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Abstract

This paper reports a theoretical and experimental study on a fixed price
mechanism by which, if aggregate demand exceeds supply, all bidders are
proportionally rationed. If bidders face demand uncertainty, equilibrium re-
quires them to overstate their true demand to prevent the effect of rationing;
for prices sufficiently low to yield rationing under all demand scenarios, bid-
ders should bid up to the upper limit. Our experimental study yields the
following conclusion. Despite of a significant proportion of equilibrium play,
subjects tend to (under)overbid the equilibrium strategy when rationing is
(high) low, with only this latter effect being persistent over time. We explain
the experimental evidence by a simple model in which the probability of a
deviation is decreasing in the expected loss associated with it.
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1 Introduction

Prices are not always set such the market clears. Instead, we often ob-
serve non—price rationing of buyers, for different reasons. In initial public
offerings, for example, the seller frequently sets a price at which he ex-
pects excess demand to be able to reward large investors, by way of some
preferential treatment, for their information revelation.

In other situations, where demand is uncertain, the seller might not sim-
ply be able to set the market clearing price. In this case, two main classes of
mechanisms have been proposed as optimal solution to this problem: auc-
tions and fixed price mechanisms. As for the latter, since supply is fixed
(and the price is chosen before actual demand reveals), the mechanism
has to include a rationing device in case demand exceeds supply. While
axiomatic properties of different rationing schemes have been explored ex-
tensively in the economic literature,' the strategic behavior of buyers who
expect to be rationed has up to date received little attention.? The few
papers that explicitly analyze the incentives in market games that may in-
volve rationing of buyers find that those mechanisms are often desirable
for the seller. In case a common value is sold, Bulow and Klemperer [6]
show that prices which result by rationing can even be optimal. Gilbert
and Klemperer [12] come to the same conclusion for situations where cus-
tomers must make sunk investments to enter a market. In a private values
setting, Bierbaum and Grimm [5] analyze a fixed price mechanism where (a
continuum of ) buyers are proportionally rationed in case of excess demand.
They find that, if total demand is uncertain, bidders overstate their true
demand in order to alleviate the effects of being rationed in high demand
scenarios. This allows the seller to set the fixed price at a rather high level
which yields the surprising result that the fixed price mechanism outper-
forms alternative selling mechanisms (such as a uniform price auction) with
respect to a variety of criteria: revenue, variability of revenue in different
demand scenarios, and minimum revenue that is raised if demand turns out
to be low.

!See, for example, Herrero and Vilar [15], or Moulin [22]. Here rationing usually occurs
because the allocating authority is not allowed to use prices in order to ration, e. g. in
bankruptcy problems if claims are known but exceed the pie to be allocated.

2Noticeable exceptions are the papers of Chun [8], Dagan et al. [10], Moreno-Ternero
[21] and Herrero [14]. Herrero et al. [16] provide an experimental study on the strategic
behavior induced by rationing in the context of bankruptcy problems.



The above findings contribute to explain the frequent use of mecha-
nisms that involve rationing of buyers.®> This motivated us to experimen-
tally study bidding behavior in a fixed price mechanism with proportional
rationing (FPM) quite similar to the one analyzed in Bierbaum and Grimm
[5]. Here we have to account for the fact that in our experiment we were re-
stricted to the analysis of small markets (i.e. markets with a finite number
of players). In small markets, however, the uniform price auction analyzed
as a benchmark mechanism in Bierbaum and Grimm [5] is not an attractive
choice for the seller, since bidders have an incentive to strategically reduce
demand in order to lower the price they have to pay per unit.*

By analogy with Bierbaum and Grimm [5], our experimental design
is based on a model where neither the buyers, nor the seller know total
demand due to uncertainty about the number of (identical) buyers. The
seller, who is endowed with a given quantity of a divisible good, sets a
fixed price, and then, buyers are asked to submit a quantity bid at this
price. They are proportionally rationed in case the total quantity bid for
exceeds supply, otherwise they receive their bid.? In the experiment we were
interested only in buyers’ bidding behavior. Therefore, the seller’s role was
played by a computer, i. e. in each round a price was randomly chosen from
the range where demand for the good was positive, which allowed us to
extract complete bid functions.

We also study an “incentive compatible mechanism” (ICM), which only
differs from FPM with respect to the fact that buyers are never rationed.
Since truthful bidding strictly dominates any other strategy in ICM, we
interpret ICM as a mechanism that reproduces the strategic properties of
the uniform price auction in large markets. In addition, given that the two
mechanisms only differ with respect to the presence of the rationing device,
we can use ICM as a control treatment of the experimental results of FPM.

We shall now give a quick overview of our main results.

3For example, Chemmanur and Liu [7] report that FPM is increasingly adopted as a
selling mechanism in initial public offerings. They explain this evidence by constructing
a two-period model: in period 1 the seller sets the price and bidders buy; in period 2
aftermarket takes place. Since the seller may have incentives to participate himself in the
aftermarket, he sets in period 1 a higher price which is higher than the market-clearing
price.

4See, for example, Ausubel and Cramton [4].

5This is basically the model analyzed in Bierbaum and Grimm [5]. The only differences
are that Bierbaum and Grimm analyze large markets (whereas in our experiment the
number of potential buyers is small) and moreover they allow for different types of buyers.



First, we show that Bierbaum and Grimm’s [5] theoretical results on
FPM are maintained in the context of small markets (i.e. a finite number of
buyers). In particular, at high prices rationing never occurs and therefore
bidding truthfully is optimal; at low prices bidders are always rationed
and thus, in equilibrium, they demand the highest possible quantity (if
any); at intermediate prices, where truthful bidding would yield to rationing
only when demand is high, bidders overstate their true demand, but only
moderately.

As for the experimental evidence, subjects play extremely well ICM,
where truthful bidding emerges as unanimous behavior since the very be-
ginning. In FPM, behavior converges to equilibrium for very high and very
low prices, where the equilibrium strategy is relatively easy to figure out.
For intermediate prices, where the equilibrium is strategically more com-
plex, some noise remains. As time proceeds, bidders even move away a bit
(but not far) from the risk neutral equilibrium prediction in the direction of
overbidding. Given our experimental evidence, a profit maximizing seller
would then opt for FPM (i. e. commit to a fixed price), not only for the
theoretical reasons highlighted by Bierbaum and Grimm [5] (and confirmed
by our theoretical analysis), but also because overbidding with respect to
equiltbrium takes place exactly in the price range which maximizes seller’s
revenues, yielding profits even higher what seller could extract if he could
be able to act as a monopolist in all demand scenarios.

Overall, the explanatory power of the theory seems impressive, espe-
cially if compared with that of standard auction theory models.® These
considerations notwithstanding, panel data estimations yield two significant
deviations from the behavior predicted by the risk neutral Nash equilibrium
(RNNE) of the game: at intermediate prices, bids are at a higher level but
as price sensitive as predicted. At low prices we observe — contrary to the
RNNE prediction — price sensitivity of bids and underbidding of RNNE.

We also find that these deviations cannot be explained by risk-attitude
considerations, but are jointly consistent with the hypothesis of noisy direc-
tional learning (Anderson et al. [2]), where bidders adjust their actions in
the direction of higher expected profits but do so subject to some exogenous
noise (with the probability of an error being decreasing with the associated

SExperimental studies of multi unit auction formats find all kinds of out of equilibrium
behavior that crucially affects the relative performance of different multi unit auction rules.
See, e. g. Kagel and Levin [18], List and Lucking—Reiley [19], and Engelmann and Grimm
[11].



expected loss). In the steady state equilibrium of this process, players’
behavior is given by probability distributions over the strategy space that
constitute a Quantal Response Equilibrium (QRE) of the game (McKelvey
and Palfrey [20]). (Maximum likelihood) estimations of the corresponding
QRE for each price level match the observed behavioral pattern: slight
underbidding of RNNE together with some price sensitivity at low prices
and simultaneously overbidding of RNNE at intermediate prices. They also
confirm the intuition that behavior is less noisy at prices where the equi-
librium is easier to figure out (i.e. high and low prices) than elsewhere. At
the same time they explain why at extreme prices behavior converges to
RNNE, while at intermediate prices it does not.

The remainder of the paper is arranged as follows. Theoretical prop-
erties of FPM is what we investigate first, in Section 2. Experimental
conditions are described in Section 3. Section 4, devoted to experimental
results, is divided in three parts. Descriptive statistics are presented first,
followed by some panel data regressions in which we check the robustness of
equilibrium predictions. We then conclude by checking whether risk aver-
sion or bounded rationality may explain the discrepancy between theory
and evidence. Conclusions and guidelines for future research are listed in
Section 6, followed by an Appendix containing the proofs of the theoretical
results of Section 2 and the experimental instructions.

2 Theoretical Background and Hypotheses

In section 2.1, we state a simple model and introduce the two mechanisms
that will be compared in our experiment. Then, in sections 2.2 and 2.3 we
characterize the equilibria of those mechanisms which leads to the theoret-
ical predictions stated in section 2.4.

2.1 The Model

Consider a seller who has a fixed quantity (normalized to 1) of a perfectly
divisible good and does not know the number of potential buyers interested
in the good. By analogy with our experimental conditions let us assume
that n, the number of buyers, is either 2 or 4, where the probability that
nis 2 (4) is A (1 — A). Throughout the paper we shall refer to the case of
n=2(n=4) as the "low” ("high”) demand scenario. We assume that all



potential buyers are identical. In particular, each buyer ¢ has decreasing
linear demand for the good,

zi(p)=1—p. (1)

In what follows we provide a theoretical analysis of two mechanisms: the
Fixed Price Mechanism (FPM) and an Incentive Compatible Mechanism
(ICM), which is identical to FPM apart from the fact that bidders are never
rationed (i.e. they always get what they ask for).

