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Introduction

A commonly articulated justification for government involvement in retirement in-

come is the belief that an important fraction of the population saves inadequately

when left to their own devices (Diamond, 1977). From the workers’ perspective most

pension systems, pay-as-you-go and capitalized systems alike, effectively impose a

minimum-savings requirement. One purpose of this paper is to see if such minimum-

savings policies are optimal in a model where agents suffer from the temptation to

over-consume.

More generally, if people suffer from temptation and self-control problems, what

should be done to help them? Current models emphasizing such problems lead to a

simple but extreme answer: it is optimal to completely remove all future choices. In

particular, in the intertemporal choice framework it is best to commit individuals to

a particular consumption path, removing all future savings choices. In these models,

the desire to commit is simply overwhelming.

Eliminating all ex post choices is unlikely to be optimal when new information

regarding preferences or other variables is expected to arrive in the future. In these

circumstances, individuals value the flexibility to act on their information. Indeed, in

the absence of temptation or self-control problems full flexibility would be optimal.

This paper studies the non-trivial design of optimal commitment devices in situ-

ations where eliminating all choices is not necessarily optimal. We introduce a value

for flexibility and study the resulting tradeoff with commitment, defined as the re-

moval of some future choices. Our model combines a preference for flexibility and a

preference for commitment by introducing taste shocks into both a time-inconsistent

quasi-hyperbolic discounting framework (Phelps and Pollack, 1968; Laibson, 1997)

and the temptation model of Gul and Pesendorfer (2001). The resulting preferences

belong to a class introduced by Dekel, Lipman and Rustichini (2001).

The individual we model suffers from temptation for higher present consumption.

Each period a taste shock is realized that affects the individual’s desire for current

versus future consumption.1 Importantly, taste shocks are privately observed by the

individual. If, instead, taste shocks were observable and verifiable by an outside party,

one could simply contract upon them in a way that avoids all temptation and achieves

the unconstrained ex-ante optimum. But when the shocks are private information

1Our analysis focuses on taste shocks, but the crucial feature is the arrival of any new information
relevant to the savings decision. Flexibility would also be valuable if one modeled health, employment
and income shocks. As we later show, with constant absolute risk aversion preferences, a model with
income shocks is isomorphic to a model with taste shocks.
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only the agent can act upon them, introducing a tradeoff between commitment and

flexibility. Commitment is valued because it reduces temptation, while flexibility is

valued because it allows the use of valuable private information.

The optimal commitment problem we study selects a subset of the individual’s

budget set to maximize ex-ante utility, taking into account the ex-post temptation

problem facing that set. We show that this commitment problem is equivalent to a

principal-agent problem: the principal has the individual’s ex-ante preferences, the

agent has the ex-post preferences. This formulation makes the analysis tractable and

allows us to apply powerful Lagrangian optimization techniques.

A very simple commitment device in this setting is a minimum-savings rule, which

restricts individuals to save above some level, allowing complete flexibility otherwise.

Facing such a rule, individuals with low enough taste shocks will be unconstrained,

while the highest types will be constrained by the minimum-savings level and obtain

the same bundle of consumption and savings.

Our first finding is that a minimum-savings rule is always part of the solution

to the commitment problem. That is, the optimal allocation necessarily has types

above some threshold consuming the same bundle. This result has strong economic

intuition: at the very top of the distribution there is no trade-off between commitment

and flexibility. For any set of consumption-savings options made available, if the

highest types are separated then they are necessarily undersaving from an ex-ante

perspective, given these options. Thus, removing a lower segment of these options

necessarily improves welfare.

We then turn to the question of whether a minimum-savings policy is all that

is needed. Our next result establishes that under a condition for the distribution

of taste shocks a minimum-savings rule completely characterizes the optimum. The

condition ensures that individuals do not consume in the interior of the budget set,

so that ‘money burning’ is not optimal. It also ensures that there is no gain from

removing intervals on the budget line above the minimum-savings level. We show

that this condition is also necessary for a minimum-savings rule alone to achieve the

optimum.

Our analysis is also useful for other applications, quite different from the consumption-

savings model we focus on, and we discuss three examples. The first concerns pa-

ternalism, a principal cares about an agent but disagrees with the agent’s prefer-

ences. Applied to schooling our results may be relevant for thinking about minimum-

schooling laws. Second, we discuss fiscal constitutional design, where citizens value

government spending, but ruling administrations value it even more. Our results
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translate to conditions for simple spending caps to be optimal. Finally, we discuss an

environment with a continuum of agents imposing externalities on each other, such

as pollution. A utilitarian planner maximizes average welfare and internalizes these

externalities, but agents acting privately do not. Many other situations feature a

similar tradeoff between commitment and flexibility that might be captured by our

model.

Models with time-inconsistent preferences solved as a competitive game, as in

Strotz (1956), were the first to formalize a value for commitment. In particular,

the hyperbolic discounting model has proven useful for modeling the possibility of

undersaving and the desirability of commitment devices (Phelps and Pollack, 1968;

Laibson, 1997). In a series of recent papers Gul and Pesendorfer (2001, 2002a,b) and

Dekel, Lipman and Rustichini (2001, 2004) have provided axiomatic foundations for

preferences that value commitment and have derived useful representation theorems.

Kreps (1979) provided an early axiomatic foundation for a preference for flexibility,

and showed that these preferences can always be represented by including taste shocks

in an expected-utility framework.

A large literature on social security policy incorporates a concern for possible

undersaving by individuals. Feldstein (1985) models overlapping generations that

discount the future at a higher rate than the social planner. Laibson (1998) dis-

cusses policies to avoid undersaving by quasi-hyperbolic agents, while Imrohoroglu,

Imrohoroglu and Joines (2000) perform a quantitative analysis of the benefits of pay-

as-you-go policies in such a setting.

As discussed above, many other applications feature a similar tradeoff to com-

mitment and flexibility. Since Weitzman’s (1974) seminal paper on the benefits of

prices versus quantities restrictions, there has been interest in the tradeoff between

flexibility and control of managers, see Holmstrom (1984). A similar tradeoff arises

between discretion and rules to address the time inconsistency of government policy

(Kydland and Prescott, 1977). In a recent paper Athey, Atkeson and Kehoe (2004)

study the optimal design of monetary policy rules. Benabou and Tirole (2002) con-

sider an individual who manipulates ex post choices by suppressing some information

from his memory, instead of using commitment devices.

The rest of the paper is organized as follows. Section 1 lays out the basic model

with quasi-hyperbolic preferences. Section 2 studies optimal commitment and derives

the main results. Section 3 extends the results to preferences displaying temptation

and self-control. We discuss other applications of our results in Section 4. The final

section concludes.

4



1 Basic Consumption-Savings Problem

In this section, we introduce the basic consumption-saving setup with time-inconsistent

preferences. There are two periods and a single consumption good each period. We

denote first and second period consumption by c and k, respectively. Given total re-

sources y, the consumer is constrained by the budget set B (y) ≡ {(c, k) ∈ R
2
+ | c+k ≤

y}, where we have normalized the net interest rate to zero.

In the first period individuals receive a taste shock θ from a bounded set Θ with

distribution function F (θ), normalized so that E[θ] = 1. The taste shock affects the

marginal utility of current consumption: higher θ makes current consumption more

valuable. Taste shocks are assumed to be the individual’s private information.

We follow Strotz (1956), Phelps and Pollack (1968), Laibson (1994, 1997) and

others by modeling the agent in each period as different selves, with different pref-

erences. For the ensuing games played between selves we consider subgame perfect

equilibria as our solution concept.

