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Abstract

This paper argues that factor models are better empirical tools than VARs for
identifying and estimating impulse response functions and shows how to derive the
latters from consistent estimates of the factor loadings. Our argument is based on
two observations. First, equilibrium business cycle models imply fewer exogenous
shocks than variables. Second, variables are measured with errors. We show that,
with measurement error, impulse responses based on VARs are not consistent and
quantify the empirical bias and mean squared error for both factor based and VAR
based estimates using as data generating process a calibrated standard equilibrium
business cycle model.

JEL subject classification : E32, C33, C52
Key words and phrases : Dynamic factor models, structural VARs, identification, equi-
librium business cycle models.

1



1 Introduction

The basic econometric tool for empirical validation of macroeconomic models is the
Vector Autoregressive Model (VAR). This model is easy to estimate and, once identifi-
cation restrictions are imposed, can be used to evaluate the impact of economic shocks
on key variables.

In structural VARs macroeconomics, variables are represented as driven by serially
uncorrelated shocks, each having a different source or nature, like ”demand”, ”supply”,
”technology”, ”monetary policy” and so on. Each variable reacts to a particular shock
with a specific sign, intensity and lag structure, summarized by the so called ”impulse-
response function”. Implications of economic theory not used for identification can
then be compared with estimation results and tested.

A strong motivation for the use of VARs is that stochastic general equilibrium
macroeconomic models have solution that can be represented in VAR form and therefore
VAR econometrics provides the tool to bridge theory and data.

The typical theoretical macro model, however, has few shocks driving the key vari-
ables in the macroeconomy. In the first generation real business cycle models, for
example, one shock – technology – is responsible for volatility of output, consumption
and investment both in the short and long-run. In that stylized economy, there is only
one source of variation. Other models take into account shocks in preferences or money,
but sources of macro variations remain few.

A paradox of the macroeconometric literature is that this feature of macro theory
has not been fully exploited in empirical modeling. Exceptions are few papers in the
late eighties which have observed that the feature of having fewer shocks than variables,
if combined with measurement error, implies a factor analytic structure for the solution
of the theoretical models that can be analysed empirically with the econometric tools
of the factor literature (Altug, 1989 and Sargent, 1989). The factor literature, which
has wide applications in many fields other than economics, has been first introduced
in macroeconomics by Sargent and Sims, 1977 and then further developed by Geweke,
1977, Geweke and Singleton, 1981 and Engle and Watson, 1983. Dynamic factor models
imply a restriction on the spectral density of the observations whereby the latter can be
expressed as the sum of two orthogonal components, the spectral density of the common
component, of reduced rank, and the spectral density of the idiosyncratic component,
of full rank. The former captures all the covariances of the observations at leads and
lags while the latter is diagonal and can therefore represents non cross-correlated mea-
surement error. Recently, factor models have been rediscovered in macroeconomics as
a tool for analysing large panels of time series (Forni and Reichlin, 1998, Forni, Hallin,
Lippi and Reichlin, 2000, Stock and Watson, 2002 and related literature). Both the
traditional literature on factor estimation and the more recent one on factor models for
large panels, develop different estimation techniques, but disregard issues of structural
identification of shocks and propagation mechanisms. Exceptions are two recent papers
by Giannone, Reichlin and Sala, 2002 and Forni, Lippi and Reichlin, 2002. This paper
builds on ideas developed by these works, but provides a more general discussion on
the matching between equilibrium business cycle models, factor estimates, identifica-
tion and estimation of structural shocks and their impulses. Moreover, we provide an
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empirical comparison between VAR based estimates of impulse response functions and
factor based ones.

The paper starts by recalling that the dynamic rank in equilibrium business cycle
models depends on the characteristics of the exogenous processes with typical exoge-
nous sources of variations being money, technology or preferences. Structural relations
and assumptions on the dynamic characteristics of the economy, on the other hand,
imply restrictions on the coefficients of the solution, which may generate another fea-
ture potentially important for empirical investigation, i.e. reduction of rank of the
contemporaneous covariance matrix of the observables. The dimension of the latter
is the static rank of the system and it is equal to the dimension of the state vector,
determined by the number of lagged predetermined variables and exogenous variables.
Dynamic characteristics of particular model economies can also be such that the lagged
autoregressive matrices are of reduced rank. In this case the solution will have reduced
rank representation as in Ahn and Reinsel, 1988, and Velu et al., 1986, or common fea-
tures as defined in Engle and Kozicki, 1993, and, under further restrictions, common
cycles as in Vahid and Engle, 1993.