2.2 FPM

We model FPM as a 3-stage, 4-player game with incomplete information.
At Stage 0 Nature moves, deciding market size n. At this stage, Nature
also chooses which players are informed about the existence of the good and
thus, will participate in the market. Either all 4 players are informed (event
with probability 1 — A), or 2 players out of the 4, where each of the possible
six pairs is informed with equal probability A/6. Without loss of generality
we (ex post) label the participants in a market with two players by 71”7 and
727, If n = 4 all players (then labeled ”1” to ”4”) will participate in the
market. By this thought exercise, the payoff functions for all 4 players are
well defined in both scenarios and symmetric. Therefore, in what follows
we look at the payoft of the representative player 1.

At the remaining two stages, the seller and the buyers move in sequence.
At Stage 1, the seller announces a fixed price and an upper limit on indi-
vidual bids (p,d) € [0,1] x [0, R]. At Stage 2, cach participating buyer ¢
announces the quantity he demands at the posted price, d; € [0, d], which
we will call buyer ¢’s bid. If the aggregate quantity bid falls short of supply,
each buyer obtains his bid, otherwise buyers are proportionally rationed.
Each buyer has to pay the posted price for each unit he receives.

In order to formally describe proportional rationing, we need to intro-
duce some notation. Let d = {d;} denote the vector of bids and denote by
d_; = {d;};» the vector of bids by all players but 7. Then, the aggregate
quantity bid is given by > d;, n € {2,4}. Under the proportional rule,
buyer 1 demanding d; receives a final quantity of d1Q"(d), where

Q"(d) = min{1, n € {2,4). 2)

1
ni}v
Zj:l dj



We can now specify players’ expected payofts. Let 707 index the seller’s
player position and recall that we only consider the representative bidder
71”. Now, for a given pair (p,d), let m; : [0,d]* — R denote player i’s
expected payoft, given by

mo(d) = AQ*A) Y d; - p+ (1-NQ' @Y d;-p 3)

=1

and

d1Q*(d1,d—1) d1Q*(d1,d—1)
Wl(dl,dl):)\/ (1—x—p)d:}c+(1—)\)/ (1 -z — p)dz.
0 0
(4)

2.2.1 Stage 2: the bidding stage

We begin by characterizing bidders’ optimal behavior for any given price p
and upper limit on bids d > 1. Proposition 1 shows that there is a unique
symmetric equilibrium (in pure strategies) of the bidding stage for almost
all prices.

Proposition 1 Let p. = igi—g:\\ and pp, =

19—
43+

>4

>4

e pcE [%, 1]: unique equilibrium d;(p) = 1 — p for all 1.
o pc[0,p): unique equilibrium d;(p) = d for all i.

® D C [P, pm): two equilibria, di(p) = d for all i and d;(p) = %(1 —p)+
\/%(Z — p)% + i( — p)? for all 1.

4
and a continuum of equilibria where di +dy > 1: all d with d; = d;,

for all 1, 7.

® p= py,: one equilibrium where d;(p) = l(1—117)—5—\/ﬂ(§ —p)is + 1(1 —p)?

e p€ (pm, %): unique equilibrium d;(p) = %(1—p)+\/%(% — p)% + i(l — p)?
for all <.

Proof. In the Appendix. W
Figure 1 provides a graphical sketch of the structure of the game’s equi-
libria, as characterized by Proposition 1.
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Put Figure 1 about here

As Figure 1 shows, the interval of possible prices can be split up into
three subintervals:

e High prices: p € [%, 1]. Buyers’ aggregate demand never exceeds sup-
ply. Therefore, rationing plays no role and buyers’ optimal strategy
is to simply to bid truthfully.

e Low prices: p € [0, p.). Large excess demand in the high demand sce-
nario (and, at prices below %, also excess demand in the low demand
scenario) yields an incentive to overstate true demand high enough to
lead to rationing in both scenarios. Thus, bids explode and the only
equilibrium is that every buyer bids as much as possible.

o Intermediate prices: p € [pe, %). Excess demand in the high demand
scenario is moderate, which still yields an incentive to overstate de-
mand. The optimal bids solve a trade-off between getting too much in
the low demand scenario (where no rationing takes place) and getting
too little in the high demand scenario (where buyers are rationed).”

2.2.2 Stage 1: price and upper-bound fixing

In Stage 1 the seller chooses the profit maximizing price anticipating buyers’
behavior at Stage 2, not knowing how many of them will participate in
the market. Taking into account buyers’ equilibrium bids, only prices in
the interval p € [pe, %} can be rational choices of the seller: at p. he sells
the whole quantity in both demand scenarios in any equilibrium of the
continuation game and this would definitely lower his profit if he posted
a lower price. Notice that p = % is the linear monopoly price given high
demand and thus, a higher price cannot be profit maximizing under demand
uncertainty.

Proposition 2 (Equilibria of Stage 1) (i) An equilibrium of FPM al-
ways erists.

"For prices p € [pe, pm| there is also an equilibrium where demand explodes.



(it) In every possible equilibrium of Stage 2 the entire quantity is sold at

Pe < igi—g:\\ in every demand scenario.

(iii) The upper bound on individual bids is d > 1.
(iv) The seller’s revenue is bounded below by p. and may be higher.

(v) No equilibrium exists such that bidders have an incentive to trade after
FPM was played.

Proof. In the Appendix. W

2.3 ICM

As we already explained in the introduction, we also tested in the lab
another fixed-price mechanism (we called it ICM) which only differs from
FPM with respect to the fact that bidders also get what they ask for (i..e
there is no rationing). In this case, bidder 1’s payoft function (4) simplifies
to

7T1(d1,d1):/d1(1_$—p)d$:%d1(2_2p—d1)- (5)

The absence of rationing basically breaks any strategic link among the

players, who basically face a simple decision problem, whose solution is
truthful bidding.

Proposition 3 In ICM each bidder’s optimal bid equals his true demand,
1. €

di(p)=1-p (6)

In our experiment, ICM mainly serves as a robustness check for our ex-
perimental design to evaluate whether subjects bid truthfully when it is a
strictly dominant strategy to do so. The feature that in ICM bids have no
impact on price replicates the situation of uniform prices auctions in large
markets (e. g. IPOs), where bidders cannot lower the price by reducing de-
mand and thus, truthful bidding is a dominant strategy. However, a crucial
difference between those markets and ICM is that in large auctions bidders
are well aware of the fact that they interact with other players, which may
crucially influence their behavior.



2.4 Hypotheses from the theory

The theoretical analysis of Section 2 yields the following testable hypothe-

SEs.

3

. Individual behavior. According to theory, subjects should bid truth-

fully in ICM, when they are not exposed to the risk of rationing. By
contrast, in FPM, subjects should bid truthfully only for prices suffi-
ciently high (i.e., for all p > %). Overbidding should be moderate for
prices % > p > pm, with demand exploding for all p < pe.

. Symmetry. As Proposition 1 shows, in FPM everybody should

choose the same bid (i.e. all the equilibria of the game are sym-
metric).

. Seller’s profit. According to Proposition 7?7, the profit maximizing

price should be greater than pe.

. FPM vs. ICM. Since ICM replicates exactly the strategic framework

of FPM except for the absence of rationing, we shall use ICM data
as a robustness check of our experimental conditions. In the absence
of rationing, truthful bidding becomes the “obvious way to play the
game”, insofar this behavior is strictly dominant (i. e. independent of
others’ behavior). Any significant difference between actual behav-
ior and theoretical prediction in the ICM session should be properly
“discounted” when analyzing the FPM data.

The experimental design

In what follows, we describe the features of the experiment in detail.

3.1 Subjects

The experiment was conducted in three subsequent sessions -two sessions
devoted to FPM, one to ICM- in May, 2004. A total of 72 students (24
per session) were recruited among the undergraduate student population
of the Universidad de Alicante -mainly, undergraduate students from the
Economics Department with no (or very little) prior exposure to auction
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theory. The FPM sessions lasted approximately 120’ each, while the ICM
session was slightly shorter (100’ approx.).

Subjects were given a written copy of the instructions in Spanish, to-
gether with a table indicating their monetary payoft associated with a grid
of 21 x21=441 representative price-quantities pairs.® Instructions were read
aloud and we let subjects ask about any doubt they may have had. In ad-
dition, a self-paced, interactive computer program proposed three control
questions, to make sure that subjects understood the main features of game.

3.2 Treatment

In each session, subjects played 84 rounds of the corresponding mechanism.
As for the FPM sessions, subjects were divided into three cohorts of 8, with
subjects from different cohorts never interacting with each other throughout
the session. As for the ICM session, every subject can be considered as a
”cohort of size one”.

Compared with the scale used in Section 2, in the experiment, all prices
and quantities were multiplied by 10. We did this to mitigate “integer”
frame problems. Within each round t = 1, ..., 84, group size, composition
and prices were randomly determined. Let period T, = {t : 21(k — 1) <
t <21k}, k = 1,...,4, be the subsequence of the k—th 21 rounds. Within
each period Tj, subjects experienced each and every possible price p €
P ={0,.5,1,...,10}, the sequence of prices randomly selected within each
period being different for each cohort. After being told the current price,
subjects had to determine their bid, d;(p) € [0, 10], for that round (subjects
could not bid more than the entire supply). By this design, we are able
to characterize 4 complete individual bid schedules, one for each period.
Moreover, in each round t, a (uniform) random draw fixed the group size
n € {2,4} independently for each cohort (i.e. A = %)

Given all these design features, we shall read the data under the assump-
tion that the history of each individual cohort (6 for FPM, 24 for ICM) cor-
responds to an independent observation of the corresponding mechanism.