The utility for self-1 from periods t = 1, 2 with taste shock θ is then,

θU (c) + βW (k) ,

where U : R+ → R and W : R+ → R are increasing, concave and continuously

differentiable, and 0 < β ≤ 1. Utility for self-0 from periods t = 1, 2 is given by:

E [θU (c) +W (k)] .

This setup represents a two-period version of quasi-geometric discounting. We asso-

ciate β with the strength of temptation towards present consumption.

There is disagreement among the different selves on discounting but agreement re-

garding taste shocks. The tension is between tailoring consumption to the taste shock

and self-1 ’s constant desire for higher current consumption. This tension generates

the tradeoff between commitment and flexibility from the point of view of self-0. In-

deed, this is the central feature of the model, which can be reinterpreted and applied

to other situations with similar tradeoffs (see Section 4).

Taste shocks can be interpreted in two ways. Under an objective interpretation,

they represent actual differences in ex-post preferences that are evaluated by the

expected-utility agent. Under a subjective interpretation, the introduction of taste

shocks is an ‘as if’ construction to represent an ex-ante preference for flexibility, in

which case ex-post behavior need not be modeled.
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Taste shocks are a tractable way of introducing a value for flexibility. Within

an objective interpretation, they can be thought of as representing the significant

variation observed in consumption and savings data, after conditioning on all available

variables. Other shocks, such as unobservable income or health, can also generate

a value for flexibility. Indeed, a model with privately observed income shocks is

equivalent to the model with privately observed taste shocks when the utility function

is exponential U(c) = −e−γc. To see this, note that total consumption in the first

period is c+ z, where z is privately observed income and c = y − k is the observable

component of consumption and savings. Then the first period utility is U (c+ z) =

θU(c) where θ ≡ −U (z).

A useful benchmark allocation is the ex-ante first-best allocation, (cfb (θ) , kfb (θ)),

defined by the solution to max(c,k)∈B(y){θU (c) +W (k)}. This allocation would be

feasible if taste shocks were not private information and were contractible. Another

benchmark allocation is that obtained with full flexibility or no commitment: self-1 is

constrained only by the resource constraint and solves max(c,k)∈B(y) [θU(c) + βW (k)].

We denote the unique solution to this problem by (cf (θ), kf (θ)).

2 Optimal Commitment without Self-Control

Commitment entails reducing the set of choices available. The optimal commitment

problem is to choose the best subset C ⊂ B(y) of the budget set that maximizes the

expected utility of self-0 given that choices are in the hands of self-1, that is, that

the allocation is the outcome of a subgame perfect equilibrium. Formally, we choose

C ∈ B(y) so as to maximize
∫

[θU (c(θ)) + W (k(θ))]dF (θ) subject to c(θ), k(θ) ∈

argmax(c,k)∈C(θU (c) + βW (k)).

Finding the best subset C is equivalent to the following principal-agent problem

directly over allocations c (θ) and k (θ):

max
c, k

∫

[θU (c (θ)) +W (k (θ))] dF (θ)

θU (c (θ)) + βW (k (θ)) ≥ θU (c (θ′)) + βW (k (θ′)) for all θ, θ′ ∈ Θ (1)

c (θ) + k (θ) ≤ y for all θ ∈ Θ (2)

Given total resources y, the problem is to maximize expected utility from the point

of view of self-0 (henceforth: the principal) subject to the constraint that θ is private

information of self-1 (henceforth: the agent). The incentive compatibility constraint
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(1) ensures that the agent reports the shock truthfully.

This principal-agent of the commitment problem formulation highlights the re-

striction that resources cannot be transferred across types. Although this restriction

is not without loss of generality, it is a natural starting point for at least three reasons.

First, it is useful to isolate the problem of commitment – defined as a reduction of

choices from the individual’s budget constraint – from the problem of insurance or

redistribution, which is beyond the scope of this paper. Second, individuals may have

access to commitment technologies, such as an illiquid asset, but not insurance con-

tracts. Thus, it is important to understand what the ideal commitment device, not

featuring insurance, looks like. Finally, the possibility of transferring resources across

different types is simply absent in some reinterpretations of our model discussed in

Section 4.

Two and Three Types

We begin by studying the optimal commitment problem with only two taste shocks

and then turn to the case with a continuum. When taste shocks take only two possible

values the optimum can be fully characterized as follows.

Proposition 1 Suppose Θ = {θl, θh}, with θl < θh. There exists a β
∗ ∈ (θl/θh, 1)

such that for β ∈ [β∗, 1] the first-best allocation is implementable. Otherwise,

(a) if β > θl/θh separation is optimal, i.e. c
∗ (θh) > c∗ (θl) and k

∗ (θh) < k∗ (θl) ,

(b) if β < θl/θh bunching is optimal, i.e. c
∗ (θl) = c∗ (θh) and k

∗ (θl) = k∗ (θh) ,

(c) if β = θl/θh separating and bunching are both optimal

In all cases, the optimum can be attained without burning money: c∗ (θ)+k∗ (θ) =

y for θ = θh, θl.

Proof. In the Appendix.

The result that the first-best allocation is incentive compatible for low enough

levels of temptation relies on the discrete difference in taste shocks and does not hold

with a continuum of shocks. For higher temptation the first-best allocation is no

longer incentive compatible and the proposition shows that the solution takes one of

two forms. For intermediate levels of temptation it is optimal to separate the agents.

To achieve separation the principal must offer bundles that yield to the agent’s ex-post

desire for higher consumption, giving them higher consumption in the first period than

the first-best. For high enough temptation, however, separating the agents requires

too much first-period consumption, and bunching both types becomes preferable.
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Bunching resolves the commitment problem at the expense of flexibility. The optimal

amount of flexibility depends negatively on the degree of disagreement relative to

the dispersion of taste shocks. The proposition also shows that the optimum can be

attained on the frontier of the budget set, so that ‘money burning’ is not required.

Unfortunately, with more than two types extending these conclusions is not straight-

forward. For example, consider three taste shocks, θl < θm < θh, with respective

probabilities pl, pm and ph. In this case bunching may occur between any consecutive

pair of shocks. Money burning for the middle type is optimal if pm is small enough

and β ∈ (β∗, θl/θm), where β
∗ is as defined by the proposition above with two types,

θl and θh. This captures the intuition that if the middle shock occurs with very low

probability, money burning is not very costly and might be preferable for incentive

purposes. However, this does not exhaust all cases where money burning is optimal.

If either β < β∗ or β > θl/θm, money burning is never optimal for small enough pm,

but may be optimal for sufficiently high pm.
2 These results help illustrate that money

burning is a possible feature of the solution and that conditions on the distribution

are required to rule it out.

Continuous Distribution of Types

For the rest of the paper we assume that the distribution of types is represented

by a continuous density f (θ) over the bounded interval Θ ≡ [θ, θ]. It is convenient

to change variables from (c (θ) , k (θ)) to (u (θ) , w (θ)) where u (θ) ≡ U (c (θ)) and

w (θ) ≡ W (k (θ)) , and we term either pair of functions an allocation. Let C ≡ U−1

and K ≡ W−1, which are then increasing and convex functions.

We now characterize the incentive compatibility constraints (1). Facing a direct

mechanism given by (u(θ), w(θ)), an agent with taste shock θ maximizes over the

report and obtains utility V (θ) ≡ maxθ′∈Θ{(θ/β)u(θ
′) + w(θ′)}. If truth-telling

is optimal then V (θ) = (θ/β)u (θ) + w (θ), by integrating the envelope condition

V ′(θ) = u(θ)/β:

θ

β
u (θ) + w (θ) =

∫ θ

θ

1

β
u(θ̃)dθ̃ +

θ

β
u(θ) + w(θ) (3)

(see Milgrom and Segal, 2002). Incentive compatibility of (u,w) also requires u to be

a non-decreasing function of θ: agents that are more eager for current consumption

cannot consume less. Thus, condition (3) and the monotonicity of u are necessary for

2Proofs of these results are available upon request.
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incentive compatibility. These two conditions are also sufficient.