A large class of equilibrium business cycle models have reduced static rank and with
reduced static rank, VAR models are unfeasible. However, empirically VARs models
are never collinear indicating that either the static reduced rank models are rejected
by the data or that variables are measured with error. This empirical feature is to
be contrasted with the finding that macroeconomic time series are often cointegrated,
i.e. that they show reduction of rank of the spectral density of their first differences at
zero frequency. In the long-run, measurement error is likely to be less sizeable and, as
a consequence, underlying collinear relations more evident than at higher frequencies.
Measurement error, we will argue, although “curing” the collinearity problem, makes
VAR estimates inconsistent.

With measurement error, as mentioned, dynamic rank reduction implies a dynamic
factor analytic structure and the factor loadings can be estimated consistently using
available techniques. Since impulse response functions are continuous functions of the
loadings, the latters can be estimated consistently. The intuition of this result is that the
factor model helps to clean data from measurement error by exploiting the theoretical
(and empirical) feature of stochastic rank reduction (for empirical evidence of stochastic
rank reduction, see Altissimo et al, 2002 on European data and Giannone et al., 2002
on US data).

For illustration of these points, we then generate data from a simple business cycle
model with and without measurement error and compare impulse response estimates
from VAR and factor procedures. For the latter, we use a quasi-maximum likelihood
estimator proposed by Doz and Lenglart, 1999.

The paper is organized as follows. In the first Section, we will describe the general
linear solution of equilibrium business cycle models and then illustrate a special simple
case. In the second Section, we discuss VAR and factor estimates with and without
measurement errors. In the third, we perform the empirical experiment based on the
simple model. The last Section, before the conclusions, is a general discussion which
relates traditional factor models used in this paper with the more recent literature on
factor models for large panels of time series.
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2 A model economy and VAR analysis

2.1 Equilibrium business cycle models

A. General Structure

We will start by recalling the general structure of an equilibrium business cycle
model. In this framework, as it is well known, the problem in the decentralized economy
is the same as the social planner’s. The latter maximizes the utility of the representative
agent:

max E0

[ ∞∑
t=0

βtU(Xt, Yt)

]

subject to the feasibility constraints::

f(Xt,Xt−1, · · · , Yt, Yt−1, · · · , St, St−1, · · · ) ≤ 0

St = g(εt, εt−1, · · · )
where Xt is the m × 1 vector of endogenous predetermined variables, Yt is the n × 1
vector of the endogenous non predetermined variables and St is the q × 1 vector of
exogenous variables (the number of variables considered is therefore N = m + n + q).
The parameter β defines the discount factor and εt is a q dimensional i.i.d. normal
process with mean 0 and variance Σε.

Stated at this level of generality, the model encompasses several examples in the
literature, from the simple real business cycle model á la King, Plosser and Rebelo,
1991, to the time-to-build economy á la Kydland and Prescott, 1983 to the model with
heterogenous capital (Campbell, 1997). Indicating with small letters the difference
between the log of the variables and their non-stochastic steady state, the solution of
such models has the following recursive structure:

Ψ(L)st = εt

C(L)xt = D(L)st

yt = Λ1(L)xt + Λ2(L)st

where:
C(L) = C0 + C1L+ . . .+ CpcL

pc

D(L) = D0 +D1L+ . . . +Dpd
Lpd

Λ1(L) = Λ1,1L+ . . .+ Λ1,pΛ1
LpΛ1

Λ2(L) = Λ2,0 + Λ2,1L+ . . .+ Λ2,pΛ2
LpΛ2 .

It should be noticed that this solution form applies even to a larger class of mod-
els than those based on the maximization problem described above. As Christiano,
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2001 has pointed out, more complex models with heterogenous agents and different
informations sets, also have the same solution structure. This can be understood by
noticing that the length of the filters Λ1(L) and C(L) is determined by the lags of
predetermined variables necessary for the determination of the endogenous and the
predetermined variables while the filters Λ2(L) and D(L) accomodate for the possi-
bility that endogenous variables are determined on the basis of different information
sets.