8The complete set of instructions, translated into English, can be found in the Appen-
dix.

“Neverthelesss, in presenting the results, we shall not modify the scale to facilitate
comparison with the content of Section 2.
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3.3 Payoffs

Subjects participating in the FPM (ICM) sessions received 2000 (1500)
ptas. (1 euro is approx. 166 ptas.) just to show up. These stakes were
chosen to exclude the possibility of bankruptcy.

3.4 Ex-post information

After each round, subjects were informed on the payoft relevant informa-
tion. As for FPM, this refers to group size, summary information on the
aggregate behavior of their own group (both in terms of the total sum of
individual bids, but also of the average bid(s) of the other component(s)
of their group), the quantity of the good they actually received (FPM),
together with the monetary payoff associated with it. As for ICM, subjects
were simply told about the result of their individual bid. The same infor-
mation was also given in the form of a History Table, so that subjects could
easily review the results of all the rounds that they had played so far.

4 Results

In reporting our experimental results, we begin by looking at some descrip-
tive statistics which summarize the evolution of subjects’ aggregate behav-
ior over time in the two experimental settings, ICM and FPM. We then
estimate some dynamic panel data regressions to explore the behavioral
properties of FPM and ICM. As for ICM, these regressions clearly show
that equilibrium behavior explains almost perfectly subjects’ behavior, at
least in the last repetitions of the game. This is also true in the case of
FPM, even if, in this case, our regressions unambiguously show consistent
deviations from equilibrium behavior which do seem to persist over time.
In short, people tend to overbid (underbid) the equilibrium strategy when
rationing is less (more) severe.

4.1 Descriptive statistics

Figure 2 reports the descriptive statistics for our control treatment, ICM.
Each row corresponds to a price, whereas columns list periods. Each cell of
Figure 2 contains the average bid associated with the corresponding price-
period pair (standard deviation reported within brackets).

12



Put Figure 2 about here

As Figure 2 shows, subjects played ICM extremely “well”. Their behav-
ior is close to equilibrium prediction since the very beginning, with some
initial variance quickly vanishing over time. Out of 21 prices, in period 3
(4), all 24 subjects played always their dominant strategy in 19 (17) cases.
Even when equilibrium play does not correspond to subjects’ unanimous
decision, deviations from the dominant strategy are negligible and only
observed on behalf of few subjects.

Things are different when we move to FPM, whose aggregate statistics
are reported in Figure 3. Consistently with the theoretical prediction, play-
ers now bid above their demand, even if they play the equilibrium less often
than the ICM case.

Put Figure 3 about here

As we already know from Section 2, the structure of the equilibria of
FPM(p) crucially depends on the price level. Not surprisingly, also sub-
jects’ behavior is sensitive to prices, both with respect to aggregate behavior
and its evolution over time.

By analogy with the discussion in Section 2, we shall present our experi-
mental evidence for three broad price intervals, which turn out to be crucial
not only in the theoretical analysis, but also to frame subjects’ behavior in
the experiment:

e p > %. Here we observe that, within the range of prices for which
truthful bidding corresponds to the unique equilibrium, subjects start
bidding slightly more than their demand, with overbidding gradually

reducing in the last periods.

° % > p > p. = 0.568. By contrast, for prices lower than %, subjects
start bidding above their demand, with average bids increasing with

time.

e p < p.. Within the price-range for which demand explosion corre-
sponds to the unique equilibrium, individual bids get very close to
the maximum possible amount of 1. However, contrary to theoretical

13



prediction, average bids seem to be sensitive to prices: the lower the
price the closer average bids get, in the last periods, to the upper
limit.

Additional interesting information provided by Figure 3 comes from
observing the evolution of standard deviations. By contrast with what
happens in the case of ICM, they do not show a common time trend. We
find prices for which standard deviation vanishes over time, but for others
it decreases, fluctuates and in many cases it has no real trend. In other
words, in the FPM sessions, subjects’ play does not necessarily converge, as
it happens in the case of ICM. Since standard deviations in the intermediate
periods T5 and T3 are very similar to each other for most price levels, in
the following discussion we shall focus our attention on the comparisons of
standard deviations of the extreme periods T7 and Tj.

Again, we shall discuss the issue separately for the three different price
intervals:

e p> %. For high prices, initial variability is moderate and decreases
with time. In this case, standard deviation evaluated in T} exceeds
that evaluated in T} significantly, except for the case of p = .9, where
the latter is slightly higher.

e p < p.. For low prices, initial variability is higher than in the previous
cases and decreases with time. This effect is more pronounced the
lower the price. In particular, for p < i, standard deviation in 77 is
50% higher than that evaluated in T}.

° % < p < pe. At intermediate prices, initial variability is still moderate
and stays basically constant over time. Sometimes standard deviation
evaluated in T is higher than that evaluated in T}, sometime is lower,
but differences are small. This may suggest that, within this price
range, subjects have not “learned” (at least, to the same extent as for
other price ranges) how to play the equilibrium strategy.

This evidence suggests that equilibrium behavior is more likely to be
achieved, at least in the long run, for very high and very low prices, with
individual bids gradually converging to the corresponding equilibrium level,
while for intermediate levels some initial variability persists.

14



Figure 4 provides a graphic sketch of the evolution of subjects’ aggregate
behavior, tracing the evolution of the inverse demand schedule in the 4
experimental periods.

Put Figure 4 about here

The y-axis of Figure 4 tracks prices, while the z-axis reports average
bids. The dotted line corresponds to the equilibrium strategy as given by
Proposition 1; the 4 grey lines correspond to aggregate average bid functions
per period, with greyscale increasing with period. By analogy with the
above discussion, subjects’ aggregate behavior converges to equilibrium for
prices at the extremes whereas, for intermediate prices, the reverse occurs.

In the following Figure 5 we trace the difference between actual behavior
in FPM and theoretical prediction for the 4 time periods as a function of
price (reported in the z-axis).

Put Figure 5 about here

As Figure 5 shows, p. can be considered, in the context of our experimental
evidence, as a crucial threshold value. For all prices higher than pe, initial
behavior consists in overbidding (with respect to the corresponding equilib-
rium strategy); for prices lower than p. the reverse occurs. Also time trends
are sensitive to prices. We can generally say that underbidding tends to
reduce with time. Also overbidding is reduced, but only for prices suffi-
ciently high. On the contrary, for intermediate prices (out of equilibrium)
overbidding behavior gets stronger.

We now look at the experimental evidence from the seller’s viewpoint.
To this aim, Figure 6 traces the evolution of the seller’s expected profits,
given observed behavior.

Put Figure 6 about here

Figure 6 plots the evolution of expected profits (y-axis) as a function of the
ruling price. By analogy with previous figures, the dotted line corresponds
to the theoretical prediction, whereas the 4 grey lines report average profit
per period.!”

Note that, in the range [p., pm], FPM has multiple equilibria and, therefore, also
seller’s profits are not uniquely determined.
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As Figure 6 shows, for p < p,,, actual profits equals their equilibrium
levels. This is basically due to the fact that, within this price range, out-
of-equilibrium underbidding is not sufficient to prevent subjects to be ra-
tioned in both demand scenarios. As a consequence, the entire supply is
always sold, independently on the demand scenario. In other words, out-of-
equilibrium behavior has no effect for the seller within this price interval.
Similar considerations hold for prices p > %, where expected profits start
above the equilibrium level (due to overbidding), but converge to their
equilibrium level very quickly.

Not surprisingly, out-of-equilibrium behavior has an impact on seller’s
profits, also in the long run, within the intermediate price range, that is, for
Pe < p < 7.5. Here initial overbidding raises the seller’s profits above their
equilibrium levels. Moreover, as we know from Figures 1 and 5, overbidding
within this price range increases with time. This, in turn, implies that also
the seller’s profits increase with time. Remember, from Section 77, that the
profit-maximizing price,p*, lies precisely in the interval [pe, .75]. Precisely, if
A= % (as for our experimental conditions), p = .6606 (.65, if we constrain
prices to belong to the finite grid of our experiment). Therefore, persistent
overbidding takes place exactly within the price range that would be selected
by a profit maximizing seller. In consequence, actual profits always exceed
the equilibrium level and, even, increase with time (up to 12% above the
theoretical prediction, since actual and predicted behavior lead to profits
of .65 and .583 respectively).

Suppose now that seller and buyers knew the market size, n. In such a
case, the unique equilibrium would require the seller to set the monopoly
price (i.e. either p=1/2 if n = 2, or p = 3/4 if n = 4) and buyers to
bid truthfully.!! Thus, the whole amount would be sold in both scenarios
and the ex-ante expected revenue would be then the expected monopoly
profit MP = %)\ + %(1 — A). Since both scenarios are equally likely in
our experiment (i.e. A = %), MP = .625. Observe that the theoretical
expected seller’s revenues in FPM (.583) are lower than the expected linear
monopoly profit. This may induce a rational seller to prefer a situation
of full information. However, in our experiment, seller’s profits are higher
than the in the linear monopoly case.

HThis assumption is somehow justified by our experiment on ICM, insofar when subjects
face no demand uncertainty they bid truthfuly.
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4.2 Panel-Data Regressions

In this section, our main concern is to check whether the discrepancy be-
tween the observed and predicted behavior is statistically significant. To
this aim, we construct a panel containing all the decisions of all subjects at
all times. Remember that each subject participated in 84 rounds of ICM
(FPM), what creates a panel where subjects serve as the cross-sectional
variable. As mentioned, the sample size is 24 (48) subjects for ICM (FPM)
session(s).

