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Abstract

Discount rate variation is the central organizing question of current asset pricing research. I

survey facts, theories and applications.

We thought returns were uncorrelated over time, so variation in price-dividend ratios was

due to variation in expected cashflows. Now it seems all price-dividend variation corresponds to

discount-rate variation. We thought that the cross-section of expected returns came from the

CAPM. Now we have a zoo of new factors.

I categorize discount-rate theories based on central ingredients and data sources.

Discount-rate variation continues to change finance applications, including portfolio theory,

accounting, cost of capital, capital structure, compensation, and macroeconoimcs.
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1 Introduction

Asset prices should equal expected discounted cashflows. 40 years ago, Gene Fama (1970) argued

that the expected part, “testing market efficiency,” provided the framework for organizing asset-

pricing research in that era. I argue that the “discounted” part better organizes our research

today.

I start with facts: How discount rates vary over time and across assets. I turn to theory, why

discount rates vary. I’ll attempt a categorization based on central assumptions and links to data,

analogously to Fama’s “weak” “semi-strong” and “strong” forms of efficiency. Finally, I point to

some applications, which I think will be strongly influenced by our new understanding of discount

rates. In each case, I have more questions than answers. This paper is more of an agenda than a

summary.

An apology: In the available space I cannot even cite let alone review all the deserving literature,

or trace the development of all these ideas. My long reference list here only gives examples of

relevant work.

2 Time-series facts

2.1 Simple DP regression

Discount rates vary over time. (“Discount rate” “risk premium” and “expected return” are all the

same thing here.) Start with a very simple regression of returns on dividend yields,1 shown in Table

1.

Horizon   t() R2  [(
)]

[(
)]

()

1 year 3.8 (2.6) 0.09 5.46 0.76

5 years 20.6 (3.4) 0.28 29.3 0.62

Table 1. Return forecasting regressions 
→+ =  +  ×  + +. Annual

data, CRSP value weighted return less 3 month Treasury return 1947-2009. The 5 year

regression t statistic uses the Hansen-Hodrick (1983) correction.  [(
)] stands for

(̂×).

The one-year regression forecast doesn’t seem that important. Yes, the t statistic is “significant,”

but there are lots of biases and fishing. The 9% 2 isn’t impressive.

In fact, this regression has huge economic significance. First, the coefficient estimate is large.

One percentage point more dividend yield forecasts nearly four percentage points more return.

Prices rise by an additional three percentage points.

Second, five and a half percentage point variation in expected returns is a lot. A six-percent

equity premium was already a “puzzle.”2 The regression implies that expected returns vary by at

least as much as their puzzling level.

1Fama and French (1988).
2Mehra and Prescott (1985).
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By contrast, 2 is a poor measure of economic significance in this context3. The economic ques-

tion is “How much do expected returns vary over time?” There will always be lots of unforecastable

return movement, so the variance of ex-post returns isn’t a very informative comparison.

Third, the slope coefficients and 2 rise with horizon. Figure 1 plots each year’s dividend yield

along with the subsequent seven years of returns. Read the dividend yield as prices upside down:

prices were low in 1980 and high in 2000. The picture then captures the central fact: High prices,

relative to dividends, have reliably led to many years of poor returns. Low prices have led to high

returns.
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Figure 1: Dividend yield (multiplied by 4) and following annualized 7-year return. CRSP value-

weighted market index.

2.2 Present values, volatility, bubbles, and long-run returns

Long horizons are interesting, really, because they tie predictability to volatility, “bubbles,” and the

nature of price movements. I make that connection via the Campbell-Shiller (1988) approximate

present value identity,

 ≈
X

=1

−1+ −
X

=1

−1∆+ + + (1)

where  ≡  −  = log(), +1 ≡ log, and  ≈ 096 is a constant of approximation. See
the Appendix for details.

If we run regressions of weighted long-run returns and dividend growth on dividend yields, the

present value identity (1) implies that the long-run regression coefficients must add up to one,

1 ≈ () − 
()

∆ + 
()

  (2)

3Campbell (1991) makes this point, noting that a perpetuity would have very low short-run 2

2



Just run both sides of the identity (1) on  Here, 
()
 , 

()

∆ and 
()

 denote long-run regression

coefficients, i.e.

X
=1

−1+ =  + ()  + + (3)

X
=1

−1∆+ =  + 
()

  + +

+ =  + 
()

  + 

+ (4)

If we lived in an i.i.d. world, dividend yields would never vary in the first place as expected

future returns and dividend growth would never change. If dividend yields vary at all, they must

forecast long-run returns, long-run dividend growth, or a “rational bubble” of ever higher prices.

The regression coefficients in (2) can be read as the fractions of dividend yield variation attributed

to each source. To see this interpretation more clearly, multiply both sides of (2) by (),

giving

 () ≈ 

⎡⎣ X
=1

−1+

⎤⎦− 

⎡⎣ X
=1

−1∆+

⎤⎦+  ( +) (5)

The empirical question is, which is it? Table 2 presents long-run regression coefficients.


()
 

()

∆ 
()



Direct regression ,  = 15 1.01 -0.11 -0.11

Implied by VAR,  = 15 1.05 0.27 0.22

VAR,  =∞ 1.35 0.35 0.00

Table 2. Long-run regression coefficients, for example
P

=1 
−1+ = + 

()
 +

+. Annual data 1947-2009. “Direct” estimates are based on 15-year ex-post re-

turns. The “VAR” estimates infer long-run coefficients from one-year coefficients, using

estimates in the right-hand panel of Table 3. (See the Appendix for details.)

The long-run return coefficients are all a bit larger than 1.0. The dividend-growth forecasts

are small, insignificant, and positive point estimates go the “wrong” way — high prices relative to

current dividends signal low future dividend growth. The 15-year dividend-yield forecast coefficient

is also essentially zero, and has the “wrong” sign as well.

Thus the estimates say that all price-dividend ratio volatility corresponds to variation in expected

returns. None corresponds to variation in expected dividend growth, and none to “rational bubbles.”

In the 1970s, we would have guessed exactly the opposite pattern. On the idea that returns

are not predictable, we would have supposed that high prices relative to current dividends reflect

expectations that dividends will rise in the future, and so forecast higher dividend growth. That

pattern is completely absent. Instead, high prices relative to current dividends entirely forecast

low returns.
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This is the true meaning of return forecastability.4 This is the real measure of “how big” the

point estimates are — return forecastability is “just enough” to account for price volatility. This is

the natural set of units with which to evaluate return forecastability. What we expected to be 0

is 1; what we expected to be 1 is 0.

Table 2 also reminds us that the point of the project is to understand prices, the right hand

variable of the regression. We put return on the left because the forecast error is uncorrelated with

the forecasting variable. That choice does not reflect “cause” and “effect,” nor does it imply that

the point of the exercise is to understand (ex-post) return variation.

How you look at things matters. The long-run and short-run regressions are mathematically

equivalent. Yet one transformation shows an unexpected economic significance. We will see this

lesson repeated many times.

(Table 2 does not include standard errors, and sampling variation in long-run estimates is an

important topic.5 My point is the economic importance of estimates. One might still argue that

we can’t reject the alternative views. But when point estimates are 1 and 0, arguing we should

believe 0 and 1 because that view can’t be rejected is obviously a tough sell.

