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Abstract

We consider an uncertainty averse, sophisticated decision maker facing a re-

current decision problem where information is generated endogenously. In this

context, we study self-confirming strategies as the outcomes of a process of active

experimentation. We provide inter alia a learning foundation for self-confirming

equilibrium with model uncertainty (Battigalli et al., 2015). We also argue that

ambiguity aversion tends to stifle experimentation, increasing the likelihood that

decision maker get stuck into suboptimal “certainty traps.”

1 Introduction

We study the dynamic behavior of a decision maker (DM) who faces a recurrent de-

cision problem in which the actions he selects depend on the information endogenously

gathered through his past behavior as, for example, in multiarmed bandit problems

(cf. Gittins 1989). The flow of actions and information can be diagrammed as follows:

We consider an ambiguity averse, not infinitely patient DM who is uncertain about

the data generating process followed by nature. This uncertainty is represented by

means of a probability measure, a belief, over the possible stochastic models describing

the evolution of the states. Given this belief, he evaluates the possible actions according

to the smooth ambiguity criterion of Klibanoff et al. (2005). We assume that beliefs

about models are updated according to Bayes rule. However, note that an uncertainty
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Esponda, Elia Sartori, and Lorenzo Stanca for useful comments and suggestions. Special thanks go to

Simone Cerreia-Vioglio and Fabio Maccheroni with whom this project started. Financial support from

the European Research Council (advanced grant 324219) and the AXA Research Fund is gratefully

acknowledged.
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averse DM may feature instances of dynamically inconsistent preferences (see, e.g.,

Siniscalchi 2011). We allow for reversals of preferences, but we assume a sophisticated

DM. Indeed, he figures out these possible inconsistencies and formulates a strategy that

is dynamically consistent because it satisfies the one-shot-deviation property: there is

no situation where DM has an incentive to choose an action different from the one

prescribed by the given strategy. In a finite-horizon model this results from folding-back

planning; however, we focus on infinite-horizon models to study the limit properties

of behavior and beliefs and to exploit the ensuing stationarity of the dynamic decision

problem.

Our setup is strictly related to the literature on active learning (or “stochastic con-

trol”) and in particular to the seminal work by Easley and Kiefer (1988, henceforth

EK). We refer to Section 5 for a formal connection between the two setups. How-

ever, note that our paper departs from their analysis in several fundamental aspects.

First, we allow for non-neutral ambiguity attitudes and dynamically inconsistent pref-

erences. Second, EK requires the DM to assign a positive subjective probability to

the correct data generating process, whereas we only assume that at least one model

observationally equivalent to the actual one (given the adopted strategy) lies into the

support of the DM’s subjective belief. Finally, the first part of our paper considers the

more general case of not i.i.d. data generating process. Therefore, the different un-

derlying hypotheses lead us to provide a novel convergence result under a consistency

assumption.

We study how self-confirming strategies arise from an active experimentation pro-

cess. We show that a long-run bias emerges that favors “tested” actions, namely,

actions on which information has been collected over time. The intuition behind our

result is that tested actions become “certainty traps”: The DM observes ex-post the

consequences of frequently chosen actions; hence he learns to be approximately cer-

tain about the risks (probabilities of consequences) implied by tested actions, whereas

he remains uncertain about the risks implied by deviations. Ambiguity aversion then

implies a bias toward tested actions– “exploitation”rather than “exploration.”More

precisely, we show that the stochastic process of beliefs and actions converges with

probability one to a random limit pair. This random limit pair satisfies almost surely
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the following conditions: The limit action maximizes the one-period value given the

limit belief, and the limit belief assigns probability one to the set of stochastic models

that are observationally equivalent to the actual data generating process given the limit

action.

In the particular case of ambiguity neutrality and i.i.d. data generating process,

our result is a version and restatement of the convergence result of EK: We connect our

framework to EK and clarify that under subjective expected utility maximization (even

if the DM cares about the future) the limit action-belief pair must be a self-confirming

equilibrium of the game repeatedly played by the DM against nature, that is, the

action is a short-run best reply to the DM’s belief about nature’s randomized strategy,

and this belief is consistent with the long-run frequencies of observable outcomes.1

Since the latter may only partially identify the true data generating process (nature’s

“strategy”), such limit behavior may be very different from the “Nash”(or “rational

expectations”) equilibrium, in which the DM plays the objective best reply. While this

may seem obvious ex-post, it is nonetheless worth noting given the almost exclusive

reliance of economic theory on the Nash equilibrium concept.2

Although our results are derived in a single-person framework, their relevance ex-

tends to games more generally. We can interpret our DM as an agent in a large

population of individuals playing a game recurrently in a given role, against agents

drawn at random from large populations to play in different roles. The state of nature

is then interpreted as the action profile of the other agents with whom DM has been

matched. In particular, the i.i.d. case obtains in an environment similar to the steady-

state learning model of Fudenberg and Levine (1993), where individual agents learn

through their life, but the populations’statistics are constant.

Under this interpretation, we provide a learning foundation for self-confirming equi-

librium with model uncertainty (Battigalli et al. 2015, henceforth BCMM). Specifically,

the random limit pair corresponds to the “smooth”self-confirming equilibrium concept

of BCMM, since the limit action is a myopic best response, and the limit belief is con-

firmed by the evidence generated by the action and the steady state distribution of

opponents strategies. Since self-confirming equilibrium emerges as the long-run out-

come of an active experimentation and learning process, the comparative statics result

of BCMM implies that higher ambiguity aversion reduces the predictability of long-run

behavior. At the same time, such limit behavior is more stable under higher ambiguity

aversion, since (possibly) ambiguous deviations from the unambiguous tested action

1Our definition of self-confirming equilibrium (also called “conjectural equilibrium”) is broader

than the one of Fudenberg and Levine (1993, 1998). See the discussion in Battigalli et al. (2015).
2Self-confirming equilibrium is discussed in the monograph by Fudenberg and Levine (1998), but–

to our knowledge– it is notably absent in published textbooks of microeconomic theory and game

theory.
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can only become less attractive as ambiguity aversion increases. We also show by

example that higher ambiguity aversion tends to hinder experimentation and makes

convergence to objectively optimal behavior (the best reply to the correct model) less

likely.

The paper is structured as follows. Section 2 presents the static and dynamic

decision framework and some preliminary notation. Section 3 describes the endogenous

information process. Section 4 presents self-confirming equilibria and our learning

results. Section 5 discusses the relationships between our setup and the one used in

the literature on active learning, as exemplified by Easley and Kiefer (1988). Section 6

briefly relates our analysis to the literature on belief learning in games and concludes.

All proofs are collected in the Appendix.

2 Framework

2.1 Static environment

Let S be a finite space of states of nature and let C be a consequence space. We consider

a control setup where a finite set A of actions (or controls) is available to the DM,

and actions and states translate into consequences by means of a consequence function

ρ : A× S → C. The triple (A, S, ρ) is the basic structure of the decision problem.

Given any probability measure p on S, each action a is evaluated through its ex-

pected utility:

R(a, p) := Ep [u ◦ ρa] =
∑
s∈S

(u ◦ ρ) (a, s) p (s) ,

where ρa = ρ (a, ·) is the section of ρ at a, and u : C → R is a von Neumann-

Morgenstern utility function. It is often convenient to write the criterion in the expected

payoff form R (a, p) =
∑

s∈S r (a, s) p (s), where r : A×S → R is the payoff (or reward)
function r := u ◦ ρ.
Let ∆ be the collection of all probability measures on S. We identify ∆ with the

simplex of dimension |S| − 1, and we endow it with the Borel σ-algebra B(∆). If the

probability model p is unknown, namely, if there is model uncertainty (cf. Marinacci

2015), the DM posits a closed set P ⊆ ∆ of possible probability models and ranks

actions according to the smooth ambiguity criterion of Klibanoff et al.:

V (a, µ) := φ−1

(∫
P

φ (R (a, p))µ (dp)

)
, (1)

where µ is a prior probability measure on (P,B(P )), and φ is a strictly increasing

and continuous real-valued function that describes attitudes towards ambiguity. In
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particular, a concave φ captures ambiguity aversion, while a linear φ (e.g., the identity)

corresponds to ambiguity neutrality:

V (a, µ) =

∫
P

R (a, p)µ (dp) =

∫
S

r (a, s) pµ(ds) = R (a, pµ) ,

where pµ ∈ ∆ is the predictive probability given by pµ (E) :=
∫
P
p (E)µ (dp) for all

E ⊆ S. This is the classical subjective expected utility criterion (Cerreia-Vioglio et al.

2013). Finally, note that:

(i) When the support of µ, suppµ, is a singleton {p}, criterion (1) reduces to the
expected payoff criterion R (a, p);

(ii) The limit case of criterion (1) as ambiguity aversion increases is a version of the

maxmin criterion infp∈suppµR (a, p) of Gilboa and Schmeidler (1989).

The static decision problem can be summarized by the seven-tuple:

Γ = (A, S, C, ρ, u, P, φ) . (2)

2.2 Dynamic environment

Notation Finite spaces are endowed with their power sets as σ-algebras. For each

time t, let Zt be a corresponding finite space of possible “realizations,”where Zt may

be independent of t.3 We let Zt =
∏t

i=1 Zi and Z∞ =
∏∞

t=1 Zt; Z
t and Z∞ are,

respectively, the spaces of finite and infinite histories. The space Z∞ is endowed with

the Borel σ-algebra, B (Z∞), corresponding to the product topology on Z∞; this is the

same as the σ-algebra generated by the elementary cylinders {z1}×· · ·×{zt}×Z×· · · .
We denote by zt = (z1, ..., zt) ∈ Zt both the histories and the elementary cylinders that

they identify by means of the map

(z1, ..., zt) 7→ {z1} × · · · × {zt} × Z × · · · .

We denote by z∞ = (z1, ..., zt, ...) a generic element of Z∞. Finally, we denote by

∆ (Z∞) the collection of all probability measures defined on (Z∞,B (Z∞)), and by

B (∆ (Z∞)), the Borel σ-algebra on ∆ (Z∞) generated by the weak*-star topology,

which coincides with the sigma-algebra generated by the evaluation maps p 7→ p (B)

for all B ∈ B (Z∞).

3Unless otherwise stated, it is understood that t is an element of N, the set of natural numbers.
We use interchangeably the terms “time”and “period”to refer to t.
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Environment Given S, let (S∞,B (S∞) , p̄) be the probability space on which a

coordinate state process (s1, s2, ...) is defined, with st : S∞ → S for each t.4 We will

use the less demanding notation s∞ for the state process.

The state process s∞ describes the exogenous uncertainty in the decision problem.

It can be seen as the environment of the problem. Its realizations are denoted by

s∞ ∈ S∞. To ease notation, we set st = (s1, ..., st). We denote by σ (st) the σ-algebra

generated by the random variables s1, ..., st, namely, by the process up to time t. Thus,

(σ (st)) is the basic filtration for the problem. We denote by σ (s0) the trivial σ-algebra

{∅, S∞}.
For each time t, we can also regard σ (st) as a subset of 2S

t
by identifying the

elements of σ (st) with their projection on St. In what follows, we often maintain this

small abuse of notation for the natural filtration as well as for any sub-filtration.

Actions and outcomes The DM’s choices are described by a sequence (at) ∈ A∞

that consists of an action for each time t. At each such t, there is a time-independent

one-period consequence function ρ : A × S → C. Here, ρ (at, st) is the outcome that

the DM receives ex post (i.e., after the decision) at time t if he chooses action at and

state st obtains. For convenience, we assume that the problem is stationary, i.e., its

elements are time invariant.

Information feedback In a dynamic setting, the DM may receive some feedback,

that is, a “message” generated by the outcomes of past actions. For example, he

may observe the (random) consequences of such actions. This feedback is a source

of “endogenous” (choice dependent) information about states that is peculiar to the

dynamic setting and that will play a key role in the paper.

This endogenous information is modelled through a time invariant feedback function

f : A × S → M , where M is a (finite) message space. By selecting action at ∈ A at

time t, the DM receives ex post a message mt = f (at, st) if state st realizes. A DM

who selects action at and ex post receives the message mt knows that the true state st
belongs to the set {st ∈ S : f (at, st) = mt} = f−1

at (mt).5

Actions and messages are remembered: At each period t > 1, the ex ante endogen-

ous information– that is, the endogenous information gathered prior to the period-t

decision– is given by the history of messages mt−1 = (m1, ...,mt−1) received in the

previous periods as a result of the history of actions at−1 = (a1, ..., at−1) and states

st−1 = (s1, ..., st−1).6

4We use boldface letters for random variables and normal letters for realizations.
5As in the case of ρa, fa denotes the section of f at a, fa(·) := f(a, ·).
6We distinguish three point in time within each period: the ex ante time (prior to the decision),

the decision time, and the ex post time (after the decision). Any information available ex post at
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We assume that consequences are observable: There exists a function γ : A×M →
C such that

∀a ∈ A, ρa = γa ◦ fa. (3)

This condition ensures that the feedback function reflects at least the information on

states determined by outcome observability. In particular, ex post information about

the state is typically endogenous, that is, the partition{
f−1
a (m) : m ∈M

}
⊆ 2S

of the state space S induced by the messages depends, in general, on the choice of

action a.7

If the DM receives the same information about states regardless of his action,

namely, if

∀a, a′ ∈ A,
{
f−1
a (m) : m ∈M

}
=
{
f−1
a′ (m) : m ∈M

}
,

we say that feedback satisfies own-action independence. This is the case, for instance,

if fa = fa′ for all a, a′ ∈ A. In particular, there is perfect feedback when the DM ex

post observes the realized state st; that is, fa is injective for each a ∈ A.

Example 1 (Prelude). Consider an urn that contains black (B), green (G) and yellow
(Y ) balls. At each time t, the DM is asked to bet 1 euro on the color of the ball that

will be drawn from the urn; therefore the possible bets are b, g, and y. Suppose that,

ex ante, as in the classical Ellsberg’s paradox, the DM is told that one third of the balls

are black, and that the only possible colors are B, G and Y . That is, the set of posited

models is P = {p ∈ ∆ : p(B) = 1/3}. Ex post, after the draw, he only learns the result
of his bet, namely, whether or not he wins 1 euro. In other words, the messages are

the obtained prizes. Here, S = {B,G, Y }, A = {b, g, y} and C = M = {0, 1}. The
consequence function is

ρ (b, B) = ρ (y, Y ) = ρ (g,G) = 1;

ρ (b, Y ) = ρ (b,G) = ρ (g,B) = ρ (g, Y ) = ρ (y,B) = ρ (y,G) = 0.

The feedback function coincides with the consequence function, f = ρ, and is described

by the following table:
ρ, f B Y G

b 1 0 0

y 0 1 0

g 0 0 1

period t is also available ex ante at t+ 1.
7If fa is not onto, the collection of subsets

{
f−1a (m) : m ∈M

}
also contains the empty set, hence

it is not a partition according to the standard meaning. We neglet for simplicity this minor detail,

which does not affect our analysis.
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Therefore, we have:

f−1
b (1) = {B} , f−1

b (0) = {Y,G} ,
f−1
y (1) = {Y } , f−1

y (0) = {B,G} ,
f−1
g (1) = {G} , f−1

g (0) = {B, Y } .

Note that own-action independence is violated: Ex post, betting on b yields the par-

tition {{B} , {Y,G}} of S, while the bets on y and g respectively yield the partitions
{{Y } , {B,G}} and {{G} , {B, Y }}. If, instead, we assume that M = {0, 1} × S and

∀(a, s) ∈ A× S, f(a, s) = (ρ (a, s) , s) ,

then the DM observes the color of the ball drawn– on top of the payoff– and we

have perfect feedback. In this case, betting on any color always yields the partition

{{B} , {G} , {Y }}. N

Example 2 (Two-Arm Bandit). There are two urns, I and II, with black and green
balls. The DM chooses an urn, say k, and wins 1 euro if the ball drawn from urn

k is green (Gk, good outcome from urn k) and zero if it is black (Bk, bad out-

come from urn k). The outcome for the chosen urn is observed ex post. Here,

S = {BIBII , BIGII , GIBII , GIGII}, A = {I, II}, and C = M = {0, 1}; the mes-
sages are the prizes. The consequence function and feedback function coincide and are

described by the following table:

ρ, f BIBII BIGII GIBII GIGII

I 0 0 1 1

II 0 1 0 1

Therefore:

f−1
I (1) = {GIBII , GIGII} , f−1

I (0) = {BIBII , BIGII} ,
f−1
II (1) = {BIGII , GIGII} , f−1

II (0) = {BIBII , GIBII} .

Thus, betting on the first urn yields the partition {{GIBII , GIGII} , {BIBII , BIGII}},
while betting on the second urn yields the partition {{BIGII , GIGII} , {BIBII , GIBII}}.
Own-action independence of feedback does not hold. N

2.3 Strategies and information

Strategies At each period t, the overall ex ante information available to the DM is

given by the histories of actions and messages, at−1 and mt−1. The ex ante information

history ht at time t is given by:

h1 =
(
a0,m0

)
; ∀t > 1, ht =

(
at−1,mt−1

)
= (ht−1, at−1,mt−1) ,
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where (a0,m0) represents null data. Hence, the ex ante information history space Ht+1

at the beginning of period t+ 1, determined by information about previous periods, is

Ht+1 =
{

(at,mt) ∈ At ×M t : ∃st ∈ St, ∀k ∈ {1, ..., t}, mk = f(ak, sk)
}
.

By definition, H1 = {(a0,m0)}.
Strategies specify an action for each possible information history. Thus, they are

modelled as sequences α = (αt) of functions, with αt : Ht → A for each t. Since

H1 = {(a0,m0)} is a singleton, the first term α1 prescribes a non-contingent action.

Information and strategies A state process s∞ and a strategy α = (αt) recursively

induce an action process (aαt ), a message process (mα
t ) and an information process

hα = (hαt ), as follows:

(i) aα1 = α1 (a0,m0) and aαt = αt (hαt ) for each t > 1;

(ii) mα
t = f (aαt , st) for each t;

(iii) hα1 = (a0,m0) and hαt+1 = (hαt , a
α
t ,m

α
t ) for each t.