As for the ICM data, we use a simple random-effect linear regression.
The underlying model assumes subjects playing a linear bid function, one
for each period Ty, k = 1,...,4. The model includes period as a regressor,
individual (random) eftects and idiosyncratic errors as follows:

dit = o+ OBpr + Tk + €; + it (7)

where T}, denotes period as defined in Section 3.2; ¢; describes the unob-
served time-invariant heterogeneity which characterizes subject ¢ and &y
is an idiosyncratic error term (we further assume that €, 1 €;). Since, for
ICM, the unique equilibrium corresponds to truthful bidding, null hypothe-
ses for our tests are a = 1,3 = —1 and v = 0.

Figure 7 reports the estimates of (7) (standard errors within brackets)
for the whole ICM dataset, regression (I), and disaggregated for period,
regressions (II-V).

Put Figure 7 about here

As it can be seen from the fits of regressions (I-V), bidders played very
closely to the assumed linear function in all periods. In regression (I),
our model explains more than 92% of subjects’ behavior. The R? jumps
from .735 in (II), to .9873 in (III) and stays above .99 in (IV-V). On the
other hand, a very low fraction of variance is due to the individual effect
of the experimental subjects (measured by p). In other words, it seems
that all subjects learned very quickly to play the equilibrium, what leads
to completely homogeneous play. Consequently, p reaches is basically 0 in
the last two periods.
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If we look at regression (I), we see that estimated parameters of o and 3
are .968 and —.966 against a theoretical prediction of 1 and —1, respectively.
These differences are statistically significant, together with the estimated
parameter of v (positive v meaning increasing bids across periods). How-
ever, if we look at regressions (II-V), we discover that only parameters
of (II) are significantly difterent than their theoretical values that is, we
cannot reject that the observed and the predicted behavior differ (neither
independently, nor jointly) for regressions (III-V). This basically implies
that learning mostly takes place in the first repetitions of the experiment
and stabilizes from T, on. 2

Finally, we restrict our attention to T (regression(V)) and check the
following hypotheses: o = 1 and 8 = —1. Using Wald test, we cannot
reject our null hypotheses, neither the independently, nor jointly (p-values
.2089 and .3809, respectively, in the independent tests and .4219 in the joint
test).

The FPM cross-sectional time-series analysis is more complex and re-
sults are less straightforward. By analogy with regressions (I-V), Figure 8
reports estimates of a model which assumes subjects playing a 3-piecewise
linear bid function, as follows:

dit = o + oumy + by + Bopr + By + Bopibs + 4T+ €, +ci (8)

where 1, and 6; are two index functions such that 5, = 1 if p» < .55 and
1, = 0 otherwise, whereas 6; = 1 if p; € (.55;.75) and 0; = 0 otherwise.
Observe that these two dummies n, and 0; partition the price set into the
same three subintervals object of our theoretical analysis. In consequence,
we estimate three different -but interdependent, through the individual
effect €;— linear bid functions, one for each subinterval. Precisely, 3, and
(B, + B1) measure the sensitivity of bids on price for high and low prices,
respectively, whereas ap and (ap + a;) determine the constant terms. By
analogy, the slope (8, + 3,) and the constant term (ag + a3) describe the
form of the estimated bid function at the intermediate subinterval.

It may be noticed at this stage that (8) can be interpreted as the natural
extension of (7) to the case of FPM subject to some conditions, which we
now discuss.

12We also run a regression analogous to (I) excluding observations coming from 77. As
expected, the null hypotheses on a, # and + cannot be rejected, neither independently nor
jointly.
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First, recall from Section 2.2 that there is a multiplicity of equilibria
for p € [pe, pm]. Given the price grid and parameter values used in the
experiment, multiplicity only occurs at p = .6 with equilibrium values being
1 and .461, respectively. In order to check which of these equilibria is
somehow “more consistent” with our experimental evidence, we run a
Wald test with following null hypotheses: d(.6) = 1 (d(.6) = .461). We
can (not) reject the null hypothesis what suggests that in the experiment,
sub jects bid more consistently with the equilibrium where moderate bidding
prevails. Consequently, we perform the regression of (8) including the p = .6
bids to the intermediate price interval.'

Second, as we know from Section 2.2, contrary to ICM, in FPM the
equilibrium bid function is no longer linear. There are two price inter-
vals, p < p. = 0.568!% and p > .75, where the equilibrium schedule is
linear. However, for p € (pe,.75) the equilibrium bid function is concave
(see Proposition 77). However, as Figure 1 shows, also for intermediate
prices, the demand function may well be approximated by a simple line.

Third, notice that the presence of a; and as in ( 8) allows for dis-
continuities at p € {.55,.75}. We run two separate tests to check whether
the continuity assumption is accepted by our data. In this case, our null
hypotheses correspond to a;=as and as= 0. We cannot reject the joint
hypothesis in 17 — T3, regressions (VII-IX). However, the main interest is
put on the overall estimation, (VI), and the regression of T}, (X). In either
case, we reject both independently and jointly our null hypotheses at any
significance level. Thus, the continuity assumption implicit in the model is
rejected by our experimental evidence.

Figure 8 reports the estimation results. By analogy with Figure 7, we
also made estimations disaggregated for periods (regressions (VII-X)) to
allow for inter-period comparisons.

Put Figure 8 about here

As Figure 8 shows, subjects’ behavior is close to the assumed piecewise
linear bid function, although not as close as for ICM. As time proceeds,
we find only three parameters that change significantly between 77 and

13P_values are 0 and .4787, respectively. In any case, we also run regressions excluding
observation at p = .6. Results do not change (and are available on request).
4By analogy with the preceding paragraph, p = .6 belongs to the interemediate interval.
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Ty as and 3,,which decrease, whereas the estimated value of 3, increases.
Remember that ay measures the difference between the constant terms of
the bid function in the intermediate and high-price interval. Its growth
supports the previous discussion on discontinuity. The estimated value
increases gradually over time, so that the difference of the estimated as in
T, and T} is significant.

As for 3,, which measures the difference of slopes of the same price
intervals, the high-price and the intermediate, its growth suggests that the
slope of the estimated bid function in the intermediate interval decreases in
comparison with the slope in the high-price interval.'® Since at high prices,
the bid-price relation stays almost constant over time (8, ), we conclude
that the estimated slope of the intermediate interval increases.

On the contrary, 3, grows with time. Therefore, the discrepancy be-
tween the slopes of low-price and high-price intervals gets stronger.

Standard errors decrease with time. In consequence, R? increases to a
final .8976. Moreover, the fraction of variance due to the individual effects
(p-statistics) fluctuates around 30%. This justifies the application of panel
data techniques.!®

We proceed by reporting the results of a statistical analysis of the differ-
ence between actual and equilibrium bids to check whether the estimated
bid is close to equilibrium. Consistently with the previous discussions, we
use the data of T and test the relevant intervals independently:

e p> %. Here the null hypothesis is ap = 1 (subjects bid 1 at p = 0)
and 8, = —1 (the bid function is 1 — p on this interval). We reject
neither the joint (p-value .2530) nor the independent hypotheses (p-
values .1219 and .1567). By analogy of our findings of Section 4.1,
the behavior of experimental subjects converges to truthful bidding.

° % > p > pe = 0.568. Within this interval, the estimated bid function
coincides with equilibrium if ap + oo = 1.255 and 8, + 8, = —1.324,
respectively. We reject the joint test at any significance level (p-value
0). In case of two independent tests, we reject the former hypothesis,
but not the latter (p-values are .0296 and 0.1106, respectively). In

BRemember that in our case, all the slopes are negative.

16We run regressions analogous to (VI-X), excluding the individual effect in the model.
In spite of significant values of p, ordinary least square estimations lead to the same
qualitative results as panel data techniques do.
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other words, the estimated bid function has a similar slope as the
equilibrium one, while the estimated constant is bigger. In terms of
our theoretical model, bidders overbid significantly wrt equilibrium,
although the dependence on price remains constant.

e p < p.. In this last interval, our null hypothesis corresponds to aqg +
op =1 and By, + 3, = 0 (i.e. bids coincide with the upper bound and,
therefore, are independent of prices). In this respect, Wald test leads
to rejection of our joint hypothesis (p-value is 0). However, testing
both hypotheses independently, we reject the independence of bids on
prices, but not that at p = 0 bidders ask for the whole amount. As
seen from the estimation, there is a negative relation between bids
and prices.

A very good illustration of results of this Section can be Figure 9,
which plots the estimated inverse bid functions disaggregated for periods
(greyscale increasing over period), together with the equilibrium prediction
(dashed line).

Observe that for high prices, the estimation starts above its equilibrium
prediction, but over time, it shifts down until it gets very close to equilib-
rium. The figure shows that in Ty, the estimated line has a slightly lower
slope (in absolute value). Nevertheless, this difference is not statistically
significant.

For low prices, the estimated bid function shifts to the right. Bidders
underbid and bids are equally sensitive to prices in all periods. Although
the former phenomenon seems to disappear over time, the latter persists.

For intermediate prices, bidders overbid in all periods. In early periods,
the estimated slope exceeds the equilibrium level. However, it decreases
over time, until the estimated function becomes almost parallel to equi-
librium in Ty. Consequently, it seems that the amount they overbid is
independent of prices.

Put Figure 9 about here

To summarize, our panel-data analysis suggests that subjects played
very well in the ICM session and at high prices in the FPM sessions (where
the equilibria of both games actually coincide with truthful bidding). On
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the other hand, for the remaining prices the observed behavior in FPM is
significantly different from equilibrium. For intermediate prices, bid are as
sensitive to prices as equilibrium predicts. Bidders start overbidding in-
significantly, but, as time proceed, the overbidding raises until it becomes
significant. At low prices, bids negatively depend on price level, contrary
to prediction. This dependence results in underbidding relative to equi-
librium. Although underbidding tends to disappear (the estimated inverse
bid function shifts to the right), dependence on prices remains.