The variance of dividend yields or price-dividend ratios corresponds entirely to discount-rate

variation, but as much as half of the variance of price changes ∆+1 = −+1 +  +∆+1 or

returns +1 ≈ −+1 +  + ∆+1 corresponds to current dividends ∆+1. This fact seems

trivial but has caused a lot of confusion.)

2.3 A pervasive phenomenon

This pattern of predictability is pervasive across markets. For stocks, bonds, credit spreads, foreign

exchange, sovereign debt and houses, a yield or valuation ratio translates one-for-one to expected

excess returns, and does not forecast the cashflow or price change we may have expected. In each

case our view of the facts have changed 100% since the 1970s.

• Stocks. Dividend yields forecast returns, not dividend growth.6

• Treasuries. A rising yield curve signals better one-year return for long-term bonds, not higher
future interest rates. Fed fund futures signal returns, not changes in the funds rate.7

• Bonds. Much variation of credit spreads over time and across firms or categories signals
returns not default probabilities.8

• Foreign exchange. International interest rate spreads signal returns, not exchange-rate de-
preciation.9

• Sovereign debt. High levels of sovereign or foreign debt signal low returns, not higher govern-
ment or trade surpluses.10

4Shiller (1981), Campbell and Shiller (1988), Campbell and Ammer (1993), Cochrane (1991a), (1992), (1994) and

review in (2005c).
5See Cochrane (2006) and its references.
6Fama and French (1988), (1989).
7Fama and Bliss (1987), Campbell and Shiller (1991), Piazzesi and Swanson (2008).
8Fama (1986), Duffie and Berndt (2011).
9Hansen and Hodrick (1980), Fama (1984).
10Gourinchas and Rey (2007).
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• Houses. High price/rent ratios signal low returns, not rising rents or prices that rise forever.

Since houses are so much in the news, Figure 2 shows house prices and rents, and Table 3

presents a regression. High prices relative to rents mean low returns, not higher subsequent

rents, or prices that rise forever. The housing regressions are almost the same as the stock market

regressions. (Not everything about house and stock data is the same of course. Measured house

price data are more serially correlated.)
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Figure 2: House prices and rents. OFHEO is the Office of Federal Housing Enterprise

Oversight "purchase-only" price index. CSW are Case-Shiller-Weiss price data. Data from

http://www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp

Houses Stocks

  2   2

+1 0.12 (2.52) 0.15 0.13 (2.61) 0.10

∆+1 0.03 (2.22) 0.07 0.04 (0.92) 0.02

+1 0.90 (16.2) 0.90 0.94 (23.8) 0.91

Table 3. Left: Regressions of log annual housing returns +1, log rent growth ∆+1
and log rent/price ratio +1 on the rent/price ratio , +1 =  +  ×  + +1
1960-2010. Right: Regressions of log stock returns +1, dividend growth ∆+1 and

dividend yields +1 on dividend yields , annual CRSP value weighted return data

1947-2010.

There is a strong common element and a strong business cycle association to all these fore-

casts.11 Low prices and high expected returns hold in “bad times,” when consumption, output and

investment are low, unemployment is high, businesses are failing, and vice versa.

These facts bring a good deal of structure to the debate over “bubbles” and “excess volatility.”

High valuations correspond to low returns, and associated with good economic conditions. All a

11Fama and French (1989).
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“price bubble” can possibly mean now is that the equivalent discount rate is “too low” relative to

some theory. This fact channels us to a much more profitable discussion.

2.4 The multivariate challenge

This empirical project has only begun. We see that one variable at a time forecasts one return at

a time. We need to understand their multivariate counterparts, on both the left and right hand

sides of the regressions.

For example the stock and bond regressions on dividend yield and yield spread () are

stock+1 =  +  ×  + +1

bond+1 =  +  ×  + +1

We have some additional predictor variables , from similar univariate or at best bivariate (hence

[+ × ]) explorations,

stock+1 =  [+ × ] +  ×  + +1

First, then, which of these variables are really important in a multiple regression sense? In

particular, do the variables that forecast one return forecast another?

stock+1 =  +  ×  +  ×  + 0 + +1? (6)

bond+1 =  +  ×  +  ×  + 0 + +1?

(I put the variables we need to learn about in boxes.)

Second, how correlated are the right-hand terms of these regressions? What is the factor struc-

ture of time-varying expected returns? Expected returns (

+1) vary across time ; how correlated

is such variation across assets and asset classes , and how can we best express that correlation as

factor structure? As an example to clarify the question, suppose we find the stock return coefficients

are all double those of the bonds,

stock+1 =  + 2×  + 4×  + +1

bond+1 =  + 1×  + 2×  + +1

We would see a one-factor model for expected returns, with stock expected returns always changing

by twice bond expected returns,



³
stock+1

´
= 2× factor (7)



³
bond+1

´
= 1× factor.

Third, we need to relate time-varying expected returns to covariances with pricing factors or

portfolio returns.



¡
+1

¢
= (


+1f

0
+1)λ

As a small step down this road, Cochrane and Piazzesi (2005) (2008) find that forward rates

of all maturities help to forecast returns of each maturity — multiple regressions matter as in (6).

6



We found that the right-hand sides are almost perfectly correlated across left-hand maturities.12 A

single common factor describes 99.9% of the variance of expected returns as in (7). Finally, we find

that the spread in time-varying expected bond returns across maturities corresponds to a spread

in covariances with a single “level” factor, and the market prices of risk of slope, curvature, and

expected-return factors are zero.

What similar patterns hold across broad asset classes? The challenge, of course, is that there

are too many right hand variables, so we can’t just go run huge multiple regressions. But these are

the vital questions.

2.5 Multivariate prices

I advertised much of the point of running return regressions with prices on the right hand side was

to understand those prices. How will a multivariate investigation change our picture of prices and

long-run returns?

Again, the Campbell-Shiller present value identity

 ≈
∞X
=1

−1+ −
∞X
=1

−1∆+ (8)

provides a useful way to think about these questions. Since this identity holds ex-post, it holds for

any information set. Dividend yields are a great forecasting variable because they reveal market

expectations of dividend growth and returns. However, dividend yields combine the two sources of

information. A variable can help the dividend yield to forecast long-run returns if it also forecasts

long-run dividend growth. A variable can also help to predict one year returns +1 without much

changing long-run expected returns, if it has an offsetting effect on longer-run returns {+}. Such
a variable signals a change in the term structure of risk premia {+}.

I examine Lettau and Ludvigson’s (2001a) (2005) consumption to wealth ratio cay as an example

to explore these questions. Table 4 presents forecasting regressions

Coefficients t-statistics Other statistics

    2  [(+1)]%
[(+1)]

(+1)

+1 0.12 0.071 (2.14) (3.19) 0.26 8.99 0.91

∆+1 0.024 0.025 (0.46) (1.69) 0.05 2.80 0.12

+1 0.94 -0.047 (20.4) (-3.05) 0.91

+1 0.15 0.65 (0.63) (5.95) 0.43

 =
P∞

=1 
−1+ 1.29 0.033 0.51

∆ =
P∞

=1 
−1∆+ 0.29 0.033 0.12

Table 4. Forecasting regressions using dividend yield and consumption-wealth ratio,

1952-2009, annual data. Long-run coefficients are computed using a first-order VAR

with  and  as state variables. Each regression includes a constant. Cay is

rescaled so () = 1. () = 042.