The principal’s problem is thus to maximize
∫ θ

θ
(θu (θ) + w (θ)) f (θ) dθ subject to

the budget constraint C (u (θ))+K (w (θ)) ≤ y, the incentive compatibility constraint

(3), and monotonicity u (θ′) ≥ u (θ) for θ′ ≥ θ. Note that this problem is convex since

the objective function is linear and the constraint set is convex.

Substituting the incentive compatibility constraint (3) into the objective function

and the resource constraint and integrating by parts allows us to simplify the problem

by dropping the function w (θ), except for its value at θ. Consequently, the principal’s

problem reduces to finding a function u : Θ→ R and a scalar w that solves:3

max
w,u∈Φ

{

θ

β
u(θ) + w +

1

β

∫ θ̄

θ

(1−G (θ))u (θ) dθ

}

(4)

W (y − C (u (θ))) +
θ

β
u (θ)−

θ

β
u (θ)− w −

1

β

∫ θ

θ

u(θ̃)dθ̃ ≥ 0 for all θ ∈ Θ (5)

where Φ = {w, u | w ∈W (R+) , u : Θ→ U(R+) and u is non-decreasing} and

G (θ) ≡ F (θ) + θ (1− β) f (θ) .

Any allocation (w, u) ∈ Φ uniquely determines an incentive compatible direct

mechanism using (3). An allocation (w, u) is feasible if (w, u) ∈ Φ and the budget

constraint (5) holds.

Minimum-Savings

This section shows that minimum-savings rules are necessarily part of the optimum.

Bunching at the top can be achieved by removing bundles previously offered for

types above θ̂, who then move to the bundle of θ̂, which is the one still available.

That is, for any feasible allocation (w, u) and θ̂ ∈ Θ, take the allocation (w, û) given

by û (θ) = u (θ) for θ < θ̂, and û (θ) = u(θ̂) for θ ≥ θ̂. Thus, bunching the upper tail

is always feasible; we now show that it is also always optimal.

Proposition 2 An optimal allocation (w, u∗) satisfies u∗ (θ) = u∗ (θp) for θ ≥ θp,

3The objective function and the left-hand side of the constraint are well defined for all (w, u) ∈ Φ
since monotonic functions are integrable and the product of two integrable functions, 1−G (θ) and
u(θ), is integrable (Rudin, 1976, Theorem 6.9 and 6.13).
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where θp is the lowest value θ ∈ Θ such that

∫ θ̄

θ̂

(

1−G(θ̃)
)

dθ̃ ≤ 0

for θ̂ ≥ θp. It is optimal for the budget constraint (5) to hold with equality at θp.

Proof. The contribution to the objective function from types with θ ≥ θp is

(1/β)
∫ θ̄

θp

(1−G (θ))u (θ) dθ. Substituting u =
∫ θ

θp

du+ u (θp) and integrating by parts

we obtain,

u (θp)
1

β

∫ θ̄

θp

(1−G (θ)) dθ +
1

β

∫ θ̄

θp

∫ θ̄

θ

(

1−G(θ̃)
)

dθ̃du. (6)

Note that, for the second term,
∫ θ̄

θ

(

1−G(θ̃)
)

dθ̃ ≤ 0 for all θ ≥ θp. It follows that it

is optimal to set du = 0, or equivalently u (θ) = u (θp) for θ ≥ θp.

When θp = θ, all types are pooled at the same bundle and it is clearly not optimal

to be in the interior of the budget set. If θp is interior then the first term in 6 is

zero, so u (θp) can always be increased up to the point where the budget constraint

binds without affecting the objective function. Thus, it is optimal not to have money

burning at θp.

This result states that for any bounded distribution of taste shocks a positive mass

of upper agents gets the same bundle of consumption and savings, which lies on the

budget line. A minimum-savings rule that binds for some types has the property that

top types are bunched. Thus, this section of the allocation can be implemented by

a minimum-savings rule that is binding for precisely these agents. Thus, minimum-

savings are necessarily part of the optimum.

To gain some intuition for this result, note that self-1 with taste shock θ ≤ βθ̄

shares the preferences of self-0 with a higher taste shock, equal to θ/β. That is, the

indifference curves of θu+βw and (θ/β)u+w are equivalent. Informally, these types

can make a case for their preferences. In contrast, self-1 types with θ > βθ̄ display a

blatant desire for current consumption from self-0 ’s point of view. That is, there is

no possible taste shock for self-0 that justifies self-1 ’s preferences. Separating such

types requires consumption to increase with θ, but this cannot be optimal since they

are overconsuming from self-0 ’s point of view. Thus, these agents should be bunched.

In other words, at the very top of the distribution, for θ ≥ βθ̄, there is no trade-off

between commitment and flexibility. The Lemma shows that bunching goes further,

that in the neighborhood of βθ̄ the value of commitment continues to dominate that
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of flexibility: θp < βθ̄.4

Simple Minimum-Savings Policies

We showed above that minimum-savings are necessarily part of the optimum. We now

investigate whether minimum-savings policies may fully characterize the optimum.

The results with discrete types suggest the need for some condition on the distribution

of taste shocks. The following condition turns out to be exactly what is needed.

Assumption A: G (θ) ≡ (1− β) θf (θ) + F (θ) is increasing for all θ ≤ θp.

When the density f is differentiable Assumption A is equivalent to a lower bound

on its elasticity

θ
f ′ (θ)

f (θ)
≥ −

2− β

1− β
,

The lower bound is negative and continuously decreasing in β. The highest lower

bound is attained when β = 0, while as β → 1 the lower bound goes off to −∞.

Hence, for any density f with θf ′/f bounded below, Assumption A is satisfied for

β close enough to 1. Moreover, many densities satisfy this condition for all β. For

example, it is trivially satisfied for all density functions that are non-decreasing, and

holds for the exponential distribution, the log-normal, and the Pareto and Gamma

distributions for a subset of their parameters.

It is important to recall the two possible interpretations for taste shocks when in-

terpreting Assumption A. Given the state-dependent utility function, θU (c)+βW (k),

an objective interpretation of the distribution of shocks, F (θ), implies that it can be

identified from ex-post behavior. For example, if individuals have full flexibility and

choose freely along the budget constraint, the observed distribution of consumption

and savings choices, cf (θ) and kf (θ), identifies the distribution of taste shocks, given

the utility functions and the temptation parameter. In contrast, under a subjective

interpretation information regarding taste shocks must be elicited directly ex-ante

from the individual.

Our next result shows that under Assumption A agents with θ ≤ θp are offered

their ex post unconstrained optimum from the budget line, and agents with θ ≥ θp

4The assumption that taste shocks are bounded above, equivalent to assuming that consump-
tion in the second period is bounded away from zero under full flexibility, ensures that θp is
well defined. For example, with a Pareto distribution F (θ) = 1 − (b/θ)

α
for x ≥ b implying

G(θ) = 1+((1− β) a− 1) (b/θ)
α
. For α ≥ (1− β)

−1
one obtains that θp = b so it is optimal to pool

all agents. However, for α < (1− β)
−1

there is no solution to θp and, it turns out, it is optimal to
provide full flexibility.
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are bunched at the unconstrained optimum for θp. That is, the optimal mechanism

offers the whole budget line to the left of the point (cf (θp), k
f (θp)) and corresponds

to a simple minimum-savings rule that imposes k ≥ kf (θp). Denote the proposed

allocation in terms of utility assignments by (w∗, u∗), with w∗ = W (kf (θ)), u∗ (θ) =

U
(

cf (θ)
)

for θ ≤ θp and u∗(θ) = U(cf (θp)) for θ > θp.