The solution, written in its dynamic state space representation, is:


 yt

xt

st


 = Φ(L)st (2.1)

Ψ(L)st = εt

where: Φ(L) = [Φ1(L)′ Φ2(L)′ Iq]′ and:

Φ1(L) = Λ1(L)C(L)−1D(L) + Λ2(L)

Φ2(L) = C(L)−1D(L).

In this representation the endogenous variables at t are expressed as linear filters
of the q exogenous state variables and therefore as linear filters of the q dimensional
white noise exogenous shock.

Alternatively, we can express the solution in its constrained VAR form as:


 In −Λ1(L) −Λ2(L)

0 C(L) −D(L)
0 0 Ψ(L)




 yt

xt

st


 =


 0

0
Iq


 εt. (2.2)

Let us define the vector of all observables as wt = [y′
t x′

t s′t]′. The dynamic rank of
this system of equations, defined as the rank of the spectral density matrix of wt is q,
with q < N . The model, therefore, has reduced dynamic rank.

It is also customary to write the solution in its static state space representation
where the vector of state variables includes the lagged predetermined variables, and cur-
rent and lagged exogenous variables. The latter is defined as Ft = [x′

t−1 . . . x
′
t−px

s′t . . . s′t−ps
]′,

where px = max{pΛ1 , pc} and ps = max{pΛ2, pd}, while the variables in the vector wt

are expressed as contemporaneous linear combinations of Ft:

wt = ΛFt (2.3)

with:

H(L)Ft = Kεt. (2.4)
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The dimension of the vector of state variables in this static representation is r =
mpx + q(ps + 1) and it therefore depends on the px and ps lags included in the model
as well as q and m. This is also equal to the rank of the contemporaneous variance-
covariance matrix of wt, Γw(0) = Ew′w and defines the static rank of the system.
Notice that we have r ≥ q and that an economy with reduced stochastic rank, does not
have, in general, reduced static rank.

Static and dynamic rank reveal different features of the model economies. Reduced
dynamic rank q tells us that only q shocks matter for dynamics and therefore is a
consequence of the characteristics of the exogenous forces driving the economy, while
the static rank depends in general on the structure of the economy (the zero restrictions
on the coefficients of the VAR form) and on the number of lags included1. Typically,
models with rich dynamics, such as, for example, the time-to build model á la Kydland
and Prescott, 1983, have reduced stochastic rank but may have full static rank while
simpler models have both reduced static and dynamic rank. Static and dynamic ranks
must be thought as restrictions, in principle testable, derived from theory. Moreover,
rank reduction has implications for estimation that we will develop below.

To clarify the structure of the model and the role of the filters, as well as the role
of rank reduction it will be useful to discuss a specific example of the general model.
The same example will be used in the empirical Section.

B. The basic business cycle model

What we illustrate here is a simplified version of King, Plosser and Rebelo, 1991,
which is also the textbook example analyzed by Uhlig, 1998, to which we refer for all
details.

The model can be seen as a special case of what discussed in A. where there is only
one source of variability – technology –, labor is exogenous, there are no time to build
features, agents are homogeneous and have the same information set. We have: n = 3,
m = 1, q = 1 and Ψ(L) = 1 − ψL. The only exogenous state variable is productivity,
zt, which, with lagged capital stock kt−1, form the vector of the state variables. By
using a standard functional form for the utility function, we can write the maximization
problem as:

max U = E0

[ ∞∑
t=0

βtC
1−η
t − 1
1 − η

]

subject to:

Ct +Kt = Zt +Kρ
t−1 + (1 − δ)Kt−1

log(Zt) = log Z̄ + ψ log(Zt−1) + εt

where Ct, Kt define consumption and the capital stock and Zt is the productivity
exogenous process. The parameters δ, ρ, η and ψ define, respectively, the discount

1A different restriction, as mentioned in the introduction, is common feature and it implies rank
reduction of the lagged VAR matrices
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factor, the depreciation rate, the capital share, the coefficient of relative risk aversion
and the autoregressive parameter governing persistence of the technology shock in the
productivity equation.