Cay helps to forecast one-period returns. The t statistic is large, and it raises the variation of

expected returns substantially. Cay only marginally helps to forecast dividend growth. (Lettau

and Ludvigson report that it works better in quarterly data.)

12Hansen and Hodrick (1983) and Stambaugh (1988) find similar structures.
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Figure 3 graphs the one-year return forecast using dp alone, the one-year return forecast using

dp and cay together, and the actual ex-post return. Adding cay lets us forecast business-cycle

frequency “wiggles” while not much changing the “trend.”
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Figure 3: Forecast and actual 1 year returns. The forecasts are fitted values of regressions of returns

on dividend yield and cay. Actual returns are plotted on the same date as their forecast, i.e. +1
is plotted at the same date as + × .
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Figure 4: Dividend yield dp and forecasts of long-run returns
P∞

=1 
−1+ Return forecasts are

computed from a VAR including dp, and a VAR including dp and cay.

Long-run return forecasts are quite different. Figure 4 contrasts long-run return forecast with

and without cay. Though cay has a dramatic effect on one-period return +1 forecasts in Figure

3, cay has almost no effect at all on long-run return
P∞

=1 
−1+ forecasts in Figure 4.
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Figure 4 includes the actual dividend yield, to show (by (8)) how dividend yields break into long-

run return vs. dividend growth forecasts. The last two rows of Table 4 give the corresponding long-

run regression coefficients. Essentially all price-dividend variation still corresponds to expected-

return forecasts.

How can cay forecast one-year returns so strongly, but have such a small effect on prices? In

the context of (8), cay alters the term structure of expected returns. We can display this behavior

with impulse-response functions. Figure 5 plots responses to a dividend growth shock, a dividend

yield shock, and a cay shock. In each case, I include a contemporaneous return response to satisfy

the return identity +1 = ∆+1 − +1 + .
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Figure 5: Response functions to dividend growth, dividend yield, and cay shocks. Calculations are

based on the VAR of Table 4. Each shock changes the indicated variable without changing the

others, and includes a contemporaneous return shock +1 = ∆+1 − +1 + . The vertical

dashed line indicates the period of the shock.

These plots answer the question, “what change in expectations corresponds to the given shock?”

The dividend growth shock corresponds to permanently higher expected dividends with no change

in expected returns. Prices jump to their new higher value and stay there. It is a pure “expected

cashflow” shock. The dividend yield shock is essentially a pure discount rate shock. It shows a rise

in expected returns with little change in expected dividend growth.

The cay shock in the rightmost panel of Figure 5 corresponds to a shift in expected returns

from the distant future to the near future, with a small similar movement in the timing of a dividend

growth forecast. It has almost no effect on long run returns or dividend growth. We could label it
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a shock to the term structure of risk premia.13

So, cay strongly forecasts one-year returns, but has little effect on price-dividend ratio variance

attribution. Does this pattern hold for other return forecasters? I don’t know. In principle, con-

sistently with the identity (8), other variables can help dividend yields to predict both long-run

returns and long-run dividend growth. Consumption and dividends should be cointegrated, and

since dividends are so much more volatile, the consumption-dividend ratio should forecast long-run

dividend growth. Cyclical variables should work: at the bottom of a recession, both discount rates

and expected growth rates are likely to be high, with offsetting effects on dividend yields. However,

the lesser persistence of typical forecasters will work against much effect on price-dividend ratios.

Cay’s coefficient of only 0.65 on its own lag, and the fact that cay did not forecast dividend yields,

are much of the story for cay’s failure to affect long-run forecasts.

Even so, if additional variables help to forecast long-run dividend growth, they can only raise

the contribution of long-run expected returns to price-dividend variation. It does not shift variance

attribution from returns do dividends. A higher long-run dividend forecast must be matched by a

higher long-run return forecast if it is not to affect the dividend yield.

This is a suggestive first-step, not an answer. We have a smorgasbord of return forecasters

to investigate, singly and jointly, including additional predictability in additional lags of returns

and dividend yields (see the Appendix). The point is this: Multivariate long-run forecasts and

consequent price implications can be quite different from one-period return forecasts. As we pursue

the multivariate forecasting question using the large number of additional forecasting variables, we

should look at pricing implications, not just focus on short-run 2 contests.

3 The Cross Section

In the beginning, there was chaos; practitioners thought one only needed to be clever to earn high

returns. Then came the CAPM. Every clever strategy to deliver high average returns ended up

delivering high market betas as well. Then anomalies erupted, and there was chaos again. The

“value effect” was the most prominent anomaly.

Figure 6 presents Fama-French 10 book/market-sorted portfolios. Average excess returns rise

from growth (low book/market, “high price”) to value (high book/market, “low price”). This fact

would not be a puzzle if the betas also rose. But the betas are about the same for all portfolios.

The absence of beta is really the heart of the value puzzle. It’s perfectly natural that stocks

which have fallen on hard times should have higher subsequent returns. If the market declines,

these stocks should be particularly hard hit. They should have higher average returns — and higher

betas. All puzzles are joint puzzles of expected returns and betas. Beta without expected return

is just as much a puzzle — and profitable — as expected return without beta.14 (The appendix shows

how beta

Fama and French (1993), (1996) brought order once again with size and value factors. Figure

6 includes the results of multiple regressions on the market and Fama and French’s hml factor,


 =  +  ×  +  ×  + 

The Figure shows the separate contributions of  ×  () and  ×  () in accounting for

(). Higher average returns do line up well with larger values of the regression coefficient

13For impulse-responses, see Cochrane (1994). For the effect of cay, see Lettau and Ludvigson (2005).
14Frazzini and Pedersen (2010).
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Figure 6: Average returns and betas for Fama - French 10 Book/Market sorted portfolios. Monthly

data 1963-2010.

Fama and French’s factor model accomplishes a very useful data reduction. Theories now only

have to explain the hml portfolio premium, not the expected returns of individual assets.15 This

lesson has yet to sink in to a lot of empirical work, which still uses the 25 Fama French portfolios

to test deeper models.

Covariance is in a sense Fama and French’s central result: if the value firms decline, they all

decline together. Where there is mean, there must be comovement, so that Sharpe ratios do not rise

without limit in well-diversified value portfolios.16 But theories now must also explain this common

movement among value stocks. It is not enough to simply generate temporary price movements, a

“fad” that produces high or low prices and then fades away rewarding contrarians. You need all

the low-price securities to subsequently rise and fall together in the following month.

Finally, Fama and French found that other sorting variables, such as firm sales growth, did

not each require a new factor. The three-factor model took the place of the CAPM for routine

risk-adjustment in empirical work.

Order to chaos, yes, but once again, the world changed 100%. None of the cross-section of

average stock returns corresponds to market betas. 100% corresponds to  (and size) betas

Alas, the world is once again descending into chaos. Expected return strategies have emerged

that do not correspond to market, value, and size betas. These include, among many others,

momentum17, accruals, equity issues and other accounting-related sorts,18 beta arbitrage, credit

risk, bond and equity market-timing strategies, foreign exchange carry trade, put option writing,

and various forms of “liquidity provision.”