In words, at each period t, an action at is selected according to the time-t strategy

αt based on the information history ht = (ht−1, at−1,mt−1). In turn, its execution

generates a message mt that may be considered in subsequent periods. Note that

α1 prescribes only one action, α1 (s0,m0), which, together with realization s1 of s1,

initializes the recursion by sending message m1.

The sequence of σ-algebras (σ (hαt )) on S∞ generated by the information process

(hαt ) is a filtration that describes the information structure generated and used by

strategy α. Since feedback will typically not be perfect, this filtration is coarser than

the one generated by the state process s; that is, σ (hαt ) ⊆ σ (st−1) for each t > 1. For

this reason, without loss of generality, we can regard hαt , and also a
α
t and m

α
t−1, as

functions defined on St−1.8

Identification correspondence Information history ht = (at−1,mt−1) yields the

information set:

I (ht) :=
t−1∏
τ=1

f−1
aτ (mτ ) =

{
st−1 ∈ St−1 : ∀τ ∈ {1, . . . , t− 1}, f (aτ , sτ ) = mτ

}
.

This is what information history ht says about the past state history st−1. A priori,

a strategy α can reach all information histories that belong to the image of hαt ; for

8Recall that σ
(
s0
)
is the trivial σ-algebra.
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any reachable ht, it holds that I (ht) = (hαt )−1 (ht).9 This is what ht says about st−1

to a DM who reached it by using strategy α. In particular, fix a state history s̄t−1;

the set I (hαt (s̄t−1)) is the collection of all state histories st−1 that are observationally

equivalent to s̄t−1 given information hαt (s̄t−1). In view of this, define ιαt : St−1 → 2S
t−1

by

ιαt
(
st−1

)
:= I

(
hαt
(
st−1

))
=
(
(hαt )−1 ◦ hαt

) (
st−1

)
. (4)

We can regard ιαt as the identification correspondence determined by α at time t. This

correspondence models the information about state histories which is available ex ante

at time t to a DM who is acting according to strategy α.

Clearly, st−1 ∈ ιαt (st−1), and so the correspondence induces a partition. We have

perfect (state) identification under α when ιαt (st−1) = {st−1} for each st−1 and each

t > 1; in this case, the DM knows the actual past history st−1. Otherwise, we have

partial identification. This dependence on α of the identification correspondence will

play a key role in our results. Of course, there is no such dependence under own-action

independence of feedback; in this case, we can write ιt (st−1). In particular, under

perfect feedback we have ιt (st−1) = {st−1}.

Identification algebra As noted above, the collection:{
I ⊆ St−1 : ∃st−1 ∈ St−1, I = ιαt

(
st−1

)}
=
{
I ⊆ St−1 : ∃ht ∈ Imhαt , I = I (ht)

}
(5)

is a partition of St−1. The sigma algebra σ (hαt ) ⊆ 2S
t−1
is in fact generated by this

partition; for this reason, we call it the identification (sigma) algebra determined by

strategy α at time t.10 Under perfect feedback, we have σ (hαt ) = 2S
t−1
; otherwise,

σ (hαt ) can be coarser than 2S
t−1
.

Thus, the filtration (σ (hαt )) models the evolution of the DM’s information about

the state histories st. Events that belong to this filtration are called α-observable. The

filtration is increasing; that is, σ (hαt ) ⊆ σ
(
hαt+1

)
for each t. We denote by σ (hα) =

σ (∪tσ (hαt )) the σ-algebra generated by this filtration. In other words, σ (hα) is the

sigma algebra generated by the α-observable events. Under own-action independence,

information does not depend on strategy α. For example, under perfect feedback, we

have σ (hα) = B (S∞) for each strategy α.

Example 3 (Act I). Assume that only bets on either black or yellow are possible, not
on green. As a result, we now have A = {b, y} and the table in the Prelude becomes:

ρ, f B Y G

b 1 0 0

y 0 1 0

9More precisely, I(ht) is the projection on St−1 of the pre-image of ht under hαt .
10More precisely, the identification algebra is the projection on St−1 of σ (hαt ).
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Throughout our leading example, we will consider two strategies, denoted by αNE

(No Experimentation) and αE (Experimentation). Strategy αNE bets on black forever;

while strategy αE experiments with yellow in period 1, and, from period 2 onwards, the

action selected depends on the result of this experimentation: If a success is observed

in period 1, y is chosen forever, otherwise b is chosen forever.11 Formally:

Strategy αNE: For each ht = (at−1,mt−1),

αNEt (ht) =


b if t = 1 or if t > 1 and at−1 = b,

y if t > 1, at−1 = y and (y, 1) ∈ {(a1,m1), . . . , (at−1,mt−1)},
b if t > 1, at−1 = y and (y, 1) /∈ {(a1,m1), . . . , (at−1,mt−1)}.

Of course, to assess deviations, the strategy must specify actions to be taken at histories

that the strategy itself excludes, such as what to do after having bet on yellow.

By always betting on black, the DM cannot observe the relative frequencies of Y

and G. In particular, for each period t and state history st−1,

aα
NE

t

(
st−1

)
= b,

mαNE

t

(
st
)

=

{
1 if st = B,

0 if st ∈ {Y,G},

hα
NE

t+1

(
st
)

=

{
(hα

NE

t (st−1) , b, 1) if st = B,

(hα
NE

t (st−1) , b, 0) if st ∈ {Y,G},
.

Moreover,

I(hα
NE

2 (s1)) =

{
{B} if s1 = B,

{G, Y } if s2 ∈ {G, Y },

and, for each t and st−1,

I(hα
NE

t+1

(
st−1, B

)
) = I(hα

NE

t

(
st−1

)
)× {B},

I(hα
NE

t+1

(
st−1, G

)
) = I(hα

NE

t+1

(
st−1, Y

)
) = I(hα

NE

t

(
st−1

)
)× {G, Y } .

The identification algebra is then σ(hα
NE

t ) = {∅, {B}, {G, Y }, S}t−1. In particular,

I(hα
NE

t+1 (st)) = {st} if and only if st = Bt (B t-times). Thus, strategy αNE only allows

partial identification.

11In this paragraph, we do not explicitly comment on behavior at information histories ruled out

by the strategy itself.
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Strategy αE: For each ht = (at−1,mt−1),

αEt (ht) =


y if t = 1,

b if t > 1 and at−1 = b,

y if t > 1, at−1 = y and (y, 1) ∈ {(a1,m1), . . . , (at−1,mt−1)},
b if t > 1, at−1 = y and (y, 1) /∈ {(a1,m1), . . . , (at−1,mt−1)}.

The only difference between this strategy and αNE is the action chosen in the first

period.

Such strategies are more easily understood as finite automata. In particular, we

can consider a common set of states and the same decision and transition functions,

the only difference being given by the initial state:

• The set of states is Q = {E,NE,ES,NES}; intuitively, states of the form XS

(with X = E,NE) are reached after having experienced at least one Success

betting on yellow.

• The initial states for αNE and αE are, respectively, qαNE = NE and qα
E

= E;

• The decision function is

d (q) =

{
y if q ∈ {E,ES},
b if q ∈ {NE,NES}.

• The transition function is

τ (q, a,m) =


NE if (q, a,m) ∈ {(E, b, ·) , (E, y, 0) , (NE, b, ·) , (NE, y, 0)} ,
ES if (q, a,m) ∈ {(·, y, 1) , (NES, y, 0) , (ES, y, 0)} ,
NES if (q, a,m) ∈ {(ES, b, ·) , (NES, b, ·)}.

12



Next we describe the induced processes of actions and messages:

aα
E

1 = y,

mαE

1 (s1) =

{
1 if s1 = Y,

0 if s1 ∈ {B,G},

hα
E

2 (s1) =

{
(y, 1) if s1 = Y,

(y, 0) if s1 ∈ {B,G},

and, for each t > 1 and st−1,

aα
E

t

(
st−1

)
=

{
y if s1 = Y,

b else,

mαE

t

(
st
)

=


1 if s1 = Y and st = Y,

1 if s1 ∈ {B,G} and st = B,

0 else,

hα
E

t+1

(
st
)

=


(hα

E

t (st−1) , y, 1) if s1 = Y and st = Y,

(hα
E

t (st−1) , b, 1) if s1 ∈ {B,G} and st = B,

(hα
E

t (st−1) , y, 0) if s1 = Y and st ∈ {B,G},
(hα

E

t (st−1) , b, 0) if s1 ∈ {B,G} and st ∈ {Y,G}.
Since

I
(
hα

E

t+1

(
st
))

=



{Y t} if st = Y t,

{Y t−1} × {B,G} if st ∈ {Y t−1} × {B,G},
· · · · · ·
{B,G} × {Bt−1} if st = Bt,

{B,G} × {Y,G}t−1 if st = Gt,

the identification algebra is

σ
(
hα

E

t+1

)
=
{
∅, {Y t}, {Y t−1} × {B,G}, . . . , {B,G} × {Bt−1}, {B,G} × {(Y,G)t−1}, S

}
.

For instance, if t = 3, we have:

σ
(
hα

E

3

)
=

{
∅, {Y 3}, {Y 2} × {B,G}, {Y } × {B,G} × {Y },

{Y } × {(B,G)2}, {B,G} × {B2}, {B,G} × {B} × {Y,G}
{B,G} × {Y,G} × {B}, {B,G} × {(Y,G)2}, S

}
.

Note that I(hα
E

t (st)) = {st−1} if and only if st = Y t: The DM learns the past state

history if and only if yellow happens to be drawn at each time. N

13



3 Models, learning, and payoffs

3.1 Distributions and updating

Distributions Fix a probability model of the stochastic process of states p : B (S∞)→
[0, 1]. If information history ht is reached, the conditional probability p (· | ht) :

B (S∞)→ [0, 1] is defined as p (B | ht) = p (B ∩ I (ht)) /p (I (ht)) for each B ∈ B (S∞),

if p (I (ht)) > 0. The regular conditional probability p (· | hαt (·)) keeps track of the
information histories that strategy α can actually reach at each period t. Recall that,

for each event B ∈ B (S∞), p (B | hαt (·)) is a σ (hαt )-measurable function.12 The condi-

tional probability at time t, p (· | hαt (·)), is an α-dependent random measure, because

it is a function of the random information history hαt generated by strategy α.

Predictive and posterior probabilities A measure µ : B (∆ (S∞)) → [0, 1] is

called a prior probability. A prior induces a predictive distribution pµ ∈ ∆ (S∞) defined

by pµ (B) =
∫

∆(S∞)
p (B)µ (dp) for all B ∈ B (S∞). Moreover, for each t, we denote

by µ (· | ht) the posterior of µ given information history ht.13 Recall that, for each

D ∈ B (∆ (S∞)),

µ (D|ht) =
1

pµ (I (ht))

∫
D

p (I (ht))µ (dp) ,

provided that pµ (I (ht)) > 0. The conditional predictive distribution pµ (· | ht) is such
that, for each B ∈ B (S∞),

pµ (B | ht) =

∫
∆(S∞)

p (B | ht)µ (dp | ht) .

Observationally equivalent models Given any p ∈ ∆ (S∞), denote by pα : σ (hα)→
[0, 1] its restriction to the sigma algebra σ (hα) generated by the α-observable events.

Fix a true model p̄; the σ (hαt )-measurable correspondence P̂α,µ
t (p̄) : St−1 → 2∆(S∞)

given by

P̂α,µ
t (p̄)

(
st−1

)
=
{
p ∈ suppµ

(
·|hαt

(
st−1

))
: pα

(
·|hαt

(
st−1

))
= p̄α

(
·|hαt

(
st−1

))}
represents the collection of models that are deemed possible and that, conditional on

hαt (st−1), are observationally equivalent to the true model p̄ under strategy α and prior

µ.14 Note that, for some st−1, the set P̂α,µ
t (p̄) (st−1) may be empty if p̄ /∈ suppµ.

The next lemma establishes a monotonicity property of this correspondence with

respect to time.

12See Appendix 7.1 for a formal definition of regular conditional probability.
13See Appendix 7.1 for a formal definition.
14It is actually enough to require pα

(
E | hαt

(
st−1

))
= p̄α

(
E | hαt

(
st−1

))
for all E ∈ ∪t≥1σ (hαt ).

That is, observational equivalence is determined by the α-observable events.
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Lemma 1. For every period t, P̂α,µ
t (p̄) (·) ⊆ P̂α,µ

t+1 (p̄) (·) p̄-almost surely.

The intuition behind the lemma is as follows. The set P̂α,µ
t (p̄) (st) may contain

models that disagree with p̄ on the relative probabilities of past events (up to t), but

that agree with p̄ on the relative probabilities of future events (from t + 1). Almost

every model that agrees with p on future events conditional on information up to t also

agrees on future events conditional on information up to t+ 1.

It follows from the lemma that, p̄-a.s.,

P̂α,µ
1 (p̄) := {p ∈ suppµ : pα = p̄α} ⊆ P̂α,µ

t (p̄) (·)

for every t. The set P̂α,µ
1 (p̄) represents the irreducible model uncertainty that, when p̄ is

the true model, the DM faces if he plays α and holds belief µ.15 When P̂α,µ
1 (p̄) = suppµ,

such uncertainty does not allow any learning, as all the models that the DM initially

deems possible are α-observationally equivalent to the true model. The opposite is true

when P̂α,µ
1 (p̄) = {p̄}, since in this case the DM will assign probability arbitrarily close

to 1 to the true model as he accumulates observations.

Identification of models We say that p and p̄ are α-orthogonal, which we denote

by pα ⊥ p̄α, if there is some event E ∈ σ (hα) such that p (E) = 0 and p̄ (E) = 1; in

words, they are distinguishable– at least in the long run, or asymptotically– by some

observable event, given strategy α.

The collection of models that are distinguishable from p̄ conditional on hαt under

strategy α and prior µ is a σ (hαt )-measurable correspondence ⊥α,µt (p̄) : St−1 → 2∆(S∞)

given by:

⊥α,µt (p̄)
(
st−1

)
=
{
p ∈ suppµ

(
·|hαt

(
st−1

))
: pα

(
·|hαt

(
st−1

))
⊥ p̄α

(
·|hαt

(
st−1

))}
.

The notions of observationally equivalent models and orthogonal models motivate

the following definition. In what follows, we will often study the property of a triple

(α, µ, p̄). The interpretation is the following: α is the strategy that is carried on by

the DM, µ is a prior probability that corresponds to his belief over models at period 0,

and the probability measure p̄ on (S∞,B(S∞)) is the “correct”model, that is, the one

characterizing the data generating process. In view of this, we study the triple (α, µ, p̄)

in order to understand what happens to a DM who follows strategy α when his prior

probability is µ and the data generating process is p̄. Therefore, we have a particular

interest in the statements that hold p̄-a.s., that is, that are almost surely true with

respect to the correct model.

15In this work, we use the term belief to denote the probability assessment over (stochastic) models.

Using the terminology of Marinacci (2015), this belief represents how the DM addresses epistemic

uncertainty, whereas models capture the (perceived) physical uncertainty.
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Definition 1. The triple (α, µ, p̄), where α is a strategy, µ is a prior probability and p̄

is a probability measure on (S∞,B(S∞)), is consistent at time t if (i) P̂α,µ
t (p̄) (·) 6= ∅

and (ii) suppµ (·|hαt (·)) = P̂α,µ
t (p̄) (·) ∪ ⊥αt (p̄)(·) p̄-a.s.

In words, the triple (α, µ, p̄) is consistent16 at time t if, conditional on the available

information hαt ,

(i) at least one model deemed possible is α-observationally equivalent to the true

model;

(ii) the set of models deemed possible is partitioned into models that are α-observationally

equivalent to the true model and those that are (asymptotically) α-distinguishable

from it.

Suppose that suppµ consists of i.i.d. models pπ parameterized by their marginals

π ∈ ∆ (S), so that it makes sense to write µ ∈ ∆(∆(S)) and P̂α,µ
t (π̄). Let

σ≥t(h
α(st−1)) =

{
E ⊆ S∞ : I

(
hαt
(
st−1

))
× E ∈ σ(hα)

}
be the sigma-algebra of α-observable events from date t onwards given st−1. Then,

P̂α,µ
t (π̄) (st−1) and ⊥α,µt (π̄) (st−1) are given by, respectively,{

π ∈ suppµ
(
·|hαt

(
st−1

))
: ∀E ∈ σ≥t

(
hα
(
st−1

))
, pαπ (E) = pαπ̄ (E)

}
and{

π ∈ suppµ
(
·|hαt

(
st−1

))
: ∃E ∈ σ≥t

(
hα
(
st−1

))
, pαπ (E) = 1− pαπ̄ (E) ∈ {0, 1}

}
.

Hence, (α, µ, p̄) is consistent at t if, for p̄-almost every st−1, P̂α,µ
t (π̄) (st−1) 6= ∅ and,

for each pπ ∈ suppµ (· | hαt (st−1)), either pαπ (E) = pαπ̄ (E) for all E ∈ σ≥t (hα (st−1)) or

pαπ (E) = 1− pαπ̄ (E) ∈ {0, 1} for some E ∈ σ≥t (hα (st−1)). Tail events are particularly

useful in understanding if two models are orthogonal. Indeed, by Kolmogorov’s 0-1

law, we know that these events have either probability 1 or probability 0 under a

model. Therefore, if two models disagree over the probability of a tail event, they are

automatically orthogonal.

The previous framework can be applied both to the case of a prior with a finite

or an infinite support. However, to ease the analysis, from now on, we maintain the

following assumption:

16The word consistent may recall the consistency criterion imposed in Arrow and Green (1973).

However, note that theirs is an "existence of equilibrium condition" requiring that, given any DM’s

action and true model, there exists a subjective model conceivable by the DM that is observationally

equivalent to the actual one.
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Assumption The prior belief µ has finite support.

In view of Lemma 1, for a triple (α, µ, p̄) it is easier to meet the conditions for

consistency as t gets larger. We denote by T = T (α, µ, p̄) the smallest t for which the

triple is consistent, if such t exists; in this case we say that the triple is consistent from

period T .