Notice that in this case pΛ1 = pc = 1, pΛ2 = pd = 0. We have yt = [rt ct yt]′ where
rt is the real interest rate and yt is output; moreover, xt = kt and st = zt (lower cases
define, as before, variables in log and deviation from their non stochastic steady state).

The VAR solution can be written as:

Π(L)wt = Bεt

where:

Π(L) =


 I3 −Λ1L −Λ2

0 (1 − CL) −D
0 0 (1 − ψL)




and:

B =

(
0(4×1)

1

)

where Π(L) can be written as [I − A(L)]. Then wt has a VAR(1) structure: [I −
A(L)]wt = Bεt. Obviously, the coefficients of the A and B matrices depend on the
deep parameters ρ, β, δ, η, the parameter ψ governing technology and the steady state
value of the level of productivity.

The vector of the state variables is Ft = [kt−1 zt]′ and:

Ft = HFt−1 +Kεt.

Notice that the number of state variables is less than the dimension of the model
and it is equal to two. This also implies that the rank r of Γw(0), the static rank, is
equal to 2. This model therefore has both dynamic and static reduced rank. Notice
also that, for this example, the rank of A is equal to 2 so that the static rank is the
same as the rank of the autoregressive lagged matrix therefore implying that the model
has common features.

3 Business Cycle Empirics

What is the best estimation procedure to recover the dynamic structure of the model
economy? We will here compare two alternative strategies. The first is VAR analysis
and consists in estimating a reduced form autoregressive model on wt, identifying
the exogenous shocks using a minimal set of (just-identifying) restrictions and then
matching the resulting impulse response functions with the theoretical ones (for a survey
of this line of research applied to the study of the effects of monetary policy shocks, see
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Christiano, Eichenbaum and Evans, 1999). The second exploits explicitely stochastic
rank reduction and consists in the estimation of a dynamic factor model. This strategy
was first advocated in the macroeconomic literature by Sargent and Sims, 1977 and
used for structural analysis by Altug, 1989 and Sargent, 1989. That literature, however,
while showing how to test for restrictions on the covariances of the data, did not go
as far as showing how to estimate impulse response functions and identify shocks as in
VARs. This is why factor models have not been popular tools for empirical structural
and policy analysis. In what follows, we show how to do so and compare the estimates
with those based on VARs.

3.1 VAR Analysis

For VAR estimation to be feasible, we must have full static rank since the estimation
of A requires the inversion of Γw(0).

As we have seen, for the simple model, but this is true for a wide class of models,
the model has static reduced rank and so has the VAR. In the case of the basic model
Γw(0) has rank 2, so that a 5 dimensional VAR cannot be estimated, as Γw(0) cannot
be inverted. Reduced static rank might be a characteristic of the theory, but it never
occurs empirically, most likely because presence of measurement error in the data hide
“fuzzifies” collinear relations.

With static rank reduction and measurement error, we can estimate a VAR for a
block of variables of dimension r provided that the VAR representation for that block
exists. Alternatively, we can assume measurement error, and estimate a VAR on the
whole system. Let us now analyse the two cases.

A. No measurement Error

When variables are cleaned from measurement error, estimation can be performed
on a block of wt, call it wB

t , so as to obtain a full rank covariance matrix of the variables
in the block Γw(0)B .

Let us analyse this case for the general model and call the dimension of the block
NB . It is easily seen that any block has a VMA representation:

wB
t = ΘB(L)εt

For example, if only the non predetermined variables are included in the block, then:

ΘB(L) = [ΛB
1 (L)C(L)−1D(L) + ΛB

2 (L)]Ψ(L)−1

For a VAR representation to exist, the following condition must hold.

Fundamentalness condition. There exists a q × NB matrix of filters α(L) in non-
negative powers of L such that:

α(L)ΘB(L) = Iq.
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This point has been made by Hansen and Sargent, 1990 and Lippi and Reichlin,
1993. For further insight into this issue, see Forni, Lippi and Reichlin, 2002.

If px = 1, ps = 0 and the exogenous process is fundamental, this condition is
satisfied. Hence, for our simple model the condition holds.

