontier tilts downward, while the left-lateral frontier exhibits a very similar behavior

in the two cases. This means that most of the extra policy options available for the

monetary authority in the PI case regards the peculiar possibility of more pro-cyclical

monetary policy (i.e., more negative values of φY ). In the other words, the central bank

can still ensures determinacy of equilibria if remains looser on inflation deviations but,

oddly enough, respond more pro-cylically to Ŷt.

Moreover, full PI restores the pivotal role of the original Taylor principle, i.e., φπ > 1.

Indeed, quite interestingly, with 100% PI, φπ > 1 becomes a necessary and sufficient

condition for determinacy. PI acts on the lower bound frontier which moderately turns

clockwise and eventually becomes vertical when indexation is full in correspondence of

φπ = 1
15.

4.3 Inertial policies

Empirical works on Taylor rules show that central banks tend to gradually adjust the

nominal interest rate in response to changes in economic conditions (see, e.g., Rudebusch,

supply side equations do not depend on π̄), but indexation does obviously matter. This explains why the

model economy under zero inflation and no indexation behaves differently from the one characterized

by full indexation to past inflation (whatever trend inflation).
15This means that also the left-lateral frontier moves with the indexation parameter, for any given

level of trend inflation and becomes vertical whit 100% PII at φπ = 1.
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1995, Judd and Rudebusch,1998 or Clarida et al., 2000). Moreover recent literature has

emphasized the importance of inertial central bank behavior in the conduct of monetary

policy with a forward-looking private sector (e.g., Woodford, 2003). Thus, in this section

we explore the effects of positive trend inflation on the determinacy properties when our

contemporaneous Taylor rule is modified to be

ı̂t = φππ̂t + φY Ŷt + φiı̂t−1. (39)

Figure 3 reports our numerical results displaying four panels where φi = 0.5, 1, 2 and 5.

Each panel represents determinacy regions in the parameter space (φπ, φY ) for different

values of π̄, holding the remaining parameters at their baseline values.

Result 5 Interest rate inertia makes indeterminacy less likely.

The top-left panel of Figure 3 illustrates the case of φi = 0.5. Compared to Figure 1

where φi = 0, we note that a positive degree of monetary policy inertia visibly enlarges

the determinacy region of the parameter space. The benefits of policy inertia become

increasingly more pronounced, as the central bank controls the rate of change of nominal

interest rate, rather than its level, as shown in panel (b), and as we consider, in the

terminology of Woodford (2003) explosive or superinertial monetary policy rules, that

is φi = 2 and φi = 5 (see panels (c) and (d)).

The somewhat counterintuitive feature that explosive rules enlarge the determinacy

region therefore survives in the trend inflation case. As discussed in Rotemberg and

Woodford (1999), in a similar model but with zero inflation steady state, it is exactly

the possibility of explosiveness of the nominal interest rate that keeps the model on

track.16

Result 6 Interest rate inertia makes the Taylor principle (i.e., φπ > 1) plainly insignif-

icant, in the sense that it is the value of φY that actually matters for determinate

equilibria. Surprisingly, monetary policy should not respond too much to output

gap to prevent indeterminate equilibria.

16Needless to say that, of course, the case of no feedback from inflation and output gap on the nominal

interest rate (i.e., φπ = φY = 0) is of course indeterminate, for values of φi bigger than 1.
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More significant is however the combined effect that inertial policy and trend infla-

tion has on the validity of the Taylor principle. In the standard model with zero steady

state inflation, Woodford (2003) shows that condition (37) becomes

φπ +
(1− β)

κ
φY > 1− φi (40)

and therefore inertia enlarges the determinacy region, such that φi = 1 is a sufficient

condition for a determinate equilibrium. Moreover, a sufficient condition φπ > 1 − φi

can be easily checked from any Taylor rule estimate. Note that this latter implies no

role for φY .

Again trend inflation radically changes the implications of the model. Indeed, looking

at panel (b), it is evident that there is no more necessary condition on φπ (provided that

is positive); on the contrary, we can eventually state a sufficient condition on φY .When

π̄ equals 4% or 8%, a sufficient condition for determinacy is φY lower than 2 or 0,

respectively, whatever the (positive) value of φπ. In particular, for moderate levels of

trend inflation (4% to 8%) what matters for determinacy is that monetary policy should

basically not respond to the output gap.

As stressed in Section 4.1, this is due to the change in the sign of ∂Ŷ
∂π̂ |LR. The

relevant frontier is then positively sloped in the space (φπ, φY ), such that monetary

policy can afford to be looser on inflation only if it simultaneously becomes looser on

output. In other words, being tough on output gap can easily generate indeterminacy,

when monetary policy is characterized by an inertial (or superinertial) Taylor rule and

moderate trend inflation.

Finally, it is easy to interpret graphically the effect of inertia in setting the interest

rate, by comparing Figure 1 and the panels in Figure 3. The left-lateral frontier still

obeys to a generalized Taylor principle of the form17

φπ + φY
∂Ŷ

∂π̂
|LR > 1− φi (41)

while the lower bound frontier exits the positive orthant. As a consequence, the crossing

point of these two frontiers moves leftward as inertia increases. This in turn determines

our results above: (i) the enlargement of the determinacy region; (ii) the consequent

17 Indeed note that in panel (b) the lines pass through the point (φπ = 0, φY = 0) .
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irrelevance of the original Taylor principle (i.e., φπ > 1); (iii) the crucial role of φY that

multiplies a negative quantity.

4.4 Dynamic Analysis

4.4.1 Impulse response functions

We now conduct some dynamic simulations and address the question of how trend

inflation and indexation affect the dynamic properties of the model economy, in terms

of impulse response functions and output/inflation variance frontier.18

To this purpose, as in Galí (2003), first we add to the equation of π̂t a cost-push

shock ut, whose law of motion is

ut = ρut−1 + ηt

where 0 ≤ ρ < 1 and ηt is a i.i.d. random variable with zero mean and variance σ2η.

Second, we need to choose specific values for φπand φY , and we stick to the original

Taylor specification, setting φπ = 1.5 and φY = 0.5 (and φi = 0).
19

Figure 4 displays the impulse response functions of output gap, inflation rate, nom-

inal and real interest rate to a 1% cost-push shock, setting ρ = 0.8, both in the case of

no indexation (the left column) and PI (the right column). Each panel reports different

time patterns associated to increasing levels of trend inflation, for which the model is

locally determinate.

The top-left panel displays the standard case of zero inflation steady state and no

indexation. In response to a unit cost-push shock the monetary feedback rule calls for a

sufficiently large increase in the nominal interest so to generate a positive real interest

rate. Such a response, in turn, opens up a series of negative output gaps that gradually

drives inflation rate back to neutral.

Result 7 Increasing levels of positive trend inflation shift outward the impulse response

functions of output and inflation, following a cost-push shock.

18To solve for the rational expectation equilibrium and compute the impulse response function and

variance frontiers we used the MATLAB version of Soderlind’s codes available on the web.
19The results of this section do not qualitatively change if other values of φπand φY are chosen.
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Consider now the case of 2% long-run inflation and no indexation.20 Although the

qualitative patterns are very similar to the case of zero inflation steady state, some

important differences emerge. First, a positive level of trend inflation visibly alters the

impact effects by producing an outward shift. Second, the outward shift of the impulse

response function remains effective throughout the whole return path to steady state

thus suggesting a tighter monetary policy and a deeper recession. In short, consistently

with the results in Ascari and Ropele (2004), the higher is trend inflation, the worse

the trade-off monetary policy is facing: the deeper is the recession and the higher the

deviation of inflation from its steady state level.