Proposition 1. Let (α, µ, p̄) be consistent from some period T ≥ 1. Then,

lim
t→∞

µ(P̂α,µ
T (p̄) (·) | hαt (·)) = 1 p̄α-a.s. (6)

In words, a triple (α, µ, p̄) that is consistent from some period T allows the DM to

learn in the long run the α-observable implications of the true model p̄.17

The mapping p 7→ P̂α,µ
T (α,µ,p)(p)(·) can be viewed as the (long-run)model-identification

map determined by α and µ. We have perfect model identification when P̂α,µ
T (α,µ,p)(p)(·) =

{p} for each p; in this case, the DM who holds belief µ and plays strategy α learns

the true model in the long run. Otherwise, we have partial model identification: Even

in the long run, the DM is only able to asymptotically identify a collection of possible

models.

Perfect model identification occurs, for instance, under perfect feedback: If past

states are observable, the true model is asymptotically identified. This is the classical

result of Doob (1949); it is enough to recall that, under perfect feedback, P̂α,µ
1 (p̄) = {p̄}.

Corollary 1. Let (α, µ, p̄) be consistent from period T = 1. Under perfect feedback,

µ (p̄ |·)→ 1 p̄-a.s.

In terms of predictive distributions, Proposition 1 implies that predictive and true

conditional distributions merge on events in σ (hα), which can be thus regarded as the

learnable events.

Corollary 2. Let (α, µ, p̄) be consistent from period T . Then,∣∣∣pµ(·|hαT (·)) (Bt | hαt (·))− p̄ (Bt | hαt (·))
∣∣∣→ 0 p̄α-a.s. (7)

for each sequence of events (Bt) with range in σ (hα).

For example, if Bt = St−1 × {(st, ..., st+k)} × S∞ ∈ σ (hα) for each t, then (7)

becomes: ∣∣∣pµ(·|hαT (·)) (st, ..., st+k | hαt (·))− p̄ (st, ..., st+k | hαt (·))
∣∣∣→ 0 p̄α-a.s.

17Since P̂α,µT (p̄) (·) ⊆ P̂α,µt (p̄) (·) (p̄-a.s.) for all t > T , (6) implies that µ
(
P̂α,µt (p̄) (·) |hαt

)
→ 1

p̄α-a.s. if the triple is consistent at any t > T .
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That is, the predictive and the true conditional distributions of the future finite history

(st, ..., st+k) merge, provided that such history is learnable (that is, that it belongs to

σ (hα)).

Finally, from (7) it follows that, for every E ∈ σ (hα), if we define p (·|hα(·)) :=

limt→∞ p (·|hαt (·)) ,

pµ(·|hαT (·)) (E | hα(·)) = p̄ (E | hα(·)) ∈ {0, 1} p̄α-a.s.

That is, the DM asymptotically learns whether or not the events in σ (hα) obtain. Of

course, the result is non-trivial only for events in the tail (e.g., Ei in the example below).

Otherwise, if E ∈ σ (hαk ), i.e., E =
⋃

sk−1∈S̄k−1

ιαk
(
sk−1

)
for some S̄k−1 ⊆ Sk−1, then, for

each t ≥ k, either ιαt (st−1) ⊆ E or ιαt (st−1)∩E = ∅, thus pµ(·|hαT (sT−1)) (E | hαt (st−1)) =

p̄ (E | hαt (st−1)) = 1 for t ≥ k if ιαt (st−1) ⊆ E, and 0 if ιαt (st−1) ∩ E = ∅.

Example 4 (Act II). We consider i.i.d. models p ∈ ∆ (S∞) parameterized by their

marginals margS p = π ∈ ∆ (S). Each of these models describes a possible composition

of the urn. The prior µ ∈ ∆ (∆ (S)) is thus directly defined on the marginals.

Suppose that the DM:

1. knows that 1/3 of the balls are black (and so all his models π are such that

π (B) = 1/3);

2. has a 3-point prior µ with suppµ =
{
πY , πuni, πG

}
and believes it is equally

likely that the true model is either πY (with πY (Y ) = 2/3), the uniform model

πuni, or πG (with πG (G) = 2/3):

Marginals B Y G

πY 1
3

2
3

0

πuni 1
3

1
3

1
3

πG 1
3

0 2
3

Prior πY πuni πG

µ 1
3

1
3

1
3

By requiring to always bet on the color with known proportion, strategy αNE does

not allow the DM to learn anything. Formally,

∀π ∈ suppµ, µ
(
π|hαNEt (·)

)
= µ (π) .

Here, T (αNE, µ, π̄) = 1 and P̂αNE ,µ
1 (p̄) = suppµ; strategy αNE only allows partial

identification.
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For strategy αE, if π̄ ∈ suppµ, T (αE, µ, π̄) = 2. To see why this is the case, note

that suppµ (·|(y, 1)) = {πY , πuni}, suppµ (·|(y, 0)) = {πY , πuni, πG}, and

P̂αE ,µ
2 (π̄) (s1) =

{
{π̄} if hα

E

2 (s1) = (y, 1) ,{
πY , πuni, πG

}
if hα

E

2 (s1) = (y, 0) ,

=

{
{π̄} if s1 = Y,{
πY , πuni, πG

}
else.

We have that pα
E

πY ⊥ pα
E

πuni on σ≥2(hα
E

)(Y ), because betting on yellow forever reveals

its objective probability as the long-run frequency of winning (2/3 under πY and 1/3

under πuni). Formally, for i ∈ {1, 2}, let:

Ei :=

{
s∞ ∈ S∞ : lim

t→∞

1

t

t+1∑
k=2

1Y (sk) =
i

3

}
.

We have E1, E2 ∈ σ≥2(hα
E

)(Y ), pα
E

πuni(E1) = pα
E

πY (E2) = 1 and pα
E

πuni(E2) = pα
E

πY (E1) = 0.

This establishes that the triple
(
αE, µ, π̄

)
is minimally consistent at T = 2. By

Proposition 1,

µ
(
·|hαEt

)
→
{
δπ̄ if hα

E

2 = (y, 1) ,

µ (· | (y, 0)) if hα
E

2 = (y, 0) .

If experimentation yields a success, the true model is asymptotically learned. Oth-

erwise, if h2 = (y, 0), posterior beliefs attain their limit value already in the second

period and the DM remains in the dark. N

3.2 Value

At each time t there is a (time invariant) instantaneous utility function u : C → R,
and an instantaneous payoff function r = u◦ρ. If ht is observed, the DM ranks strategy

α given prior µ according to the present value, discounted by a factor δ ∈ [0, 1), of the

continuation stream of utility certainty equivalents:18

V (α, µ | ht) :=
∞∑
τ=t

δτ−tφ−1

(∫
∆(S∞)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
p (sτ | ht)

)
µ (dp | ht)

)
.

This criterion ranks at each point of time the current payoffs according to the smooth

ambiguity model and then aggregates over time their (utility) certainty equivalents

through discounting. Therefore, (utility) smoothing over time is irrelevant. Indeed,

when a DM evaluates two continuation streams of utility certainty equivalents, he is

interested only in their discounted sum, not on their variability over time.

In particular, we obtain:

18Recall that aαt
(
st−1

)
= αt

(
hαt
(
st−1

))
.
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(i) V (α, µ | ht) =
∑∞

τ=t δ
τ−t∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) pµ (sτ | ht) when φ is linear;

(ii) V (α, µ | ht) =
∑∞

τ=t δ
τ−t∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | ht) when suppµ = {p}.

We remark that, except for the benchmark case of ambiguity neutrality, this additive

value function does not admit a recursive formulation. This is related to the well-known

dynamic inconsistency of decision makers with non-neutral attitudes toward ambiguity.

For this reason, we are not allowed to use many of the standard dynamic programming

results. We provide an example of this inconsistencies in our setting.

Example 5 (Dynamic inconsistency). We consider a modified version of our leading
example. To ease calculations, we consider the two-periods truncated problem.19 As-

sume also, as in Act I, that only bets on either black or yellow are possible, not on

green. However, we assume that it is also possible to bet on black and to observe the

color of the selected ball, action bo. Finally, we normalize payoffs as u (0) = 0 and

u (1) = 1. With two outcomes, risk aversion is irrelevant and we can set u(c) = c, so

that r = u◦ρ = ρ, whereas f is described by the table (∗ means “no direct observation
of the color”):

f B Y G

b 1, ∗ 0, ∗ 0, ∗
y 0, ∗ 1, ∗ 0, ∗
bo 1, B 0, Y 0, G

We consider i.i.d. models p ∈ ∆ (S∞) parameterized by their marginals margS p =

π ∈ ∆ (S). Each of these models describes a possible composition of the urn. The

prior µ ∈ ∆ (∆ (S)) is thus directly defined on the marginals.

Suppose that the decision maker:

1. knows that 1/3 of the balls are black (and so all her models π are such that

π (B) = 1/3);

2. believes it is equally likely that the true model is either πY or πG.

Summing up:
Marginals B Y G

πY 1
3

5
12

1
4

πG 1
3

1
4

5
12

Prior πY πG

µ 1
2

1
2

19The two-periods problem can be easily framed into our infinite horizon setting. More precisely, it

is obtained if all the models assign probability one to the same deterministic outcome after period 2,

that is, all the uncertainty is resolved after the first two periods.
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Let φ(x) = −e−10x; the ex-ante optimal strategy is:

α′: “Bet on black observing the color at t = 1. For t = 2, given yellow in the first

period, bet on yellow, otherwise bet on black.”20

However, α′ does not satisfy the one-shot deviation property. Indeed, after having

observed yellow, the DM prefers to bet on black.

The ex-ante value of strategy α′ is:

V
(
α′, µ, |

(
a0,m0

))
=

2∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aα
′

τ

(
sτ−1

)
, sτ

)
π (sτ | ht)

)
µ
(
dπ |

(
a0,m0

)))

=
1

3
+ δφ−1 (µ

(
πY | (a0,m0)

)
φ
(
1 · πY (Y )2 + 1 ·

(
1− πY (Y )

) (
πY (B)

))
+µ
(
πG | (a0,m0)

)
φ1 · πG (Y )2 + 1

(
1− πG (Y )

) (
πG (B)

)
)

= 0.3 + δ0.3364.

On the other hand, the posterior belief after having chosen bo and having observed

yellow, is:

µ(πY |(bo, Y )) = µ(πY |
(
a0,m0

)
)
πY (Y )

πµ(Y )
=

1

2
· 5

12
/

1

3
=

5

8
,

that is:
Posterior πY πG

µ(·|(bo, Y )) 5
8

3
8
.

Hence, we obtain

V (α′, µ (·|(bo, Y )) | (bo, Y ))

= φ−1
(
µ
(
πY | (bo, Y )

)
φ
(
1 · πY (Y )

)
+ µ

(
πG | (bo, Y )

)
φ
(
1 · πG (Y )

))
= φ−1

(
5

8
φ

(
1 · 5

12

)
+

3

8
φ

(
1 · 1

4

))
∼= 0.3207

<
1

3
= V (α′, µ (·|(y, 1)) | (y, 1)) .

This is a typical example of dynamically inconsistent preferences. At period 0, the

DM would like to commit to condition his behavior to the observed draw. In particular,

he would like to choose y if the draw in the first period is Y, that is, after history (bo, Y ).

Indeed, even if betting on yellow leads to ambiguous consequences, the DM is confident

that with high probability, if the true model is πG, Y will not be the first period draw.

Therefore, even under model πG this strategy presents a moderate expected value.

However, after having observed (bo, Y ), even if the posterior probability of πG is lower,

20Note that this is not a proper strategy, since it does not assign an action to every information

history. In particular, it does not assign an action to personal histories ruled out by the strategy

itself. However, the specification of the actions selected at those information histories are irrelevant

in determining ex-ante optimality.
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the DM considers the consequences of choosing action y too ambiguous. Indeed, the

expected value under model πG, 1/4, is quite small. Therefore, since the DM is highly

ambiguity averse, he will select b (or bo).

Moreover, it can be shown that the strategy “always bet on black” has a lower

ex-ante value (1 + δ)/3, but satisfies the one-shot deviation property. N

If we make explicit the information histories that the process (hαt ) can actually

reach, we have the σ (hαt )-measurable functions V (α, µ | hαt (·)). In particular, we have
the following:

(i) Under own-action independence of feedback about the state, V (α, µ | hαt (·)) =

V (α, µ | ht(·)). In this case, neither the conditional nor the posterior probabilities
depend on strategies. There is a separation between information and decision (see

Witsenhausen 1971). This is a key feature that, in general, fails.

(ii) Under perfect feedback, there is a one-to-one correspondence between inform-

ation histories ht and past histories of states st−1, and so V (α, µ | hαt (·)) =

V (α, µ |st−1(·)).

The dynamic structure D = (A, S,M, ρ, f, u, δ, φ) enriches the static structure (2).

The feedback function f and the discount factor δ are the genuine dynamic notions in

the structure of the problem. In particular, we write D = (Γ, δ, f) to emphasize both

ambiguity attitudes and feedback, our main objects of interest.

4 Self-confirming equilibrium

4.1 Steady-state analysis

We consider a stage decision problem Γ faced recurrently by a DM. He acts according

to an overall strategy α, which at each time t prescribes some action at as a function

of the information history ht = (a1,m1, ..., at−1,mt−1).

To introduce our main equilibrium concept, we need some notation. For any

strategy α, information history ht = (a1,m1, ..., at−1,mt−1) and action a, let α/(ht, a)

be the strategy that behaves as specified by ht at information histories that precede

ht (namely, at the empty sequence (a0,m0) and each hτ = (a1,m1, ..., aτ−1,mτ−1) for

τ < t), selects action a at information history ht, and coincides with α otherwise.

Definition 2. Triple (α, µ, p̄) is a self-confirming equilibrium (SCE) if:

(i) µ (p ∈ ∆(S∞) : pα = p̄α) = 1;
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(ii) For every action a, period t, and information history ht,

pµ(I(ht)) > 0⇒ V (α, µ | ht) ≥ V (α/(ht, a), µ | ht) . (8)

Condition (i) says that the DM only deems possible those models that coincide

with the true model on events that are observable, at least in the long run, under the

strategy played. In other words, his beliefs are concentrated on models that yield the

same distribution of data, given the strategy, as the true model.

Condition (ii) is the one-shot deviation property which says that– for every in-

formation history ht that the DM deems reachable with positive probability– action

αt(ht) maximizes the continuation value conditional on ht given that α will be followed

in the future. The motivation is the following: Strategy α is a plan formulated by

a sophisticated DM who understands his sequential incentives; in each period t, the

DM only controls the action in that period, and therefore we require that the decision

variable he controls maximizes his value given the continuation strategy. If the time

horizon is finite, then this condition is equivalent to folding-back planning. When the

DM is ambiguity neutral– that is, when φ is positively affi ne– , the one-shot deviation

principle implies that strategy α in an SCE (α, µ, p̄) is subjectively optimal given µ.

Our definition of SCE is closely related to the notion of subjective equilibrium

(Kalai and Lehrer 1995, henceforth KL). Besides minor details, there are two key

differences. First, we consider arbitrary beliefs over probability models, while KL only

consider Dirac beliefs over probability models. This is without loss of generality under

the assumption of subjective expected utility maximization, because only predictive

probability matter, hence a belief µ can be replaced by its predictive pµ. Since we

allow for non-neutral ambiguity attitudes, such simplification is precluded (see Sections

2.1 and 3.2). Second, the analysis of KL encompasses both strategic interaction and

single-agent decision making, whereas we focus on the latter. Relatedly, unlike KL, we

assume that the state process is exogenous, that is, the DM’s actions cannot influence

the probabilities of states in future periods, which is implausible in long-run interactions

where the states are the co-players’stage-game choices.

However, there is a specific game theoretic framework that justifies our exogeneity

assumption, the large population game. One way to interpret our setup is that it

presents the point of view of a DM who plays recurrently a game with other agents

independently drawn from large populations. The DM recognizes to be unable to

influence the evolution of the environment with his actions. With this interpretation,

the probability models describe the evolution of the distributions of actions in the co-

players populations. In KL, instead, the set of interacting players is fixed once and

for all. Finally, we emphasize that some results rely on the assumption of an i.i.d.

environment that can be hardly reconciled with a situation of long-run interaction,
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but is instead consistent with a steady-state learning environment à la Fudenberg and

Levine (1993).

4.2 I.i.d. environment

For some results, we will focus on the case where the real and the posited models are

i.i.d. We denote by π in ∆(S) the (marginal) distribution of states of nature. Since

the models are assumed to be i.i.d., this marginal uniquely pins down the model. More

precisely, we define pπ in ∆(S∞) in the following way. For every t in N, and for every
st in St,

pπ(st × S × ...) =

t∏
τ=1

π (sτ ) . (9)

In this way, we have defined pπ over all the elementary cylinders. We call pπ the

unique extension of this measure on B(S∞). Formally, beliefs are probability measures

over the measurable space (∆(S∞),B(∆(S∞)). However, since each model pπ is para-

metrized by its marginal π, we can directly consider beliefs as probability measures

over marginal distributions, that is, as elements of ∆(∆(S)). We use the letter ν to

denote generic elements of ∆(∆(S)). If the true model and the posited set of mod-

els are i.i.d., we say that the environment is i.i.d.: p̄ = pπ̄ for some π̄ ∈ ∆ (S) and

suppµ ⊆ {p ∈ ∆(S∞) : ∃π ∈ ∆ (S) , p = pπ}. In the i.i.d. environment, we consider
triples (α, ν, π̄), where π̄ is the one-period marginal of the correct model and ν is the

probability measure over marginals induced by a prior µ in the natural way. In this

context, with the term belief, we refer to the probability measure ν over marginals.

Standard results guarantee that it is without loss of generality to consider only

stationary strategies in an i.i.d. environment. A stationary strategy α is a function

α : ∆(∆(S)) → A that specifies actions as a function of the DM’s (updated) beliefs.

Formally, the strategy α : Ht → A and the beliefs ν(·|·) are such that

∀t, t′ ∈ N, ∀ht ∈ Ht, ∀h′t′ ∈ Ht′ , ν(·|ht) = ν(·|h′t′)⇒ α(ht) = α(h′t′).