5 Out-of-equilibrium behavior: risk aversion
vs. bounded rationality

Our experimental results show that the equilibrium analysis developed in
Section 2 is an (extraordinary) good predictor of subjects behavior (as far
as ICM is concerned). This consideration notwithstanding, our regressions
also show that subjects consistently deviate from equilibrium play, and
that this deviation (with particular reference to overbidding at intermedi-
ate prices) does not seem to vanish over time. To understand this empirical
regularity of our experimental evidence, we resort to two ”usual suspects”,
often invoked to explain deviation from the risk-neutral equilibrium behav-
ior in auction experiments, that is, risk aversion and bounded rationality.

5.1 Risk aversion

Risk-aversion has proved to be an important behavioral factor in explaining
subjects’ behavior in auction experiments (see, for example, [9] or [13]). In
the context of FPM, player 1 has to trade-off the risk of getting too much
in the low demand scenario against the risk of getting too little in the high
demand scenario. These risks have to be pondered by the relative likelihood
of each scenario (measured by A). Clearly, risk aversion may play a role only
when these risks affect player 1’s payofts in opposite direction (i.e. in the
case of rationing only in the high demand scenario).!” Even then, it is
not obvious to predict how risk aversion should modify the equilibrium
behavior of Section 2. By the above considerations, it is clear that, if A is
sufficiently high (low), we expect risk-averse players to over(under)bid with

"By the reason, risk aversion plays no role in ICM, where rationing never occurs.
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respect of the equilibrium strategy, independently of what their degree of
risk-aversion is. For intermediate values of A, results will depend on how
risk-aversion is formally defined.

By analogy with our experimental conditions, we shall explore equilib-
rium properties of FPM when (constant relative) risk aversion is taken into
account and A > % To this aim, we modify the theoretical framework of
Section 2 by considering preferences consistent with a (CRRA) function of
expected payofts, as follows:

2 d 1—p 4 d 1—p
wild) = %H 1- A)%, ©)

where p is the Arrow-Pratt coefficient of relative risk aversion. The case
of p = 0 coincides with risk-neutrality (i.e. it covers the theoretical analysis
we carried out in Section 2), with (CR) risk aversion increasing with p.

Proposition 4 For all p > 0, the structure of equilibria of FPM when
payoffs are defined by (9) is as follows:

1. pe [%, 1]: unique equilibrium d;(p) = 1 — p for all 1.

2. pe[0,pe): unique equilibrium d;(p) =1 for all 1.
3
1

3. pE (P, 2): unique equilibrium di(p). If A > %, then

(i) di(p) > d:(p), for all p > 0 and
(i1) |J¢(p) —d; (p)| 18 bounded above by 41—0.

4. D E [Pe, Pm): two equilibria, d;(p) =1 and Ji(p) < 1.

5. p = pm continuum of equilibria: all d with d; = d;, for all 1,5 and
dy +dy >1

Proof. In the Appendix. W

As Proposition 4 shows, risk aversion has the effect of “discounting” the
risk of getting too much against the risk of getting too little. It is important
to notice that this does not necessarily imply bidding more than d(p).
Overbidding only occurs when A is sufficiently high (e.g. when A > %)
In any case, deviations from equilibrium due to risk-aversion are negligible
(less than half a decimal point in our parameter setting). This is the reason
why, in what follows, we shall explore for an alternative justification for the

discrepancy between theory and evidence in our experimental data.
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5.2 Bounded rationality and Quantal Response Equi-
librium

While risk-aversion explains deviation from predicting behavior as the re-
sult of a process of conscious (expected) utility maximization, in what
follows, we shall assume that subjects’ choices are also affected by other
(unmodeled) external factors that make this process intrinsically noisy.
This noise may be induced by the complexity of the game, limitation of
subjects’ computational ability, random preference shocks, etc... This kind
of choice framework may be modeled by specifying the payoff associated
with a choice as the sum of two terms. One term is the expected utility of
a choice, given the choice probabilities of other players. The second term
is a random variable that reflects idiosyncratic aspects of payofts that are
not modeled formally.

Clearly, properties of this alternative class of models crucially depend on
the specific way in which the stochastic process that generates noise is for-
mally defined. One approach that has received attention recently involves
the concept of quantal response equilibrium (QRE), developed by McKelvey
and Palfrey [20] in the context of finite games. A quantal response is, ba-
sically, a “smoothed-out best response”, in the sense that agents are not
assumed to select the strategy that maximizes their expected payoff with
probability one. Instead, each pure strategy is selected with some positive
probability, with this probability increasing in expected payoff.'®

Some recent papers (such as [2], [13]) have modified the notion of QRE to
deal with games with a continuum of pure strategies, as our ICM and FPM.
A logit response function is often used to model the QRE. Formally, the
standard derivation of the logit model is based on the assumption that pay-
offs are subject to unobserved preference shocks from a double-exponential
distribution (e.g., Anderson et al. [1]). In this case, a (logit) QRE would
be the fixed point

exp [mi(di, 6-i )]
fol (exp [mi(s, 6-i)p])ds

where m;(d;, 6_;) is the expected payoft associated with the pure strategy
d; against 6 ; € A_;, and p is the noise parameter. As p — o0, the

0i(di) = fi(di|6—iy ) =

7?;:17---747 (1())

18Gee also Rosenthal [23].
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probability of choosing an action with the highest expected payoft goes
to 1. Low values of u correspond to more noise: if g — 0, the density
function in (10) becomes flat over the entire support and behavior becomes
random.

As we just noticed, a (logit) QRE is a then vector of densities that
is a fixed point of (10). Continuity of the payoft function m;(.) ensures
existence, both in the case of ICM and FPM. While Section 5.2.1 explicitly
characterizes the (unique) logit equilibrium in the case of ICM, for FPM
no explicit solution can be found. This is because FPM is a game with a
continuum of pure strategies, for which logit equilibria can be calculated
only for very special cases.!” In this case, we are only able to evaluate a
QRE numerically. This equilibrium has the property that, when y — oo,
it converges to the (unique) equilibrium we derived in Section 2.

5.2.1 ICM

Fix a price p € [0, 1] and consider the associated game induced by ICM(p).
By (2), equilibrium distribution functions can be calculated as follows:

exp [udi@f;p—di)]

fol exp |:Ndi(2*22p*y):| dy

In Figure 10 we use standard maximum-likelihood techniques to esti-
mate the value of  in each period. The second line of Figure 10 reports the
estimation results using ICM data. The estimated noise parameter jumps
dramatically between 77 and T, and reaches its highest value at T5. It then
decreases at T}, but is still significantly higher than at 7.

f(dilp) = (11)

Put Figure 10 about here

In Figure 11, we trace the equilibrium densities f(d;|p) for three price
values: p=.2, p=.65 and p=.8. Every graph plots four curves, one for each
period.

Put Figure 11 about here

19Guch as potential games, as in Anderson et al. [3].
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Not surprisingly, these distributions are unimodal at the value (1 — p)
-the (equilibrium) pure strategy associated with the higher expected payoft-
and become flatter as p goes to zero. We are interested in the behavior of
(equilibrium) expected bids czi(p, B = fol d; f(di|p, p)dd;. In the following
Figure 12 we trace four d; (p, p) with the same values of p as estimated in
Figure 10.

Put Figure 12 about here

The effect of the noise (whose magnitude is measured by u) is to create
underbidding (wrt to optimal behavior) when the price is low(er than .5),
and overbidding when the price is high(er than .5). This threshold value is
independent of p. To see why, notice that equilibrium distributions ( 11)
are symmetric with respect to the mode (i.e. wrt x;(p)). This is because
payoft function is also symmetric wrt z;(p), given, by (77), ‘;g:’ =1—d;,—p.
This, in turn, implies that equilibrium average bids are biased toward the
center: the cost (in terms of a payoft loss) of deviating by an ¢ is exactly the
same whether deviation is upward or downward. The fact is that deviations
toward the center are simply more likely (since, by (10 ), every pure strategy
belongs to the support of the logit equilibrium).

The following Figure 13 is divided into four parts, one for each period.
In every graphic, the dotted line trace the equilibrium prediction derived
in Section 2, the smoothed curve plot the estimated QRE, while the broken
line reproduces the observed behavior in the lab. T} graph shows that QRE
predicts well the slight overbidding (underbidding) when prices are high
(low). By analogy with QRE prediction, the observed threshold where the
average bid switches from overbidding to underbidding as price decreases
is situated around p = .5. From 75 on, the three curves almost coincide, as
we know already from Section 4.

Put Figure 13 about here

5.2.2 FPM

First, Figure 14 presents the maximum-likelihood estimations of the noise
parameter g in case of FPM. In every period, the estimations are divided
into three parts: the first column lists one estimate per price, the second an
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estimate per price interval, and the third a unique estimate for the entire
price spectrum.

Put Figure 14 about here

A first look at the table confirms the findings of Section 4. Let’s start with
the third column of each period. The estimated parameter raise gradually
from 46 in T; to a final 150 in Ty. This suggests that as time proceeds,
the observed behavior converges to the equilibrium prediction. In FPM,
contrary to ICM, learning takes place in all four periods.

The per-interval estimations deserve a more detailed discussion. In the
early periods the estimation of intermediate interval exceeds significantly
both the low and high intervals. However, from 7% on, it decreases slightly
until it becomes the lowest in Ty. In general, the higher the price, the
higher the estimate. The per-price estimations replicates the per-interval
discussion. Only, the extremely high estimates of the highest prices are
remarkable in this case.