The second column of Figure 4 shows the effects of partial PI.21 As before trend

inflation, either 2% or 4%, shift outwards the impulse response functions both on impact

and on the whole adjustment path. Note that however, the shape of the impulse response

function is now much different. As stressed by Christiano et al. (2005), PI creates the

hump-shape in the impulse responses of output and inflation, because of the relatively

richer dynamic structure due to the inclusion of πt−1 in the New Keynesian Phillips

curve. For the same reason, persistence also increases with respect to the model with

no indexation. Moreover, Figure 4 shows the comparison with the full indexation case22

(i.e., the thick solid line), whose impulse response is unaffected by the trend inflation

level. In this case, we have πt−1 entering the NKPC with the highest value, while the

variable st disappears from the model, such that the effect on the persistence of the

impulse response is a priori ambiguous. Figure 4, however, visually shows that full

indexation tends to increase persistence, other things equal.

4.4.2 Unconditional Variance Frontiers

We now turn our attention to analyse the effects of trend inflation and indexation on

unconditional variances of output and inflation, the arguments that are typically thought

20For the standard Taylor rule, we can just plot two impulse responses, since, as shown in Figure 1,

for trend inflation equals to 4% onwards the model with no indexation is indeterminate in this case.
21We do not report the impulse response functions for LRI because such indexation rule only generates

a (downward) rescaling with respect to the no indexation case. Again, the effect of LRI is just to

counterbalance the trend inflation one.
22As in Christiano et al. (2005).

24



to characterize the central bank’s loss function.

Because there are two policy coefficients in our interest rate rule on which to construct

the variability frontier we proceed as follows. For different levels of π̄, we compute the

loci of output-inflation variability points by varying, in turn, one of the argument in the

subrange [0, 3] and keeping the other fixed at a chosen value. When we vary φπ, panels

(a) and (c) of Figure 5, φY is set to 0.5; while when we vary φY , panels (b) and (d), φπ

is set to 2.5.23

Result 8 Increasing levels of positive trend inflation shift outward the policy frontiers,

leading to worse outcomes for both inflation and output variability.

This is the main result of this section, and we think a quite important one. It is

evidently shown by the strong outward shift of the variance frontiers in Figure 5.24

The attainable points with zero trend inflation in the space (φY , φπ) are not anymore

so as π̄ rises: either an higher value of σ2Y is necessary for the same σ2π or viceversa.

Moreover, as trend inflation increases, the policy frontier substantially shortens (i.e.,

it is characterized by a fewer number of points), because of the model entering the

indeterminacy region.

Panels (c) and (d) clearly reveal that again LRI tends to offset the effects of trend

inflation on the policy frontiers, neutralizing it in the case of full LRI.

Result 9 For a given level of trend inflation π̄, LRI shifts the locus of output-inflation

variability frontier inwards, therefore offsetting the trend inflation effects.

Moreover, as we know from previous sections, partial indexation makes determinacy

regions larger, hence the loci plotted in panels (c) and (d) comprise more points.

Figure 6 depicts the case of PI. Here, the results are for certain aspects more surpris-

ing. Although, we still observe a substantial shift of variability loci towards a welfare-

worsening territory as π̄ increases, PI generates a much higher output and inflation
23This value is different from the standard Taylor rule one (i.e., φπ = 1.5) we used in the previous

section, just for convenience of presentation. The forntiers would exhibit otherwise very few points as

trend inflation increases, because the model would quickly enter the indeterminacy region.
24As shown in Ascari and Ropele (2005) the deterioration of output/inflation policy frontier as trend

inflation incresaes is also present when the moneteary policy is conducted optimally under eihter discre-

tion or commitment.
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variability with respect to the case of no indexation or LRI. This is just the other side

of the coin of the fact that this type of indexation increase the endogenous persistence

of the model. This result suggests that actually PI may indeed match some empirical

regularities as stressed by Christiano et al. (2005), but theoretically may be very diffi-

cult to justify because of imposing high costs on agents’ welfare. Finally, it is important

to note that full indexation does not deliver the lower frontier. In other words, partial

indexation (e.g., 50% in the figure) yields an efficient frontier always below the one ob-

tained in the case of full indexation for values of trend inflation up to 6%. This suggests

that full PI would not be optimal in a new keynesian model.25

Result 10 PI strongly worsens the policy frontier, for any given level of trend inflation.

Moreover, full indexation does not deliver the lowest possible policy frontier.

5 Robustness

5.1 Alternative Interest Rate Rules

In this section we explore whether the results of previous sections are robust to simple

variants of the Taylor rule largely proposed in the literature. In particular we consider:

forward-looking interest rate rule (FL, henceforth): it = φπEtπ̂t+1+φYEtŶt+1+φiı̂t−1;

backward-looking interest rate rule (BL, henceforth): ı̂t = φππ̂t−1+φY Ŷt−1+φiı̂t−1; and

two types of hybrid interest rate rules: ı̂t = φπEtπ̂t+1 + φY Ŷt + φiı̂t−1 (H1, henceforth)

and ı̂t = φππ̂t + φYEtŶt+1 + φiı̂t−1 (H2, henceforth).

The general conclusion of this section is that the key results found in previous analysis

extend to all these cases. In particular, trend inflation again substantially changes the

determinacy region in the parameter space and the dynamic properties of the model

economy.

Moreover, for the cases of FL, H1 and H2 rules, Figures 7 and 8 show indeed how

increasing levels of trend inflation impact the determinacy regions, basically in the same

way described in the previous sections. The upshot is once again a substantial reduction

in the number of implementable interest rate rules, which according to Tables 3, 5 and 6

appear to be more severe in the case of H1 rule. This reduction is still mainly due to the
25This analysis is the subject of ongoing research.
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clockwise movement, as trend inflation increases, of the equivalent of condition (37) for

the different analyzed rules. Again, the Figures and Tables show that both indexation

schemes and inertia have the same effects as above.

5.1.1 Lagged Interest Rate Rule

The case of a central bank following a lagged interest rate rule is somewhat more involved

and deserves a separate comment. As already known in the literature (e.g., Bullard and

Mitra, 2002), in contrast to all the cases discussed so far, the BL rule can generate

explosiveness of the solution, such that the rational expectations equilibrium is unstable

and, if perturbed, it never returns to the steady state. Look at panel (a) of Figure 9

which depicts the standard case of zero inflation steady state.26 The panel is divided into

four regions by two lines, one of which is almost horizontal at φY = 2, while the other

corresponds to the equivalent of condition (38) in the BL case. There is, however, an

important difference with respect to the previous cases: in the parameters space above

the almost horizontal line at φY = 2, the determinacy region now lies on the left of

condition (37) and not on its right, where instead the region is in this case explosive.27

The other panels of Figure 9 shows the effect of increasing trend inflation. Graph-

ically it is still the same, because the line corresponding to (38) again visibly rotates

clockwise.28 However, due to the fact that now the determinacy region lies partly on

the left and partly on the right of this line, the effect of trend inflation is less clear-

cut. Roughly speaking, dividing the parameters space in two regions, as trend inflation

increases: (i) above the almost horizontal line at φY = 2, the instability region progres-

sively shrinks and gives way to new determinate combinations; (ii) below the almost

horizontal line at φY = 2, the indeterminacy region enlarges and reduces the number of

implementable (i.e., determinate) rules. Note that while (ii) is the usual effect analyzed

26This Figure is construcetd differently from the others, since we need to distinguish among three

different regions for each panel: (i) determinacy = white region; (ii) indeterminacy = small dots region;

(iii) instability = darkest region.
27Note that in the parameters space below the almost horizontal line at φY = 2, the determinacy

region lies, instead, as usual below condition (37).
28The other almost horizontal line discriminating among the different regions in the parameter space

is instead only little sensitive to changes in trend inflation for our calibration values. Basically, as trend

inflation increases, it tends to become horizontal at φY = 2, moving counterclockwise.
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in the previous sections, (i) is the peculiarity of the BL rule. Everything then rests on

the relative strength and dynamic adjustment of (i) and (ii).