15Daniel and Titman (2006), Lewellen, Nagel, and Shanken (2010).
16Ross (1976), (1978).
17Jegadeesh and Titman (1993).
18See Fama and French (2010).
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3.1 The multidimensional challenge

We’re going to have to repeat Fama and French’s anomaly digestion, but with many more dimen-

sions. We have a lot of questions to answer:

First, which characteristics really provide independent information about average returns?

Which are subsumed by others?

Second, does each new anomaly variable also correspond to a new factor formed on those same

anomalies? Momentum returns correspond to regression coefficients on a winner-loser momentum

“factor.” Carry-trade profits correspond to a carry-trade factor.19 Do accruals return strategies

correspond to an accruals factor? We should routinely look.

Third, how many of these new factors are really important? Can we again account for 

independent dimensions of expected returns with    factor exposures? Can we account for

accruals return strategies by betas on some other factor, as with sales growth?

Now, factor structure is neither necessary nor sufficient for factor pricing. ICAPM and consumption-

CAPM models do not predict or require that the multiple pricing factors will correspond to big

common movements in asset returns. And big common movements, such as industry portfolios,

need not correspond to any risk premium. There always is an equivalent single-factor pricing rep-

resentation of any multifactor model, the mean-variance efficient portfolio. Still, the world would

be much simpler if betas on only a few factors, important in the covariance matrix of returns,

accounted for a larger number of mean characteristics.

Fourth, eventually, we have to connect all this back to the central question of finance, why do

prices move?

3.2 Asset pricing as a function of characteristics/unification

To address these questions in the zoo of new variables, I suspect we will have to use different

methods. Following Fama and French, a standard methodology has developed: sort assets into

portfolios based on a characteristic, look at the portfolio means, especially the 1-10 portfolio alpha,

information ratio, and t-statistic, and then see if the spread in means corresponds to a spread of

portfolio betas against some factor. But we can’t do this with 27 variables.

Portfolio sorts are really the same thing as nonparametric cross sectional regressions, using

rather inefficient non-overlapping histogram weights. Figure 7 illustrates the point. For one vari-

able, portfolio sorts and regressions both work. But we can’t chop portfolios 27 ways, so I think

we will end up running multivariate regressions.20 (The Appendix gives a simple cross-sectional

regression to illustrate.)

Having said that, you see that “time series” forecasting regressions, “cross-sectional” regressions

and portfolio mean returns are really the same thing. All we are ever really doing is understanding

a big panel-data forecasting regression


+1 = + b0C + +1

We end up describe expected returns as a function of characteristics,

(
+1|C)

19Lustig, Roussanov, and Verdelhan (2010a).
20Fama and French (2010) already run such regressions, despite evident reservations over functional forms.
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Figure 7: Portfolio means vs. cross -sectional regressions.

where C denotes some big vector of characteristics,

C = [size, b/m, momentum, accruals, d/p, credit spread....]

Is value a “time-series” strategy that moves in and out of a stock as that stock’s book/market

changes, or a “cross-sectional” strategy that moves from one stock to another following the same

signal? Well, both, obviously. They are the same thing. This is the managed-portfolio theorem:21

an instrument  in a time series test 0 = 
£¡
+1


+1

¢

¤
is the same as an unconditional test

of a managed portfolio 0 = 
£
+1

¡

+1

¢¤
.

Once we understand expected returns, we have to see if expected returns line up with covariances

of returns with factors. Sorted-portfolio betas are a nonparametric estimate of this covariance

function

(

+1 +1) = ()

Parametric approaches are natural here as well, to address a multidimensional world. For example,

we can run regressions£

+1 −(

+1|)
¤
+1 = + 0 + +1 ⇒ () = + 0

(The errors may not be normal, but they are mean-zero and uncorrelated with the right hand

variable.) We want to see if the mean return function lines up with the covariance function.

(|) = ()× ?

Underlying everything we’re doing is an assumption that expected returns, variances and co-

variances are stable functions of characteristics, not (say) security name. That is an incredibly

useful assumption—or, fact about the world. Without it, it’s hard to tell if there is any spread in

average returns at all. It means however, that asset pricing really is about the equality of two

functions; the function relating means to characteristics and the function relating covariance to

characteristics.

Looking at portfolio means rather than forecasting regressions was really the key to understand-

ing economic importance of many effects, as was looking at long-horizon returns. For example,

serial correlation with an 2 of 0.01 doesn’t seem that impressive. Yet is enough to account for

21Cochrane (2005c).
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momentum: The last year’s winners went up 100%, so an annual autocorrelation of 0.1, meaning

0.01 2, generates a 10% annual portfolio mean return. (An even smaller amount of time-series

cross-correlation works as well.) Similarly, the information ratio for 1-10 (or 1-20, or 1-50) spread

in portfolio mean returns is a persuasive metric for the difference in mean returns across a port-

folio strategy. As another classic example, Lustig, Roussanov, and Verdelhan (2010a) translated

carry-trade return-forecasting regressions to means of portfolios formed on the basis of currency

interest differentials. This step led them to look for and find a factor structure of country returns

that depends on interest differentials, a “high minus low” factor. This step followed Fama and

French (1996) exactly, but no one thought to look for it in 30 years of running country-by-country

time-series forecasting regressions

But the equivalence of portfolio sorts and regressions goes both ways. We can still calculate these

measures of economic significance if we estimate panel-data regressions for means and covariances.

From the spread of lagged returns, we can calculate the momentum portfolio implications directly.

The 1-10 portfolio information ratio is the same thing as the Sharpe ratio of the underlying factor,

or t-statistic of the cross-sectional regression coefficient. (See the Appendix.) We could study the

covariance structure of panel-data regression residuals as a function of the same characteristics

(interest rate spread, for example) rather than actually form portfolios.

Running multiple panel-data forecasting regressions is full of pitfalls of course. One can end up

focusing on tiny firms, or outliers. One can get the functional form wrong. Uniting time-series and

cross section will yield new insights as well. For example, variation in book/market over time for a

given portfolio has a larger effect on returns than variation in book/market across the Fama-French

portfolios, and a recent change in book/market also seems to forecast returns. (See the Appendix.)

I didn’t say it will be easy! But we must address the factor zoo, and it’s hard to chop portfolios 27

ways.

3.3 Prices

Then, we have to answer the central question, what is the source of price variation?

When did our field stop being “asset pricing” and become “asset expected returning?” Why are

betas exogenous?22 A lot of price variation comes from discount factor news. What sense does it

make to “explain” expected returns by covariation of expected return shocks with market expected

return shocks? Market/book ratios should be our left-hand variable, the thing we’re trying to

explain, not a sorting characteristic for expected returns. Focusing on expected returns and betas

rather than prices and discounted cashflows makes sense in a two-period or i.i.d. world, but much

less so in a time-varying discount rate world.

A long-run, price-and-payoff perspective may also end up being simpler. As a hint of the

possibility, solve the Campbell-Shiller identity for long-run returns,

∞X
=1

−1+ =
∞X
=1

−1∆+ − 

So, long-run return uncertainty all comes from cashflow uncertainty. Long run betas are all cashflow

22Campbell and Mei (1993).
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betas. The long run looks just like a simple one-period model with a liquidating dividend.