We next show that this simple allocation is optimal if and only if Assumption A

holds. Our strategy involves applying Lagrangian theorems, which require verifying

that our problem is sufficiently convex and differentiable. Once this is established

the argument is simple: we impose the necessary and sufficient first-order conditions

at the conjectured allocation and back out the implied Lagrangian multipliers; the

required non-negativity of these multipliers turns out to be equivalent to Assumption

A.5

Define the Lagrangian function as

L (w, u|Λ) ≡
θ

β
u (θ) + w +

1

β

∫ θ̄

θ

(1−G (θ))u (θ) dθ

+

∫ θ̄

θ

(

W (y − C (u (θ))) +
θ

β
u (θ)−

(

θ

β
u(θ) + w

)

−

∫ θ

θ

1

β
u(θ̃)dθ̃

)

dΛ (θ) ,

where the function Λ is the Lagrange multiplier associated with the incentive compat-

ibility constraint.6 Without loss of generality we set Λ
(

θ̄
)

= 1. Note that we do not

need to incorporate the monotonicity into the Lagrangian. Instead, we work directly

with Φ, which includes the monotonicity condition. Integrating the Lagrangian by

parts yields:

L (w, u|Λ) =

(

θ

β
u (θ) + w

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ (θ)−G (θ))u (θ) dθ

+

∫ θ̄

θ

(

W (y − C (u (θ))) +
θ

β
u (θ)

)

dΛ (θ) .

The next lemma exploits the convexity of the problem to show that appropriate

5One virtue of this approach is that we do not need to restrict the maximization with ad hoc
‘technical conditions’. In contrast, most analyses of optimal contracts proceed under assumptions
such as piecewise differentiability or continuity.

6Intuitively, the Lagrange multiplier Λ can be thought of as a cumulative distribution function
that determines the importance of the resource constraints. If Λ is representable by a density λ,
then the constraints can be incorporated as the familiar integral of the product with the density
function λ (θ). Although this is a common approach, in general, Λ may have points of discontinuity.
Indeed, the multiplier we construct has two points of discontinuity.

12



first-order conditions are necessary and sufficient for optimality.

Lemma of Optimality. (a) If an allocation
(

w0, u0
)

∈ Φ is optimal with u0 continu-

ous then there exists a non-decreasing Λ0 such that the following first-order conditions

in terms of Gateaux differentials:7

∂L
(

w0, u0;w0, u0|Λ0

)

= 0 (7)

∂L
(

w0, u0;hw, hu|Λ0

)

≤ 0 (8)

hold for all (hw, hu) ∈ Φ and hu continuous.

(b) Conversely, if there exists a non-decreasing Λ0 such that the first-order condi-

tions (7) and (8) hold, for all (hw, hu) ∈ Φ, then (u0, w0) is optimal.

Proof. See appendix.

Using the second expression for the Lagrangian the Gateaux differential at the

proposed allocation (w∗, u∗) is given by:

∂L (w, u;hw, hu|Λ) =

(

θ

β
hu (θ) + hw

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ (θ)−G (θ))hu (θ) dθ (9)

+
θp
β

∫ θ̄

θp

(

θ

θp
− 1

)

hudΛ (θ)

for all (hw, hu) ∈ Φ. The next proposition uses this Lemma to prove that a minimum-

savings rule is the optimum under Assumption A.

Proposition 3 The minimum-savings allocation (w∗, u∗) is optimal if Assumption

A holds.

Proof. We show that there exists a non-decreasing multiplier Λ∗ such that the

proposed (w∗, u∗) satisfies the first-order conditions (7) and (8) for all (hw, hu) ∈ Φ.

Let Λ∗ (θ) = 0, Λ∗ (θ) = G (θ) for (θ, θp], and Λ∗ (θ) = 1 for θ ∈
(

θp, θ̄
]

. Note that Λ∗

is not continuous; it has an upward jump at θ and a jump at θp. We need to show

7Given a function T : Ω → Y , where Ω ⊂ X and X and Y are normed spaces, if for x ∈ Ω and
h ∈ X the limit

lim
α↓0

1

α
[T (x+ αh)− T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x;h).

13



that the jump at θp is upward. Indeed,

lim
θ↓θp

Λ∗ (θ)− Λ∗ (θp) = 1−G (θp) ≥ 0,

which follows from the definition of θp. To see this, note that if θp = θ the result

is immediate since then Λ∗ would jump from 0 to 1 at θ. Otherwise, by definition

θp is the lowest θ̂ such that
∫ θ̄

θ̂

(

1−G
(

θ̃
))

dθ̃ ≤ 0 for all θ ≥ θ̂, which implies that

1−G (θp) ≥ 0.

Substituting the proposed multiplier Λ∗ into the Gateaux differential (9),

∂L (w, u;hw, hu|Λ
∗) =

1

β

∫ θ̄

θp

(1−G (θ))hu (θ) dθ =
1

β

∫ θ̄

θp

[

∫ θ̄

θ

(1−G(θ̃))dθ̃

]

dhu (θ) ,

where the last equality follows by integrating by parts, which can be done given the

monotonicity of hu and by the definition of θp. This Gateaux differential is zero at

the proposed allocation, and by the definition of θp it is non-positive for all hu non-

decreasing. It follows that the first-order conditions (7) and (8) are satisfied for all

(hw, hu) ∈ Φ.

Proposition 3 shows that the optimal allocation can be very simple and imple-

mented by imposing a minimum level of savings. The next proposition shows that

more complicated schemes are optimal if Assumption A does not hold.

Proposition 4 If assumption A does not hold, no minimum-savings rule is optimal.

Proof. Let [a, b] ⊂ [θ,θp), with a < b, be an interval where G is strictly decreasing

(Assumption A does not hold). Let (ŵ, û) |xp
be a minimum-savings allocation indexed

by xp : û (θ) = uf (θ) for θ < xp; û (θ) = uf (x) for θ ≥ xp, and ŵ = wf (θ). So, xp

denotes the proposed bunching point.

The proof proceeds by contradiction. Suppose that (ŵ, û) |xp
is optimal for some

xp. Then by part (a) of the Lemma of Optimality, there has to exist a non-decreasing

Lagrange multiplier Λ̂ such that the conditions for optimality (8) and (7) are satisfied

at the proposed allocation for all (hw, hu) ∈ Φ and hu continuous. Condition (8)

with hu = 0 requires that Λ̂ (θ) = 0 since hw is unrestricted. Using Λ̂ (θ) = 0 and

integrating (9) by parts (Theorem 6.20 in Rudin, 1976, guarantees this step given

that hu continuous) leads to:

∂L
(

ŵ, û;hw, hu|Λ̂
)

= γ (θ)hu (θ) +

∫ θ̄

θ

γ (θ) dhu (θ) , (10)
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with

γ (θ) ≡
1

β

∫ θ̄

θ

(Λ̂(θ̃)−G(θ̃))dθ̃ +
xp
β

∫ θ̄

max{θ,xp}

(

θ̃

xp
− 1

)

dΛ̂(θ̃);

where by condition (8) it follows that γ (θ) ≤ 0 for all θ ∈ Θ is necessary for optimality.

Then (7) implies that γ (θ) = 0 for θ ∈ [θ, xp], i.e. wherever û is strictly increasing.