As we previously mentioned, solutions for QRE in the case of FPM have
beem evaluated numerically. The corresponding distributions are plotted
in Figure 15.

Put Figure 15 about here.

Equilibrium distributions are analogous to the ICM case only for very
high prices. By contrast, for very low prices, distributions are unimodal at
1. This is clearly due to rationing. More importantly, for prices .75> p > pe,
the QRE distribution is not symmetric wrt to 1-p, but has a mode at a
higher level and is skewed to the right. Given we cannot provide an explicit
solution for the QRE in the case of FPM, we can only search for intuitions
for this (numerical) result by getting back to FOCs in the "high-demand
rationing case”:

T A= p—d)+ (1N (Z14) (5, b 4)
(=:4)

= (12)
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By (12), the derivative is decreasing and convex. This, in turn, implies
that deviations in the direction of overbidding are relatively cheaper (and,
therefore, by (10), overbidding wrt d; is more likely to occur).Furthermore,
the larger fraction of bidders overbids, the more attractive overbidding
becomes for others. In other words, if overbidding strategies grow in prob-
ability, their payoff becomes relatively higher and this, by (10), reinforces
the bias toward overbidding induced by the asymmetry in relative costs.
These observations are well illustrated by Figure 16, which is the analogy
with Figure 12 in case of FPM.

Put Figure 16 about here.

The qualitative features of Figure 16 reproduce our experimental evi-
dence with remarkable accuracy, as Figure 17 shows.

Put Figure 17 about here

e p > 7.5. For very high prices, overbidding is basically due to the
“drift effect” already discussed in Section ?7?.

e p < p.. For very low prices, the drift effect yields underbidding (since
mode correspond to the upper bound of the pure strategy space).
Moreover, QRE predicts the observed sensitivity of bids on price level.
This is due to the fact that the higher

the price the cheaper is to underbid the equilibrium prediction by the
same amount. Therefore, it is more likely to observe such deviations the
higher is the price.

e 7.5< p < p.. For intermediate prices overbidding, due to the cost
asymmetries highlighted in (12), persists and gets even stronger.

6 Conclusion

Two main conclusions can be drawn by our experiment: First, equilibrium
analysis provides a very good description of subjects behavior, compared
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to the other experimental settings. Second, there are still deviations from
equilibrium, for which QRE seems to produce a sufficiently consistent ex-
planation.

We emphasize that these deviations make FPM even more attractive as
a selling mechanism. Persistent overbidding of RNNE occurs exactly within
the price range that would be selected by a profit maximizing seller. Rev-
enues at this price turns out to be even higher than the expected monopoly
profit.

A general and most important observation from our experimental data is
that subjects were able to solve the problem well enough to achieve results
closely resembling the theoretical predictions. This finding is important
when it comes to the question when and where FPM should be used in
practice. In this respect, two conclusions can be drawn. First, the theoreti-
cally appealing properties of FPM clearly survive (or even are improved on)
in the laboratory, which suggests that FPM should be quite popular as a
selling mechanism. Second, we have to keep in mind that those advantages
of FPM can only be realized if the seller fixes the price correctly, antici-
pating buyers’ bidding behavior. Thus, FPM should rather be observed in
markets where sellers are experienced.

The latter observation points to a question for future research. While
in our experiment we focused on the buyers’ behavior, the seller’s decision
is certainly as relevant for evaluating the attractiveness of the mechanism.
Two issues are of interest here. First, does the seller anticipate bidding
behavior correctly and sets the price optimally given the behavior of the
buyers? Second, does the fact that the seller is a real player (and not
imitated by the computer) change buyers’ behavior at the second stage of
the game?

Another natural extension of the model studied in this paper could be
the replacement of proportional rationing by a different rule. Two natural
candidates are constrained equal losses and constrained equal awards. The
former is a rule that makes losses as equal possible, under the condition that
no participant ends up with negative transfers. In other words, this rule
gives priority to higher bids. That is the reason why it is used for example
in public good problems, or health care. In FPM with constrained equal
losses, there are incentives to overbid in order to avoid excessive rationing.
However, since this rule is advantageous for higher bids, we expect that the
overbidding will be larger in case of bidders with low demand. Constrained
equal awards is the dual rule to the constrained equal losses. In this case,
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the good is distributed such that each bidder receives the same fraction,
subject to the condition that no buyer gets more than his bid.

It is not difficult to show that the equilibrium characterized in Section

2 remains as such under both rationing rule. But, in this case, multiple
equilibria also occur. For example, under the constrained equal awards rule
and sufficiently low prices, every strategy profile in which the minimum bid
is higher than % consitutes an equilibrium of Stage 2. How the presence of
such strong strategic uncertainty may affect subjects’ behavior in the lab
is left to future research.
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7 Appendix

7.1 Proofs

The proof of Proposition 1 is obtained by way of four lemmas, characterizing
bidders optimal behavior at all prices. Fix a pair (p, d) chosen by the seller
at Stage 1 and consider the corresponding vector of bids d(p) at price p.
Since, at a given price, the buyer’s demand is just a quantity, in what
follows we omit the dependency on the price in order to simplify notation.

Differentiating player 1’s payoft function (4) with respect to d; yields

o (dy, d 0Q*(da, d-
om(did1) _ A QQ(dladfl)"—dlM (1—-diQ*di,d1)—p) (13)
ad, ody
0Q*(dy, d_
~1-N) {@%dl, d1)+ dl%} (1~ dQ'(dd 1)~ p)
1
.Note that
3@"(d1,d1)} 1 if Z;lil dj < 1’
nd,di _d— = ﬂ,de . n 14
Q"(d1,d-1) 1 ) (ZZ}ZW if ijldjzl' ()

Thus, (14) is always positive whenever at least one bidder ask for a posi-
tive quantity. In the following Lemma 5, we establish that no bidder has
an incentive to ask for less than her demand (independently on others’
behavior):

Lemma 5 d; < 1— p is strictly dominated by dy =1 — p for all p € [0, 1]
and all d € [0, R].

Proof. Ifd; <1—p, then (1—-d;Q"(d)—p) > 0, since, by (2), Q"(d) < 1.
Thus, for d; € [0,1 — p), all terms in (13) are strictly positive, and thus,
mthd 1) o

Given Lemma 5, in what follows we shall restrict our attention to strat-
egy profiles d = {d; > 1 — p}. The remaining three lemmas establish
uniqueness of the equilibrium of the bidding stage at almost all prices. We
proceed by partitioning the price set [0,1] into three subintervals: ) prices
p E (%, 1] above the market clearing price in case of 4 buyers; 7¢) prices
p € [0, %} below the market clearing price in case of 2 buyers, and finally,
11%) prices p € (%, %} in between the two market clearing prices.
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Lemma 6 Let p € (%, 1]. mi(di,d_1) is strictly decreasing in di for all d_,
such that d; > z; for at least one j ~1 and di > max{d_,}.

Proof.  If Y2j ;d; > 1, then, by (2) it must be that 1 > Q*(d) >
Q*(d). Thus, if 1 —diQ*— p <0 then 1 —d1Q? — p < 0. Since we assume
max{d_;} > 1—p =z, any bid d; > max{d_,} yields a supply to bidder
1 of diQ* > i >1—pforall pe [%, 1] in the high demand scenario. Thus,
1—diQ*di,d 1) — p <0 and, therefore, 1 — d;Q% — p < 0. This, in turn,

implies %ﬁd”) < 0.

Assume instead Z?Zl dj < 1. Then, it must be 1 = Q*(d) = Q*(d).
Again, since max{d_;} > 1 — p by assumption, a bid d; > max{d_;} yields
a supply to bidder 1 of d1Q™ > 1 — p in any demand scenario. Thus,
1 —diQ" — p < 0 which implies %ﬁd”) <0. |

Lemma 6 implies that, at prices p € (%, 1], any buyer has a strict incen-
tive to underbid the highest bid of his opponents if the latter exceeds true
demand. Together with Lemma 5 this implies that the only equilibrium at

high prices is truthful bidding.

Lemma 7 Let p € [0, %} m(dy,d_1) s strictly increasing in dy for all d_,

such that d; > 1 — p and di < min{d_,}.

Proof. At prices p € [0, %}, since the bidders bid at least their true
demand, it holds that @* < Q* <1 (<1ifp < 3). Thus, if 1-d,Q*(di,d1)—
p > 0, then 1-d1Q*(d1,d 1) — p > 0. If di < min{d 1}, then d;Q? <
% < 1 —p. Therefore, 1 — d,Q*(d,,d 1) — p > 0, which, in turn, implies
It

It follows from Lemma 7 that, at low prices, every bidder strictly wants
to outbid the lowest bidder given any vector of reasonable bids of the op-
ponents (i. e. bids above true demand). Thus, the only equilibrium at low

prices is that everyone’s bid equals the upper limit.
Lemma 8 Let p € (%, %}.
1. If there is no rationing in case n =2, i. e. dy +ds <1, then

(i) m1(dy,d_1) is decreasing for all dy > %

(it) wi(dy,d 1) is strictly concave in dy for all dy € [0, %}, d_1 such
that d; > x;, for all j 1.
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2. If there is rationing in case n =2, i. e. di +ds > 1, then

(i) mi(di,d_1,p) is strictly increasing for all d_y such that d; > z;
and dy <min{d_;} if p < ig;—:\\.
(i5) mi(di,d-1,p) is strictly decreasing for all d_1 such that d; > x;

and dy > max{d_,} if p > 19=2

4371X°
(i1z) At p= —i fmdidy) — g for any d such that d; = d; for all
1, ]

L
43 ddy

3. Every pure strateqy equilibrium of FPM (p) is symmetric.

Proof. Part 1(i). Since Q* < Q% = 1, it holds that, if 1 —d,Q*(d;,d 1) —
p <0, then 1 — d1Q2(dy,d 1) — p < 0, and thus, by (13), 2t <o,
di > G vields 1 — diQ*(dy,d 1) —p<1-— Q4 =0, Whlch proves the
first part of the lemma.