Looking at the size of the effects (i) and (ii), (i) is stronger such that, positive

trend inflation delivers always a larger determinacy region with respect to the case

of zero inflation steady state (see first panel of Table 4). From a pure point of view

of implentability, in the BL case a positive level of long run inflation might hence be

desiderable and convenient, as it considerably enlarges the set of determinate monetary

rules.

Looking at the dynamic adjustment as π̄ increases, then, (i) is quicker than (ii),

so that initially the determinate pairs (φY ;φπ) increases. Soon the movement in (i)

clears the whole upward region from explosive behavior, and only (ii) remains, such

that further increasing trend inflation reduces the determinacy region, as reported in

Table 4.

As trend inflation takes up higher values, then, a central bank following a lagged

interest rate rule is progressively left with two options to guarantee determinacy. On the

one hand, it might respond to inflation deviations and be more cautious towards output

gap, in line with previous analysis. On the other hand, the central bank can instead

respond aggressively to output gap, i.e. φY > 2, regardless to the value of φπ. Again,

trend inflation makes the Taylor principle useless and the value of φY what matters

most. In sum,

Result 11 When the monetary authority sets the nominal interest rate as function of

lagged inflation and lagged output gap (with no inertia), positive levels of long run

inflation actually increase the set of determinate policy rules, relative to the case

of zero inflation steady state.

Moreover, as trend inflation increases: (i) the indeterminacy region expands; (ii)

the explosive region decreases; (iii) the determinacy region initially enlarges and

then reduces.

Regarding the effects of indexing prices or inclusion of an inertial term in the rule

the general results discussed in the previous sections simply carry on also in this case.

Besides, inertia has an additional effect: it shifts upward the almost horizontal line in
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Figure 9. As a result, the effect described in (i) becomes progressively less important and

disappear from the parameters space for superinertial policies. Being (i) the peculiarity

of the BL rule, it follows that for highly inertial policies, the properties of the model

economy under BL rules are very similar to the other monetary policy rules.

5.2 Sensitivity Analysis

In this section we analyze the robustness of our findings to a number of variations in our

model structural parametrization for the case of contemporaneous rule.29 In particular,

Figure 10 shows the determinacy region changing in turn the following parameters values:

θ = 4, α = 0.5, σc = 5and σn = 5.

As expected, a lower value of the elasticity of substitution across goods or a lower

value of the Calvo parameter make the determinacy frontier to close less rapidly when

compared to the baseline calibration (see panels (a) and (b) of Figure 10). This leaves

room to a relatively larger set of implementable policies for a given value of trend

inflation and, in principle, determinate rules are also possible for even higher values.30

Moreover, the original Taylor specification turns out to be determinate for trend inflation

levels up to 6%, in the case of θ = 4, or also 8%, in the case α = 0.5.

Considering higher values for the inverse of the intertemporal elasticity of consump-

tion and labour supply, the results are again qualitatively identical to the one presented

above (see panels (c) and (d) of Figure 10). The lower bound frontier is slightly more

sensitive to changes in σc, since as trend inflation increases the upward shift becomes

more pronounced. As a consequence the lower boundary cuts the left-lateral frontier in

correspondence of higher values of φπ. The smallest admissible values of φπ is evidently

pushed rightward, thus calling for an increasingly more conservative central bank.

The value of σc moreover turns out to be quite important for the FL, BL and H2

cases. As already noted by Bullard and Mitra (2002), Figure 11 displays that the position

of the almost horizontal line that characterizes Figures 7, 8 and 9 is quite sensitive to

the values of σc. Indeed, it shifts notably upwards with σc and this has strong effects on

29The qualitative effects of changes in the values these parameters are in accordance with intuition

and robust across different type of rules, indexation and inertia.
30Low values of θ and α, in fact, imply higher values of sustainable inflation rate in the steady state.

For θ = 4 the upper bound on π̄ rises to 34.6% (annually) and for α = 0.5 rises to 29.1%.
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the dimension of the determinacy/indeterminacy regions in our parameters space.

6 Conclusions

Despite average inflation in the post-war period in developed countries was moderately

different from zero, most of the vast literature on monetary policy rules worked with

models log-linearized around zero inflation.

In this paper, we generalize a standard Neo-Keynesian model with Calvo staggered

price by taking a linear approximation around a general trend inflation level. Then we

use a Taylor rule to describe monetary policy. We then look at how the properties of

our model economy change as the trend inflation level varies.

The results show that trend inflation greatly affects the previous results in the lit-

erature. In particular moderate levels of trend inflation: (i) modify the determinacy

region in the parameters space; (ii) alter the impulse response function of the model

economy after a cost-push shock. In line with Ascari (2004) and Ascari and Ropele

(2004), this paper therefore shows that the Neo-Keynesian framework is quite sensitive

to variations in the trend inflation level, in the sense that higher trend inflation basically

makes monetary policy much less effective in controlling the dynamics of the economy.

Here we mainly concentrated on the effects of trend inflation on the set of imple-

mentable monetary policy rules in order to deliver a determinate rational expectations

equilibrium. We show that trend inflation substantially changes the celebrated determi-

nacy condition that the literature labelled the Taylor principle.

Our key results are then generalized and proved to be robust to: (i) different kinds

of Taylor type rules proposed in the literature; (ii) inertial Taylor rules for all the cases

in (i); (iii) indexation schemes used in the literature; (iv) different parameter values.

In sum, this paper shows that the literature on monetary policy rules cannot neglect

trend inflation both in the empirical and theoretical analysis, because all the results

are very sensitive to low and moderate trend inflation levels, as empirically observed in

western countries.
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7 Appendix

7.1 Derivation of the NKPC under no indexation

Here we provide details of the log-linearization of (11) which leads to the New Keynesian

Phillips curve (21) and (22) in the main text. We begin by re-writing numerator and

denominator of (11) as
p∗t (i)
Pt

=
θ

θ − 1
µ
ψt

φt

¶
where

ψt = Et

∞X
j=0

(αβ)j uc (t+ j)

"µ
Pt+j
Pt

¶θ

Yt+jMCt+j (i)

#

φt = Et

∞X
j=0

(αβ)j uc (t+ j)

"µ
Pt+j
Pt

¶θ−1
Yt+j

#
.

The denominator can also be written as:

φt = uc (t)Yt +Et

∞X
j=0

(αβ)j+1
"µ

Pt+j+1
Pt

¶θ−1
uc (t+ j + 1)Yt+j+1

#
.

Next, considering the definition for φt+1 and collecting the term
³
Pt+1
Pt

´θ−1
yields the

following expression for φt

φt = uc (t)Yt + αβEt

³
πθ−1t+1φt+1

´
(42)

where πt+1 ≡ Pt+1
Pt
. Doing exactly the same steps for the numerator gives rise to the

following expression for ψt

ψt = uc (t)YtMCt (i) + αβEt

³
πθt+1ψt+1

´
. (43)

Now we take a log-linear approximation of (42) and (43). φ is linearized around

ucY

(1−αβπ̄θ−1) , ψ around
ucYMC(i)
1−αβπ̄θ , Yt around Y , π around π̄ and uc (t) around Y −σc

ψ̂t '
³
1− αβπ̄θ

´h
ûc (t) + Ŷt + M̂Ct

i
+ αβπ̄θ

h
θπ̂t+1 + ψ̂t+1

i
(44)

φ̂t '
³
1− αβπ̄θ−1

´ h
ûc (t) + Ŷt

i
+ αβπ̄θ−1

h
(θ − 1) π̂t+1 + φ̂t+1

i
. (45)