It follows then that Λ̂ (θ) = G (θ) for all θ ∈ (θ, xp]. The proposed allocation (ŵ, û)

thus determines a unique candidate multiplier Λ̂ in the separating region (θ, xp]. This

implies that xp ≤ a, otherwise, and the associated multiplier Λ̂ (θ), which is equal to

G in the separating region, would be decreasing for θ ∈ [a,min {xp, b}]. Integrating

by parts the second term of the γ equation we obtain:

γ (xp) =
1

β

∫ θ̄

xp

(1−G(θ̃))dθ̃,

which is independent of the choice of the multiplier Λ̂. But for any xp ≤ a < θp, we

have that γ (xp) > 0 by the definition of θp, contradicting a necessary condition for

optimality. Hence no minimum-savings rule is optimal.

The minimum-savings allocations in both propositions do not entail money burn-

ing. Recall that with three types money burning may be optimal. A situation with

three types can be approximated by continuous types taking a sequence of continuous

densities becoming increasingly peaked around θl, θm and θh. However, the distribu-

tions in the sequence would eventually violate Assumption A, which requires a density

with bounded slope. Thus, with continuous distributions that violate Assumption A

money burning may be optimal.

Even if one restricts attention to allocations that do not involve money burning,

an improvement over the minimum-savings policy can be constructed by removing

intervals in the separating regions wherever the monotonicity condition in Assumption

A fails.8 Since the resulting allocation does not involve money burning it illustrates

that the proposition does more than rule such allocations out.

This construction also yields intuition into Assumption A, for suppose it’s con-

dition is not satisfied for θa < θ < θb ≤ θp. When one removes the open interval

between cf (θa) and c
f (θb) all types with θ ∈ (θa, θb) move from their unconstrained

optimum to one of the two extremes, cf (θa) or cf (θb). The change in welfare de-

pends critically on how many of such types moved to the left versus the right, since

8A formal statement and proof of this “drilling” result is contained in a previous version of this
paper (Amador, Werning and Angeletos, 2003).
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welfare rises from those moving left and falls from those moving right. The slope of

the density function affects precisely this, explaining its role in Assumption A.

Taken together, the previous two propositions imply that minimum-savings poli-

cies completely characterize the optimum if and only if the distribution of taste shocks

satisfies Assumption A, which is the case for a wide class of distributions. Recall that

as temptation vanishes, so that β → 1, the condition in Assumption A is essentially

satisfied for all distributions. Thus, optimal simple minimum-savings policies seem es-

pecially likely for modest levels of temptation. As mentioned above, minimum-savings

are a common feature of government retirement policy in developed countries.

Our result is also relevant for thinking about the market’s provision of commitment

devices. Indeed, simple market arrangements may be able to mimic the optimal one.

Under Assumption A, the optimal allocation can be implemented with the use of a

particular form of illiquid asset. Suppose the consumer initially divides his wealth

between two assets: liquid and illiquid. Both assets have the same rate of return, but

funds invested in the illiquid asset cannot be used for consumption at t = 1, they

can only be consumed at t = 2. Thus, investing in the illiquid asset represents a

self-imposed minimum level of savings, and in this way the individual can implement

the optimal allocation.

In an earlier version of this paper (Amador, Werning and Angeletos, 2003) we show

that all our results extend to finitely many periods with i.i.d. taste shocks. By using

a dynamic programming argument each stage is similar to the two-period problem

in (4)-(5). Minimum-savings are always part of the solution, and a simple minimum-

savings policy completely characterizes the solution if and only if Assumption A holds.

This result establishes that the commitment afforded by the illiquid asset structure

studied by Laibson (1997) may in fact be fully optimal.

We turn next to comparative statics with respect to temptation. As tempta-

tion increases, so that β decreases, θp decreases so more types are bunched and the

minimum-savings level decreases.

Proposition 5 The bunching point θp increases with β. The minimum-savings level,

kmin = y − C (u (θp)), decreases with β.

Proof. That θp is weakly increasing follows directly from its definition. To see that

kmin is decreasing note that it solves (θp/β)U
′ (y − kmin) /W

′ (kmin) = 1, and that an

interior θp solves θp/β = E [θ | θ ≥ θp]. Combining these we obtain

E [θ|θ ≥ θp]
U ′ (y − kmin)

W ′ (kmin)
= 1
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Since E [θ | θ ≥ θp] is increasing in θp, the result follows from the concavity of U and

W .

3 Optimal Commitment with Self-Control

In this section we study an individual facing temptation, but with some power of

self-control. Under a condition similar to that used for the quasi-hyperbolic case, we

show that minimum-savings rules are also optimal in such cases.

Dekel, Lipman and Rustichini (2001, 2004) and Gul and Pesendorfer (2001) con-

sider ex ante preferences defined over choice sets made available to the agent ex post.

Our specification for the ex ante utility of set C is

P (C) = E [ max
(c,k)∈C

(θU (c) +W (k) + ϕ (θU (c) + βW (k)))−ϕ max
(c,k)∈C

(θU (c) + βW (k))],

(11)

which is adopted from Krusell, Kuruscu and Smith (2001). The parameter ϕ > 0

captures the cost of self-control, while β captures the strength of the temptation to

consume in the current period. Our specification has the convenient property that as

ϕ→∞ preferences converge to the quasi-hyperbolic model.

Up to this point we have allowed only the taste shock θ to be uncertain. We

now pursue a generalization, allowing the levels of temptation and self-control to

be uncertain as well. There are two motivations for such a generalization. First,

in a recent paper Dekel, Lipman and Rustichini (2004) provide plausible economic

examples illustrating the need for uncertain temptation and provide axiomatic foun-

dations for it. Second, the generalization also allows us to capture the commonly

held view that differences in savings may be partly due to differences in temptation

or self-control (Diamond, 1977). We assume θ, β and ϕ are drawn from a continuous

joint distribution over some bounded rectangular support
[

θ, θ̄
]

× [β, β̄]× [ϕ, ϕ̄] where

β > 0.

The optimal commitment problem can be stated as maximizing P (C) by choosing

a subset C ⊂ B(y) where B(y) = {(c, k) | c + k ≤ y} is the budget constraint. As

before, we seek to rewrite this as a principal-agent problem. The objective function

in (11) can be written as:

E {(1 + βϕ) max
υ,ω∈C

[(θ/β̂)υ + ω]− ϕβ max
υ,ω∈C

[(θ/β)υ + ω]},

where we let β̂ be (1 + βϕ) / (1 + ϕ). Define the random variables ẑ and z by ẑ ≡ θ/β̂
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and z ≡ θ/β, and let the extended support Θ̂ be the union of the supports for z and

ẑ, so that Θ̂ ≡ [x, x̄] ≡ [θ(1 + φ)/(1 + βφ), θ̄/β]. Let an allocation over the extended

support Θ̂ be given by a pair of functions u : Θ̂→ U (R+) and w : Θ̂→ W (R+) .

The principal-agent formulation of the commitment problem is to find an alloca-

tion that maximizes

E [(1 + βϕ) (ẑu(ẑ) + w(ẑ)− βϕ(zu(z) + w(z))] (12)

subject to C (u (x)) +K(w(x)) ≤ y and

(u(x), w(x)) ∈ arg max
υ,ω∈C

[xυ + ω] (13)

for all x ∈ Θ̂.