Part 1(ii). The second derivative of m; with respect to d; is given by

O*m1(dy,d_1) _

15
o (15
2 2 4 2
-3 @+ PEEED T 1 Qb+ PR
22
12 [p 2B D] (2t -
1 1
24
+<1_A)[6Q(g; Hmw(i“d”](l—dlmdl, D= D).
1 1

By (14), the first two terms of the LHS of (15) must be negative. It remains
to show that the sum of the last two terms is also negative. Note that

o 0Q" (d1,d1) 0*Q" (di,d 1) 0 if idi< 1,
+dy 2 = ZJ 2dJ : n
(16)

Thus, if no rationing occurs in the low demand scenario (Z?Zl d; < 1), the
third term is equal to zero. The fourth term is negative for d1 e [0, &1,

bl Q4
since for those bids it holds that 1 — d;Q*(d;,d 1) — p > 0.
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Part 2(i). We substitute (14) into (13) to get

871'1 (dl, dfl) d2 dl

= A 1—— - 17
ad, VT TR A A (17)
4
o d d
+G—A);f2jﬂ— — — D).

(Zj:l dj)2 Zj:l dj

; : d 1 _d 1 D5eds 3
Note that, if di < min{d;}, then 72— > 3, 795 < 3, (235:7;)2 > 5

and =2 — < i. Substituting in yields

Zj:ldj
omi(di,d_1) 1 1 3 1 19—\
I d ) 5 z2p -2 1-N—(l—-—p) =0 opc-22
L Tt 2 SO ST S P=43a
Part 2(ii). By (17), if di > max{d;} , then (dliifigﬁ < i, dllildg > %,
1
(ZZ;{:% < %, and f}‘-ﬁ > i. Substituting in yields
aﬂl(dl,dfl) 1 1 3 1 9—>\
I ) oz 22 1-N)—(1->-p) <0 S
AL S O S A T I 2 g JaTe s v

which proves part 2(ii) of the lemma.
Part 2(iii). For any vector of equal bids such that d; +dz > 1, (13)
simplifies to

1 3 1
A= 5=p+ 1= ),

aﬂl(dl, dfl) i
ady 4

| =

Omi(di,d—1) __ 0iff p= 222
ady = P= 137N
Part 3. In any equilibrium, either all bidders are rationed in the low

demand scenario, or none of them is rationed, because their joined quantity
determines the same rationing factor for everyone. In both cases (rationing
if n = 2, or no rationing), we have shown that there is a unique best-reply to
any given strategy profile of bidder 1’s opponent, d_;. Since bidders’ payoff
functions of all bidders are symmetric, also the equilibria of the game must
be symmetric. W

From Lemma 8, it follows that at any price but one in the interval (%, %},
FPM (p) can have at most two equilibria in pure strategies, and all of them
it must be symmetric (by part 3 of the lemma). An equilibrium where all

wit
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19-X

buyers bid d;(p) = 1 exists for all prices p < p,, = but not for higher

431x°
prices (part 2 of the lemma). At p,, = ig;—:\\ also any quadruple of equal bids
that leads to rationing in both scenarios is an equilibrium of the game. A
symmetric equilibrium without rationing in the low demand scenario exists
whenever the solution to maxg, mi(di,d-1) s. t.. di = d; V d; € d_; ensures
that d; + dy < 1, which is the case for prices p > p. = igi—gi.

We are now in the position to prove Proposition 1.

Proof. [Proof of Proposition 1.] Existence and uniqueness of equilibrium
at prices p € [0,p.) and p € [%, 1] has already been shown in lemmasb —
8 . Also, all remaining equilibria where d; = 1 , Vi and the continuum
of equilibria at p,, have been derived in Lemma 8, part 2. It remains to
solve for those equilibria where no rationing takes place in the low demand
scenario at prices p € [%, %}.

If Q%(d) =1, (13) simplifies to

0Q*(d;, d_;
NI—di—pl+(1=N) [Q%di, d - a2 )N (4 G0hdd ) - p)
(18)
Substituting Q*(d;,d_;) = 24_71 — in (18), and imposing symmetry yields
1 1—X.3 3 1
(1 — ST NS LT )2
di=5(l-—p+\ (P E-p~ (19)

A symmetric profile (19) can be an equilibrium only if 2d; < 1, which is the

case for all p > pe,with p. = 4?3175/\,\)' =

Proof. [Proof of Proposition 2.] If the upper limit d is high enough not
to affect revealed demand at prices in [pe, %], equilibrium demand of buyer
1 at price p € [pe, %] is at least d;, as given by equation (19). At price
pe the whole supply is sold in both scenarios, which implies that seller’s
expected revenue is safe and equal to p. (which proves part (ii) of the
proposition). Since there is only 1 unit for sale, setting a price below pe
is strictly dominated for the seller. Thus, the seller’s revenue is bounded
below by pe and may be even higher (part (iii)). Since d can only reduce the
demanded quantity, the seller strictly prefers a limit that does not affect
revealed demand by any bidder at the posted price (part (iv)).

We have already shown in proposition 1 that for any upper bound on
bids an equilibrium of the bidding stage exists at all prices p € [0,1], and

37



that any such equilibrium is symmetric. Under proportional rationing any
bidder who has bid the same quantity receives the same. Recall that all
bidders have the same demand function. Therefore, their willingness to pay
for the next unit is the same and no aftermarket trade among the bidders
will occur (part (v)).

Finally, for any equilibrium played in the continuation game, there is a
(not necessarily unique) profit maximizing price. Thus, an equilibrium of
FPM always exists (part (i)), where the seller chooses the profit maximizing
price p* given the play at the second stage, and chooses d higher than the
bidders’ (unrestricted) bids at p*. B
Proof. [Proof of Proposition 3.] Assume that player 2, 3 and 4 play the
equilibrium strategy, i.e. z; = d;(p)). If p > %, if player 1 selects a quantity
sufficiently close to dj(p), rationing does not occur in either scenario. This
simplifies the derivative of u;(x) wrt d; to the following:

du;(z)
ddy

= 2(1 - p—d)@n (1~ p— 3d) ", (20)

that is, FOCs equivalent to the case of risk neutrality.
Assume p < p. and d;(p) = 1,5 # 1. Then, for all d; > 0 (since player 1 is
rationed in both scenarios), differentiating u;(z) wrt z; yields the following;:

A(1—p(1+dy)) o+
(1+d1)? (d1Q3(2+d1 —2p(1+dy)
=20 g(13\)(37p(3+d1)) ) > 0. (21)

(1+d1 )3 (d1Q3(6+d1 —2p(3+d1))”

du; (d)
dd,

We know, from Proposition 1, that, when rationing takes place in the low
demand scenario only, m;(d) is a strictly concave function. This, in turn,
implies that, u;(d, p) is also a strictly concave function (i.e. the equilibrium
is unique). In this case, first-order conditions (21) correspond to

du;(d)
dd,

(Z]’>1 dj)(2j>1 dj — ij d;)
(=)

=271 k(d, p) (1—p—dl)+

(1-=AX)
(22)
with k(d, p) = (-0 t20 P (0 d)))

(d1(2—2p—d1) (¥ o1 d;)
the FOC under risk-neutrality (13) when k(d) = 1. Notice that 0< k(d) < 1,

-p
. Condition (22) is equivalent to
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and increases (decreases) with p (p). If A > %, then (22) implies that, if a
symmetric equilibrium i < di(p, p) < % exists, it must be d;(p) > d;(p, p).

) . . . 12p—11 3
This already implies (given p > py,), k(d, p) > T6d () (op— 27 (7)) = 1°

This, in turn, implies

(2[— xﬁ) =~ 023,

co| —

5 1
4, p) = di(p)] < 5 (27— 12p = 47 — /25— ddp— 1687 ) <

7.2 The experimental instructions

Welcome to the experiment!

This is an experiment to study how people solve decision problems.

Our unique goal is to see how people act on average; not what you,
particularly, do. Do not think, then, that we expect you to take any specific
behavior.

On the other hand, you should take into account that your behavior
will affect the amount of money you will earn throughout the experiment.
It is, therefore, your own interest to do your best.

This sheet contains the instructions explaining the way the experiment
works and the way you should use your computer.

Please Do not disturb the other participants during the course exper-
iment. If you need any help, please, raise your hand and wait in silence.
You will be attended as soon as possible.

How can you earn money?

You will have to play 84 rounds of a simple game described as follows.
In each round, you will be part of a group of 2 or 4 people (including you)
of this room. Whether the group will be of 2 or 4 people will be decided
randomly and it will change within each round.?

During the experiment, 50% of times you will be in a group of 4 and 50%
of times in a group of 4. It is crucial to keep in mind that the composition
as well as the size of your group will change at each round!

20 As there were no groups in ICM session, the last two phrases of this paragraph and
all the following one are omitted in the ICM insructions. All the rest of the insructions
is slightly modified in parts where we talk about ”the other members of your group” in
order not to confuse the subjects participating to the ICM session.
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In each round, you and each of the other members of your group will
have to make a choice. Your decision (together with the decisions of the
others in your group) will determine the amount of money you will earn at
the end of that round.