+1 =
+1


=

µ
+1



¶


µ




¶
+1 = ∆+1 − 

A natural start is to forecast long-run returns and form price decompositions in the cross section,

just as in the time-series; estimate forecasts such as

∞X
=1

−1+ = + b0C + 

and then understand valuations with present value models as before.23 (The Appendix includes

two simple examples.) In the end, I would hope we end up studying prices and present values

rather than expected returns and betas.

In a formal sense, of course, it doesn’t matter whether you look at returns or prices. 1 =

(+1+1) and  = 

P∞
=1++ each imply the other. But, as I found with cay, our

economic understanding may be a lot different in a price, long-run view than focusing on short-run

returns. For example, since momentum amounts to a very small time-series correlation, I suspect it

has little association with long-run returns and hence the level of prices. Long-lasting characteristics

are likely to be more important.

What constitutes a “big” or “small” error is different as well. At a 2% dividend yield,  =

( − ) implies that an “insignificant” 10bp/month expected return error is a “large” 12% price

error, if it is permanent. Conversely, small transient price errors can have a huge impact on

return measures. A tiny i.i.d. price error induces the appearance of mean reversion where there

is none, and common procedures amount to taking many differences of prices, which amplify the

error/signal ratio. A forward spread 
()
 − 

(1)
 = 

(−1)
 − 

()
 + 

(1)
 is already a triple-difference

of price data.

4 Theories

Having viewed a bit of how discount rates vary, Let’s think now about why discount rates vary so

much.

4.1 A categorization, by ingredients and connection to data

It’s useful to classify theories by their main ingredient, and by which data they use to measure

discount rates. My goal is to produce for discount rates something like Fama’s (1970) classification

of informational possibilities.

1. Theories based on fundamental investors, with few frictions.

(a) Macroeconomics — tie to macro data.

i. Consumption, Aggregate risks.

23Vuolteenaho (2002) and Cohen Polk and Vuolteenaho (2003) are a start, with too-few followers.
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ii. Risk sharing/background risks (Hedging outside income)

iii. Investment and production.

iv. General equilibrium, including macroeconomics

(b) Behavioral Irrational expectations. Tie to price data. Other data?

(c) Finance. Expected return-beta, return-based factors, affine term structure models. Tie

to price data, returns explained by covariances.

2. Theories based on frictions.

(a) Segmented markets — different investors in different markets; limited risk bearing of

active traders.

(b) Intermediated markets. Prices set by leveraged intermediaries; funding difficulties.

(c) Liquidity.

i. Idiosyncratic — easy to sell the asset.

ii. Systemic — times of market illiquidity.

iii. Information trading — value of securities in facilitating information trading.

“Macro” theories tie discount rates to macroeconomic data, such as consumption or investment,

based on first-order conditions for the ultimate investors or producers.

The canonical consumption-based model with power utility relates discount rates to consump-

tion growth,

+1 = 
(+ 1)

()
= 

µ
+1



¶−
;

(

+1) = (

+1+1) ≈ (
+1∆+1)

High expected returns (low prices) correspond to securities that pay off poorly when consumption

is low. This model combines frictionless markets, rational expectations and utility maximization,

risk-sharing so that only aggregate risks matter for pricing. It evidently ties discount rate variation

to macroeconomic data.

A vast literature has generalized this framework, including (among others)24 1) Nonseparability

across goods — durable and nondurable25; traded and nontraded; 2) Nonseparability over time, such

as habit persistence,26 3) Recursive utility and long-run risks27 4) Rare disasters28.

A related category of theories adds incomplete markets or frictions preventing some consumers

from participating. Though close to the “frictions” category below, I categorize such models here

because asset prices are still tied to some fundamental consumer or investor’s economic outcomes.

For example, if non-stockholders do not participate, we still can tie asset prices to the consumption

decisions of stockholders who do participate.29

With incomplete markets, consumers still share risks as much as possible. The complete-market

theorem that “all risks are shared,” marginal utility is equated across people  and , 
+1 = 


+1,

24See Cochrane (2007a), Ludvigson (2011) for recent reviews.
25Recently, Yogo (2006),
26Campbell and Cochrane (1999) for example.
27Epstein and Zin (1989), Bansal and Yaron (2004), Hansen, Heaton and Li (2008).
28Rietz (1988), Barro (2006).
29For example, Mankiw and Zeldes (1991).
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becomes “all risks are shared as much as possible.” The projection of marginal utility on asset

payoffs  is the same across people (
+1|) = (


+1|) ≡ ∗. We can still aggregate

marginal utility rather than aggregate consumption and then take marginal utility. A discount

factor +1 =
R


+1 prices assets. For example with power utility we have

+1 = +1

"µ

+1




¶−#


But this fact means that variation in the distribution of consumption matter to asset prices. Times

in which there is more cross-sectional risk will be high-discount factor events.30

Outside or nontradeable risks are a related idea. If a mass of investors has jobs or businesses

that will be hurt especially hard by a recession, they avoid stocks correlated with those risks.31

Though in principle one could see such risks in consumption data, individual consumption data

will always be so poorly measured that tying asset prices to more fundamental sources of risk may

be more productive.

If we ask the “representative investor” in December 2008 why he or she is ignoring the buying

opportunity of a lifetime in stocks and especially fixed income, the answer might well be “that’s

nice, but I’m about to lose my job, and my business might go under. I can’t take any more risks

right now, especially in securities that will lose value or become hard to sell if the recession gets

worse.” These extensions of the consumption-based model all formalize this sensible intuition — as

opposed to the idea that these consumers have wrong expectations, or that they would have been

happy to take risks but intermediaries were making all asset pricing decisions for them.

Investment-based models link asset prices to firms investment decisions, and general equilibrium

models include production technologies and a specification of the source of shocks. This is clearly

the ambitious goal towards which we are all aiming. It has to answer the vexing question, where do

betas come from, and what makes a company a “growth” or “value” company in the first place.32

I think “behavioral” asset pricing’s central idea is that people’s expectations are wrong.33 It

takes lessons from psychology to find systematic patterns to the “wrong” expectations. There

are some frictions in many behavioral models, but these are largely secondary and defensive, to

keep risk-neutral “rational arbitrageurs” from coming in and undoing the behavioral biases. Often,

simple risk aversion by the rational arbitrageurs would serve as well.

Behavioral models are also discount-rate theories. A distorted probability with riskfree dis-

counting is mathematically equivalent to a different discount rate.

 =
X


 =
1



X


∗

where

∗ ≡ 
 = 

X
0

00 

 denote states of nature,  are true probabilities,  is a stochastic discount factor or marginal

utility growth, and ∗ are distorted probabilities.
30Constantinides and Duffie (1996) .
31Fama and French (1996), Heaton and Lucas (2000).
32A few good examples: Gomes, Kogan and Zhang (2003), Gala (2010), Gourio (2007)..
33See Barberis and Thaler (2003) and Fama (1998) for reviews.
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It is pointless to argue “rational” vs. “behavioral” in the abstract. There is a discount rate

and distorted probability that can rationalize any data. “The market went up, risk aversion must

have declined” is as vacuous as “the market went up, sentiment must have increased.” Any model

only gets its bite by restricting discount rates or distorted expectations, ideally tying them to other

data. The only thing worth arguing about is how persuasive those ties are in a given model and

dataset, and whether it would have been easy to “predict” the opposite sign if the facts had come

out that way.34 And the line between recent “exotic preferences” and “behavioral finance” is so

blurred35 it describes academic politics better than anything substantive.