Let α (x) ≡ E [(1 + βϕ) | ẑ = x], and κ (x) ≡ E [βϕ | z = x]. Denote by h1 (ẑ)

and h2 (z) the densities of ẑ and z, respectively. By the law of iterated expectations,

we have that the new objective function (12) can be written as

∫

Θ̂

(xu(x) + w(x))ĝ (x) dx, (14)

where the density ĝ (x) ≡ α (x)h1 (x) − κ (x)h2 (x) can be negative or positive, and

defines a signed measure over the state space Θ̂. This alternative expression for the

utility function (11) corresponds to that obtained in the representation theorem by

Dekel, Lipman and Rustichini (2001).

The incentive compatibility constraints (13) are equivalent, as before, to

xu (x) + w (x) = xu (x) + w +

∫ x

x

u (x′) dx′ (15)

with the associated monotonicity constraint.

We can now substitute (15) into the objective function (14) and the resource

constraints. Let Ĝ (x) =
∫ x

ĝ (z) dz (where Ĝ (x̄) = 1). Integrating the objective

function by parts then yields the following program,

max
(w,u(·))∈Φ̂

{

xu (x) + w +

∫

Θ̂

[1− Ĝ (x)]u (x) dx

}

(16)
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subject to the resource constraints:

W (y − C (u (x))) + xu (x)− xu (x)− w −

∫ x

x

u(x′)dx′ ≥ 0, (17)

where Φ̂ ≡ {w, u |w ∈W (R+) , u : Θ̂→ U (R+) and u is non-decreasing}.

With the problem mapped into a version that is formally equivalent to the problem

(4)-(5) the following propositions are direct extensions of our previous results.

Proposition 6 Let xp be the lowest value in Θ̂ such that for all x̂ ≥ xp

∫

x̂

(1− Ĝ (x))dx ≤ 0

An optimal allocation, (w∗, u∗) has u∗ (x) = u∗ (xp) for x ≥ xp.

Define the full flexibility allocation as uf (x), wf (x) ∈ argmaxu,w {xu+ w} subject

to C (u) + K (w) ≤ y. Let the proposed allocation be given by w = wf (x), and

u∗ (x) = uf (x) if x < xp and u∗ (x) = uf (xp) if x ≥ xp. We introduce the following

assumption analogous to that of Assumption A,

Assumption B Ĝ (x) is non-decreasing for all x ≤ xp.

The next proposition states that minimum-savings rules are optimal under as-

sumption B.

Proposition 7 The allocation (w∗, u∗) is optimal if assumption B holds. If assump-

tion B does not hold, no minimum-savings rule is optimal.

Proof. The proof of the first statement is identical to that in Proposition 3, except

that the multiplier Λ does not jump at the bottom x (because here Ĝ (x) is zero at

x). The second statement follows the proof of Proposition 4.

We now discuss two results that are possible when temptation and self-control, β

and ϕ, are not uncertain. Proofs for both results are contained in the appendix. We

first connect the condition behind Assumption A, from Section 2, with assumption

B. The first result shows that self-control strengthens the case for minimum-savings

to be enough for the optimum. The second result shows that higher temptation and

lower self-control raises the minimum-savings level, and thus increases commitment

at the expense of flexibility.

Proposition 8 (A⇒ B) When β and ϕ are certain, assumption B holds if G (θ) is

non-decreasing on [θ, β̂xp].
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Proposition 9 The bunching point xp increases and the minimum savings decreases

with β and decreases with ϕ.

4 Other Applications

Our model can be reinterpreted and applied to other situations that also feature a

tradeoff between commitment and flexibility, and that are unrelated to the intertem-

poral temptation model we have focused on. In this section we discuss three such

examples.

4.1 Optimal Paternalism

Few would argue that parents are not, at times, literally paternalistic towards their

children. Much government regulation – such as minimum schooling laws, drinking

and drug restrictions or prohibitions, etc – is also largely justified on paternalistic

grounds. Paternalism involves disagreement regarding preferences between individu-

als, instead of within an individual as is the case with temptation. The crucial feature

of our model, however, is disagreement, regardless of its source, so it can be applied

to these situations.

Consider, for example, the case of a child who must divide time between schooling,

s, and leisure, l, constrained by a time endowment, s + l ≤ 1. The child has utility

function θU (l)+βW (s) with β < 1. The parameter θ affects the relative valuation of

schooling versus leisure and is private information. The parent cares about the child

but has a different preference over his allocation of time. In particular, the parent

has utility θU (l) +W (s). She values schooling more than the child does.

The problem faced by the parent maps directly into our time-inconsistent setup.

Our result then provides conditions under which minimum-schooling rules are opti-

mal.

4.2 Optimal Fiscal Constitutions

Consider an economy where a ruling government decides the allocation of resources

between private and public consumption. Ex post, the government obtains valuable

information regarding the social value of public services, but is biased towards higher

public spending. Ex ante society faces the constitutional problem of deciding the

restrictions to place on the fiscal choices of the government.
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We map this problem into our framework as follows. Citizens’ welfare is given by

θU(g) +W (c)

and the resource constraint is the set B (y) =
{

(c, g) ∈ R
2
+ | c+ g ≤ y

}

, where c

denotes private consumption and g public services. The realization of the value of

public services θ is private information of the government. The government can

finance g with lump-sum taxes, in which case any allocation (c, g) ∈ B (y) can be

implemented as a competitive equilibrium. A fiscal constitution is a subset C ⊆ B (y).

Given C ⊆ B (y) the government chooses (c, g) ∈ C to maximize β−1θU(g) +W (c),

where β−1 > 1 parameterizes the government’s bias towards public spending.

The optimal constitution is the set C ⊆ B (y) that maximizes citizens’ welfare

given the behavior of the government. Proposition 2 shows that it is always optimal

to limit government spending. Proposition 3 implies that under Assumption A only

an upper cap on government spending is needed.

4.3 Externalities

There are two consumption goods, c and k. The population is composed of a contin-

uum of agents indexed by θ, distributed according to F (θ). The utility of agent-θ is

given by

V (θ) ≡ θU (c (θ)) + βW (k (θ)) + (1− β)

∫

W (k(θ̃)dF (θ̃),

where β < 1 and (c (θ) , k (θ)) represent the allocation in the population. The last

term captures a positive externality generated by the consumption of good k.

Agents do not internalize the externality and maximize θU (c) + βW (k). A utili-

tarian planner, however, maximizes:

∫

V (θ) dF (θ) =

∫

[θU (c (θ)) +W (k (θ))] dF (θ) .

This welfare function is equivalent to one without externalities but where a utilitarian

planner assigns utility θU (c) +W (k) to agent θ. Suppose that the only instrument

available to the government is the removal of consumption opportunities. This maps

directly into our framework, and our main result provides conditions for the optimality

of a rule that imposes a minimum level of consumption for the good generating

positive externalities.
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5 Conclusions

Our consumer values commitment to avoid the temptation of current consumption,

and flexibility to respond to taste shocks. The resulting tradeoff makes the design of

an optimal commitment device non-trivial.

We find that a minimum-savings rule is always part of the optimal commitment

policy. Moreover, a minimum-savings rule completely characterizes the optimum

when a condition on the distribution of taste shocks is satisfied. The minimum-

savings level then increases with the strength of temptation. These results are robust

to the way temptation is modeled and can be extended to situations with uncertain

levels of temptation and self-control, as well as to longer time horizons.

Our model and results can be applied other situations featuring similar trade-

offs between commitment and flexibility, such as paternalism, the design of fiscal

constitutions to control government spending, and externalities. Another potential

application is to problems of time inconsistency of government policy, to examine the

tradeoff of rules vs. discretion.