With this results at hand we can compactly rewrite the log-linearized optimal price (11)

as

p̂∗t (i)− P̂t = ψ̂t − φ̂t. (46)
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In order to find the New Keynesian Phillips curve we have to combine this last equation

with the log-linear expression of the aggregate price level, which evolves according to

Pt =

·Z 1

0
Pt (i)

1−θ di
¸ 1
1−θ

=
h
αP 1−θt−1 + (1− α)Pt (i)

1−θ
i 1
1−θ

=⇒ (47)

1 =

"
απθ−1t + (1− α)

µ
Pt (i)

Pt

¶1−θ# 1
1−θ

. (48)

Note that (48) implies that in steady state

p∗ (i)
P

=

µ
1− απ̄θ−1

1− α

¶ 1
1−θ

(49)

and hence the log-linearized version of (48) is

p̂∗it − P̂t =

µ
απ̄θ−1

1− απ̄θ−1

¶
π̂t. (50)

Substituting (50) into (46), we obtain the New Keynesian Phillips curve under positive

trend inflation and no indexation described by the following three equations

π̂t =

·
1− απ̄θ−1

απ̄θ−1

¸³
ψ̂t − φ̂t

´
(51)

ψ̂t =
³
1− αβπ̄θ

´h
ûc (t) + Ŷt + M̂Ct

i
+ αβπ̄θ

h
θπ̂t+1 + ψ̂t+1

i
(52)

φ̂t =
³
1− αβπ̄θ−1

´ h
ûc (t) + Ŷt

i
+ αβπ̄θ−1

h
(θ − 1) π̂t+1 + φ̂t+1

i
. (53)

Interestingly enough the above system can be reduced to only two equations. First write

the difference between ψ̂t and φ̂t as³
ψ̂t − φ̂t

´
= αβπ̄θ−1 (1− π̄) (1− σc) Ŷt +

³
1− αβπ̄θ

´
M̂Ct +

+θαβπ̄θ−1 (π̄ − 1) π̂t+1 + αβπ̄θ−1π̂t+1 + αβπ̄θ−1
³
π̄ψ̂t+1 − φ̂t+1

´
where we also used ûc (t) = −σcŶt.

Next add and subtract αβπ̄θ−1ψ̂t+1 so to have³
ψ̂t − φ̂t

´
= αβπ̄θ−1 (1− π̄) (1− σc) Ŷt +

³
1− αβπ̄θ

´
M̂Ct +

+θαβπ̄θ−1 (π̄ − 1) π̂t+1 + αβπ̄θ−1π̂t+1 + αβπ̄θ−1
³
ψ̂t+1 − φ̂t+1

´
+αβπ̄θ−1 (π̄ − 1) ψ̂t+1.
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Plugging into the last expression
h

απ̄θ−1
1−απ̄θ−1

i
π̂t =

³
ψ̂t − φ̂t

´
yields to

π̂t =
³
1− απ̄θ−1

´
β (1− π̄) (1− σc) Ŷt +

¡
1− απ̄θ−1

¢ ¡
1− αβπ̄θ

¢
απ̄θ−1

M̂Ct +

+
³
1− απ̄θ−1

´
θβ (π̄ − 1) π̂t+1 +

³
1− απ̄θ−1

´
βπ̂t+1 +

+αβπ̄θ−1π̂t+1 +
³
1− απ̄θ−1

´
β (π̄ − 1) ψ̂t+1.

Now using the definition ψ̂t we can substitute for ψ̂t+1 =
1

αβπ̄θ
ψ̂t−(1−αβπ̄

θ)
αβπ̄θ

h
ûc (t) + Ŷt + M̂Ct

i
−

θπ̂t+1, finally obtaining

π̂t = λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)
Ŷt + λ(π̄)M̂Ct + βπ̂t+1 + λ(π̄)

(π̄ − 1)
(1− αβπ̄θ)

ψ̂t (54)

where λ(π̄) = (1−απ̄θ−1)(1−αβπ̄θ).
απ̄θ

. (54) and (44) then fully describe the NKPC in the no

indexation case and are reported in the main text.

7.2 Derivation of the NKPC under partial indexation to long-run in-

flation

Here we provide details of the log-linearization of (13) which leads to the New Keynesian

Phillips curve (23) and (24) in the main text. We proceed along the same steps as above.

Hence
p∗t (i)
Pt

=
θ

θ − 1
µ
ψt

φt

¶
=⇒ p̂∗t (i)− P̂t = ψ̂t − φ̂t

where however in this case

ψt = Et

∞X
j=0

(αβ)j uc (t+ j)
h
P θ
t+jYt+jMCr

t+j (i)Π
−θ
t,t+j−1

i
φt = Et

∞X
j=0

(αβ)j uc (t+ j)
h
P θ−1
t+j Yt+jΠ

(1−θ)
t,t+j−1

i
.

It is easy to check that

ψ̂t =
³
1− αβπ̄(1−ε)θ

´ h
ûc (t) + Ŷt + M̂Ct

i
+ αβπ̄(1−ε)θ

h
θπ̂t+1 + ψ̂t+1

i
(55)

φ̂t =
³
1− αβπ̄(1−ε)(θ−1)

´ h
ûc (t) + Ŷt

i
+ αβπ̄(1−ε)(θ−1)

h
(θ − 1) π̂t+1 + φ̂t+1

i
.(56)

The aggregate price level now evolves according to

Pt =

·Z 1

0
Pt (i)

1−θ di
¸ 1
1−θ

=
h
απ̄(1−θ)εP 1−θt−1 + (1− α)Pt (i)

1−θ
i 1
1−θ
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"
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1−θ

. (58)
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Note that (58) implies that in steady state

p∗ (i)
P

=

Ã
1− απ̄(1−ε)(θ−1)

1− α

! 1
1−θ

(59)

and hence the log-linearized version of (58) is

p̂∗it − P̂t =

Ã
απ̄(1−ε)(θ−1)

1− απ̄(1−ε)(θ−1)

!
π̂t. (60)

The New Keynesian Phillips curve under partial indexation to long-run inflation is there-

fore described by (55), (56), and

π̂t =

Ã
1− απ̄(1−ε)(θ−1)

απ̄(1−ε)(θ−1)

!³
ψ̂t − φ̂t

´
. (61)

Note that these three equations are the same as in the previous case, where simply π̄ is

replaced by π̄(1−ε). Therefore, proceeding as above the system can be reduced to only

two equations, that is

π̂t = λLR(π̄)

¡
1− π̄(1−ε)

¢
(1− σc)¡

1− αβπ̄(1−ε)θ
¢ Ŷt + λLR(π̄)M̂Ct + βπ̂t+1 + λLR(π̄)

¡
π̄(1−ε) − 1¢¡

1− αβπ̄(1−ε)θ
¢ ψ̂t

(62)

where λLR(π̄) =
(1−απ̄(1−ε)(θ−1))(1−αβπ̄(1−ε)θ).

απ̄(1−ε)θ . (62) and (55) then fully describe the

NKPC in the case of indexation to long run inflation, as reported in the main text.

7.3 Derivation of the NKPC under partial indexation to past infla-

tion31

Here we provide details of the log-linearization of (15) which leads to the New Keynesian

Phillips curve (25) and (26) in the main text. We proceed along the same steps as above.