In other words, the strategy must be measurable with respect to the beliefs. Note that

this restriction is imposed on the pair of strategy and beliefs, not just on the strategy.

Therefore, throughout this work, when the environment is assumed to be i.i.d., the

strategy is implicitly assumed to be stationary.

Finally, a belief ν induces a predictive marginal and a predictive distribution. The

former is defined as

πν(s) =

∫
∆(S)

π (s) ν (dπ) ,

whereas the latter is the corresponding pπν defined as in (9).
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In view of all this, we can adapt our value function to this i.i.d. environment,

obtaining:

V (α, ν|ht) =
∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ | ht)

)
.

(10)

The following result shows that in an i.i.d setting, the value function depends on the

history only through beliefs. Hence, without loss of generality, we can write V (α, ν)

to indicate the evaluation of a stationary strategy α under beliefs ν.

Lemma 2. If pπν (I (ht)) and pπν (I (h′t′)) are strictly positive, then ν(· | ht) = ν(· | h′t′)
implies V (α, ν|ht) = V (α, ν|h′t′).

We can also specialize the notion of SCE to the i.i.d. case.

Remark 1. The triple (α, ν, π̄) is an SCE in an i.i.d. environment if:

• supp ν ⊆ {π ∈ ∆(S) : pαπ = pαπ̄};

• for every action a, period t, information history ht, and ,

pπν (I(ht)) > 0⇒ V (α, ν(· | ht)) ≥ V (α/(ht, a), ν(· | ht)).

4.3 Learning dynamics

While DM faces a recursive choice problem, the notion of SCE characterizes behavior

and beliefs after the latter have “converged.”In other words, the data provided by the

equilibrium strategy does not lead to any further updating, because the models that

the DM deems possible in an SCE cannot be distinguished from each other or from the

true model.

In dynamic settings, we may be interested not only in behavior after beliefs have

become “stationary,”but also in behavior as the DM is learning from the data. To this

end, we introduce the following definition of pre self-confirming equilibrium.

Definition 3. Triple (α, µ, p̄) is a pre self-confirming equilibrium if, for every period

t and information history ht,

(i) if ht ∈ Imhαt ,

p̄(I(ht)) > 0⇒ pµ(I(ht)) > 0;

(ii) for every action a,

pµ(I(ht)) > 0⇒ V (α, µ | ht) ≥ V (α/(ht, a), µ | ht) .
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The difference between Definitions 2 and 3 lies in condition (i). Here, this first

condition is weaker; we do not presume that beliefs have already “converged.”However,

beliefs must still be disciplined: The DM cannot be “surprised,” in the sense that

information sets I(ht) that have positive objective probability under strategy α (i.e.,

such that p̄(I(ht)) > 0 for ht ∈ Imhαt ) have also positive subjective probability (i.e.,

they are such that pµ(I(ht)) > 0). This is related to the absolute continuity condition

of Kalai and Lehrer (1995).

Example 6 (Act III). If we normalize payoffs as u (0) = 0 and u (1) = 1, we have r =

ρ = f . Messages are thus the bets’payoffs. Moreover, we assume that φ (u) = −e−λu,
so that higher (absolute) ambiguity aversion corresponds to higher λ (see Klibanoff et

al.). We maintain the i.i.d. hypothesis.

Suppose that the DM features the prior µ presented in Act II. We consider the

strategies αNE and αE presented there. The former strategy involves no experimenta-

tion as it recommends always betting on black, the color with the known proportion.

Thus, the value of this strategy is independent of histories and beliefs, and it is given

by:

V (αNE, µ|ht) =
1/3

1− δ .

The second strategy recommends betting on y at t = 1, and then switching to b

permanently if and only if this first bet is unsuccessful. While the DM chooses y, the

outcomes are informative about the distribution, and he updates his beliefs. Recall by

Act II that the DM has a 3-point prior µ with suppµ =
{
πY , πuni, πG

}
and believes it

is equally likely that the true model is either πY , the uniform model πuni, or πG. If we

let µ (·|ht) := (µ (πuni|ht) , µ
(
πY |ht

)
, µ
(
πG|ht

)
) the posterior is

µ (·| (y, 1)) =

(
1

3
,
2

3
, 0

)
if the outcome is Y , and

µ (·| (y, 0)) =

(
1

3
,
1

6
,
1

2

)
otherwise.

After the first period, strategy αE recommends a fixed action. Thus, the continu-

ation problem is stationary, with beliefs as states. For any history ht, (t > 1) that

induces belief µ, the continuation-value function after a success in period 1 is:

V (αE, µ) =
φ−1

(
µ (πuni)φ(1/3) + µ

(
πY
)
φ(2/3) + µ

(
πG
)
φ(0)

)
1− δ .
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For the initial history, we have:

V (αE, µ) : = V (αE, µ|
(
a0,m0

)
)

= φ−1

(
1

3
φ(1/3) +

1

3
φ(2/3) +

1

3
φ(0)

)
+

δ

1− δφ
−1 (1

3
φ
(
πuni(Y ) · 1

3
+ πuni(G ∪B) · 1

3

)
+

1
3
φ
(
πY (Y ) · 2

3
+ πY (G ∪B) · 1

3

)
+ 1

3
φ
(
πG(Y ) · 0 + πG(G ∪B) · 1

3

)
)

= φ−1

(
1

3
φ(1/3) +

1

3
φ(2/3) +

1

3
φ(0)

)
+

δ

1− δφ
−1

([
1

3
φ

(
1

9
+

2

9

)
+

1

3
φ

(
4

9
+

1

9

)
+

1

3
φ

(
1

3

)])
= φ−1

(
1

3
φ(1/3) +

1

3
φ(2/3) +

1

3
φ(0)

)
+

δ

1− δφ
−1

(
1

3
φ

(
1

3

)
+

1

3
φ

(
5

9

)
+

1

3
φ

(
1

3

))
.

Two forces affect the option value of experimentation: ambiguity aversion (the higher

the value of λ, the lower the value of experimentation) and patience (the higher the

value of δ, the higher the value of experimentation). In view of this, strategy αNE is

preferred if either δ = 0 or λ is high enough given δ > 0; if so, the triple
(
αNE, µ, π̄

)
is

a pre self-confirming equilibrium for each π ∈
{
πY , πuni, πG

}
. As for strategy αE, if δ is

suffi ciently high and λ is suffi ciently low, e.g., λ = 1 and δ = 0.39, strategy αE satisfies

the one-shot deviation property at (a0,m0) . However, because of experimentation, we

need to consider two different contingencies.

1. If experimentation is successful (i.e., s1 = Y ), the DM learns that model πG is

false and updates his belief from (1/3, 1/3, 1/3) to (1/3, 2/3, 0). At this point, the

strategy recommends sticking to y. It can be checked that this recommendation is

better than trying out b once before switching to y thereupon, that is, it satisfies

the one-shot deviation property: For all δ ∈ (0, 1) and all λ > 0,

V (αE, (1/3, 2/3, 0)) =
φ−1

(
1
3
φ(πuni(Y )) + 2

3
φ(πY (Y ))

)
1− δ

=
φ−1

(
1
3
φ(1/3) + 2

3
φ(2/3)

)
1− δ

> 1/3 + δ
φ−1

(
1
3
φ(1/3) + 2

3
φ(2/3)

)
1− δ = V (αE/b, (1/3, 2/3, 0)).

Moreover, at every subsequent period, the updating rule implies that the prior

will be of the form (1− k, k, 0), with k ∈ (0, 1). It is easy to see that

V (αE, (1− k, k, 0)) =
φ−1 ((1− k)φ(1/3) + kφ(2/3))

1− δ

> 1/3 + δ
φ−1 ((1− k)φ(1/3) + kφ(2/3))

1− δ = V (αE/b, (1− k, k, 0)).
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2. If experimentation is unsuccessful (i.e., s1 ∈ {B,G}), the posterior of µ lowers
the weight of model πY relative to models πuni and πG, so that pµ (Y | (y, 0)) <

pµ (B | (y, 0)) = 1/3. Thereupon, strategy αE recommends switching (and stick-

ing) to black, so that the continuation value is the same as that under αNE.

Moreover, since betting on black does not lead to any further updating, it is

enough to check the inequality with second period beliefs. For suffi ciently small

δ, or for suffi ciently high λ,

V

(
αE,

(
1

3
,
1

6
,
1

2

))
(11)

=
1

3

1

1− δ

> φ−1

(
1

3
φ(1/3) +

1

6
φ(2/3) +

1

2
φ(0)

)
+

δ

1− δφ
−1

(
1

3
φ

(
1

3

)
+

1

6
φ

(
5

9

)
+

1

2
φ

(
1

3

))
= φ−1

(
1

3
φ(1/3) +

1

6
φ(2/3) +

1

2
φ(0)

)
+

δ

1− δφ
−1

(
1

3
φ

(
1

3

)
+

1

6
φ

(
5

9

)
+

1

2
φ

(
1

3

))
= V

(
αE/y,

(
1

3
,
1

6
,
1

2

))
.

In particular, this inequality holds with λ = 1 and δ = 0.39, and we have already

proved that
(
αE, µ

)
satisfies the one-shot deviation property at the root; there-

fore,
(
αE, µ, π̄

)
is a pre self-confirming equilibrium for each π ∈ suppµ. N

This example suggests the following idea: As ambiguity aversion increases, exper-

imentation becomes less attractive. Suppose for simplicity that the consequence and

feedback functions coincide (C = M and ρ = f) and that the utility function v : C → R
is injective. Then, to obtain evidence on the correct model, that is, to experiment, the

DM has to choose an action that does not induce the same probability measure over

payoffs under all the models he deems possible. This is exactly the kind of ambiguous

choice that, other things being equal, an ambiguity averse DM avoids. On the other

hand, if there is an action inducing the same probabilities of payoffs under all the

models that the DM deems possible, high ambiguity aversion makes it attractive, but

such action is not expected to be informative about the underlying probability model;

indeed, the DM is certain that his next-period belief will be the same as the current

belief if he chooses such “unambiguous”action.

The argument applied to the current-period expected payoffs can be extended to

the value of experimentation: Experimentation at time t leads the DM to condition

his behavior on the collected experimental evidence. In particular, he will choose an

action with a large payoffunder the models whose likelihood has been reinforced by the

collected evidence. However, for this reason, the next periods’expected payoff will be

model-dependent, that is, “ambiguous.”Therefore, an increase in ambiguity aversion
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reduces also the value of experimentation. To sum up, there is a trade-off between

choosing unambiguous actions and choosing informative actions. As we will see, this

fact has a key implication for the long-run limit of the process.

4.4 Convergence to SCE

We are interested in studying the limit behavior of pre self-confirming equilibria. In

particular, we investigate the conditions that imply convergence to self-confirming equi-

libria. To do this, we introduce the concept of ε-self-confirming equilibrium, which ad-

apts the definition of ε-subjective equilibrium proposed in Kalai and Lehrer (1993) to

a context of model uncertainty. The idea is that a triple (α, µ, p̄) is an ε-self-confirming

equilibrium if it satisfies two requirements. First, strategy α satisfies the one-shot de-

viation property given belief µ; second, belief µ assigns at least probability 1− ε to the
set of models p that are observationally equivalent to the true data generating model

p̄. This second requirement is a weakening of condition (i) of SCE in Definition 2.

Definition 4. The triple (α, µ, p̄) is an ε-self-confirming equilibrium if:

(i) µ (p ∈ ∆(S∞) : pα = p̄α) ≥ 1− ε;

(ii) For every action a, period t, and information history ht,

pµ(I(ht)) > 0⇒ V (α, µ | ht) ≥ V (α/(ht, a), µ | ht) .

We study the evolution of actions and beliefs starting from a pre self-confirming

equilibrium. Recall that a pre self-confirming equilibrium characterizes a sequentially

rational DM who holds beliefs that do not assign probability 0 to observable events

that can occur under the true model, that is, he cannot be completely surprised. Now,

consider a pre self-confirming equilibrium (α, µ, p) consistent from period T. Every

history ht, with positive probability under p̄, induces a reinitialized triple
(
αht , µht , p̄ht

)
.

More precisely, strategy αht corresponds to the continuation strategy induced by α for

the information histories that follow ht, which corresponds to the new empty history.

The reinitialized true model p̄ht is the restriction of p̄ on the events that are consistent

with ht, and µht is the probability measure over similarly restricted models obtained

from the posterior µ(·|ht).21

Next we show that, after a suffi ciently long history, the reinitialized triple will p̄-

almost surely converge to an ε-self-confirming equilibrium. Given a path s∞, we say

that a triple (α, µ, p) converges to an ε-self-confirming equilibrium on s∞ if from a

finite time t onward, the reinitialized triple
(
αhαt+1(st), µhαt+1(st), p̄hαt+1(st)

)
will form an

ε-self-confirming.
21See the proof of Proposition 1 for a formal definition of these objects.
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Proposition 2. Let (α, µ, p) be a pre self-confirming equilibrium. If (α, µ, p) is con-

sistent from some period T ≥ 1, then, for every ε > 0, (α, µ, p) converges p̄-almost

surely to an ε-self-confirming equilibrium.

It is interesting to investigate the strength of our convergence result. Indeed, even

if beliefs converge to a limit measure that assigns probability 1 to models that, given

the adopted strategy, are observationally equivalent to the true one, the implications

of this convergence in terms of predictive probabilities are not obvious. Therefore, in

order to relate our ε-self-confirming equilibrium to the definition proposed by Kalai

and Lehrer, we show that the predictive measure on observable events induced by the

beliefs becomes ε-close to the objective one. Thus, we show that our first requirement

for an ε-self-confirming equilibrium implies an analog of condition (c) of Kalai and

Lehrer’s definition.

Definition 5. Let ε > 0 and let p, q be two probability measures defined on a measurable

space (Ω,Σ) . We say that p is ε-close to q if there exists E ∈ Σ such that:

(i) p(E) and q(E) are greater than 1− ε,

(ii) for every E ′ ∈ Σ with E ′ ⊆ E,

|p(E ′)− q(E ′)| ≤ εq(E ′). (12)

The strength of this definition with respect to other definitions of ε-closeness (such

as the one proposed by Blackwell and Dubins 1962), derives from the approximation

restriction for small probability events. As underlined by Kalai and Lehrer (1993) in a

repeated-game framework “being correct in small probability events is important since

even significant events may have small probability if they occur late in the game.”

Given a path s∞, we say that beliefs becomes ε-close to the true model on s∞ if, from

a finite period t onward, the predictive measures becomes ε-close to the true model.

Proposition 3. Let (α, µ, p) be a pre self-confirming equilibrium. If (α, µ, p) is consist-

ent from some period T ≥ 1, then, for every ε > 0, predictive beliefs become p̄-almost

surely ε-close to the true model.

In words, the predictive probabilities induced by beliefs and the true model almost

surely merge on the observable events. Note that this result extend the “local”result

of Corollary 2 to a “global” one. On the one hand, Corollary 2 states that, given

a specific sequence of events, the predictive and the true conditional distributions of

these events merge, provided they are learnable. On the other hand, this proposition

shows that the predictive and the true conditional distributions merge “globally”on

observable events.
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The first condition of the Definition 4 ensures that the probability assigned to

the set of models observationally equivalent to p converges to 1. Now we show that

this implies that the DM understands the payoff relevant implications of the adopted

strategy. More precisely, we show that its subjective value converges to the objective

one.

Proposition 4. Let (α, µ, p) be a pre self-confirming equilibrium. If (α, µ, p) is con-

sistent from some period T ≥ 1, then, p̄-almost surely:

lim
t→∞
|V (α, µ|hαt )− V (α, δp̄|hαt )| = 0.

4.5 Convergence to static SCE

We can introduce in our framework the counterpart of the SCE notion of BCMM, which

we call “static SCE.”The key feature of the equilibrium concept of BCMM is that the

chosen action is a myopic best reply to confirmed beliefs; therefore, we consider the

following definition:22

Definition 6. A triple (a∗, ν∗, π̄) ∈ A×∆(∆(S))×∆(S) of actions, beliefs, and models

is a static SCE if

(i) ν∗
(
π ∈ ∆(S) : π ◦ f−1

a∗ = π̄ ◦ f−1
a∗
)

= 1;

(ii) a∗ ∈ arg maxa∈A φ
−1
(∫

∆(S)
φ
(∑

s∈S r(a, s)π(s)
)
ν∗(dπ)

)
.

The second condition says that a∗ is a (myopic, or one-period) best response to ν∗

given the ambiguity attitudes determined by φ. The first condition is the self-confirming

property adapted to the static framework: the distribution of messages that the DM

“observes” in the long run if he always plays a∗ is exactly what he expects. Since

payoffs are observable, the self-confirming property implies that a∗ is unambiguous for

ν∗ and the expected distribution of payoffs coincides with the one implied by the true

model π̄. Indeed, by (3),

∀π ∈ supp ν, π ◦ ρ−1
a∗ = π ◦ f−1

a∗ ◦ γ−1
a∗ = π̄ ◦ f−1

a∗ ◦ γ−1
a∗ = π̄ ◦ ρ−1

a∗ .

Does our result of convergence of pre-SCE to SCE imply convergence to a static

SCE? It is clear that condition (i) of SCE (Definition 3) implies condition (i) of Defin-

ition 6. Moreover, at an SCE in an i.i.d. environment, since beliefs are confirmed

and the strategy is stationary, a unique action α (ν∗) is played. However, while the

definition of static SCE (a∗, ν∗, π∗) requires a∗ to be the myopic best reply to ν, in an

SCE, strategy α is required to satisfy the one-shot deviation property. The following

result sheds light on the relation between SCE and static SCE.
22We adopt the standard “pushforward”notation: given π ∈ ∆ (S) and fa : S → M , the induced

measure on M is π ◦ f−1a , where (π ◦ f−1a ) (m) = π
(
f−1a (m)

)
for each m.
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Proposition 5. Fix an i.i.d. environment and let the triple (α, ν, π) be an SCE. Then

the triple (α(ν), ν, π) is a static SCE.

Then, we show that, under our assumption, beliefs converge almost surely to a

random limit ναs∞

Lemma 3. Let (α, ν, π) be a pre self-confirming equilibrium in an i.i.d. environment.