If the fundamentalness condition is satisfied, we can approximate the VMA repre-
sentation with a finite order VAR:(

INB
−AB(L)

)
wB

t = vB
t

where AB(L) is a finite order NB ×NB matrix of filters and vB
t = BBεt, with BB being

a NB × q matrix2.
Notice that BB is an orthonormal rotation of the first q principal component of

ΓvB (0). Defining as V the q × q matrix containing its first q eigenvalues and as J
the NB × q matrix of the corresponding eigenvectors, we have: εt = R′J−1/2V ′vB

t ,
ΓvB

(0) = V JV ′ = BBBB′
, BB = V J1/2R where RR′ = Iq.

The impulse response function are hence given by:

wB
t =

(
INB

−AB(L)
)−1

V J1/2R,

Notice that once we have consistent estimates of AB(L), the impulse response func-
tions can be consistently estimated since the eigenvalues and the eigenvectors are con-
tinuous functions of of the matrix entries.

An important remark is that the dimension of the rotation matrix, and hence the
degree of indeterminacy due to observational equivalence of alternative structures, de-
pends only on the dimension q of the vector of exogenous shocks and not on the di-
mension of the subsystem NB.

B. Measurement Error.

If the variables have independent measurement error, collinearity disappears and
the estimation of the full system is always possible. VAR estimates, however, are no
longer consistent.

Let us assume that measurement error comes in its simplest form, i.e. as a white
noise process ξt ∼ WN(0,Γξ(0)) orthogonal to the vector of the variables of interest
wt. Let us refer to the simple model. The vector of measured variables is:

w̃t = wt + ξt. (3.5)

To prove that estimated parameters from a VAR on w̃t are not consistent, it suffices
to analyse OLS estimates for the VAR(1) case.

A VAR(1) for wt implies the following model for the measured equation:

w̃t = Awt−1 + ut + ξt (3.6)

2Due to the approximation, EvB
t vB′

t = Γv(0) is not exactly of reduced rank.
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where ut = Bεt.
The OLS estimate of A is:

Â = (Γ̂w(0) + Γ̂ξ(0))−1Γ̂w(1)

where Γ̂w(0), Γ̂w(1) and Γ̂ξ(0) are consistent estimates of the related population co-
variances. We have:

Â = AΓ̂w(0)(Γ̂w(0) + Γ̂ξ(0))−1

and therefore:

plim(Â) = AΓw(0)(Γw̃)−1 �= A.

Given that we cannot recover the matrix A, it is evident that we cannot recover the
structural impulse response functions.

More generally, consider a sub-system for w̃B
t . Given that w̃B

t is stationary it has
an VMA(∞), Wold, representation:

w̃B
t = Θ̃B(L)ṽB

t

where, because of the presence of measurement errors, Θ̃B(L) �= ΘB(L) even if the
fundamentalness condition is satisfied. The Wold representation can be approximated,
and hence estimated, through a V AR of finite order:

(INB
− ÃB(L))w̃B

t = ṽB
t

Defining EṽB
t ṽB′

t = Γṽ(0), the covariance matrix of the residuals, the impulse re-
sponse functions are given by:

wB
t =

(
INB

− ÃB(L)
)

(Γṽ(0))
1/2 R̃,

with R̃R̃′ = INB
. Notice that the rotation matrix R̃ is of dimension NB. The reason

is that, because of the presence of measurement error, Γṽ(0) and hence (Γṽ(0))
1/2 is of

full rank.
The presence of measurement error implies that ÃB(L) �= AB(L), and that εt cannot

be recovered for ṽB
t . Hence, there exists no rotation matrix R̃ for which one of the

structural shocks has the same impulse response function of the “true” one.
It is interesting to stress that this problem is deeper than the typical identification

indeterminacy that pervades the VAR literature (see Christiano, Eichnbaum and Evans,
1999). Even if the researcher knew perfectly the economic model and knew where to
impose the “right” restrictions, the presence of measurement error will make inference
impossible.
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3.2 Factor model estimation

As Altug, 1989 and Sargent, 1989 have observed, if we add measurement error, the
model economy has a factor analytic structure.

The dynamic state space representation for the general case becomes:

w̃t = Φ(L)Ψ(L)−1εt + ξt = G(L)εt + ξt

where εt is a vector of common shocks of dimension q and ξt is an idiosyncratic process
of dimension N (see, for example, Sargent and Sims, 1977).