Hence
p∗t (i)
Pt

=
θ

θ − 1
µ
ψt

φt

¶
=⇒ p̂∗t (i)− P̂t = ψ̂t − φ̂t

where however in this case

ψt = Et

∞X
j=0

(αβ)j uc (t+ j)

"µ
Pt+j
Pt

¶θ

π̄−θεjYt+jMCt+j (i)

#

φt = Et

∞X
j=0

(αβ)j uc (t+ j)

"µ
Pt+j
Pt

¶θ−1
π̄(1−θ)εjYt+j

#
.

31See also Maury and Sahuc (2004).
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It is easy to check that

ψ̂t =
³
1− αβπ̄(1−ε)θ

´ h
ûc (t) + Ŷt + M̂Ct

i
+ αβπ̄(1−ε)θ

h
θπ̂t+1 − θεπ̂t + ψ̂t+1

i
(63)

φ̂t =
³
1− αβπ̄(1−ε)(θ−1)

´ h
ûc (t) + Ŷt

i
+

+αβπ̄(1−ε)(θ−1)
h
(θ − 1) π̂t+1 − ε(θ − 1)π̂t + φ̂t+1

i
. (64)

The aggregate price level evolves according to

Pt =

·Z 1

0
Pt (i)

1−θ di
¸ 1
1−θ

=
h
απ

(1−θ)ε
t−1 P 1−θt−1 + (1− α)Pt (i)

1−θ
i 1
1−θ

=⇒ (65)

1 =

"
απ

(1−θ)ε
t−1 πθ−1t + (1− α)

µ
Pt (i)

Pt

¶1−θ# 1
1−θ

. (66)

Note that (66) implies that in steady state p∗(i)
P is the same as in the previous case, i.e.,

(59). The log-linearized version of (66) is thus

p̂∗it − P̂t =

Ã
απ̄(1−ε)(θ−1)

1− απ̄(1−ε)(θ−1)

!
(π̂t − επ̂t−1). (67)

The New Keynesian Phillips curve under partial indexation to long-run inflation is there-

fore described by (63), (64) and

π̂t = επ̂t−1 +

Ã
1− απ̄(1−ε)(θ−1)

απ̄(1−ε)(θ−1)

!³
ψ̂t − φ̂t

´
. (68)

Again we can follow the same steps as above to reduce the system to two equations.

First write the difference between ψ̂t and φ̂t as

ψ̂t − φ̂t = αβπ̄(1−ε)(θ−1)
³
1− π̄(1−ε)

´
(1− σc) Ŷt +

³
1− αβπ̄θ(1−ε)

´
M̂Ct +

+θαβπ̄(1−ε)(θ−1)
³
π̄(1−ε) − 1

´
π̂t+1 + αβπ̄(1−ε)(θ−1)π̂t+1 +

−θεαβπ̄(1−ε)(θ−1)
³
π̄(1−ε) − 1

´
π̂t − εαβπ̄(1−ε)(θ−1)π̂t +

+αβπ̄(1−ε)(θ−1)
³
ψ̂t+1 − φ̂t+1

´
+ αβπ̄(1−ε)(θ−1)(π̄(1−ε) − 1)ψ̂t+1

where we also used ûc (t) = −σcŶt.
Using (68) to substitute for

³
ψ̂t − φ̂t

´
and

³
ψ̂t+1 − φ̂t+1

´
into the last expression

yields (25) in the main text.
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7.4 The inefficiency loss st

7.4.1 Dynamics of st

Following Schmitt-Grohe and Uribe (2004b), p. 16, it is easy to derive the expressions

for the dynamics of st in the main text.

1. No indexation

st =

Z 1

0

·
Pt (i)

Pt

¸−θ
di = (69)

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α (1− α)

·
P ∗t−1 (i)

Pt

¸−θ
+ α2 (1− α)

·
P ∗t−2 (i)

Pt

¸−θ
+ ... =

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ απθt

"
(1− α)

·
P ∗t−1 (i)
Pt−1

¸−θ
+ α (1− α)

·
P ∗t−2 (i)
Pt−1

¸−θ
+ ..

#
=

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ απθt st−1.

2. Partial indexation to trend inflation

st =

Z 1

0

·
Pt (i)

Pt

¸−θ
di = (70)

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α (1− α)

·
P ∗t−1 (i)πε

Pt

¸−θ
+ α2 (1− α)

·
P ∗t−2 (i)π2ε

Pt

¸−θ
+ ... =

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

³πt
π̄ε

´θ "
(1− α)

·
P ∗t−1 (i)
Pt−1

¸−θ
+

+α (1− α)

·
P ∗t−2 (i)πε

Pt−1

¸−θ
+ ..

#

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

³πt
π̄ε

´θ
st−1.

3. Partial indexation to past inflation
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st =

Z 1

0

·
Pt (i)

Pt

¸−θ
di = (71)

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α (1− α)

·
P ∗t−1 (i)πεt−1

Pt

¸−θ
+

+α2 (1− α)

·
P ∗t−2 (i)πεt−1πεt−2

Pt

¸−θ
+ ...

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

µ
πt
πεt−1

¶θ
"
(1− α)

·
P ∗t−1 (i)
Pt−1

¸−θ
+

+α (1− α)

·
P ∗t−2 (i)πεt−2

Pt−1

¸−θ
+ ..

#

= (1− α)

·
P ∗t (i)
Pt

¸−θ
+ α

µ
πt
πεt−1

¶θ

st−1.

7.4.2 Steady states under different indexation schemes

1. No Indexation

In steady state, ·
P ∗t (i)
Pt

¸
SS

=

·
1− απ̄θ−1

1− α

¸ 1
1−θ

(72)

hence from (69)

s =
1− α

1− απ̄θ

"
1− απ̄(θ−1)

1− α

# θ
θ−1

. (73)

2. Indexation to long run inflation

From (70) we get

s =
1− α

1− απ̄θ(1−ε)

·
P ∗t (i)
Pt

¸−θ
but under this indexation scheme in steady state·

P ∗t (i)
Pt

¸
SS

=

"
1− απ̄(θ−1)(1−ε)

1− α

# 1
1−θ

(74)

thus

s =
1− α

1− απ̄θ(1−ε)

"
1− απ̄(θ−1)(1−ε)

1− α

# θ
θ−1

. (75)

Note that this holds also for the case of indexation to past inflation. Indeed the

steady state value of s does not depend on the type of indexation. Note that this holds

generally whenever the resetted price is indexed to any variable that in steady state

grows at the rate π̄.
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7.4.3 Log-linearization

For all the different indexation schemes, the following holds

P ∗t (i)
Pt

=

µ
θ

θ − 1
¶µ

ψt

φt

¶
but one should be careful since each indexation scheme has an accordingly different

definition of ψt and φt.

1. No indexation

From (69) and using (72) and (73), it yields

st = (1− α)

"µ
θ

θ − 1
¶−θ

φθtψ
−θ
t

#
+ απθt st−1

'

(1− α)
³

θ
θ−1
´−θ

θφθψ−θ

s

³φ̂t − ψ̂t

´
+

+

·
απ̄θθs

s

¸
π̂t +

·
απ̄θs

s

¸
ŝt−1.

Thus

ŝt =
³
1− απ̄θ

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ (θπ̂t + ŝt−1) . (76)

We may want to substitute for
³
φ̂t − ψ̂t

´
to express ŝt as a function of π̂t. Substituting

then (51), we get

ŝt =
³
1− απ̄θ

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ (θπ̂t + ŝt−1) =

=
³
1− απ̄θ

´
θ

· −απ̄θ−1
1− απ̄θ−1

¸
π̂t + απ̄θ (θπ̂t + ŝt−1) =

= θ

·−1 + απ̄θ

Ω̄
+ απ̄θ

¸
π̂t + απ̄θŝt−1

where Ω̄ =
µ
(1−απ̄(θ−1))

απ̄(θ−1)

¶
. Hence, more compactly

ŝt =
θ

Ω̄

h
απ̄θ

¡
1 + Ω̄

¢− 1i π̂t + απ̄θŝt−1. (77)

2. Indexation to long-run inflation
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From (70) the law of motion of st becomes

st = (1− α)

"µ
θ

θ − 1
¶−θ

φθtψ
−θ
t

#
+ α

³πt
π̄ε

´θ
st−1

'

(1− α)
³

θ
θ−1
´−θ

θφθψ−θ

s

³φ̂t − ψ̂t

´
+

+

·
απ̄−θεθπ̄θs

s

¸
π̂t +

·
απ̄−θεπ̄θs

s

¸
ŝt−1.