To isolate the problem of commitment as one reducing available choices from the

budget set this paper ignored the possibility of transfers across types. An interest-

ing direction for future research is to consider insurance and taxes that allow these

transfers in order to provide a more complete characterization of the optimal tax and

social-security policies for the class of environments we have considered in this paper.9

Appendix

Proof of Proposition 1

With β = 1 the incentive constraints are slack at the first-best allocation. Define

β∗ < 1 to be the value of β for which the incentive constraint of agent-θl holds with

equality at the first-best allocation. Then for β > β∗ both incentive constraints are

9See Amador, Angeletos, and Werning (2004).
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slack at the first best allocation and β∗ > θl/θh follows since

β∗ ≡ θl
U
(

cfb (θh)
)

− U
(

cfb (θl)
)

W (y − cfb (θl))−W (y − cfb (θh))

> θl
U ′
(

cfb (θh)
) (

cfb (θh)− cfb (θl)
)

W ′ (y − cfb (θh)) (cfb (θh)− cfb (θl))
= θl

U ′
(

cfb (θh)
)

W ′ (y − cfb (θh))
=
θl
θh

Now, consider the case where β > θl/θh and suppose that c (θh)+k (θh) < y. Then

an increase in c (θh) and a decrease in k (θh) that holds (θl/β)U (c (θh)) + U (k (θh))

unchanged increases c (θh) + k (θh) and the objective function. Such a change is

incentive compatible because it strictly relaxes the incentive constraint of the high

type pretending to be a low type, leaving the incentive constraint of the low type

unchanged. It follows that we must have c (θh)+k (θh) = y at an optimum. This also

shows that separating is optimal in this case, proving part (a). Analogous arguments

establish parts (b) and (c).

Finally, c (θl)+k (θl) < y cannot be optimal since lowering c (θl) and raising k (θl)

holding θlU(c(θl))+βW (k(θl)) constant would then be feasible. Such a variation does

not affect the incentive constraint of the low type and relaxes the incentive constraint

of the high type, yet it increases the objective function since θlU(c(θl)) +W (k(θl))

increases.

Lemma of Optimality and First-Order Conditions

We first show that the maximization of the Lagrangian is a necessary and sufficient

condition for optimality of an allocation. This is stated in the following two results:

Result (a’). Necessity. If an allocation
(

w0, u0
)

∈ Φ with u0 continuous is optimal

then there exists a non-decreasing Λ0 such that the Lagrangian is maximized:

L
(

w0, u0;hw, hu|Λ0

)

≤ L
(

w0, u0;w0, u0|Λ0

)

for all
(

hw, hu
)

∈ Φ,hu continuous (18)

Result (b’). Sufficiency. An allocation
(

w0, u0
)

∈ Φ is optimal if there exists a

non-decreasing Λ0 such that

L
(

w0, u0;hw, hu|Λ0

)

≤ L
(

w0, u0;w0, u0|Λ0

)

and all
(

hw, hu
)

∈ Φ. (19)

Proof. Our optimization problem maps into the general problem studied in Section
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8.3-8.4 by Luenberger (1969): maxx∈X Q (x) subject to x ∈ Ω and G (x) ∈ P , where

Ω is a subset of the vector space X, Q : Ω→ R and G : Ω→ Z, where Z is a normed

vector space, and P is a positive non-empty convex cone in Z.

For Result (b’), set:

X = {w, u | w ∈ W (R+) and u : Θ→ R},

Ω = {w, u| w ∈W (R+) , u : Θ→ U (R+) and u is non-decreasing} ≡ Φ,

Z =

{

z | z : Θ→ R with sup
θ∈Θ

|z (θ)| <∞

}

with the norm ‖z‖ = sup
θ∈Θ

|z (θ)| ,

P = {z | z ∈ Z and z (θ) ≥ 0 for all θ ∈ Θ} .

We let the objective function be Q and the left-hand side of the resource constraint be

defined as G. Result (b’) then follows immediately since the hypothesis of Theorem

1, pg. 220 in Luenberger (1969) are met.

For Result (a’), modify Ω and Z to require continuity of u:

Ω = {w, u| w ∈W (R+) , u : Θ→ U (R+) , and u is continuous and non-decreasing}

Z = {z | z : Θ→ R and z is continuous}, with the norm ‖z‖ = sup
θ∈Θ

|z (θ)|

withX, P, Q and G as before. Note that Q and G are concave, Ω is convex, P contains

an interior point (e.g. z (θ) = 1 for all θ ∈ Θ) and that the positive dual of Z is

isomorphic to the space of non-decreasing functions on Θ by the Riesz Representation

Theorem (see Chapter 5, pg. 113 in Luenberger (1969)). Finally, if w0, u0 is optimal

within Φ and w0, u0 ∈ Φ∩ {u is continuous} then w0, u0 is optimal within the subset

Φ∩{u is continuous} ≡ Ω. Result (a’) then follows since the hypotheses of Theorem

1, pg. 217 in Luenberger (1969) are met.

Once we have obtained results (a’) and (b’), to prove the Lemma of Optimality,

we need to show that the maximization conditions in (18) and (19) are equivalent to

the appropriate first-order conditions. We first show that these first-order conditions

can indeed be computed. The following Lemma helps do this.

Lemma A.1. (Differentiability of integral functionals with convex inte-

grands). Given a measure space (Θ,Θ, µ) and a function ψ : X × Θ → R, where

X ⊂ Rn, suppose the functional T : Ω → R, where Ω is some subset of the space of

all functions mapping Θ into X, is given by T (x) =
∫

Θ
ψ (x (θ) , θ)µ (dθ).

Suppose that (i) for each θ ∈ Θ, ψ (·, θ) : X → R is concave; (ii) that the derivative
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ψx exists and is a continuous function of (x, θ); and that (iii) x+αh ∈ Ω for α ∈ [0, ε]

for some ε > 0.

Then the h-directional Gateaux differential, ∂T (x;h) exists and is given by

∂T (x;h) =

∫

Θ

ψx (x (θ) , θ)h (θ)µ (dθ) ,

if the right hand side expression is well defined.

Proof. Adding and subtracting
∫

Θ
ψx (x (θ) , θ)h (θ)µ(dθ) from the definition of the

Gateaux differential,

∂T (x;h) =

∫

Θ

ψx (x (θ) , θ)h (θ)µ(dθ)

+ lim
α↓0

∫

Θ

[

1

α
[ψ (x (θ) + αh (θ) , θ)− ψ (x (θ) , θ)]− ψx (x (θ) , θ)h (θ)

]

µ (dθ) .

We seek to show that the last term is well defined and vanishes.

For α < ε one can show that,

∣

∣

∣

∣

1

α
[ψ (x (θ) + αh (θ) , θ)− ψ (x (θ) , θ)]− ψx (x (θ) , θ)h (θ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

ε
[ψ (x (θ) + εh (θ) , θ)− ψ (x (θ) , θ)]− ψx (x (θ) , θ)h (θ)

∣

∣

∣

∣

, (20)

by concavity of ψ (·, θ). Given that ψ (x (θ) + εh (θ) , θ), ψ (x (θ) , θ) and ψx (x (θ) , θ)h (θ)

are all integrable by hypothesis, it follows that 1
ε
[ψ (x (θ) + εh (θ) , θ)− ψ (x (θ) , θ)]−

ψx (x (θ) , θ)h (θ) is also integrable. Since a function is integrable if and only if its

absolute value is integrable, then (20) provides the required integrable bound to ap-

ply Lebesgue’s Dominated Convergence Theorem (see Theorem 7.10, pg. 192, Stokey

and Lucas with Prescott, 1989) implying:

lim
α↓0

∫

Θ

[

1

α
[ψ (x (θ) + αh (θ) , θ)− ψ (x (θ) , θ)]− ψx (x (θ) , θ)h (θ)

]

µ (dθ)

=

∫

Θ

[

lim
α↓0

1

α
[ψ (x (θ) + αh (θ) , θ)− ψ (x (θ) , θ)]− ψx (x (θ) , θ)h (θ)

]

µ (dθ) = 0

by definition of ψx. It follows that ∂T (x;h) =
∫

Θ
ψx (x (θ) , θ)h (θ)µ (dθ).