When the dynamic lag structure is finite, we can write the model in static form, by
stacking lagged variables and we obtain3:

w̃t = ΛFt + ξt

H(L)Ft = Kεt
(3.7)

where Λ is a N × r matrix, Ft is r × 1 and ΛFt represents the “common component”
of w̃t, of dimension r, while ξt is the “idiosyncratic component” of dimension N . The
impulse response functions are defined, up to a rotation as: G(L) = ΛH(L)−1K. The
model written in this way, is the static state representation discussed earlier. It can be
shown that in the case which the order of the AR process for st is less or equal than ps,
the filter H(L) in (3.7) is of order 1 so that the states have an AR(1) representation
(on this point, see Giannone, Reichlin and Sala, 2002).

Let us analyse the estimation of this model for the basic model example where
Ft = HFt−1 +Kεt (the result can be easily generalized).

Under the orthogonal measurement error assumption, the model is identified once
we impose the normalization condition EFF ′ = I. The covariances of the variables of
interest and of measured data are:

Γw̃(0) = Γw(0) + Γξ(0)

Γw(0) = ΛΛ′

Γw(1) = Γw̃(1)

We will now show how we can recover the impulse response functions (I −AL)−1B
from the covariances.

¿From equation (3.6) and the Yule-Walker equations we have:

Γw(1) = AΓw(0) = AΛΛ′.

Moreover:

Γu(0) = Γw(0) −AΓw(1).
3For a discussion of the difference between a static and a dynamic factor representation, see Forni,

Lippi and Reichlin, 2002
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Our problem is to estimate the parameters of A and B which can be expressed in
terms of the factor loadings Λ’s. We have:

A = ΛH(Λ′Λ)−1Λ′, B = ΛK

To estimate A we will have to compute the generalized inverse of Γw(0), i.e.:

Γw(0)−1 = [ΛΛ′]+ = Λ(Λ′Λ)−2Λ′.

The estimator for A is:

Â = Γ̂w(1)[Γ̂w(0)]+.

To obtain a consistent estimate of A we need a consistent estimate of Λ.
Once the Λ’s are estimated consistently, consistency of A follows from consistency

of Γ̂w(1). We have:

plimÂ = ΛH(Λ′Λ)−1Λ′

We obtain B as an orthonormal rotation of the first q principal component of
Γu(0). Defining as M the q × q diagonal matrix containing the q largest eigenvalues
of Γu(0) and as P the NB × q matrix of the corresponding eigenvectors, we have:
Γu(0) = PMP ′ = BB′ and B = PM1/2R where RR′ = Iq. The consistency of the
empirical counterpart, B̂, is a consequence of consistency of Â, Γ̂w(0) and Γ̂w(1) since
Γu(0) = Γw(0) −AΓw(1).

4 Empirical comparison

The exercise here is as follows. We generate the model economy and then estimate it
using the VAR procedure and the factor model procedure with and without measure-
ment error. We generate 500 vector time-series wt = (ct, rt, yt, kt, zt)′ for our model
economy with a sample size T = 200.

We compute impulse response functions for alternative estimation procedures and
report bias, mean square errors and confidence bands.

The particular model economy is the simple business cycle model where we use the
same calibrated parameters as in Uhlig, 1998. They are reported on the Table below.

Table 1. Calibrated Parameters

β .99
ρ .36
η 1
δ .025
ψ .95

In Figure 1 we show the sample paths of the five variables for one simulation of the
model.

12



Figure 1. Simulated Path
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In Figure 2 we show the theoretical impulse response functions in response to a
unitary technology shock generated by our model.

Figure 2. Theoretical Impulse Response Functions
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The measurement error is generated as:

ξt ∼ i.i.d.N (05,diag[γr, γc, γy, γk, γz])

with the γi’s calibrated so that the degree of commonality, given by the ratio V ar(w̃i
t)

V ar(wi
t)

=
1 − γi

V ar(wi
t)

, is the same for i = r, . . . , z and is equal to: V R = [1, .9, .8, .6].