Using (75) and (74), it yields

ŝt =
³
1− απ̄θ(1−ε)

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ(1−ε)[θπ̂t + ŝt−1]. (78)

Finally, substitute (61), we obtain

ŝt =
³
1− απ̄θ(1−ε)

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ(1−ε)[θπ̂t + ŝt−1] =

=
³
1− απ̄θ(1−ε)

´
θ

"
−απ̄(θ−1)(1−ε)
1− απ̄(θ−1)(1−ε)

#
π̂t + απ̄θ(1−ε)[θπ̂t + ŝt−1] =

= θ

"
−1 + απ̄θ(1−ε)

Ω̃
+ απ̄θ(1−ε)

#
π̂t + απ̄θ(1−ε)ŝt−1 =

=
θ

Ω̃

h
απ̄θ(1−ε)

³
1 + Ω̃

´
− 1
i
π̂t + απ̄θ(1−ε)ŝt−1

where Ω̃ =
µ
(1−απ̄(θ−1)(1−ε))

απ̄(θ−1)(1−ε)

¶
. Hence

ŝt =
θ

Ω̃

h
απ̄θ(1−ε)

³
1 + Ω̃

´
− 1
i
π̂t + απ̄θ(1−ε)ŝt−1. (79)

3. Indexation to past inflation

The law of motion of st in this case is approximated to

st = (1− α)

"µ
θ

θ − 1
¶−θ

φθtψ
−θ
t

#
+ α

µ
πt
πεt−1

¶θ

st−1

=

(1− α)
³

θ
θ−1
´−θ

θφθψ−θ

s

³φ̂t − ψ̂t

´
+

+

"
αθπθ(1−ε)s

s

#
(π̂t − επ̂t−1) +

"
απθ(1−ε)s

s

#
ŝt−1

and given (75) and (74)

ŝt =
³
1− απ̄θ(1−ε)

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ(1−ε)[θ(π̂t − επ̂t−1) + ŝt−1] (80)
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Finally make use of (68) to obtain

ŝt =
³
1− απ̄θ(1−ε)

´
θ
³
φ̂t − ψ̂t

´
+ απ̄θ(1−ε)[θ(π̂t − επ̂t−1) + ŝt−1] =

=
³
1− απ̄θ(1−ε)

´
θ

"
−απ̄(θ−1)(1−ε)
1− απ̄(θ−1)(1−ε)

#
(π̂t − επ̂t−1) + απ̄θ(1−ε)[θ(π̂t − επ̂t−1) + ŝt−1] =

= θ

"
−1 + απ̄θ(1−ε)

Ω̃
+ απ̄θ(1−ε)

#
(π̂t − επ̂t−1) + απ̄θ(1−ε)ŝt−1 =

=
θ

Ω̃

h
απ̄θ(1−ε)

³
1 + Ω̃

´
− 1
i
(π̂t − επ̂t−1) + απ̄θ(1−ε)ŝt−1

where Ω̃ =
µ
(1−απ̄(θ−1)(1−ε))

απ̄(θ−1)(1−ε)

¶
. Hence

ŝt =
θ

Ω̃

h
απ̄θ(1−ε)

³
1 + Ω̃

´
− 1
i
(π̂t − επ̂t−1) + απ̄θ(1−ε)ŝt−1. (81)

7.5 Generalizing the Taylor principle

7.5.1 To trend inflation

Here we generalize the Taylor principle as discussed in Woodford (2003, chp. 4) to the

case of non-zero steady state inflation.

In the case of: (i) φπ,φY > 0; (ii) standard Neo-Keynesian model featuring zero-

inflation steady state; (iii) a contemporaneous interest rate rule; the original Taylor

principle φπ > 1 has been generalized to

φπ +
(1− β)

κ
φY > 1. (82)

As stressed by Woodford (2003, chp. 4), the logic is that the long run multiplier of

π̂ on ı̂ must exceed one:

∂ı̂

∂π̂
|LR = φπ + φY

∂Ŷ

∂π̂
|LR = φπ +

(1− β)

κ
φY > 1 (83)

since given the standard NKPC

π̂t = βπ̂t+1 + κŶt (84)

hence ∂Ŷ
∂π̂ |LR = (1−β)

κ > 0.

Note that in the space (φπ;φY ) the condition is defined by

φY >
κ

1− β
(1− φπ)
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which is the line in the Figure 1 correspondent to zero trend inflation: it goes through

the point (φπ = 1;φY = 0) and is (highly) negatively sloped.

Here we show that in our model: (i) ∂Ŷ
∂π̂ |LR depends on trend inflation; (ii) for

standard calibration values, ∂Ŷ∂π̂ |LR turns negative very soon as trend inflation is positive;
(iii) for standard calibration values, ∂Ŷ∂π̂ |LR increases in absolute value as trend inflation
increases. As a result, indeed, the left-lateral frontier in Figure 1 coincides with condition

(38), generalised to allow for trend inflation.

The model consists of the following equations: (21),(22), (29) and (35). Differenti-

ating (29) we get

dŝ
³
1− απ̄θ

´
=

θ

Ω̄
[π̄ − 1] dπ̂

dŝ

dπ̂
=

θ
Ω̄
[π̄ − 1]

(1− απ̄θ)
= Θ. (85)

Then (35) yields

σndŝ+ (σc + σn) dŶ = dm̂c (86)

and putting (85) into (86)

dm̂c = σnΘdπ̂ + (σc + σn) dŶ

dm̂c

dπ̂
= σnΘ+ (σc + σn)

dŶ

dπ̂
. (87)

Differentiating (22) we obtain

dψ̂

dπ̂
= (1− σc)

dŶ

dπ̂
+

dm̂c

dπ̂
+

αβπ̄θθ

1− αβπ̄θ

dψ̂

dπ̂
= (1− σc)

dŶ

dπ̂
+

"
σnΘ+ (σc + σn)

dŶ

dπ̂

#
| {z }

dm̂c
dπ̂

from (87)

+
αβπ̄θθ

1− αβπ̄θ

dψ̂

dπ̂
= (1 + σn)

dŶ

dπ̂
+ σnΘ+

αβπ̄θθ

1− αβπ̄θ
. (88)

Then we can substitute the above equation into (21) to get

π̂ = βπ̂ + λ(π̄)m̂c+ λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)
Ŷ + λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶
ψ̂

dπ̂ (1− β) = λ(π̄)dm̂c+ λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)
dŶ + λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶
dψ̂
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λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)

dŶ

dπ̂
= (1− β)− λ(π̄)

dm̂c

dπ̂
− λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶
dψ̂

dπ̂

λ(π̄)
(1− π̄) (1− σc)

(1− αβπ̄θ)

dŶ

dπ̂
= (1− β)− λ(π̄)

"
σnΘ+ (σc + σn)

dŶ

dπ̂

#
+

−λ(π̄)
µ

π̄ − 1
1− αβπ̄θ

¶"
(1 + σn)

dŶ

dπ̂
+ σnΘ+

αβπ̄θθ

1− αβπ̄θ

#

dŶ

dπ̂

·
λ(π̄)

(1− π̄) (1− σc)

(1− αβπ̄θ)
+ λ(π̄) (σc + σn) + λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶
(1 + σn)

¸
= (1− β)− λ(π̄)σnΘ− λ(π̄)

µ
π̄ − 1

1− αβπ̄θ

¶·
σnΘ+

αβπ̄θθ

1− αβπ̄θ

¸
.