We can apply the lemma A.1 because the Lagrangian functional is the sum of

three terms that can be expressed as integrals with concave differentiable integrands.

Since the Lagrangian functional is defined over a convex cone Φ, the hypothesis (iii)
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of the lemma is met with any ε ≤ 1 for any x ∈ Φ and h = y − x for y ∈ Φ.

Furthermore, in our case
∫

ψu (u (θ) , θ)hu (θ) dΛ (θ) is well defined for any u and

hu such that (w, u) ∈ Φ and (hw, hu) ∈ Φ, for some w, hw ∈ R. This follows since u

and hu are non-decreasing on Θ, they are measurable and bounded; and by standard

arguments ψu (u (θ) , θ)hu (θ) is also measurable and bounded, and thus integrable.

These arguments establish that we can write the Gateaux differential of the La-

grangian for (w, u), (hw, hu) ∈ Φ as

∂L (w, u;hw, hu|Λ) =

(

θ

β
hu (θ) + hw

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ (θ)−G (θ))hu (θ) dθ

+

∫ θ̄

θ

[

θ

β
−W ′ (y − C (u (θ)))C ′ (u (θ))

]

hudΛ (θ)

which collapses to (9) at the proposed allocation.

Finally, the following Lemma, which is a simple extension of a result in Luenberger

(Lemma 1, pg. 227, 1969), allows us to characterize the maximization conditions of

the Lagrangian (obtained in results (a’) and (b’) ) by the appropriate first-order

conditions.

Lemma A.2. (Optimality and first-order conditions) Let f be a concave

functional on P , a convex cone in X. Take x0 ∈ P and define H (x0) ≡ {h :

h = x − x0 and x ∈ P}. Then δf (x0, h) exists for h ∈ H (x0). Assume that

δf (x0, α1h1 + α2h2) exists for h1, h2 ∈ H (x0) and δf (x0, α1h1 + α2h2) = α1δf (x0, h1)+

α2δf (x0, h2) for all α1, α2 ∈ R.

A necessary and sufficient condition that x0 ∈ P maximizes f is that

δf (x0, x) ≤ 0 for all x ∈ P

δf (x0, x0) = 0

In our case, all the hypotheses of Lemma A.2 are met for the Lagrangian, because

it is a convex functional over a convex cone, and because Lemma A.1 verifies the

differentiability requirement, as discussed above. Thus, we obtain that a necessary

and sufficient condition for the Lagrangian to be maximized at
(

u0, w0

)

over Φ is

∂L
(

w0, u0;w0, u0|Λ0

)

= 0,

∂L
(

w0, u0;hw, hu|Λ0

)

≤ 0,

for all (hw, hu) ∈ Φ.
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Given results (a’) and (b’), the proof of the Lemma of Optimality follows.

Proof of Proposition 8

Writing 1− Ĝ(x) = (1 + βϕ) (1−F (β̂x))−βϕ (1− F (βx)), integrating and rearrang-

ing:

∫ x̄

x0

(

1− Ĝ(z)
)

dz = (1 + ϕ) β̂

∫ x̄

x0

(

1− F (β̂x)
)

dx− βϕ

∫ x̄

x0

(1− F (βx)) dx

= (1 + ϕ)

∫ θ̄

β̂x0

(1− F (θ)) dθ − ϕ

∫ θ̄

βx0

(1− F (θ)) dθ

=

∫ θ̄

βx0

(1− F (θ)) dθ − (1 + ϕ)

∫ β̂x0

βx0

(1− F (θ)) dθ

=

∫ θ̄

βx0

(1− F (θ)) dθ −

∫ x0(1−β)

0

(

1− F
( y

1 + ϕ
+ βx0

))

dy

The second equality uses the change in variables θ = β̂x for the first integral, θ =

βx for the second, and the fact that β̂x̄ > βx̄ = θ̄. The third equality simply

rearranges the integrals. The fourth equality performs the change of variables y =

(1 + ϕ) (θ − θ0) using the fact that 1 + ϕ = (1− β) /(β̂ − β).

The comparative static with respect to ϕ is now straightforward: an increase in ϕ

raises the integrand 1− F (y/ (1 + ϕ) + βx0) so that xp must fall with ϕ. To obtain

the comparative static with respect to β we differentiate the last expression:

∂

∂β

∫ x̄

x0

(

1− Ĝ (z)
)

dz =
[

F (β̂x0)− F (βx0) +

∫ x0(1−β)

0

f
( 1

1 + ϕ
y + βx0

)

dy
]

x0 > 0,

implying that xp rises with β.

Finally, note that the minimum-savings kmin is defined as the solution to:

xp
U ′(y − kmin)

W ′ (kmin)
= 1,

so that comparative statics for xp translate directly into kmin. In particular, kmin is

increasing in ϕ and decreasing in β.
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Proof of Proposition 9

Let F (·) be the c.d.f. of the taste shocks. We want to show that if G(x) ≡ F (x) +

x (1− β) f (x) is non-decreasing, then Ĝ (x) = (1 + βϕ)F (β̂x) − βϕF (βx) is non-

decreasing. After letting λ = 1/ϕ and differentiating, we obtain

∆(x, λ) ≡
(λ+ β

β

)

β̂ (λ) f
(

β̂ (λ)x
)

− βf (βx) ≥ 0,

and note that ∆(x, 0) = 0. Substituting the definition of G (·) yields the alternative

expression,

∆(x, λ) =
λ+ β

β (1− β)x

[

G(β̂ (λ)x)− F (β̂ (λ)x)
]

− βf (βx) .

Define,

∆̃ (x, λ, z) ≡
λ+ β

β (1− β)x

[

G (z)− F (β̂ (λ)x)
]

− βf (βx) . (21)

Note that ∆̃ (x, λ, z) increases in z and that ∆̃(x, λ, β̂ (λ)x) = ∆ (x, λ).

To prove ∆(x, λ) ≥ 0 we write,

∆ (x, λ) = ∆̃(x, λ, β̂ (λ)x) = ∆̃(x, 0, β̂ (λ)x) +

∫ λ

0

∆̃λ(x, λ̃, β̂ (λ)x)dλ̃ (22)

and proceed to show that both the terms on the right-hand side are non-negative.

To see the sign of the first term in (22) note that since ∆̃ is increasing in z,

∆̃(x, 0, β̂ (λ) x) ≥ ∆̃ (x, 0, x) = ∆̃(x, 0, β̂ (0)x) = ∆ (x, 0) = 0.

For the integral term in (22) we compute the integrand by differentiating (21) and

rearranging using the definition of G (·) :

∆̃λ (x, λ, z) =
1

β (1− β)x

[

G (z)−G(β̂ (λ)x) +
λ

1 + λ
β̂ (λ)x (1− β) f(β̂ (λ)x)

]

.

Thus, for z ≥ β̂(λ̃)x we have ∆̃λ(x, λ̃, z) ≥ 0. It follows that for λ̃ ∈ [0, λ] we have

β̂ (λ)x ≥ β̂(λ̃)x, and therefore ∆̃λ(x, λ̃, β̂ (λ) x) ≥ 0. Thus, the integral term in (22)

is non-negative. Given that β̂ (λ) xp (λ) is non-decreasing in λ we need G (x) to be

non-decreasing up to β̂xp.
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