If (α, ν, π) is consistent from some period T ≥ 1, then beliefs converge almost surely to

a random limit ναs∞ .

We remark that, in an i.i.d. environment, consistency simply requires that the DM

assigns positive probability to the set of model observationally equivalent– under the

adopted strategy– to the true model π̄.23

Finally, we can combine Lemma 3 and Proposition 5 to provide a learning founda-

tion to the concept proposed by BCMM. Given a path s∞, we say that a triple (α, ν, π)

converges to a static SCE on s∞ if from a finite time t onward, (aαt (st−1), ναs∞ , π) forms

a static SCE. Note that the tail sequence of actions (aατ (sτ−1))τ≥t is not required to be

constant.

Proposition 6. Let (α, ν, π) be a pre self-confirming equilibrium in an i.i.d. environ-

ment. If (α, ν, π) is consistent from some period T ≥ 1, (α, ν, π) converges p̄-almost

surely to a static SCE.

The intuition is as follows. Under the stated assumptions, beliefs converge almost

surely to a random limit ναs∞ . Since the action set A is finite, after a random time

T̂s∞ , each action chosen by α is played infinitely often and must be a best reply to the

limit belief ναs∞ , because it is (asymptotically) a best reply to beliefs arbitrarily close

to ναs∞ . Since ν
α
s∞ assigns probability 1 to the set of models that are α-observationally

equivalent to π̄, all such actions must yield, with (ναs∞ , π), a static SCE. Note that

the realized sequence of actions (aαt (st−1)) converges if there is a unique myopic best

reply to the limit belief ναs∞ , but such uniqueness is not guaranteed. Yet, if the myopic

best reply is indeed unique, say action a∗, the action sequence is eventually constant at

a∗and (a∗, ναs∞ , π̄) is a static SCE. Moreover, after a finite time, the agent chooses an

action that maximizes one-period value with respect to current beliefs (and not only

limit ones), that is, exploration (experimentation) becomes irrelevant, all that matter

is one-period exploitation.

Corollary 3. Let (α, ν, π) be a pre self-confirming equilibrium in an i.i.d. environment

that converges to a static SCE on path s∞. If

arg max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ναs∞(dπ)

)
= {a∗s∞}

23This is intuitive, but perhaps not obvious. The proof is available upon request.
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for some a∗s∞ ∈ A, then there exist T̂s∞ such that, for every t > T̂s∞ ,

aαt (st−1) = a∗s∞.

Moreover, there exists T̄s∞ such that

t > T̄s∞ ⇒ a∗s∞ ∈ arg max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)
.

It is important to stress that this convergence does not imply that the limit belief

is the Dirac measure supported by the correct model. However, the limit pairs of

beliefs and actions almost surely satisfies the usual properties of stochastic limits in the

(expected utility) stochastic control limit literature. Indeed, the realization (a∗s∞ , ν
α
s∞)

is such that we have:

• (confirmed beliefs) ναs∞ assigns probability 1 to the models that are observation-

ally equivalent given a∗s∞ , (see, Proposition 1);

• (subjective myopic best reply) even if the discount factor is strictly positive, the
agent maximizes his one-period value. That is, exploitation prevails on explora-

tion.

Our leading example illustrates how the true data generating process may be

unidentified in the limit.

Example 7 (Act IV). Consider the strategy αE of the previous acts. Again, recall by
Act II that the DM has a 3-point prior µ with suppµ =

{
πY , πuni, πG

}
and believes

it is equally likely that the true model is either πY , the uniform model πuni, or πG. In

Act II, we have shown that (αE, µ, π) is consistent from period 2, whereas in Act III,

we have proved that with parameters λ = 1 and δ = 0.39 it is a pre self-confirming

equilibrium. We can show how our convergence result obtains in this simple specific

case. Suppose that π = πY . From Proposition 3, we have that the limit beliefs attained

are the following:

µα
E

s∞ =
(
µα

E

s∞(πuni), µα
E

s∞(πY ), µα
E

s∞(πG)
)

=

{
(1/3, 1/6, 1/2) if s1 ∈ {B,G} ,
(0, 1, 0) if s1 = Y.

Indeed, if the experimentation is unsuccessful, the posterior of µ lowers the weight

of model πY relative to models πuni and πG, thereupon, strategy αE recommends

switching (and sticking) to black, and so there is no additional updating. On the other

hand, if the experimentation is successful, strategy αE prescribes to stick on yellow

thereupon, and then the correct model πY is asymptotically identified.
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Since we are in an i.i.d. context, Proposition 6 holds. In particular, if s1 ∈ {B,G} ,
by (11), for every t > 1,

aα
E

t (st−1) = b

for every t > 1, and (b, (1/3, 1/6, 1/2), πY ) is the static SCE that obtains in the limit.

Note that in this case the DM will end up choosing an objectively sub-optimal action.

If s1 = Y,

aα
E

t (st−1) = y,

for every t > 1, and (y, (0, 1, 0), πY ) is the static SCE that obtains in the limit. Indeed,

it is immediate to see that these actions maximize one-period value with respect to

limit beliefs and that the distribution of probability over messages confirms them.

Finally, consider strategy αNE. In Act III, we have argued that it is a pre self-

confirming equilibrium if the DM is suffi ciently ambiguity averse. In this case, regard-

less of the correct marginal π̄ ∈ P =
{
πY, πuni, πG

}
,we have almost sure convergence

to a static SCE from period 1. Indeed, the DM sticks on black from the first period,

and black is the myopic best reply to the confirmed prior µ =
(

1
3
, 1

3
, 1

3

)
. However, note

that if the correct model is πY, betting on black is objectively sub-optimal.

As argued earlier, our leading example suggests the idea that ambiguity aversion

tends to stifle experimentation. Therefore, the DM is more likely to end up not dis-

covering the correct model. If instead the true model π̄ is identified in the limit, by

Proposition 6, eventually the DM chooses the one-period best reply to π̄, which is the

counterpart of Nash Equilibrium in our framework.

This suggests the following conjecture: As ambiguity aversion increases, the DM

reduces experimentation and he is more likely to converge to a non-Nash SCE. However,

we can show by example that this conjecture is incorrect.24

Despite this caveat, our leading example and the previous results cast a new light

on the relation between ambiguity attitudes and self-confirming equilibrium. In the

example, the set the set of static SCE of the game is invariant with respect to ambiguity

attitudes, a property that extends to a large class of situations (see, e.g., Battigalli et

al. 2016a, and Battigalli et al. 2016b). Yet, even though ambiguity attitudes do

not affect the set of long-run outcomes, they may have a “dynamic”effect: Suppose

that the true model in the example is πY ; then, for moderate ambiguity aversion

the process converges to the Nash equilibrium with positive probability, with high

ambiguity aversion the process is stuck in a non-Nash SCE.

24Similarly, a lower discount factor does not necessarily make convergence to a non-Nash SCE

more likely. Counterexamples are available upon request. We remark that, in the example about

comparative ambiguity aversion, only payoffs are observable; this implies the coincidence between

actions that allow for learning and ambiguous actions.
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4.6 Characterization of SCE beliefs

In what follows, we borrow from Easley and Kiefer (1988) and derive a necessary

property of SCE. In view of our Proposition 6, we can also interpret it as a long-run
result.

Let

V1(ν) = max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
.

That is, V1(ν) is the value of the one-period truncated problem.

Proposition 7. Let (α, ν∗, π) be an SCE in an i.i.d. environment. Then

ν∗ ∈ arg min
ν:supp ν⊆supp ν∗

V1 (ν) .

The idea behind this proposition is the following: For every model π ∈ supp ν∗ the

self-confirming action α(ν∗) yields the same objective expected payoffas under the true

model π̄. Therefore, the same holds for beliefs ν with a smaller support. Then the self-

confirming action has the same one-period value under ν and ν∗. Since this action is

feasible, but may be (subjectively) sub-optimal under belief ν, the maximal one-period

value under ν must be at least as high as the true objective expected payoff, which is

the maximal one-period value under ν∗. This result is particularly useful because the

one-period value function is easy to calculate, and it sheds light on the beliefs that can

support an SCE.

Proposition 7 formalizes the intuition that information is valuable: if sharper in-

formation is available, that is, a smaller set of models are deemed possible, than the

value of the problem is higher.

5 Discussion: stochastic control problems

5.1 Two frameworks

In this section we connect our setting with the one used by the literature on active

learning in stochastic control problems, as exemplified by the well known work of Easley

and Kiefer (1988). To this end, we relate the SCE concept for decision problems with

feedback with the limit behavior of solutions to stochastic control problems. To ease

matters, we consider (classical subjective) expected utility– i.e., ambiguity neutrality–

and we assume that all the relevant sets are finite.

Feedback framework Consider a static decision problem with feedback and observ-

able payoffs

(A, S, C,M, P, u, f, γ) (13)
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where γ : A ×M → C is the function introduced in (3). As a result, the objective

expected utility of a given probability model p is R(a, p) =
∑

s∈S u (γ (a, f(a, s))) p (s).

Let

R(a, µ) :=
∑
p∈P

R(a, p)µ (p) (14)

In view of Definition 6, an SCE is a triple of actions, beliefs, and models (a∗, µ∗, p̄)

such that:

(i) µ∗
(
p ∈ P : p ◦ f−1

a∗ = p̄ ◦ f−1
a∗
)

= 1,

(ii) a∗ ∈ arg maxa∈AR(a, µ∗).

An SCE given p̄ ∈ P is a pair (a∗, µ∗) such that (a∗, µ∗, p̄) is an SCE.

Consider the infinite repetition of the static decision problem, with i.i.d. models

with unknown marginal distribution p̄. Stationary strategies α : ∆ (P ) → A (Section

4.2) induce, via Bayes rule, a sequence (aαt ,µ
α
t ) of random actions and beliefs, with aαt =

α (µαt ) and µt+1 (p) =
(
p ◦ f−1

aαt

)
(mα

t )µt (p) /
∑

p∈P

(
p ◦ f−1

aαt

)
(mα

t )µt (p).25 Given a

discount factor δ ∈ [0, 1) and prior belief µ0, the DM then solvesmaxα Eµ0

∑∞
t=1 δ

tR (aαt ,µ
α
t )

over the set of stationary strategies.

Stochastic control framework Easley and Kiefer [9, 1988] (henceforth EK) analyze

the following problem of discrete-time stochastic control. We use our own notation and

terminology, but we report theirs in brackets to ease the comparison:

• a ∈ A, actions [EK: x ∈ X];

• m ∈M , messages [EK: observations, or outcomes y ∈ Y ];

• r : A×M → R, payoff function [EK: r : X × Y → R ];

• θ ∈ Θ, parameters;

• ϕ(·|·, ·) : M × A × Θ → R, conditional density, a function (a, θ) 7→ ϕ (·|a, θ) ∈
∆ (M) in the finite case [EK: f(·|·, ·) : Y ×X ×Θ→ R];26

• prior/posterior beliefs ν ∈ ∆ (Θ), with ν0 being the prior, that is, the initial

belief [EK: µ ∈ ∆ (Θ)];

25Throughout the section we adopt the convention 0/0 = 0.
26Densities require some reference measure over Y . For instance, when Y ⊆ Rn is full dimensional,

the reference measure is the Lebesgue measure; when Y is finite, the reference measure is the uniform

measure.
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In particular, the current (one-period) expected reward of action a given belief ν is

R̃ (a, ν) =
∑
θ∈Θ

(∑
m∈M

r(a,m)ϕ(m|a, θ)
)
ν (θ) .

where the tilde distinguishes this reward from (14).

This setting can be summarized by the sextuple

(A,M, r,Θ, ν0, ϕ) . (15)

In an infinite repetition of this static decision problem, with i.i.d. models, the state

space is ∆ (Θ) and the law of motion is Bayes rule. Let α and (aαt ,ν
α
t ) denote, respect-

ively, the stationary strategy of the DM and the implied sequence of random actions

and Bayesian posteriors, with aαt = α (ναt ) and

νt+1 (θ|a,m) =
ϕ (m|a, θ) νt (θ)∑

θ′∈Θ ϕ (m|a, θ′) νt (θ′)
,

where νt is a realization of ναt . Given a discount factor δ ∈ [0, 1) and prior belief ν0, the

DM then solves maxα Eν0

∑∞
t=0 δ

tR̃(aαt ,ν
α
t ) with respect to his stationary strategies.

5.2 Unification of the two frameworks

Let us unify the two previous frameworks, noting that A, M , and the discount factor

δ are common to both.

From feedback to the stochastic control framework Given a decision problem

with feedback and observable payoffs (A, S, C,M, P, u, f, γ) and a prior µ0, the basic

elements of a stochastic control problem (A,M, r,Θ, ν0, ϕ) are derived as follows:

• r = u ◦ γ;

• Θ = P ⊆ ∆ (S) and ν0 = µ0;

• ϕ(·|a, p) = p ◦ f−1
a ∈ ∆ (M) for all (a, p) ∈ A× P = A×Θ.

The stochastic control problem can be thus seen as a reduced form of a decision

problem with feedback and observable payoffs.

Vice versa Now we fix the elements (A,M, r,Θ, ν0, ϕ) of a stochastic control prob-

lem, and derive (A, S, C,M, P, u, f, γ) and the prior µ0 as follows:
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• States of nature: S = Θ×MA×Θ. States are thus the pairs (θ, η) ∈ Θ×MA×Θ,

that is, the “strategies of nature,”where nature chooses θ before a (and the DM

does not observes θ) or simultaneously, and in a second stage of the same period

nature chooses the outcome m as a function of (a, θ). The following extensive

game form of a (binary) decision problem illustrates this construction:

This is the most important connection between the two frameworks.

• Stochastic models: The issue is how to define the set P of possible stochastic

models given the function (a, θ) 7→ ϕ(·|a, θ) ∈ ∆ (M). This map defines a

“second-stage behavioral strategy” of nature, and P can be defined as the set

of “mixed strategies of nature” that pick a particular θ̄ with probability 1 and

are consistent with such second-stage behavioral strategy:{
p ∈ ∆

(
Θ×MA×Θ

)
:
∃θ∗ ∈ Θ,∀ (a,m) ∈ A×M,margΘ p = δθ∗ ,

p ((θ, η) ∈ S : θ = θ∗, η(a, θ) = m) = ϕ (m|a, θ))

}

However, one would like to parametrize P so that it is isomorphic to Θ, because

all that matters for the DM are the objective probabilities

p ((θ, η) ∈ S : θ = θ∗, η(a, θ) = m) = ϕ (m|a, θ)

and the true model θ∗. Because of the finiteness of all the sets, P can be fully

parametrized by θ by restricting the set of probability models in the same way

as Kuhn (1953) goes from behavioral strategies to mixed strategies.27 Let Θ ⊆
27See also Selten [29, 1975].
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∆(Θ) be the canonical embedding of Θ into ∆ (Θ), i.e., Θ = {δθ}θ∈Θ. Given

ϕ ∈ ∆ (M)A×Θ, define the following measure on MA×Θ: for all η ∈MA×Θ ,

pϕ
MA×Θ(η) =

∏
(a,θ)∈A×Θ

ϕ (η (a, θ) |a, θ) .

That is, pq
MA×Θ(η) is the probability of the profile (η(a, θ))(a,θ)∈A×Θ of contingent

choices by nature under the assumption that such choices are independent across

nodes. Then, write the set of probability models as follows:

P =
{
p ∈ ∆

(
Θ×MA×Θ

)
: ∃θ ∈ Θ, p = δθ × pϕMA×Θ

}
,

where δθ × pq
MA×Θ is the product measure obtained from δθ and p

q
MA×Θ. This

yields the bijection ς : Θ→ P given by:

ς(θ) = δθ × pϕMA×Θ .

This is the second most important connection between the two frameworks. The

usual realization-equivalence argument à la Kuhn (1953) shows that, for each

(a, θ,m) ∈ A×Θ×M ,

Pδa,ς(θ) (a, θ,m) = ϕ (m|a, θ) ,

where, in general, for every “mixed strategy pair”(α, p) ∈ ∆ (A)×∆
(
Θ×MA×Θ

)
,

Pα,p (a, θ,m) = α(a)p
(
(θ′, η′) ∈ Θ×MA×Θ : θ′ = θ, η′(a, θ) = m

)
denotes the induced probability of (a, θ,m).

• Prior: µ0 = ν0 ◦ ς−1.

• Consequences, consequence function, and utility: C = Im r ⊆ R, u = IdC , and

γ = r. Note that the stochastic control problem does not specify a consequence

space and a consequence function because of its reduced-form nature. Therefore,

the specification of C and u has to be somewhat arbitrary. The specification

above is natural when there are monetary consequences and risk neutrality. An

alternative and equally salient specification is C = A×M and u = r.

• Feedback: f (a, (θ, η)) = η(a, θ) for all (a, (θ, η)) ∈ A× S = A×Θ×MA×Θ.

5.3 Convergence to self-confirming equilibria

Fix a decision problem with feedback and observable payoffs (A, S,C,M, P, u, f, γ), a

prior µ0 ∈ ∆ (P ), and some discount factor δ ∈ [0, 1). In this section, we have assumed

so far that all sets are finite. Now assume that:
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(i) the sets S and P are finite,

(ii) the sets A and M are, possibly infinite, subsets of an Euclidean space.

(iii) the optimum problem maxa∈AR(a, µ) has, for each µ ∈ ∆ (P ), a unique solution,

denoted a∗ (µ).

The analysis of the previous part of this section still holds, mutatis mutandis, under

the weaker cardinality assumptions (i) and (ii). Let p∗ ∈ ∆ (P ) denote the (unknown)

true distribution of states. Then the associated stochastic control problem defined in

Section 5.2 satisfies all the assumptions of Easley and Kiefer (1988). In particular, they

give conditions on the stochastic control problem so that, given the prior ν0 and the true

parameter θ0, for every optimal stationary strategy α∗ the induced stochastic process

of actions and posterior beliefs (a∗t ,ν
∗
t ) converges, θ0-almost surely,28 to a random limit

(a∗∞,ν
∗
∞) such that, θ0-almost surely,

a∗∞ = a∗ (ν∗∞)

and

suppν∗∞ ⊆ {ν∗ ∈ ∆ (Θ) : ν∗ ({θ : ϕ (·|a∗(ν∗), θ) = ϕ (·|a∗(ν∗), θ0)}) = 1} .