We will also give you a show-up fee of 2000 ptas?'. At the end of the
experiment, you will be paid the exact amount you have earned throughout
its course plus the show-up fee.

How to play the game?

In each round, you will participate to a market together with the other
members of your group (who can be one or three). In this market, 10 units
of a product are put in sale.

In each round, a price between 0 and 10 will appear in the screen of your
(as well as your group members’) computer. This price does not necessarily
have to be an integer, and has been determined randomly. You and the
other group members have to decide the amount of the product you want
to bid at this price?.

How can you get the product??

You will not always get the amount of product you have bid!!!

The amount of good you will get depends on your bid and the bids of
the other group members. Keep in mind that you will take part of a group
that will be formed of 2 or 4 members (including you). At the moment you
will have to decide your bid you will not know the size of your group!!!

In each round, we will sum the bid amounts by all your group members.
Do not forget that the maximum amount we can distribute is 10 units.

In case that the sum of the bids of all the members of your
group (including yourself) does not exceed 10, each member re-
ceives what he demanded.

Otherwise, that is, if the sum exceeds 10 units, each member
receives a lower amount than what he demanded, although each

21The show-up fee of the ICM session was 1500 pesets, since the control treament was
strategically simpler than FPM.

22 As a next paragraph the following text in Bold appears in the ICM instructions: You
will always receive the amount you have bidded!!!

23This chapter - together with the following Summary and the Control questions 1 and
2 - does not appear in the ICM instructions, since there is no rationing.
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member get the same percentage of his bid. This percentage is determined
from the relation between the available amount and the aggregate demand
of your group.

Example: Suppose that:

e the price of this round is 5.5,
e your bid was 2 units,

e cach of the other members of your group demanded 6 units.

If the size of your group was 2, your group’s aggregate bid would be
2+6=8. Since this amount is lower than 10 (the available amount), you
will receive 2 units and the other one gets 6 units that is, what you both
bid..

If the size of your group was 4, the aggregate demand would be 24+6+6+6=20.
Since this amount is higher than 10 (the available amount), each member
of your group receives 50% of what he has bid. This is because the available
amount, 10, is 50% of the amount demanded by the whole group, 20. That
is: you will get 1 unit and the others receive 3 units each.

Summary

If the aggregate bid of the group is less or equal to 10, each member
gets what he has bid..

If the aggregate bid is higher than 10, each member receives the same
percentage as he bid.. This percentage is determined from the relation
between the available amount (10 units) and the aggregate bid (e.g. 20
units in our example).

This implies that always when a person bid more than an other one this
person gets more units than the other one.

Control question # 1: If you bid 6 and each of the other members
of your group bids 6,

How many units do you get if the size of your group is 47
How many units do you get if the size of your group is 27
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Control question # 2: If you bid 8 and each of the other members
of your group bids 4,

How many units do you get if the size of your group is 47
Do you get what you bid if the size of your group is 27

How much money you can earn?

Look at the table we give you together with these instructions. In this
table, you can check how much money you earn for each quantity you get
at each price. The first column of the table shows the different prices that
can appear during the experiment. In the first row, you have different
quantities between 0 and 10 units. In each cell , you find your profit if you
get the corresponding quantity at the corresponding price.

For instance, if you like to know how much money you earn if you receive
4.5 units at price 4, have a look at the cell that corresponds to the row of
price 4 and to the column corresponding to the quantity of 4.5 units. By
doing so, you will see that you earn 16.88 ptas..

Control question # 3: How much money do you earn if you get 8
units at price 2.57%

In each round, you can bid any amount between 0 and 10, but it has to
be a number with at most 2 decimals. You are not forced to only bid the
amounts listed in the table.

It can also happen that the quantity you get corresponds to a number
between two of the quantities listed in the table. In such a case, your profit
will also be between the two corresponding profits.

Summary?’

In each round, you and other members of your group will participate in
a market where 10 units of product are being sold.

24Obviosly, this is the unique control question that appears in the ICM instructions.
% Due to the simplicity of the control treatment, we have not found it necessary to place
a Summary part to the instructions of the ICM session.
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The size and the composition of your group will change in each round
and they will, always, be determined randomly. The size of your group can
be 2 or 4 (including yourself). In each round, both possibilities have the
same probability (i.e.50% of times your form part of a group of 2 and 50%
of a group of 4).

In each round, you and the other members of your group will face a
different price.

At this price, you have to bid a quantity and you will get:

e What you have bid if the sum of bids of whole group is lower or equal
to 10.

e If the aggregate bid is higher than 10, each member receives the same
percentage of the total amount (10) as his bid (compared to the total
sum of bids).

This implies that who bids more always receives more.
You can check your profits in the table enclosed with these instructions.
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Figure 1. FPM: Equlibrium bid function(s)



) T 1 2 3 4
0 9.583 10 10 10
(2.041) (0) (0) (0)
05 8.125 9.521 95 95
' (3.073) (0.102) (0) (0)
. 8.19 9.021 9 9
(2.212) (0.102) (0) (0)
L 7811 8.502 8.542 85
' (2.167) (0.01) | (0.204) (0)
) 776 7771 8 775
(1.228) (1.123) (0) (1.225)
0 7.044 7.292 75 75
' (1.707) (1.021) (0) (0)
5 6.675 7 7 7
(1.114) 0) 0) 0)
2 5.842 6.5 6.5 6.5
' (1.933) (0) (0) (0)
A 5.752 6 6 6
(1.022) 0) 0) 0)
5 5.437 5.417 55 55
' (0.224) (0.319) (0) (0)
- 5.101 5 5 5
(1.286) (0) (0) (0)
5 4,502 1.498 45 15
' (1.076) (0.01) (0) (0)
6 1.493 1 1 1
(1.623) (0) (0) (0)
65 3.542 3.492 35 3.542
' (0.751) (0.052) (0) (0.204)
- 3.603 3 3 3
(1.68) (0.002) (0) (0)
i, 2.493 2.501 2.521 2.479
' (1.191) (0.004) | (0.102) | (0.102)
< 1.958 2 2 2
(0.204) 0) 0) 0)
o5 1.482 15 15 15
TSy |4y @ | 0
0 0.967 0.962 1 0.979
(0.163) (.184) (0) (0.102)
05 1.148333 0.485 0.5 0.5
' (2.114274) | (0.076) (0) (0)
0 0.537 0 0 0
(2.075) 0) 0) 0)

Figure 2. ICM: Average aggregate bids (with standard deviations)



T 2 3
p
. 9.41 0479 | 9437 | 9.7l
(1.433) | (1.407) | (2.007) | (1.139)
0 8.585 0460 | 9.604 | 9.719
' (2.241) | (1.337) | (1.276) | (1.051)
: 8713 9.432 0.448 | 9.760
(2.039) | (1.43) | (1.555) | (.799)
L 8217 0506 | 9437 | 9.504
' (2.022) | (1.085) | (1.633) | (1.17)
5 8.855 0.065 | 9184 | 9.604
(1.692) | (1.687) | (1.807) | (1.317)
) 7.396 89375 | 8.8%6 9.44
' (2.405) | (1.844) | (1.853) | (1.229)
5 8.039 8552 | 8.633 9.115
(1.964) | (2.052) | (1.977) | (1.874)
. 7474 8017 | 8648 | 9.046
' (1.95) (2.014) | (1.864) | (1.66)
) 6.904 | 7.767 8.322 8.402
(1.907) (2.) (2.082) | (1.879)
s 6.807 6.604 | 7.516 8.21
' (2.031) | (1.897) | (2.109) | (2.093)
- 6.323 6.52 6.924 | 7.414
(2.063) | (2.116) | (2.105) | (2.094)
- 5.15 6.38 6.523 6.330
' 177D | (1.93) | (211) | (2.086)
] 1764 1957 1934 | 5611
(1.315) | (1.43) | (1.409) | (1.756)
‘s 1514 1577 1823 5.136
' (1.757) | (1.34) | (1.678) | (1.846)
. 3.800 3528 | 3824 | 3.807
(1.281) | (1.054) | (1.346) | (1.259)
. 3.16 2.83 2.672 9.850
' (1.115) | (1.215) | (0.702) | (0.858)
) 9.9 9104 | 2.063 9.083
(0.859) | (0.385) | (0.286) | (0.315)
o 9.9%6 1.56 1.729 1.63
' (1.948) | (0.303) | (1.333) | (0.399)
. 1.078 0.984 | 0.969 1.094
0.456) | (0.182) |470.16) | (0.741)
o 1.073 0505 | 0522 0.51
' (1.581)) | (0.262) | (0.101) | (0.072)
0 0.51 0.658 | 0.005 0.
(1.278) | (0.361) | (0.036) | (0.001)

Figure 3. FPM: Average aggregate bids (with standard deviations)
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Figure 4. FPM: Evolution of aggregate bids
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Figure 5. FPM: Evolution of deviations from equilibrium



Figure 6. FPM: Evolution of the seller's profits
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Figure 7. ICM: Panel Data Estimation
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Figure 8. FPM.: Panel Data Estimations.
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Figure 11. ICM: estimated QRE distributions
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Figure 12. ICM: estimated QRE average bids
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Figure 13. FPM: evolution of estimated QRE average bid functions



Figure 15. FPM: QRE distributions

14

12

10




0.8 1
0.6 1
......... d;
047+
T
T,
027+
T
I
0.2 04 0.6 0.8 dl(P) 1

Figure 16. FPM: estimated QRE average bids



Figure 17. FPM

: evolution of estimated QRE average bid functions
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Figure 10. ICM: Estimated values of u
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Figure 14. FPM: Estimated values of u (the 1st column of each period

corresponds to estimations per prices, the 2nd per intervals and the last is
restricted to unique p per whole bid function)
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