By and large, behavioral research so far largely ties prices to other prices; it looks for price

patterns that are hard to understand with other models, such as “overreaction” or “underreaction”

to news. Some behavioral research uses survey evidence, and survey reports of people’s expectations

are certainly unsettling. However, surveys are sensitive to language and interpretation. It doesn’t

take long in teaching MBAs to realize that the colloquial meanings of “expect” and “risk” are

entirely different from conditional mean and variance. If people report the risk-neutral expectation,

then expectations are in fact completely rational. An “optimistic” cash-flow growth forecast in

an economic expansion is the same as a “rational” forecast, already discounted at a low rate, and

leads to the correct decision, invest more. And the risk-neutral expectation, i.e. the expectation

weighted by marginal utility, is the right sufficient statistic for many decisions. Treat painful things

as if they were more probable than they are in fact.

The question, to which data does one connect discount factors, is an acid test of any theory.

“Rational” theories struggle too. Changing expectations of consumption 10 years from now (long

run risks) or changing probabilities of a big crash are hard to tell from changing “sentiment.” At

least, one can aim for more predictions than assumptions.

“Finance” theories tie discount rates to broad return-based factors. That’s great for data reduc-

tion and practical applications. The more practical and “relative-pricing” the application the more

“factors” we accept on the right hand side. For example, in evaluating a portfolio manager, hedging

a portfolio, or finding the cost of capital for a given investment we routinely include momentum as

a “factor” even though we don’t have a deep theory of why the momentum factor is priced.

However, we still need the deeper theories for deeper “explanation.” Even if the CAPM ex-

plained individual mean returns from their betas and the market premium, we would still have the

equity premium puzzle — why is the market premium so large? (And why are betas what they are?)

Conversely, even if we had the perfect utility function and a perfect consumption-based model, the

fact that consumption data is poorly measured means we would still use finance models for most

practical applications.36

The result is a nice division of labor. Empirical asset pricing in the Fama and French (1996)

tradition boils down the alarming set of anomalies to a small set of large-scale systematic risks

that generate rewards. “Macro” “behavioral” or other “deep” theories can then focus on why the

factors are priced.

Models that emphasize frictions are becoming more and more popular, especially since the

financial crisis. At heart, these models basically maintain the “rational” assumption. Admittedly,

there are often “irrational” agents in such models. However, these agents are usually just convenient

34Fama (1998).
35For example, which of Epstein and Zin (1989), Barberis, Santos, and Huang (2001), Hansen and Sargent (2005),

Laibson (1997), Hansen, Heaton and Li (2008), and Campbell and Cochrane (1999) is really “rational” and which is

really “behavioral?”
36Campbell and Cochrane (2000) give a quantitative example.

18



shortcuts rather than central to the vision. A model may want some large volume of trade,37 or to

include some “noise traders,” while focusing clearly on the delegated management problem, or the

problem of leveraged intermediaries. For such a purpose, it’s easy to simply allude to a slightly

irrational class of trader rather than spell out their motives from first principles. However those

assumptions are not motivated by deep reading of psychology or lab experiments. The focus is

on the frictions rather than the risk-bearing ability of ultimate investors, or their psychological

misperceptions.

I think it’s useful to distinguish three categories of frictions: 1) Segmented markets and 2)

Intermediated markets or “institutional finance”38 and 3) Liquidity.

Investor

Investor

Investor

Security class

Investor Investor

Investor

Investor

Intermediary

“Debt”“Equity”

?

?

Other assets

Segmented markets

Intermediated markets

Security class

Securities

Figure 8: Segmented markets vs. intermediated markets.

I distinguish “segmented markets” from “intermediated markets,” as shown in Figure 8. Seg-

mented markets are really about limited risk sharing among the pool of investors active in a

particular market.39 They can generate “downward sloping demands,” and average returns that

depend on a “local” factor, little and poorly-linked CAPMs.40 Given the factor zoo, that’s an

attractive idea.

37Scheinkman and Xiong (2003).
38Markus Brunnermeier coined this useful term.
39Some important examples: Burnnermeier and Pedersen (2009), Brunnermeier (2009), Gabaix, Krishnamurthy

and Vigneron (2007), Duffie and Strulovici (2011), Garleanu and Pedersen (2009), He and Krishnamurthy (2010),

Krishnamurthy (2008), Froot and O’Connell (2008), Vayanos and Vila (2011).
40For example, Gabaix, Krishnamurthy and Vigneron (2007).
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“Intermediated markets” or “institutional finance” refers to a different, vertical rather than

horizontal, separation of investor from payoff. Investors use delegated managers. Then, agency

problems in delegated management spill over into asset prices. For example, suppose investors

split their investments to the managers into “equity” and “debt” claims. When losses appear, the

managers stave off bankruptcy by trying to sell risky assets. But since all the managers are doing

the same thing, prices fall and discount rates rise. Colorful terms like “fire sale,” “liquidity spirals”

describe this process.41

Of course, we have to document and explain segmentation and intermediation. As suggested

by the dashed arrows in Figure 8, there are strong incentives to undo any price anomaly induced

by segmentation or intermediation. Models with these frictions often just rule out deep-pockets

unintermediated investors — the sovereign wealth funds, pension funds, endowments, family offices,

and Warren Buffets. Your “fire sale” is their “buying opportunity.” Transactions costs, attention

costs, or limited expertise suggest markets can be segmented until the “deep pockets” arrive, but

they do arrive eventually. That observation suggests that segmentation is more important in the

short run, after unusual events, or in more obscure markets. If I try to sell a truckload of tomatoes

at 2 am in front of the Booth school, I am not likely to get full price. But if I do it every night,

tomato buyers will start to show up. In the flash crash, it took about ten minutes for buyers to

show up, which is either remarkably long or remarkably short, depending on your point of view.

A crucial question is, what data will this class of theories use to measure discount rates? Arguing

over puzzling patterns of prices is weak (we’ve been at it for 40 years). Ideally, one should tie price

or discount-rate variation to central items in the models, such as the balance sheets of leveraged

intermediaries, data on who is actually active in segmented markets, and so forth. Yet such data

is hard to find.42

We have long recognized that some assets have higher or lower discount rates in compensation

for greater or lesser liquidity.43 We have also long struggled to define and measure liquidity. There

are (at least) three kinds of liquidity worth distinguishing. Liquidity can refer to the ease of buying

and selling an individual security. Illiquidity can also be systemic: assets will face a higher discount

rate if their prices fall when the market as a whole is illiquid, whether or not the asset becomes

more or less illiquid. Finally, assets can have lower discount rates if they facilitate information

trading, as money facilitates physical trading, an idea I explore a bit more below.

I think of “liquidity” as different from “segmentation” in that segmentation is about limited

risk-bearing ability, while liquidity is about trading. Liquidity is a feature of individual assets, not

the risks to which they are claims. Many theories of liquidity emphasize asymmetric information,

not limited risk-bearing ability — assets become illiquid when traders suspect that anyone buying or

selling knows something. Understanding liquidity requires us to unravel the puzzle of why people

and institutions trade so vastly more than they do in our models.