Divide then by λ(π̄) (σc + σn) ≡ κ(π̄)

dŶ

dπ̂

·
1 +

(1− π̄) (1− σc)

(1− αβπ̄θ) (σc + σn)
+

µ
π̄ − 1

1− αβπ̄θ

¶
1 + σn
σc + σn

¸
=

(1− β)

λ(π̄) (σc + σn)
− σnΘ

σc + σn
−
µ

π̄ − 1
1− αβπ̄θ

¶·
σnΘ

σc + σn
+

αβπ̄θθ

(1− αβπ̄θ) (σc + σn)

¸
.

Hence in condition (38), dŶ
dπ̂

¯̄̄
LR
in the more general model with positive trend infla-

tion and no indexation is given by

dŶ

dπ̂

µ
π̄ − αβπ̄θ

1− αβπ̄θ

¶
=
(1− β)

κ(π̄)
− σnΘ

σc + σn

·
π̄ − αβπ̄θ

1− αβπ̄θ

¸
−
µ

π̄ − 1
1− αβπ̄θ

¶
αβπ̄θθ

(1− αβπ̄θ) (σc + σn)
.

(89)

It is easy to check that putting π̄ = 1, one gets the usual dŶdπ̂ =
(1−β)
κ and then condition

(37). Putting this expression into (38) and plotting it for different values of trend

inflation, we exactly obtain the left-lateral frontier in Figure 1.
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8 Tables

Contemporaneous Rule

π̄ = 0% π̄ = 2% π̄ = 4% π̄ = 6% π̄ = 8%

φi = 0

ε = 0% 9232 4293
(−53.49%)

1363
(−85.23%)

442
(−95.21%)

68
(−99.26%)

εPI = 50% 9653 8165
(−15.41%)

6005
(−37.79%)

3551
(−63.21%)

2210
(−77.10%)

εLR = 50% 9232 7761
(−15.93%)

5647
(−38.83%)

3160
(−65.77%)

1845
(−80.01%)

εPI = 100% 9680 9680 9680 9680 9680

Table 1. The table shows the number of combinations φπ and φy that

deliver a determinate equilibrium and in brackets the percentage reduction

relative to the case π̄ = 0%. It is computed for σc=σn=1;θ=11,α=0.75 and.

β=0.99. Moreover, φπ ∈ [0, 5] and φy ∈ [−1, 5]. Step increase: 0.05.
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Inertial Contemporaneous Rules

π = 0% π = 2% π = 4% π = 6% π = 8%

φi = 0.5

ε = 0% 10821 5885
(-45.61%)

2084
(-80.74%)

811
(-92.50%)

225
(-97.92%)

εPI = 50% 10894 9446
(−13.29%)

7344
(−32.58%)

4653
(−57.28%)

3005
(−72.41%)

εLR = 50% 10821 9249
(−14.52%)

6947
(−35.80%)

4113
(−61.99%)

2530
(−76.61%)

εPI = 100% 10890 10890 10890 10890 10890

φi = 1

ε = 0% 12197 7818
(−35.90%)

3781
(−69.00%)

2657
(−78.21%)

2239
(−81.64%)

εPI = 50% 12109 10838
(−10.49%)

8846
(−26.94%)

6074
(−49.83%)

4307
(−64.43%)

εLR = 50% 12197 10995
(−9.85%)

8861
(−27.35%)

5984
(−50.93%)

4293
(−64.80%)

εPI = 100% 12100 12100 12100 12100 12100

φi = 2

ε = 0% 12220 9607
(−21.38%)

4461
(−63.49%)

2890
(−76.35%)

2299
(−81.18%)

εPI = 50% 12220 12174
(−0.37%)

10676
(−12.63%)

7865
(−35.63%)

5405
(−55.76%)

εLR = 50% 12220 12191
(−0.23%)

10589
(−13.34%)

7563
(−38.10%)

5190
(−57.52%)

εPI = 100% 12220 12220 12220 12220 12220

φi = 5

ε = 0% 12220 12190
(−0.24%)

6513
(−46.70%)

3593
(−70.59%)

2498
(−79.55%)

εPI = 50% 12220 12220 12220 11459
(−6.22%)

8265
(−32.36%)

εLR = 50% 12220 12220 12220 11256
(−7.88%)

7865
(−35.63%)

εPI = 100% 12220 12220 12220 12220 12220

Table 2. See note in table 1.
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Forward-Looking Rule

π = 0% π = 2% π = 4% π = 6% π = 8%

φi = 0

ε = 0% 3028 2326
(−23.18%)

1022
(−66.24%)

280
(−90.75%)

20
(−99.33%)

εPI = 50% 3668 3368
(−8.17%)

2980
(−18.7%)

2460
(−32.9%)

1719
(−53.13%)

εLR = 50% 3028 2846
(−6.01%)

2552
(−15.71%)

2118
(−30.05%)

1470
(−51.45%)

εPI = 100% 5552 5552 5552 5552 5552

φi = 0.5

ε = 0% 5920 4163
(−29.67%)

1629
(−72.48%)

587
(−90.08%)

143
(−97.58%)

εPI = 50% 6631 5973
(−9.92%)

5118
(−22.81%)

3959
(−40.29%)

2538
(−61.72%)

εLR = 50% 5920 5340
(−9.79)

4533
(−23.42)

3406
(−42.46)

2070
(−65.03)

εPI = 100% 7229 7229 7229 7229 7229

φi = 1

ε = 0% 9436 6349
(−32.71%)

2586
(−72.59%)

1200
(−87.28%)

540
(−94.27%)

εPI = 50% 9830 8914
(−9.31%)

7550
(−23.19%)

5582
(−43.21%)

3633
(−63.04%)

εLR = 50% 9436 8493
(−9.99%)

7007
(−25.74%)

4946
(−47.58%)

3118
(−66.95%)

εPI = 100% 10106 10106 10106 10106 10106

φi = 2

ε = 0% 12220 9607
(−21.38%)

4461
(−63.49%)

2890
(−76.35%)

2299
(−81.18%)

εPI = 50% 12220 12174
(−0.37%)

10676
(−12.63%)

7865
(−35.63%)

5405
(−55.76%)

εLR = 50% 12220 12191
(−0.23%)

10589
(−13.34%)

7563
(−38.10%)

5190
(−57.52%)

εPI = 100% 12220 12220 12220 12220 12220

φi = 5

ε = 0% 12220 12190
(−0.24%)

6513
(−46.70%)

3593
(−70.59%)

2498
(−79.55%)

εPI = 50% 12220 12220 12220 11459
(−6.22%)

8265
(−32.36%)

εLR = 50% 12220 12220 12220 11256
(−7.88%)

7866
(−35.63%)

εPI = 100% 12220 12220 12220 12220 12220

Table 3. See note in table 1.
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Lagged Interest Rule

π = 0% π = 2% π = 4% π = 6% π = 8%

φi = 0

ε = 0% 5429 8563
(57.72%)

8204
(51.11%)

6841
(26.00%)

6265
(15.39%)

εPI = 50% 5771 6708
(16.23%)

8039
(39.29%)

9290
(60.97%)

8915
(54.47%)

εLR = 50% 5429 6417
(18.19%)

7851
(44.61%)

9080
(67.25%)

8580
(58.04%)

εPI = 100% 5958 5958 5958 5958 5958

φi = 0.5

ε = 0% 7392 8911
(20.54%)

7437
(0.60%)

6375
(−13.75%)

5640
(−23.70%)

εPI = 50% 7494 7917
(5.64%)

8563
(14.26%)

9088
(21.27%)

7947
(6.04%)

εLR = 50% 7392 7858
(6.30%)

8566
(15.88%)

9053
(22.47%)

7861
(6.34%)

εPI = 100% 7563 7563 7563 7563 7563

φi = 1

ε = 0% 10040 8849
(−11.86%)

5885
(−41.38%)