A. VAR analysis

As a full-size VAR on wt cannot be estimated without introducing measurement
error, we concentrate on the sub-block wyc

t = (yt, ct)′.
We estimated the VAR on the sub-block by assuming to know the lag length (in

this case, 1). Given that we have just one shocks there are no identification problems
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in absence of measurement errors. For the case with measurement error we identify
the structural impulse response function by choosing one column of the orthonormal
rotation matrix R̃:

R̃ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [−π, π].

Our choice is to set θ so as to minimize the sum of the Euclidean distances between
the true and the estimated impulse responses for 12 period after the shock for both yt

and ct.

B. Factor estimates

To obtain consistent estimates of the loadings Λ, we could use either a Kalman
filter maximum likelihhod procedure (e.g. Engle and Watson, 1993) or a procedure
recently proposed by Doz and Lenglart, 1999. We opt for the latter since it is well
suited for the benchmark business cycle model estimated here because it exploits static
rank reduction and it presents computational advantages over the Kalman filter. The
method is a quasi maximum likelihood procedure where the likelihood is first defined
as if both the factors and the idiosyncratic components were not autocorrelated and
then it is shown that in a stationary framework such estimates are still consistent (see
appendix for details). For the dynamic case, this method does not work since we cannot
exploit static rank reduction. In this case, we can either use any Kalman filter based
method if n is sufficiently small or, if n is large, principal components methods as
suggested by Forni, Hallin, Lippi and Reichlin, 2000 or Stock and Watson, 2002.

Let us remark that, as we have done for the number of lags in VAR estimates,
we assume here that r and q are known. Notice, however, that since we are using a
likelihood procedure, we could have used the test for the number of common factors
proposed by Doz and Lenglart, 1999.

C. Comparison

Let us now provide a comparison between the two alternative methods is provided
in what follows. For each value of V R we report 4 figures. These figures display,
respectively, the bias, the mean square error and the confidence bands4 for the estimates
of the impulse response functions for the two variables under scrutiny, yt and ct and
for both the VAR and the factor model, taking as a benchmark the bivariate VAR
estimation without measurement error.

For example, Figures 4 and 5 show the Bias and the MSE of the estimated impulse
response functions in the case V R = .9 for ct (top) and yt (bottom). The statistics for
the ”clean” VAR, the dotted line, are reported for comparison.

Figures 6 and 7 report the true impulse response functions and the confidence bands
computed from, respectively, a VAR on wyc

t (without measurement error) a VAR on
w̃yc

t (with measurement error) and the factor model (from left to right). The true
impulse response functions are reported for comparison (bold line).

495% confidence bands were computed from the empirical distribution function by taking the 2.5-th
and the 97.5-th percentile.
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Figure 4. Bias - VR = 0.9
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Figure 5. Mean Square Error - VR = 0.9
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Figure 5. Comparison of Impulse Response Functions - VR = 0.9
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Figure 7. Comparison of Impulse Response Functions - VR = 0.9
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Figure 8. Bias - VR = 0.8
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Figure 9. Mean Square Error - VR = 0.8
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Figure 10. Comparison of Impulse Response Functions - VR = 0.8
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Figure 11. Comparison of Impulse Response Functions - VR = 0.8
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Figure 12. Bias - VR = 0.6
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Figure 13. Mean Square Error - VR = 0.6
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Figure 14. Comparison of Impulse Response Functions - VR = 0.6
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Figure 15. Comparison of Impulse Response Functions - VR = 0.6
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The results show the following features.
First, in all the experiments considered and at all horizons, both the bias and the

mean square error are larger in the case of the ”contaminated” VAR.
Second, and this demonstrates empirically the results of the previous Section, even

a small measurement error (V R = .9) is sufficient to spoil the inference drawn from the
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VAR. Consider for example Figures 5 and 6. It is evident from the confidence intervals
that the VAR does not consistently estimate the true dynamics of the system: the
true response almost always lies out of the confidence bands. As V R becomes smaller,
the factor model has harder and harder times in estimating efficiently the impulse
responses, as one can see from the fact that confidence bands widen. However, factor
estimates are always within the bands.