All of these facts and theories are really about discount rates, expected returns, risk bearing,

risk sharing and risk premiums. None are fundamentally about slow or imperfect diffusion of cash-

flow information, i.e. informational “inefficiency.” Informational efficiency isn’t wrong or disproved.

Efficiency basically won, and we moved on. When we see information, it is quickly incorporated in

41Brunnermeier (2009), Brunnermeier and Pedersen (2009) for example.
42Mitchell, Pedersen and Pulvino (2007) is a good example. They document who was active in convertible arbitrage

markets through two episodes in which the specialized hedge funds left the market and it took months for the multi-

strategy funds to move in.
43Acharya and Pedersen (2005), Amihud, Mendelson and Pedersen (2005), Cochrane (2005b), Pastor and Stam-

baugh (2003), Vayanos and Wang (2011).
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asset prices. There is a lot of asset-price movement not related to visible information, but Hayek

told us that would happen, and we learned that a lot of such price variation corresponds to expected

returns. Little of the (large) gulf between the above models is really about information. Seeing

the facts and the models as categories of discount-rate variation seems much more descriptive of

most theory and empirical work.

Informational efficiency is much easier for markets and models to obtain than wide risk sharing

or desegmentation. A market can become efficient with only one informed trader, who doesn’t

need to actually buy anything or take any risk. He should run in to a wall of indexers, and end up

just bidding up the asset he knows is underpriced.44 Risk sharing needs everyone to change their

portfolios and bear a risk in order to eliminate segmentation. For example, if the small firm effect

came from segmentation, the passively-managed small stock fund should have ended it — but it took

the invention and marketing of such funds to end it. The actions of small numbers of arbitrageurs

could not do so.

4.2 Recent performance

This is not the place for a deep review of theory and empirical work supporting or confronting

theories. Instead, I think it will be more productive to think informally about how these classes of

models might be able to handle big recent events.

4.3 Consumption

I still think the macro-finance approach is promising. Figure 9 presents the market price-dividend

ratio, and aggregate consumption relative to a slow-moving “habit.” The habit is basically just

a long moving average of lagged consumption, so the surplus consumption ratio line is basically

detrended consumption.45

As you can see, consumption and stock market prices did both collapse in 2008. Many

high average-return-securities and strategies (stocks, mortgage-backed securities, low-grade bonds,

momentum, currency carry) collapsed more than low-average-return counterparts. The basic

consumption-model logic — that securities must pay higher returns, or fetch lower prices, if their

values fall more when consumption falls — isn’t drastically wrong.

The habit model captures the idea that people become more risk averse as consumption falls

in recessions. As consumption nears habit, people are less willing to take risks that involve the

same proportionate risk to consumption. Discount rates rise, and prices fall. Lots of models have

similar mechanisms, especially models with leverage.46

In the habit model, the price-dividend ratio is a nearly log-linear function of the surplus con-

sumption ratio. The fit isn’t perfect, but the general pattern is remarkably good, given the hue

and cry about how “the crisis invalidates all traditional finance.”

44Milgrom and Stokey (1982).
45Campbell and Cochrane (1999)
46For example, Longstaff (2008).
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Figure 9: Surplus consumption ratio and price/dividend ratio. Surplus consumption is formed from

real nondurable + services consumption using the Campbell and Cochrane (1999) specification and

parameters. Price/dividend ratio is from the CRSP NYSE Value-Weighted portfolio.

4.4 Investment

The Q theory of investment is the off-the-shelf analogue to the simple power-utility model from the

producer point of view. It predicts that investment should be low when valuations (market to book)

are low, and vice versa,

1 + 



=
market

book
=  (9)

where  = investment and  = capital.

Figure 10 contrasts the investment/capital ratio, market/book ratio, and price/dividend ratio.

The simple Q theory also links asset prices and investment better than you probably thought, both

in the tech boom and the financial crisis.

Many finance puzzles are stated in terms of returns. To make that connection, one can transform

(9) to a relation linking asset returns to investment growth. Many return puzzles are mirrored in

investment growth as the q theory suggests.47

Q theory also reminds us that supply as well as demand matters in setting asset prices. If

capital could adjust freely, stock values would never change, no matter how irrational investors are.

Quantities would change instead.

I’m not arguing that consumption or investment caused the boom or the crash. Endowment-

economy causal intuition does not hold in a production economy. These first-order conditions are

happily consistent with a view, for example, that a the ultimate cause was rather small losses on

subprime mortgages, amplified by a run on the shadow banking system and flight to quality48. The

47Cochrane (1991b), (1996) (2007a), Lamont (2000) Li, Livdan and Zhang (2008), Liu, Whithed and Zhang (2009),

Belo (2010), Jermann (2010), Liu and Zhang (2011).
48Cochrane (2011)..
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Figure 10: Investment/capital ratio, price/dividend ratio, and market/book ratio. Investment is

real private nonresidential fixed investment. Capital is cumulated from investment with an assumed

10% annual depreciation rate. Price/dividend from CRSP, market/book from Ken French’s website.

first-order conditions are consistent with many other views of the fundamental determinants of both

prices and quantities. And I don’t even pretend to have a full macro model that captures for these

graphs, let alone to understand value or the rest of the factor zoo. But the graphs do argue that

asset prices and discount rates are much better connected to big macroeconomic events than most

people think. If people did not become more risk averse in recessions, and if firms could quickly

transform empty houses into hamburgers, asset prices would not have declined as much. And they

suggest that refining the very stylized models I used to make these graphs — a long literature already

well under way — is not a hopeless endeavor.

4.5 Comparisons

Conversely, I think the other kinds of models, though good for describing particular anomalies, will

have greater difficulty accounting for recent big-picture asset pricing events.

We see a pervasive, coordinated rise in the premium for systematic risk, common across all asset

classes, and present in completely unintermediated and unsegmented assets. (The “systematic”

adjective is important. People don’t seem to drive a lot more carefully in recessions.) For example,

Figure 11 plots government and corporate rates, and Figure 12 plots the baa-aaa spread with stock

prices. You can see a huge credit spread open up and fade away along with the dip in stock prices.

Behavioral ideas — narrow framing, salience of recent experience, and so forth — are good at

generating anomalous prices and mean returns in individual assets or small groups. They don’t

easily generate this kind of coordinated movement that looks just like a rise in risk premium. They

don’t naturally generate covariance either. For example, “extrapolation” generates the slight
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Figure 11: BAA, AAA, and Treasury yields.
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Figure 12: D/P, S&P500, BAA-AAA.

autocorrelation in returns that lies behind momentum. But why should all the momentum stocks

then rise and fall together, just as if they are exposed to a pervasive, systematic risk?

Finance models don’t help, of course, because we’re looking at variation of the factors which

they take as given.

Segmented or institutional models aren’t obvious candidates to understand broad market move-

ments. Each of us can easily access stocks and bonds through low-cost indices.

And none of these models naturally describe the strong correlation of discount rates with macro-
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economic events. Is it a coincidence that people become irrationally pessimistic when the economy

is in a tailspin, and they could lose their jobs, houses, or businesses if systematic events get worse?

Again, macro isn’t everything — understanding the smaller puzzles is important. The point is

only that looking for macro underpinnings for discount rate variation, through fairly simple models,

isn’t as hopelessly anachronistic as many seem to think.