4744
(−52.74%)

4319
(−56.98%)

εPI = 50% 10072 9686
(−3.83%)

9165
(−9.00%)

8292
(−17.67%)

6551
(−34.95%)

εLR = 50% 10040 9658
(−3.80%)

9094
(−9.42%)

8109
(−19.23%)

6403
(−36.22%)

εPI = 100% 9924 9924 9924 9924 9924

φi = 2

ε = 0% 12220 9607
(−21.38%)

4461
(−63.49%)

2890
(−76.35%)

2299
(−81.18%)

εPI = 50% 12220 12174
(−0.37%)

10676
(−12.63%)

7865
(−35.63%)

5405
(−55.76%)

εLR = 50% 12220 12191
(−0.23%)

10589
(−13.34%)

7563
(−38.10%)

5190
(−57.52%)

εPI = 100% 12220 12220 12220 12220 12220

φi = 5

ε = 0% 12220 12190
(−0.24%)

6513
(−46.70%)

3593
(−70.59%)

2498
(−79.55%)

εPI = 50% 12220 12220 12220 11459
(−6.22%)

8265
(−32.36%)

εLR = 50% 12220 12220 12220 11256
(−7.88)

7865
(−35.63)

εPI = 100% 12220 12220 12220 12220 12220

Table 4. See note in table 1.
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Hybrid Interest Rules (type 1)

π = 0% π = 2% π = 4% π = 6% π = 8%

φi = 0

ε = 0% 8425 3709
(−55.97%)

1013
(−87.97%)

268
(−96.81%)

20
(−99.76%)

εPI = 50% 8755 7310
(−16.50%)

5239
(−40.15%)

2924
(−66.60%)

1717
(−80.38%)

εLR = 50% 8425 6938
(−17.64%)

4755
(−43.56%)

2461
(−70.78%)

1364
(−83.81%)

εPI = 100% 9780 9780 9780 9780 9780

φi = 0.5

ε = 0% 10263 5313
(−48.23%)

1711
(−83.32%)

615
(−94.00%)

149
(−98.54%)

εPI = 50% 10596 9105
(−14.07%)

6947
(−34.43%)

4244
(−59.94%)

2652
(−74.97%)

εLR = 50% 10263 8653
(−15.68%)

6379
(−37.84%)

3641
(−64.52%)

2156
(−78.99%)

εPI = 100% 10846 10846 10846 10846 10846

φi = 1

ε = 0% 12197 7818
(−35.90%)

3781
(−69.00%)

2657
(−78.21%)

2239
(−81.64%)

εPI = 50% 12128 10861
(−10.44%)

8872
(−26.84%)

6111
(−49.61%)

4351
(−64.12%)

εLR = 50% 12197 10995
(−9.85%)

8861
(−27.35%)

5984
(−50.93%)

4293
(−64.80%)

εPI = 100% 12100 12100 12100 12100 12100

φi = 2

ε = 0% 12220 9607
(−21.38%)

4461
(−63.49%)

2890
(−76.35%)

2299
(−81.18%)

εPI = 50% 12220 12174
(−0.37%)

10676
(−12.63%)

7865
(−35.63%)

5405
(−55.76%)

εLR = 50% 12220 12191
(−0.23%)

10589
(−13.34%)

7563
(−38.10%)

5190
(−57.52%)

εPI = 100% 12220 12220 12220 12220 12220

φi = 5

ε = 0% 12220 12190
(−0.24%)

6513
(−46.70%)

3593
(−70.59%)

2498
(−79.55%)

εPI = 50% 12220 12220 12220 11459
(−6.22%)

8265
(−32.36%)

εLR = 50% 12220 12220 12220 11256
(−7.88%)

7865
(−35.63%)

εPI = 100% 12220 12220 12220 12220 12220

Table 5. See note in table 1.
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Hybrid Interest Rules (type 2)

π = 0% π = 2% π = 4% π = 6% π = 8%

φi = 0

ε = 0% 4690 3299
(−29.65%)

1347
(−71.27%)

438
(−90.66%)

71
(−98.48%)

εPI = 50% 5083 4657
(−8.38%)

4078
(−19.77%)

3285
(−35.37%)

2214
(−56.44%)

εLR = 50% 4690 4190
(−10.66%)

3598
(−23.28%)

2844
(−39.36%)

1838
(−60.81%)

εPI = 100% 5148 5148 5148 5148 5148

φi = 0.5

ε = 0% 7481 5005
(−33.09%)

1936
(−74.12%)

749
(−89.98%)

212
(−97.16%)

εPI = 50% 7618 6926
(−9.08%)

5966
(−21.68%)

4584
(−39.82%)

2984
(−60.82%)

εLR = 50% 7481 6616
(−11.56%)

5470
(−26.88%)

3904
(−47.81%)

2389
(−68.06%)

εPI = 100% 7660 7660 7660 7660 7660

φi = 1

ε = 0% 10572 6975
(−34.02%)

2805
(−73.46%)

1314
(−87.57%)

583
(−94.48%)

εPI = 50% 10512 9514
(−9.49%)

8004
(−23.85%)

5800
(−44.82%)

3887
(−63.02%)

εLR = 50% 10572 9499
(−10.14%)

7757
(−26.62%)

5236
(−50.47%)

3342
(−68.38%)

εPI = 100% 10540 10540 10540 10540 10540

φi = 2

ε = 0% 12220 9607
(−21.38%)

4461
(−63.49%)

2890
(−76.35%)

2299
(−81.18%)

εPI = 50% 12220 12174
(−0.37%)

10676
(−12.63%)

7865
(−35.63%)

5405
(−55.76%)

εLR = 50% 12220 12191
(−0.23%)

10589
(−13.34%)

7563
(−38.10%)

5190
(−57.52%)

εPI = 100% 12220 12220 12220 12220 12220

φi = 5

ε = 0% 12220 12190
(−0.24%)

6513
(−46.70%)

3593
(−70.59%)

2498
(−79.55%)

εPI = 50% 12220 12220 12220 11459
(−6.22%)

8265
(−32.36%)

εLR = 50% 12220 12220 12220 11256
(−7.88%)

7866
(−35.63%)

εPI = 100% 12220 12220 12220 12220 12220

Table 6. See note in table 1.
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9 Figures
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Figure 1: Contemporanous interest rate rule and the effects of trend inflation. The black

dot marks the canonical Taylor rule, i.e. φπ = 1.5 and φY = 0.5.
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Figure 2: Contemporaneous rule and indexation
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Figure 3: Inertial contemporaneous rule
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Figure 4: Impulse response function to unit cost-push shock (φπ = 1.5 and φY = 0.5).
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Figure 5: Efficiency frontiers for the contemporaneous interest rate rule with long run

inflation indexation.
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tion indexation.
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Figure 7: Forward looking rule
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Figure 8: Hybrid interest rate rules
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Figure 9: Lagged interest rate rule. Black = instability; grey = indeterminacy; white =

determinacy.

φ 
π 

φ  
Y

(a) θ = 4

0 1 2 3 4 5
-1

0

1

2

3

4

5

φ 
π 

φ  
Y

(b) α = 0.5

0 1 2 3 4 5
-1

0

1

2

3

4

5

φ 
π 

φ  
Y

(c) σ 
c 

 = 5

0 1 2 3 4 5
-1

0

1

2

3

4

5

φ 
π 

φ  
Y

(d) σ 
n 

 = 5

0 1 2 3 4 5
-1

0

1

2

3

4

5

0% 2% 4%

6%

8%

0%
2%

4%

6%
8%

0% 2% 4%
6%

8%

0%

2%

4%
6%

8%

Indet.
Indet.

Indet.
Indet.

Figure 10: Sensitivity analysis (I)
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Figure 11: Sensitivity analysis (II)
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