5 n large: Discussion

As mentioned in the introduction, factor models have recently gained popularity as
a parsimonios method to estimate dynamic relations in large panels of time series.
This recent literature advocates principal component methods for the estimation of the
factor space and provide consistency results and rates as the dimension n of the cross
section and the time dimension T go to infinity. The model analysed in this literature
are more flexible than standard factor models since the idiosyncratic component is
typically allowed to contain cross-correlated elements. Under these conditions, common
and idiosyncratic components are not identified for n fixed and this makes it impossible
to use maximum likelihood estimation; higher flexibility in the parametrization of the
model comes at a cost of possible loss of efficiency. Comparing finite sample estimation
performance for this class of econometric models and the likelihood based ones is an
interesting project, but not the problem addressed here. Let us here instead make few
remarks on what we would gain in adopting the large cross section approach, instead
of the n fixed approach used in this paper, for the purpose of the structural analysis
we have discussed.

First of all, let us oberve that the model with n large corresponds to a model with
a large number of states such as, for example, the model with heterogenous capital
(Campbell, 1997) or models with heterogenous agents and different information sets.
These models are therefore more complex than the benchmark business cycle exam-
ple analysed here, but they belong to the same family. From the econometric point of
view, information contained in a large cross-section helps in cleaning from measurement
error. The intuition is that principal components are linear combinations of the mea-
sured variables of the panel and they become increasingly collinear with the underlying
variables of interest as n increases (the idiosyncratic component capturing measure-
ment error dies on average by a law of large number mechanism). This desirable effect,
moreover, is obtained for more general models than the traditional factor model with
orthogonal idiosyncratic components and therefore allows to take into account more
complex measurement error than the one assumed in this paper. In fact, in the more
flexible specification, the error term could also be thought as an error in model spec-
ification as, for example, in Watson, 1993. For what concerns shocks identification,
the strategy is the same as the one followed here. To obtain consistent estimates of
the impulses, we just need consistent estimates of the factor loadings and the shocks
are identified as rotations of principal components of the residuals of the VAR on the
factors (see Giannone, Reichlin and Sala, 2002 and Forni, Lippi and Reichlin, 2002).
As n increases, the number of shocks to identify remains fixed at q. No matters how
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large is the number of states, the complexity of the identification problem depends on
the number of exogenous shocks q.

6 Conclusion

This paper argues that factor models are better empirical tools than VARs for iden-
tifying and estimating impulse response functions. The reasons are twofold. First,
equilibrium business cycle models imply fewer exogenous shocks than variables. Sec-
ond, variables are measured with errors.
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7 Appendix: Doz-Lenglart procedure

Doz and Lenglart, 1999, consider the quasi-likelihood of the model (3.7), computed
under a Gaussian assumption as if neither the factors nor the idiosyncratic component
were autocorrelated. The quasi-likelihood can be written, up to a constant term, as:

LT

(
wM

1 , . . . ,wM
T ; Λ,Γξ(0)

)
= −1

2
ln
(
det

(
ΛΛ′ + Γξ(0)

))−1
2
trace

((
ΛΛ′ + Γξ(0)

)−1 Γ̂wM (0)
)

The maximum likelihood estimates, Λ̂ and Γ̂ξ(0), are the solution of the following
system (cfr. Magnus and Neudecker, 1988):

Λ = Γ̂wM (0) (Γξ(0) + Γξ(0))
−1 Λ (7.8)

Γξ(0) = diag(Γ̂wM(0) − ΛΛ′) (7.9)

If Γξ(0) were known, (7.8) would be satisfied if:

Λ̂ = (Γξ(0))
1/2 VrJr (7.10)

where Jr is the r × r diagonal matrix conaining the r largest eigenvalues of

(Γξ(0))
−1/2

(
Γ̂wM (0) − Γξ(0)

)
(Γξ(0))

−1/2

and Vr is the N × r matrix of corresponding orthonormal eigenvectors.
Thus, (7.10) provides an explicit solution for Λ as a function of Γξ(0) and (7.9)

gives Γξ(0) as an explicit solution of Λ. The solution of the system (7.8) and (7.9) can
hence be found iteratively choosing an appropiate starting value for Γξ(0).

Doz and Lenglart, 1999, show that if Ft and ξt are weakly stationary, then Λ̂ and
Γ̂ξ(0) are consistent:

plimΛ̂ = Λ, plimΓ̂ξ(0) = Γξ(0), as T → ∞
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