In terms of our feedback setting, this means that for every stationary expected

utility maximizing strategy α∗ of the repeated decision problem (given the prior µ0),

the induced stochastic process (a∗t ,µ
∗
t ) of actions and posterior beliefs converges p

∗-

almost surely to a random pair (a∗∞,µ
∗
∞) such that, p∗-almost surely,

a∗∞ = a∗ (µ∗∞)

and

suppµ∗∞ ⊆
{
µ∗ ∈ ∆ (Θ) : µ∗

({
p : p ◦ f−1

a∗(µ∗) = p∗ ◦ f−1
a∗(µ∗)

})
= 1
}
.

This can be verified by bookkeeping. In particular, given that Θ = P , θ0 = p∗,

ϕ(·|a, ς(p)) = p ◦ f−1
a for all (a, p) ∈ A× P , and ν∗ = µ∗, the condition

ν∗ (θ : ϕ (·|a∗(ν∗), θ) = ϕ (·|a∗(ν∗), θ0)) = 1

becomes µ∗(p : p ◦ f−1
a∗(µ∗) = p∗ ◦ f−1

a∗(µ∗)) = 1. But then, for each pair (a∗, µ∗) in the

support of the random limit, we have:

(i) (confirmed belief) µ∗(p : p ◦ f−1
a∗(µ∗) = p∗ ◦ f−1

a∗(µ∗)) = 1,

(ii) (subjective best reply) a∗ = arg maxa∈AR (a, µ∗).

We conclude that the stochastic process of actions and beliefs implied by expected

utility maximization converges, with probability one, to an SCE given p∗.
28That is, almost surely with respect to the i.i.d. process determined by θ0.
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6 Conclusions

The concept of self-confirming equilibrium (SCE) characterizes stable pairs of behaviors

and beliefs. This stability is ensured through two conditions: First, the behavior must

be subjectively optimal given beliefs and (smooth ambiguity) preferences. Second,

these beliefs must be confirmed, that is, they must be consistent with the evidence

obtained playing the equilibrium strategy. SCE with standard expected utility max-

imizing agents can be given a rigorous learning foundation. Indeed, the literature on

stochastic control problems shows that the behavior and beliefs of an ambiguity neut-

ral agent, who face an unknown i.i.d. process of states affecting the outcome of his

actions, almost surely converge to an SCE, although such equilibrium concept was not

explicitly emphasized (see Easley and Kiefer 1988 and Section 5). As for games against

other agents, convergence cannot be taken for granted, but if it occurs the limit point

must be an SCE (e.g., Fudenberg and Levine 1993, Fudenberg and Kreps 1995).

This learning foundation cannot be mechanically applied to the case of non-neutral

ambiguity attitudes. First, it is not even apparent from the decision theoretic literature

that ambiguity averse players are supposed to update beliefs according to the standard

rules of conditional probabilities (see, for example, Epstein and Schneider 2007, Hanany

and Klibanoff 2009). On this issue, we take instead the position that these rules are

part of rational cognition, and the adoption of the smooth ambiguity model allows us

to describe learning in a standard Bayesian fashion. Second, ambiguity averse agents

typically have dynamically inconsistent preferences over strategies. We assume that

agents are sophisticated and thus take future incentives into account as they choose

actions in earlier periods. This is modeled by the requirement that the adopted strategy

satisfies the one-shot-deviation property, which in a finite horizon problem is equivalent

to “folding-back”planning. However, dynamic inconsistency prevents us from applying

standard dynamic programming techniques.

Given such diffi culties, in this paper, we focused on the case of repeated play against

nature to derive results and insights about convergence to SCE. Although we are mostly

interested in the case of i.i.d. states, we consider the more general case of an exogen-

ous stochastic process of states. Under smooth ambiguity, beliefs about the correct

stochastic model are key. Therefore we are interested in the evolution of such beliefs,

rather than the updated predictive probabilities of the states. Another essential fea-

ture of the SCE literature and our analysis is that feedback about the realized state is

typically imperfect and endogenous, i.e., choice-dependent.

First, we prove convergence of beliefs under rather mild assumptions (Proposition

1). In particular, we do not require that the DM deems the actual model possible.

In the i.i.d. case, we just require that the DM assigns positive probability to the

set of models that are observationally equivalent to the true one under the adopted
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strategy. Next, this result is used to obtain almost sure convergence to a version of SCE

adapted to our dynamic environment (Propositions 2, 4), and– for the i.i.d. case– to

static SCE as defined by BCMM (Proposition 6). Thus, the comparative statics result

of BCMM implies that higher ambiguity aversion allows for a larger set of possible

long-run outcomes and therefore makes the limit behavior less predictable.

Since we do not assume that the DM assigns positive probability to the correct

data generating process, our analysis belongs to the literature that studies agents with

misspecified models. In particular, we relate to Esponda and Pouzo (2016). They show

that, even if the beliefs of myopic players in a strategic game do not assign positive

probability to models that are observationally equivalent to the correct one,– with

positive probability– they will converge to the models that minimize the Kullback-

Leibler divergence from the correct one. In our case, the divergence is zero due to

our consistency condition (see Definition ??). Furthermore, our convergence occurs
with probability one, because we do not consider a strategic framework. However, we

generalize in two dimensions: we allow for ambiguity aversion and patience.29

We remark that our analysis provides additional insight. In several interesting

decision problems or games the set of SCE, hence of possible long-run behaviors, is

independent of ambiguity attitudes. Yet, ambiguity aversion affects the dynamics.

We point out that higher ambiguity aversion tends to decrease experimentation and

therefore makes convergence to Nash equilibrium (best reply to the correct model) more

unlikely. Although this is not a general result, the intuition for this tendency is quite

clear: The DM can learn only from the actions that imply an unknown likelihood of

observable outcomes (otherwise, under Bayesian updating, the next-period belief would

be the same as the current belief); if uncertainty about observable outcomes translates

into uncertainty about payoff-relevant outcomes, then the actions from which the DM

can learn are also the ambiguous actions he tends to avoid. In particular, we illustrate

with a 3-color urn example that higher ambiguity aversion may make it more likely

that the agent falls into a “certainty trap”whereby he keeps choosing an unambiguous

action from which he cannot learn, which prevents him from finding out the objectively

optimal action (see Examples 6 (Act III) and 7 (Act IV)).

We can give a game theoretic interpretation of our analysis within a population-

game scenario. In this setting, the DM recognizes to be unable to influence the actions

of future co-players. Nevertheless, experimentation is valuable for him, since a better

understanding of the correct distribution of strategies in co-players’populations may

allow selecting a better strategy in the following periods (cf. Fudenberg and Levine

29In their Online Appendix, Esponda and Pouzo (2016) extend part of their analysis to the non-

myopic case. Of course, unlike us, they can rely on standard dynamic programming arguments because

they assume ambiguity neutrality.
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1993). The main difference is that Fudenberg and Levine consider an overlapping

generation model with finitely lived agents. Since we assume an infinite horizon, we

would have to slightly modify our model by introducing a constant probability of death

and embed our analysis in an overlapping generation model (cf. Blanchard 1985).

Our analysis of the more general case of an exogenous process of states of nature may

shed some light on learning in a non-steady state environment, where the statistics of

the populations from which co-players are drawn change over time due to their learning.

7 Appendix: proofs and related material

7.1 Jessen’s Theorem

Throughout the appendix, to simplify notation we denote by Ω the set S∞ and by (Ft)
the natural filtration, where each Ft is induced by the elementary cylinders

st = (s1, ..., st) = {s1} × · · · × {st} × S × · · · ,

where st = pt (ω) = (p1 (ω) , . . . ,pt (ω)) = (s1, . . . , st) given the projections pt : Ω→ St

and pt : Ω → S. We also consider a coarser filtration (Gt) where Gt ⊆ Ft for all t,
and we denote by Et the (finite atomic) partition of Ω that generates Gt. Note that a
probability on Et extends in a unique way to Gt for all t.

Remark 2. It is immediate to see that Et is coarser than the partition induced by the
elementary cylinders {{s1} × · · · × {st} × S × · · · : (s1, . . . , st) ∈ St} for all t.

We define F∞ = σ (∪tFt) and G∞ = σ (∪tGt). Let ∆ (Ω,F∞) be the set of prob-

ability measures on (Ω,F∞), and let p, q ∈ ∆ (Ω,F∞). We denote by pt and qt the

restrictions p|Gt and q|Gt of p and q to Gt for all t. Similarly, we denote by p∞ and q∞
the restrictions p|G∞ and q|G∞ of p and q to G∞. For each t, the absolutely continuous
part of qt with respect to pt is given by

qt,a (E) =

{
qt (E) if pt (E) > 0,

0 else,
=

{
q (E) if p (E) > 0,

0 else,

for each E ∈ Et, and (a version of) the Radon-Nikodym derivative of qt,a with respect

to pt is:

λt =
∑

E∈Et:pt(E)>0

qt (E)

pt (E)
1E =

∑
E∈Et:p(E)>0

q (E)

p (E)
1E,

where 1E is the indicator function for event E. In particular, for each ω ∈ Ω, letting

Et (ω) denote the only element in Et containing ω,30

λt (ω) =

{
qt(Et(ω))
pt(Et(ω))

if p (Et (ω)) > 0,

0 else,
=

{
q(Et(ω))
p(Et(ω))

if p (Et (ω)) > 0,

0 else.

30Given Remark 2, observe that if (ω1, . . . , ωt) = (ω′1, . . . , ω
′
t) then Et (ω) = Et (ω′).
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For each t, the set

C (pt) :=
⋃

E∈Et:pt(E)>0

E = {ω ∈ Ω : p (Et (ω)) > 0} ∈ Gt

is the minimal carrier of pt in Gt; that is, it is the smallest event F in Gt such that
pt (F ) = p∞ (F ) = p (F ) = 1. Then, for each t,

λt (ω) =
q (Et (ω))

p (Et (ω))
1C(pt) (ω) , ∀ω ∈ Ω.

We introduce one last object, the set

C (p∞) :=
∞⋂
t=1

C (pt) = {ω ∈ Ω : p (Et (ω)) > 0 ∀t} ∈ G∞.

Clearly, we have that p∞ (C (p∞)) = 1, and

∀ω ∈ C (p∞) , ∀t, λt (ω) =
q (Et (ω))

p (Et (ω))
=
q∞ (Et (ω))

p∞ (Et (ω))
.

The next theorem is credited to Jessen by Stroock (1993).

Theorem 1 (Jessen). If p, q ∈ ∆ (Ω,F∞), q∞ ⊥ p∞ if and only if λt → 0 p∞-a.s.

Let µ be a prior on ∆ (Ω,F∞) with finite support suppµ. The predictive measure

pµ is:

∀E ∈ F∞, pµ (E) =
∑

q∈suppµ

q (E)µ (q) .

For each t and E ∈ Et, the posterior distribution of µ given E is defined by:

µ (q | E) =

{
µ(q)q(E)
pµ(E)

if pµ (E) > 0,
1suppµ(q)

| suppµ| otherwise.

Note that µ (q | E) = 0 for all q /∈ suppµ, for all E ∈ Et and all t. For each q ∈ suppµ

and t, consider the function µt (q | ·) : Ω→ [0, 1] given by:

µt (q | ω) := µ (q | Et (ω))

= µ(q)q(Et(ω))
pµ(Et(ω))

1C(pµ,t) (ω) + 1suppµ(q)

| suppµ|
(
1− 1C(pµ,t) (ω)

)
= µ(q)q(Et(ω))

pµ(Et(ω))
1C(qt) q∞-a.s.;

for each q ∈ suppµ and t, µt (q | ·) is an element of L1
+ (Ω,Gt, qt).

For each t, the map t 7→ µt(·|·) has a natural extension on σ (∆ (Ω,F∞))× Ω:

µt (D | ω) :=
∑

q∈suppµ∩D
µt (q | ω) ∀ (D,ω) ∈ σ (∆ (Ω,F∞))× Ω.
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Without loss of generality, we use the same symbol to denote both the original function

and this extension.

The function µt is the posterior of µ given Gt. Note that, for eachD ∈ σ (∆ (Ω,F∞)),

the function µt (D | ·) is Gt-measurable.
Consider the following measurable equivalence relation in ∆ (Ω,F∞):

p ∼ q ⇔ p∞ = q∞.

We denote by [p] the equivalence class, with respect to ∼, that contains p. It is easy
to show that [p] ∈ σ (∆ (Ω,F∞)). The next result follows from Theorem 1.

Proposition 8. Let µ be a prior on ∆ (Ω,F∞) with finite support. If p̄ ∈ ∆ (Ω,F∞)

is such that [p̄] ∩ suppµ 6= ∅ and q∞ ⊥ p̄∞ for all q ∈ suppµ \ [p̄], then there exists a

set D ([p̄]) ∈ G∞ such that:

(i) p̄ (D ([p̄])) = p̄∞ (D ([p̄])) = 1; and,

(ii) for each ω ∈ D ([p̄]), limt→∞ µ
t ([p̄] | ω) = 1.

Proof. Set Q = suppµ and Q̄ = suppµ \ [p̄]. Consider p̌ ∈ [p̄] ∩ suppµ. For each

q ∈ Q̄, q∞ ⊥ p̌∞; By Theorem 1, we can produce a set B (q) ∈ G∞ such that:

(a) B (q) ⊆ C (p̌∞) = C (p̄∞);

(b)
q∞ (Et (ω))

p̄∞ (Et (ω))
=
q∞ (Et (ω))

p̌∞ (Et (ω))
→ 0 for all ω ∈ B (q);

(c) p̄∞ (B (q)) = p̌ (B (q)) = 1.

If we define D ([p̄]) := ∩q∈Q̄B (q) ⊆ C (p̄∞), it follows that p̄∞ (D ([p̄])) = 1 – which

gives point (i) – and
q∞ (Et (ω))

p̄∞ (Et (ω))
→ 0

for all q ∈ Q̄ and all ω ∈ D ([p̄]). Consider ω ∈ D ([p̄]) ⊆ C (p̄∞). It follows that

p̌ (Et (ω)) = p̄ (Et (ω)) > 0, hence pµ (Et (ω)) > 0 for all t. We conclude that:

µt ([p̄] | ω) = µt ([p̄] ∩ suppµ | ω) =
∑

p∈Q\Q̄
µ(p)p(Et(ω))∑
q∈Q q(Et(ω))µ(q)

=
∑
p∈Q\Q̄ µ(p)p(Et(ω))∑

p∈Q\Q̄ µ(p)p(Et(ω))+
∑
q∈Q̄ q(Et(ω))µ(q)

=
∑
p∈Q\Q̄ µ(p)p∞(Et(ω))∑

p∈Q\Q̄ p∞(Et(ω))µ(p)+
∑
q∈Q̄ q∞(Et(ω))µ(q)

=
p̄∞(Et(ω))

∑
p∈Q\Q̄ µ(p)

p̄∞(Et(ω))
∑
p∈Q\Q̄ µ(p)+

∑
q∈Q̄ q∞(Et(ω))µ(q)

=
∑
p∈Q\Q̄ µ(p)∑

p∈Q\Q̄ µ(p)+
∑
q∈Q̄

q∞(Et(ω))
p̄∞(Et(ω))

µ(q)

=
∑
p∈Q\Q̄ µ(p)∑

p∈Q\Q̄ µ(p)+
∑
q∈Q̄ λt(ω)µ(q)

→
∑
p∈Q\Q̄ µ(p)∑
p∈Q\Q̄ µ(p)

= 1,
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proving point (ii). �

Given p ∈ ∆ (Ω,F∞) and the algebra Gt, we denote by pt (· | ·) : F∞ × Ω → [0, 1]

any function with the following properties:

(i) pt (· | ω) is a probability measure on F∞ for each ω ∈ Ω;

(ii) pt (B | ·) is a version of the conditional probability of B given Gt.

We call pt the regular conditional probability of p given Gt. Since Gt is finite, then
by Gray (2009, Lemma 6.7), the existence of pt is guaranteed for all t. We also have

that, for each t and for each ω′ ∈ Ω, if p (Et (ω′)) > 0, then

∀F ∈ G∞, pt (F | ω′) =
p (F ∩ Et (ω′))

p (Et (ω′))
. (16)

For each ω′ ∈ Ω and for each t, p ∼ q and p (Et (ω′)) > 0 imply pt (· | ω′) = qt (· | ω′).

Corollary 4. Suppose that

- µ, p̄ and D ([p̄]) are as in Proposition 8;

- (vt) is a uniformly bounded process such that vt is G∞-measurable for all t; in
particular, there exists a, b ∈ R such that vt (ω) ∈ [a, b] for all (t, ω) ∈ N× Ω;

- and φ : [a, b]→ R is a strictly increasing and continuous function;

Then, for all ω′ ∈ D ([p̄]),∣∣∣∣φ−1

(∫
∆(Ω,F∞)

φ

(∫
Ω

vt (ω) qt (dω | ω′)
)
µt (dq | ω′)

)
−
∫

Ω

vt (ω) p̄t (dω | ω′)
∣∣∣∣→ 0

Proof For each t and for each ω′ ∈ Ω such that pµ (Et (ω′)) > 0, we have that

µt (q | ω′) = µ(q)q(Et(ω′))
pµ(Et(ω′))

> 0 if and only if q ∈ suppµ and q (Et (ω′)) > 0, namely,

suppµt (· | ω′) = {q ∈ suppµ : q (Et (ω′)) > 0}. Thus, for each t and each ω′ ∈ Ω such

that pµ (Et (ω′)) > 0, it holds that∫
∆(Ω,F∞)

(∫
Ω

vt (ω) qt (dω | ω′)
)
µt (dq | ω′)

=
∑

q∈suppµt(·|ω′)

(∫
Ω

vt (ω) qt (dω | ω′)
)
µt (q | ω′) .

Let ω′ ∈ D ([p̄]) ⊆ C (p̄∞). Since there exists p̌ ∈ [p̄]∩ suppµ, we have p̌ (Et (ω′)) =

p̄ (Et (ω′)) > 0 for all t, implying that pµ (Et (ω′)) > 0. Then, letting K > 0 be a bound
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on φ (which exists because φ is a continuous function defined on a compact domain),∣∣∣∫∆(Ω,F∞)
φ
(∫

Ω
vt (ω) qt (dω | ω′)

)
µt (dq | ω′)− φ

(∫
Ω
vt (ω) p̄t (dω | ω′)

)∣∣∣
=
∣∣∣∫∆(Ω,F∞)

φ
(∫

Ω
vt (ω) qt (dω | ω′)

)
µt (dq | ω′)− φ

(∫
Ω
vt (ω) p̌t (dω | ω′)

)∣∣∣
≤
∣∣∣∣∑ q∈suppµ

q(Et(ω′))>0, q /∈[p̄]
φ
(∫

Ω
vt (ω) qt (dω | ω′)

)
µt (q | ω′)

∣∣∣∣
+

∣∣∣∣∑ q∈suppµ
q(Et(ω′))>0, q∈[p̄]

φ
(∫

Ω
vt (ω) qt (dω | ω′)

)
µt (q | ω′)− φ

(∫
Ω
vt (ω) p̌t (dω | ω′)

)∣∣∣∣
≤ K

∑
q∈suppµ

q(Et(ω′))>0, q /∈[p̄]
µt (q | ω′)

+

∣∣∣∣∑ q∈suppµ
q(Et(ω′))>0, q∈[p̄]

φ
(∫

Ω
vt (ω) p̌t (dω | ω′)

)
µt (q | ω′)− φ

(∫
Ω
vt (ω) p̌t (dω | ω′)

)∣∣∣∣
≤ K

∑
q∈suppµ

q(Et(ω′))>0,q /∈[p̄]
µt (q | ω′) +K

∣∣∣∣∑ q∈suppµ
q(Et(ω′))>0,q∈[p̄]

µt (q | ω′)− 1

∣∣∣∣
= K [µt ([p̄]c | ω′)− (1− µt ([p̄] | ω′))] .

By Proposition 8, the last expression converges to 0. Finally, for each (t, ω′) ∈ N ×
D ([p̄]), set

zt (ω′) =

∫
∆(F∞)

φ

(∫
Ω

vt (ω) qt (dω | ω′)
)
µt (dq | ω′) ;

yt (ω′) = φ

(∫
Ω

vt (ω) p̄t (dω | ω′)
)
.

Note that zt (ω′) , yt (ω′) ∈ [φ (a) , φ (b)] and that φ−1 : [φ (a) , φ (b)]→ [a, b] is uniformly

continuous (since φ is continuous and strictly increasing on a closed and bounded

interval, and so is its inverse). Therefore, for each ε > 0 there exists δ = δ (ε) > 0,

such that
∣∣φ−1 (z)− φ−1 (y)

∣∣ ≤ ε for all y, z ∈ [φ (a) , φ (b)] such that |z − y| ≤ δ. Fix

ω′ ∈ D ([p̄]). By the previous part of the proof, for each ε > 0, there exists n = n (ε)

such that |zt (ω′)− yt (ω′)| ≤ δ (ε) for all t ≥ n, proving the statement. �

7.2 Further proofs

Proof of Lemma 1 Define the correspondence Sαt : St−1 → 2S
∞
by Sαt (st−1) =

ιαt (st−1) × S∞; for each finite state history st−1, Sαt (st−1) is the set of infinite state

histories that yield the same information history up to t under α as st−1. Thus,

Sαt is the correspondence of observationally-equivalent infinite state histories under
α. Fix st with p̄ (st) > 0. Note that st ∈ Sαt+1 (st) ⊆ Sαt (st−1); thus, p̄ (Sαt (st−1)) ≥
p̄
(
Sαt+1 (st)

)
≥ p̄ (st) > 0. Let p ∈ P̂α,µ

t (p̄) (st−1); by definition, p (Sαt (st−1)) > 0. We

want to show that p ∈ P̂α,µ
t+1 (p̄) (st). To this end, fix E ∈ σ(hα) with E ⊆ Sαt+1 (st).

Since p ∈ P̂α,µ
t (p̄) (st−1), then

p (E)

p (Sαt (st−1))
=

p̄ (E)

p̄ (Sαt (st−1))
;

p
(
Sαt+1 (st)

)
p (Sαt (st−1))

=
p̄
(
Sαt+1 (st)

)
p̄ (Sαt (st−1))

.
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The second equality implies p
(
Sαt+1 (st)

)
> 0. Since

p (E)

p
(
Sαt+1(st)

) p (Sαt+1(st)
)

p (Sαt (st−1))
=

p̄ (E)

p̄
(
Sαt+1(st)

) p̄ (Sαt+1(st)
)

p̄ (Sαt (st−1))
,

it follows that
p (E)

p
(
Sαt+1(st)

) =
p̄ (E)

p̄
(
Sαt+1(st)

) .
Hence, pα

(
· | hαt+1 (st)

)
= p̄α

(
· | hαt+1 (st)

)
. Since p ∈ suppµ (· | hαt (st−1)) and p

(
Sαt+1 (st)

)
>

0, it follows that p ∈ suppµ
(
· | hαt+1 (st)

)
, hence p ∈ P̂α,µ

t+1 (p̄) (st). �

Consider the coarser filtration (Gt) where Gt = σ
(
hαt+1

)
⊆ Ft for all t. Note that

G∞ = σ (hα) and, given p̄ ∈ ∆ (Ω,F∞), it holds that [p̄] ∩ suppµ = P̂α,µ
t (p̄). Given

a prior µ, we denote its posterior µt given by Gt alternatively as µ
(
· | hαt+1 (·)

)
, that

is, µ
(
D | hαt+1 (ω)

)
= µt (D | ω) for all (D,ω) ∈ σ (∆ (F∞)) × Ω. As the posterior is

Gt-measurable with respect to the second component and Gt ⊆ Ft, if ω and ω̄ are such
that (s1, ..., st) = (s̄1, ..., s̄t), then µ

(
D | hαt+1 (ω)

)
= µ

(
D | hαt+1 (ω̄)

)
. Thus, with a

slight abuse of notation, the second argument ω can be replaced by the finite history

(s1, ..., st). Finally, given p ∈ ∆ (Ω,F∞) and the algebra σ
(
hαt+1

)
, we denote the regular

conditional probability either by pt (· | ·) or by p
(
· | hαt+1(·)

)
.

Proof of Proposition 1 By Proposition 8 and the above notation, there exists a set
D ([p̄]) ∈ G∞ such that p̄∞ (D ([p̄])) = 1 and, for each ω ∈ D ([p̄]), limt→∞ µ

t ([p̄] | ω) =

1. Moreover, we know that if µ(p) = 0, then µt (p | ω) = 0 for every ω ∈ Ω. This

proves that, if T = 1, then µ ([p̄] ∩ suppµ | hαt (·)) = µ
(
P̂α,µ

1 (p̄) | hαt (·)
)
→ 1 p̄α-a.s.

Let (α, µ, p̄) be consistent from period T > 1. For each hT = (aT−1,mT−1) consistent

with α and such that p̄ (I(hT )) > 0, we can look at the triple
(
αhT , µhT , p̄hT

)
obtained

from (α, µ, p̄) by initializing the strategy and the processes at information history hT :

• αhT (a0,m0) := α(aT−1,mT−1), αhT (ak,mk) := α
(
(aT−1, ak), (mT−1,mk)

)
;

• µhT (phT ) := µ([phT ] |hT ) where

[phT ] := {p ∈ ∆ (S) : ∀E ∈ σ(S∞), phT (E) := p (I(hT )× E|I(hT ))} ;

• p̄hT (E) := p̄ (I(hT )× E|I(hT )) for each E ∈ σ(S∞).

Then
(
αhT , µhT , p̄hT

)
is consistent from period 1, so

lim
t→∞

µhT

(
P̂
αhT ,µhT
1 (p̄hT )

∣∣∣hαhTt (·)
)

= 1 p̄
αhT
hT
− a.s.,

which in turn implies that

lim
t→∞

µ
(
P̂α,µ
T (p̄) |hαt (·)

)
= 1 p̄α(·|I(hT ))− a.s.
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Since this holds for each hT consistent with α such that p̄α(I(hT )) > 0, the thesis

follows. �

Proof of Corollary 1 Since Gt = Ft for all t > 1, it follows that P̂α
1 (p̄) = {p̄} and

σ (hα) = F∞. By Proposition 1, the statement follows. �

Proof of Corollary 2 Consider the process (vt) such that vt (ω) = 1Bt (ω) for all

ω ∈ Ω and for all t. It follows that (vt) is σ (hα)-measurable and clearly uniformly

bounded. By Corollary 4 it follows that,

|pµ (Bt | hαt (ω′))− p̄ (Bt | hαt (ω′))|
=
∣∣∣∫∆(Ω,F∞)

φ
(∫

Ω
vt (ω) qt (dω | ω′)

)
µt (dq | ω′)− φ

(∫
Ω
vt (ω) p̄t (dω | ω′)

)∣∣∣→ 0,

for all ω′ ∈ D ([p̄]). Let φ be the identity function, since p̄ (D ([p̄])) = 1 and D ([p̄]) ∈
σ (hα), the statement follows. �

Proof of Lemma 2 First note that since pπν (I (ht)) and pπν (I (ht′)) are strictly pos-

itive, then

ν (π) pπ (I (ht′))

pπν (I (ht′))
= ν(π | ht′) = ν(π | ht) =

ν (π) pπ (I (ht))

pπν (I (ht))
.

In particular,

ν(π | ht′) = ν(π | ht) > 0 ⇒ pπ (I (ht)) > 0, and pπ (I (ht′)) > 0.

That is, the models in the support of the ν(· | ht′) = ν(π | ht) assign positive probability
to the two conditioning events. In turn, this implies that pπ(·|ht) is well defined by
(16). Hence we have:

V (α, ν | ht)

=
∞∑
τ=t

δτ−tφ−1

(∫
supp ν(·|ht)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ | ht)

)
(17)

To show our result, we will prove that for every n in N0,

φ−1

∫
supp ν(·|ht)

φ

 ∑
st+n:hαt (st−1)=ht

r
(
aαt+n

(
st+n−1

)
, st+n

)
pπ(st+n|ht)

 ν (dπ | ht)


= φ−1

∫
supp ν(·|ht′ )

φ

 ∑
st′+n:hα

t′ (s
t′−1)=ht′

r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
pπ(st

′+n|ht′)

 ν (dπ | ht′)

 .
Since V (α, ν | ht) and V (α, ν | ht′) are defined as the sum from n = 0 to infinity of,

respectively, the first and second line above, the statement will follow.
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Choose arbitrarily n ∈ N0, and π ∈ supp ν(· | ht) = supp ν(· | ht′). Define

K(k0,...,kn) :=
{
st+n|st = k0, ..., st+n = kn

}
∩
{
st+n : hαt (st−1) = ht

}
and

K ′(k0,...,kn) :=
{
st
′+n|st′ = k0, ..., st′+n = kn

}
∩
{
st
′+n : hαt′(s

t′−1) = ht′
}

for some (k0, ..., kn) such that π(ki) 6= 0 for every i in {1, ..., n} . Note that, since P is

composed by i.i.d. models, then

pπ(K(k0,...,kn)|ht) =
n∏
i=0

π(kn) = pπ(K ′(k0,...,kn)|ht′).

To ease notation, fix (k0, ..., kn) and let K = K(k0,...,kn) and K ′ = K ′(k0,...,kn). Note that

r
(
aαt+n

(
st+n−1

)
, st+n

)
is constant on K . Indeed, we prove by way of induction that for every j ∈ {0, ..., n},
aαt+j (st+j−1) is costant on K. Since for every st+n ∈ K we have hαt (st−1) = ht,

aαt
(
st−1

)
= α (ν (·|ht)) .

Suppose by way of induction that the statement holds for j′ ≤ j. Thus, for every

st+n ∈ K we have

hαt+j(s
t+j−1) =

(
ht, a

α
t

(
st−1

)
, f
(
aαt
(
st−1

)
, st
)
, ..., f

(
aαt+j−1

(
st+j−1

)
, st+j−1

))
that, by definition of K and by the inductive hypothesis, is costant on K. But then

it follows that

aαt+j
(
st+j−1

)
= α

(
ν
(
·|hαt+j(st+j−1)

))
is constant on K. Therefore, since st+n = kn for every st+n ∈ K, we have shown

that also r
(
aαt+n (st+n−1) , st+n

)
is constant on K. A similar argument shows that

r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
is constant on K ′. Moreover, we have that, for every st+n

in K and st
′+n in K ′, for every j in {0, ..., n} ,

ν
(
·|hαt+j(st+j−1)

)
= ν

(
·|hαt′+j(st

′+j−1)
)
.

We prove this equality by induction on j. By hypothesis, it is true for j = 0. Let

j ∈ {1, ..., n} and suppose that is true for j − 1. This implies that

aαt+j−1

(
st+j−2

)
= α

(
ν
(
·|hαt+j−1(st+j−2)

))
= α

(
ν
(
·|hαt′+j−1(st

′+j−2)
))

= aαt′+j−1

(
st
′+j−2

)
.
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Therefore:

ν
(
π|hαt+j(st+j−1)

)
=

ν
(
·|hαt+j−1(st+j−2)

)
π
(
f−1
aαt+j−1(st+j−2)

(
f
(
aαt+j−1 (st+j−2) , kj−1

)))
πν(·|hαt+j−1(st+j−2))

(
f−1
aαt+j−1(st+j−2)

(
f
(
aαt+j−1 (st+j−2) , kj−1

)))

=

ν
(
·|hαt′+j−1(st

′+j−2)
)
π

(
f−1

aα
t′+j−1(s

t′+j−2)

(
f
(
aαt′+j−1

(
st
′+j−2

)
, kj−1

)))
π
ν
(
·|hα

t′+j−1
(st′+j−2)

)(f−1

aα
t′+j−1(s

t′+j−2)

(
f
(
aαt′+j−1 (st′+j−2) , kj−1

)))
= ν

(
π|hαt′+j−1(st

′+j−1)
)
.

This in turn implies that, for every st+n in K and st
′+n in K ′,

r
(
aαt+n

(
st+n−1

)
, st+n

)
= r

(
α
(
ν
(
·|hαt+n(st+n−1)

))
, kn
)

= r
(
α
(
ν
(
·|hαt′+n(st

′+n−1)
))

, kn

)
(18)

= r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
.

Now, we restart to explicitly highlight the dependence on (k0, ..., kn) ofK.Moreover, for

every n ∈ N0 and for every (k1, ..., kn) ∈ Sn, let r (k0, ..., kn) = r
(
aαt+n (st+n−1) , st+n

)
=

r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
, where st+n ∈ Kk0,...,kn and st

′+n ∈ K ′k0,...,kn
. By (18) this

quantity is well defined. We have:∑
st+n:hαt (st+n)=ht

r
(
aαt+n

(
st+n−1

)
, st+n

)
pπ(st+n|ht)

=
∑

(k1,...,kn):
∏n
i=0 π(ki)6=0

r (k0, ..., kn) pπ(Kk0,...,kn|ht)

=
∑

(k1,...,kn):
∏n
i=0 π(ki)6=0

r (k0, ..., kn) pπ(K ′k0,...,kn
|ht′)

=
∑

st′+n:hα
t′ (s

t′+n)=ht′

r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
pπ(st

′+n|ht′).

Finally, since we have ν(· | ht) = ν(· | ht′), this implies that:

φ−1

∫
supp ν(·|ht)

φ

 ∑
st+n:hαt (st−1)=ht

r
(
aαt+n

(
st+n−1

)
, st+n

)
pπ(st+n|ht)

 ν (dπ | ht)


= φ−1

∫
supp ν(·|ht′ )

φ

 ∑
st′+n:hα

t′ (s
t′−1)=ht′

r
(
aαt′+n

(
st
′+n−1

)
, st′+n

)
pπ(st

′+n|ht′)

 ν (dπ | ht′)


and the thesis follows. �
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Proof of Proposition 2 By Proposition 1, we know that there exist G ∈ σ(hα) such

that pα(G) = 1 and for all s∞ ∈ G,

lim
t→∞

µ(P̂α,µ
T (p)

(
sT−1

)
|hαt+1

(
st
)
) = 1. (19)

Define G′ as G∩
⋂
n∈N

{s∞ ∈ S∞ : pα(ιαn (sn−1)) > 0} . Note that, by definition of σ(hαn)

and σ(hα), it holds that {s∞ ∈ G : pα(ιαn (sn−1)) > 0} ∈ σ(hαn) ⊆ σ(hα) for every

n ∈ N. Moreover, it is immediate to see that:

pα
(
s∞ ∈ G : pα(ιαn

(
sn−1

)
) > 0

)
= 1.

Hence, pα(G′) = 1. Fix any path s∞ ∈ G′. Since s∞ ∈ G′ ⊆ G, we have that (19) holds.

Therefore, for every ε > 0, there exists tε,s∞ > T such that, for every t > tε,s∞

µ(P̂α,µ
T (p)

(
sT−1

)
|hαt+1

(
st
)
) > 1− ε.

We have that

µhαt+1(st)

(
p ∈ ∆(S∞) : p

αhαt+1(st) = p̄
αhαt+1(st)

)
= µ

(
P̂α,µ
t (p)

(
st−1

)
|hαt+1

(
st
))

≥ µ(P̂α,µ
T (p)

(
sT−1

)
|hαt+1

(
st
)
) > 1− ε,

where the equality holds by definition of P̂α,µ
t (p) (st−1), and the weak inequality follows

from Lemma 1. Therefore the first condition of ε-self-confirming equilibrium holds. For

the second one, let hτ be a generic information history such that pµhαt+1(st)
(I(hτ )) > 0.

By definition of G′, we have pµ(ιαt (st−1)) > 0, and so:

pµ(ιαt+1

(
st
)
∩ I(hτ )) = pµ(ιαt+1

(
st
)
)pµhαt+1(st)

(I(hτ )) > 0.

Next note that, for every a in A,

V
(
αhαt+1(s̄t), µhαt+1(s̄t) | hτ

)
= V

(
α, µ |

(
hαt+1

(
st
)
, hτ
))

≥ V
(
α/
((
hαt+1

(
st
)
, hτ
)
, a
)
, µ |

(
hαt+1

(
st
)
, hτ
))

= V
(
αhαt+1(st)/ (ht, a) , µhαt+1(st) | hτ

)
,

and therefore also the second condition holds. In other words, for every ε > 0, there

exists tε,s∞ > T such that the reinitialized triple is an ε-self-confirming equilibrium.

Since the result holds for every s∞ ∈ G′ and pα(G′) = pα(G′) = 1, we have proved the

statement. �
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Proof of Proposition 3 Let G′ be as in the proof of Proposition 2. Choose arbitrarily
s∞ ∈ G′ and ε′ > 0; Proposition 1 yields the existence of tε′,s∞ > T such that for every

t > tε′,s∞ it holds that

µ
(
P̂α,µ
T (p̄) (s∞) |hαt+1

(
st
))
≥ 1− ε

Therefore, for every t > tε′,s∞ and for every E ∈ σ (hα)

|pµ(·|hαt+1(st))
(
E|hαt+1

(
st
))
− p̄α

(
E|hαt+1

(
st
))
|

=

∣∣∣∣∫
∆(S∞)

p(E|hαt+1

(
st
)
)µ(dp|hαt+1

(
st
)
)− p̄α

(
E|hαt+1

(
st
))∣∣∣∣

=

∣∣∣∣∣
∫
P̂α,µT (p̄)(s∞)

p(E|hαt+1

(
st
)
)µ(dp|hαt+1

(
st
)
)

+

∫
∆(S∞)/P̂α,µT (p̄)(s∞)

p(E|hαt+1

(
st
)
)µ(dp|hαt+1

(
st
)
)− p̄α

(
E|hαt+1

(
st
))∣∣∣∣∣

=
∣∣∣µ(P̂α,µ

T (p̄) (s∞) |hαt+1

(
st
)
)p̄α
(
E|hαt+1

(
st
))
− p̄α

(
E|hαt+1

(
st
))

+

∫
∆(S∞)/P̂α,µT (p̄)(s∞)

p(E|hαt+1

(
st
)
)µ(dp|hαt+1

(
st
)
)

∣∣∣∣∣
=

∣∣∣∣∣
∫

∆(S∞)/P̂α,µT (p̄)(s∞)

p(E|hαt+1

(
st
)
)µ(dp|hαt+1

(
st
)
)

− µ
(

∆(S∞)/P̂α,µ
T (p̄) (s∞) |hαt+1

(
st
))
p̄α
(
E|hαt+1

(
st
))∣∣∣

≤ ε′.

Summing up, for every t > tε′,s∞

∀E ∈ σ (hα) |pµ(·|hαt+1(st))
(
E|hαt+1

(
st
))
− p̄α

(
E|hαt+1

(
st
))
| < ε′. (20)

Moreover, by Proposition 2 of Kalai and Lehrer (1994), we know that for every ε > 0,

there exists ε′ > 0 such that (20) implies (12). Therefore, we obtain the desired result.

�

Proof of Proposition 4 Since A and S are finite, there exists K such that, for every

a, a′ ∈ A, for every s, s′ ∈ S,

|u (a, s)− u (a′, s′) | ≤ K.

Moreover, for every ε > 0, there exists n ∈ N such that

δn

1− δK < ε/2.
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Let G′ be as in the proof of Proposition 2; for every s̄∞ in G′, for every t ∈ N, we have
that ∣∣∣∣∣

∑∞
τ=t+n δ

τ−tφ−1
(∫

∆(S∞)
φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑∞

τ=t+n δ
τ−t∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

τ=t+n

δτ−t

(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

)∣∣∣∣∣
<

∞∑
τ=t+n

δτ−tK =
δn

1− δK < ε/2.

Now, consider the process vt(s∞) = r
(
aαt+k

(
st+k−1

)
, st+k

)
, with k ∈ {0, ..., n} . Again,

since the spaces of actions and states are finite, this process is uniformly bounded.

Moreover, from observable consequences (3) and since r = u ◦ ρ, vt is σ(hαt+k+1)-

measurable. Since, by definition, σ(hα) = σ (∪tσ (hαt )) , we have that for every t, vt is

also σ(hα)-measurable. Hence, we can apply Corollary 4 to vt, and we obtain that, for

every ε > 0, there exists tε,k, for every τ ≥ tε,k,∣∣∣∣∣ φ−1
(∫

∆(S∞)
φ
(∑

sτ+k∈Sτ+k r
(
aατ+k

(
sτ+k−1

)
, sτ+k

)
p
(
sτ+k | hαt (s̄t−1)

))
µ (dp | hαt (s̄t−1))

)
−
∑

sτ+k∈Sτ+k r
(
aατ+k

(
sτ+k−1

)
, sτ+k

)
p
(
sτ+k | hαt (s̄t−1)

)
∣∣∣∣∣

<
ε

2n
.

Let t∗ε := maxk∈{0,...,n} tε,k. We have that, for every t > t∗ε∣∣∣∣∣ V (α, µ|hαt (s̄t−1))

−
∑∞

τ=t δ
τ−t∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
τ=t

δτ−t

(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

)∣∣∣∣∣
≤

∣∣∣∣∣
t+n−1∑
τ=t

δτ−t

(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

τ=t+n

δτ−t

(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (st−1))
)
µ (dp | hαt (st−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (st−1))

)∣∣∣∣∣
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≤
∣∣∣∣∣
t+n−1∑
τ=t

δτ−t

(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

)∣∣∣∣∣
+
ε

2

≤
t+n−1∑
τ=t

∣∣∣∣∣δτ−t
(
φ−1

(∫
∆(S∞)

φ
(∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p (sτ | hαt (s̄t−1))
)
µ (dp | hαt (s̄t−1))

)
−
∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

)∣∣∣∣∣
+
ε

2

≤
t+n−1∑
τ=t

∣∣∣δτ−t ( ε

2n

)∣∣∣+
ε

2
< ε.

This, by definition of limit implies that

lim
t→∞

∣∣∣∣∣ V (α, µ|hαt (s̄t−1))

−
∑∞

τ=t δ
τ−t∑

sτ∈Sτ r (aατ (sτ−1) , sτ ) p̄ (sτ | hαt (s̄t−1))

∣∣∣∣∣ = 0.

Summing up the subjective continuation value of strategy α converges to the ob-

jective one almost surely. �
In order to prove Proposition 5, for the sake of completeness, we show that Bayesian

beliefs satisfy the Martingale property.

Denote the period-(t + 1) Bayesian map βt+1 : ∆(∆(S)) × A → ∆0(∆(S)), and

define it in the the following way for every B ∈ B(·(S))

βt+1(νt(·), a)(B) :=


∫
B q(f

−1
a (m1))νt(dπ)

pνt (f
−1
a (m1))

with probability
∫
P
π̂(f−1

a (m1))νt(dπ̂)

... ... ...∫
B q(f

−1
a (m|M|))ν

t(dπ)

pνt (f
−1
a (m|M|))

with probability
∫
P
π̂(f−1

a (m|M |))ν
t(dπ̂).

The distribution βt+1(ν, a, ) is the distribution over period t+ 1 beliefs consistent with

holding belief ν and taking action a at time t.

Lemma 4. In an i.i.d. environment, for every Borel subset B in B(∆ (S)),

Eβ(νt(·),a)(ν
t+1(B)) = νt(B).

Proof of Lemma 4 Note that the subjective probability assigned to the models in B
after having observed m and having played a is∫

B
q(f−1

a (m))νt(dπ)

pνt(f−1
a (m))

,

whereas the subjective probability of observing message m when a is played is∫
∆(S)

π̂(f−1
a (m))νt(dπ̂).
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By definition of Bayesian map, we have:

Eβ(ν(·),a)(ν
t+1(B)) =

∑
m:pνt (f

−1
a (m))>0

∫
P

(∫
B
q(f−1

a (m))νt(dπ)

pνt(f−1
a (m))

)
π̂(f−1

a (m))νt(dπ̂)

=
∑

m:pνt (f
−1
a (m))>0

∫
B
π(f−1

a (m))νt(dπ)

pνt(f−1
a (m))

pνt(f
−1
a (m))

=
∑

m:pνt (f
−1
a (m))>0

∫
B

π(f−1
a (m))νt(dπ)

=

∫
B

∑
m:pνt (f

−1
a (m))>0

π(f−1
a (m))νt(dπ)

= νt(B)

Note that the result holds also if νt(B) = 0. �

Proof of Proposition 5 It is immediate to see that condition (i) of SCE implies
condition (ii) of static SCE. Now, we show that an SCE features myopic best reply on

path, that is, (α(ν), ν , π) satisfies property (i) of static SCE. By way of contradiction,

suppose there is a ∈ A such that

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
> φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν), s)π(s)

)
ν(dπ)

)
.
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By definition of SCE it must be the case that V (α/a, ν) ≤ V (α, ν). However, we have:

V (α, ν)

=
∑
s∈S

r(α(ν), s)π(s) + δV (α, ν)

≤
∑
s∈S

r(α(ν), s)π(s) + δ min
m:πν(f−1

a (m))>0
V (α, ν(·|(a,m))

< φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
+

δ min
m:πν(f−1

a (m))>0

( ∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ | (a,m))

))

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
+

δ

( ∞∑
τ=t

δτ−tφ−1

(
min

m:πν(f−1
a (m))>0

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ | (a,m))

)))

≤ φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
+

δ

( ∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
Eβ(ν(·),a)(ν(dπ|(a,m)))

))

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
+

δ

( ∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aατ
(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ)

))

=
∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aα/aτ

(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ)

)
= V (α/a, ν),

where the first equality comes from by the confirmed beliefs property of SCE, the strict

inequality comes from hypothesis, the second equality comes from the fact that φ is

strictly increasing, the third equality by Lemma 4, and the fourth and fifth equalities
by the definition of α/a. Note that we will be done as soon as we prove the first weak

inequality, that is

V (α, ν) ≤ min
m:πν(f−1

a (m))>0
V (α, ν(·|(a,m)).

Indeed, it would follow that V (α, ν) < V (α/a, ν), a contradiction with the fact that

(α, ν , π) is an SCE.

Suppose that there exist m such that πν(f−1
a (m)) > 0 with V (α, ν(·|(a,m)) <
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V (α, ν). The fact that πν(f−1
a (m)) > 0 implies that πν(I(a,m)) > 0. On the other

hand, since (α, ν, π) is an SCE, ν (π ∈ ∆(S) : πα = πα) = 1, and in particular

ν
(
π ∈ ∆(S) : π ◦ f−1

α(ν) = π ◦ f−1
α(ν)

)
= 1.

Then, let B =
{
π ∈ ∆(S) : π ◦ f−1

α(ν) = π ◦ f−1
α(ν)

}
. By Bayes rule, we have that

ν (B|(a,m)) = ν (B)

∫
B
π(f−1

a (m))ν(dπ)

πν(f−1
a (m))

= ν (B)

∫
∆(S)

π(f−1
a (m))ν(dπ)

πν(f−1
a (m))

= ν (B) = 1.

But then it follows that

V (α, ν(·|(a,m)) < (1− δ)V (α, ν) + δV (α, ν(·|(a,m))

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν), s)π(s)

)
ν(dπ)

)
+ δV (α, ν(·|(a,m))

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν), s)π(s)

)
ν(dπ|(a,m))

)
+ δV (α, ν(·|(a,m))

=
∞∑
τ=t

δτ−tφ−1

(∫
∆(S)

φ

(∑
sτ∈Sτ

r
(
aα/α(ν)
τ

(
sτ−1

)
, sτ
)
pπ(sτ |ht)

)
ν (dπ|(a,m))

)
= V (α/(α(ν), ν(·|(a,m)).

But this contradicts the fact that (α, ν , π) is an SCE. �

Proof of Lemma 3 Since the assumptions of Proposition 2 are satisfied, we can
consider G′ as defined in the corresponding proof. Fix any path s∞ ∈ G′. By defini-
tion of P̂α,µ

T (p)
(
sT−1

)
, we have that for every t larger than T and, for every p′π,p

′′
π in

P̂α,µ
T (pπ̄)

(
sT−1

)
p′π(hαt

(
st−1

)
|hαT

(
sT−1

)
) = p′′π(hαt

(
st−1

)
|hαT

(
sT−1

)
).

Hence, since property (i) of pre self-confirming equilibria implies that the agent does

not reach information histories that are subjectively unreachable. It follows from the

chain rule that:
ν(π′|hαt (st−1))

ν(π′′|hαt (st−1))
=
ν(π′|hαT

(
sT−1

)
)

ν(π′′|hαT (sT−1))
.

This assures that

ναs∞ := lim
t→∞

ν(·|hαt
(
st−1

)
)

is well defined.

Indeed, the relative probabilities of the models in P̂α,µ
T (pπ̄)

(
sT−1

)
remain constant and

(19) holds, then:

ναs∞(π) =


ν(π|hαT (sT−1))

ν(P̂α,µT (pπ̄)(sT−1)|hαT (sT−1))
if pπ ∈ P̂α,µ

T (pπ̄)
(
sT−1

)
,

0 if pπ /∈ P̂α,µ
T (pπ̄)

(
sT−1

)
.
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and the thesis follows. �

Proof of Proposition 6 First, we have that the hypothesis of Proposition 2 are
satisfied, so let G′ be as in the corresponding proof. Second, note that the value

function (10) is continuos in beliefs ν. Then, by Proposition 3, for every a in A,

lim
t→∞

V (α/a, ν(·|hαt
(
st−1

)
)) = V (α/a, ναs∞),

where α/a is the strategy that prescribes a in the first period to come and coincide

with α otherwise.

Let A∞ := arg maxa∈A V (α/a, ναs∞). Note that, in general, the definition of pre

self-confirming equilibrium does not require that

α(ναs∞) ∈ arg max
a∈A

V (α/a, ναs∞).

Indeed, if there is no ht such that pπν (I(ht)) > 0 and ν(·|ht) = ναs∞ , then α (ναs∞) does

not need to satisfy the one-shot-deviation property. Since s∞ ∈ G′, then it follows by
the definition of G′, that pπ(I(hαt (st−1))) > 0 for every finite t. By property (i) of pre

self-confirming equilibria we have that pπ(I(hαt (st−1))) > 0 implies pπν (I(hαt (st−1))) >

0. Hence,

α(ν(·|hαt
(
st−1

)
)) ∈ arg max

a∈A
V (α/a, ν(·|hαt

(
st−1

)
)).

Now, let a /∈ A∞, and fix a∗ ∈ A∞. We have that

lim
t→∞

V (α/a, ν(·|hαt
(
st−1

)
)) = V (α/a, ναs∞)

< max
a′∈A

V (α/a′, ναs∞) = V (α/a∗, ναs∞)

= lim
t→∞

V (α/a∗, ν(·|hαt
(
st−1

)
)).

Hence there existsT as∞ such that a /∈ α(ν(·|hαt (st−1))) for every t ≥ T as∞ . Let T
∗
s∞ =

maxa∈A/A∞ T
a
s∞ . Then, from T ∗s∞ onward, the only actions played are in A∞, that is,

they satisfy the one-shot deviation property with respect to having the limit beliefs

ναs∞ . Let T̂s∞ = max {T, T ∗s∞}; we have that from T̂s∞ onward the action prescribed by

strategy α, aαt (st−1), satisfies the one-shot deviation property with respect to beliefs

ναs∞ , and confirm them. By Proposition 5, this implies that (aαt (st−1), ναs∞ , π) is a static

SCE for every t ≥ T̂s∞ . �

Proof of Corollary 3 By hypothesis, we know that (α, ν, π) converges to a static SCE

on s∞. Therefore, there exists T̂s∞ such that, for every t ≥ T̂s∞ , the pair (aαt (st−1), ναs∞ , π)

is a static SCE, and so

aαt (st−1) ∈ arg max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ναs∞(dπ)

)
= {a∗s∞} .
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Therefore, (a∗s∞ , ν
α
s∞ , π) is a static SCE. Now, let a 6= a∗s∞ . By continuity of the

one-period value function with respect to beliefs, and by Proposition 3, it follows that

lim
t→∞

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a∗s∞ , s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a∗s∞ , s)π(s)

)
ναs∞(dπ)

)

> φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ναs∞(dπ)

)

= lim
t→∞

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)
.

Therefore there exists T̄a,s∞ > T̂s∞ such that t > T̄a,s∞ implies

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a∗s∞ , s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)

> φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)
.

Let T̄s∞ = maxa∈A/a∗s∞ T̄a,s∞ . We have that t > T̄s∞ implies

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a∗s∞ , s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)

= max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ|hαt

(
st−1

)
)

)
.

And the thesis follows. �

Proof of Proposition 7 Let

a1(ν) = arg max
a∈A

φ−1

(∫
∆(S)

φ

(∑
s∈S

r(a, s)π(s)

)
ν(dπ)

)
be defined as the one-period best reply correspondence to the belief ν.

Since (α, ν∗ , π) is an SCE, we know by Proposition 5 that α(ν∗) ∈ a1(ν∗). In what
follows, let α(ν) an arbitrary element of the image of ν under the correspondence a1.

By definition:

V1(ν) = φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν), s)π(s)

)
ν(dπ))

)

≥ φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν∗), s)π(s)

)
ν(dπ))

)
.
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From Remark 1 and by the observable payoffs property, we have that for every model

π in supp ν∗, ∑
s∈S

r(α(ν∗), s)π(s) =
∑
s∈S

r(α(ν∗), s)π(s). (21)

But since supp ν ⊆ supp ν∗, we have that (21) holds also for every model π in supp ν∗.

Then,

V1(ν) = φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν), s)π(s)

)
ν(dπ)

)

≥ φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν∗), s)π(s)

)
ν(dπ)

)

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν∗), s)π(s)

)
ν(dπ)

)
=

∑
s∈S

r(α(ν∗), s)π(s)

= φ−1

(∫
∆(S)

φ

(∑
s∈S

r(α(ν∗), s)π(s)

)
ν∗(dπ)

)
= V1(ν∗).

�
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