4.6 Arbitrages?

One of the nicest pieces of evidence for segmented or institutional views is that arbitrage relation-

ships were violated in the financial crisis.49 Unwinding the arbitrage opportunities required one to

borrow dollars, which intermediary arbitrageurs could not do.

Figure 13 gives one example. CDS plus Treasury should equal a corporate bond, and usually

does. Not in the crisis.
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Figure 13: Citigroup CDS and Bond spreads. Source: Fontana (2010).

Figure 14 gives another example, covered interest parity. Investing in the US vs. investing in

Europe and returning the money with forward rates should yield the same thing. Not in the crisis.

In both cases, profiting from the arbitrage requires one to borrow dollars, which was difficult in the

crisis.

Similar patterns happened in many other markets, including even US treasuries.50 Now, any

arbitrage opportunity is a dramatic event. But in each case here the difference between the two

ways of getting the same cashflow is dwarfed by the overall change in prices. And, though an

“arbitrage,” the price differences are not large enough to attract “long only” “deep pocket” money.

If your precious cash is in a US money market fund, 20 basis points in the depth of a financial crisis

is not enough to get you to investigate offshore investing with an exchange-rate hedging program.

49See also Fleckenstein, Longstaff, and Lustig (2010),
50Hu, Pan and Wang (2011).
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Figure 14: Three-month Libor and FX swap rate. Source: Baba and Packer (2009).

Analogously, the price of coffee displays arbitrage opportunities across locations at the ASSA

meetings. The arbitrage reflects an interesting combination of transactions costs, short-sale con-

straints, consumer biases, funding limits, and other frictions. Yet we don’t dream that this fact

matters for big-picture variation in worldwide commodity prices.

So maybe it’s possible that the “macro” view still builds the benchmark story of overall price

change, with very interesting spreads opening up due to frictions.

4.7 Liquidity premia; trading value

Trading-related liquidity does strike me as potentially important for the big picture, and a poten-

tially important source of the low discount rates in “bubble” events.51

I’m inspired by one of the most obvious “liquidity” premiums: Money is overpriced — lower dis-

count rate — relative to government debt, though they are claims to the same payoff in a frictionless

market. And this liquidity spread can be huge — hundreds of percent in hyperinflations.

Now, money is “special” for its use in transactions. But many securities are “special” in trading.

Trading needs a certain supply of their physical shares. We cannot support large trading volumes

by recycling one outstanding share at arbitrarily high speed. Even short sellers must hold a share

for some short period of time.

When share supply is small, and trading demand is large, markets can support a lower discount

rate or higher price for highly-traded securities, as they do for money. These effects have long been

seen in government bonds, for example in the Japanese “benchmark” effect, the spreads between

on-the-run and off-the-run Treasuries, or the spreads between Treasury and agency bonds.52 Could

51Cochrane (2001), (2003), (2005b), Garber (2000), Krishnamurthy (2002), O’Hara (2008), Scheinkman and Xiong

(2003).
52Boudoukh and Whitelaw (1991), Longstaff (2004), Krishnamurthy and Vissing-Jorgensen (2010).
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these effects extend to other assets?
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Figure 15: Nasdaq Tech, Nasdaq, and NYSE indeces Source: Cochrane (2003).
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Figure 16: Dollar volume in Nasdaq tech, Nasdaq, and NYSE. Source: Cochrane (2003).

Figures 15 and 16 are suggestive. The stock price raise and fall of the late 1990s was concentrated

in Nasdaq and Nasdaq Tech. The stock volume rise and fall was concentrated in the same place.

Every asset price “bubble” — defined here by people’s use of the label — has coincided with a similar

trading frenzy, from Dutch tulips in 1620 to Miami condos in 2006.

Is this a coincidence? Do prices rise and fall for other reasons, and large trading volume follows,

with no effect on price? Or is the high price — equivalently a low discount rate — explained at least

in part by the huge volume; by the value of shares in facilitating a frenzy of information trading?
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To make this a deep theory, we must answer why people trade so much. Verbally, we know

the answer: The markets we study exist to support information-based trading. Yet, we really

don’t have good models of information-based trading.53 Perhaps the question how information is

incorporated in asset markets will come back to the center of inquiry!

5 Applications

Finance is about practical application, not just deep explanation. Discount rate variation will

change applications a lot.

5.1 Portfolio theory

A huge literature explores how investors should exploit the market-timing and intertemporal-

hedging opportunities implicit in time-varying expected returns.54

But the average investor must hold the market portfolio. We can’t all market-time, we can’t

all buy value, and we can’t all be smarter than average. We can’t even all rebalance. A useful

and durable portfolio theory must be consistent with this theorem. Our discount-rate facts and

theories suggest one, built on differences between people.

Consider Fama and French’s (1996) story for value. The average investor is worried that value

stocks will fall at the same time his or her human capital falls. But then some investors (“steel-

workers”) will be more worried than average, and should short value despite the premium; some

others (“tech nerds”) will have human capital correlated with growth stocks and buy lots of value,

effectively selling insurance. A two-factor model implies a three-fund theorem, a three-dimensional

multifactor efficient frontier as shown in Figure 17.55 Investors have a difficult problem to figure

out how much of three funds to hold.

And now we have dozens of such systematic risks for each investor to consider. Time-varying

opportunities create more factors, as habits or leverage risk aversion shift some investor’s risk

aversion through time more or less than others.

Unpriced factors are even more important. Our steelworker should start by shorting a steel-

industry portfolio, even if it has zero alpha. We academics should understand the variation across

people in risks that are hedgeable by systematic factors, and find low-cost portfolios that span that

variation.56 Yet we’ve spent all our time looking for priced factors that are only interesting for the

measure-zero mean-variance investor!

All of this sounds hard. That’s good! We finally have a reason for a fee-based “tailored portfolio”

industry to exist, rather than just to deplore it as folly. We finally have a reason for us to charge

fat tuitions to our MBA students! We finally have an interesting portfolio theory that is not based

on chasing zero-sum alpha!

53Milgrom and Stokey (1982).
54Merton (1971), Barberis (2000), Brennan, Schwartz and Lagnado (1997), Campbell and Viceira (1999), (2002);

Pastor (2000); see a revew in Cochrane (2007b).
55See Fama (1996), Cochrane (2007b).
56Heaton and Lucas (2000).
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Figure 17: Multifactor efficient frontiers. Investors minimize variance given mean and covariance

with the extra factor. A three-fund theorem emerges (left). The market portfolio is multifactor

efficient, but not mean-variance efficient (right).

5.1.1 State Variables

Discount-rate variation means that state-variable hedging should matter. It is almost completely

ignored in practice. Almost all hedge funds, active managers, and institutions still use mean-

variance optimizers. This is particularly striking given that they follow active strategies, predicated

on the idea that expected returns and variances vary a lot over time!

Perhaps state variable hedging seems nebulous, and therefore maybe small and easy to ignore.

Here’s a story to convince you otherwise. Suppose you are a highly risk averse investor, with a

10 year horizon. You are investing to cover a defined payment, say your 8 year old’s tuition at

the University of Chicago. The optimal investment is obviously a 10-year zero-coupon indexed

Treasury (TIP).57 Figure 18 tracks your investment through time.

Suppose now that bond prices plunge, and volatility surges, highlighted in the graph. Should

you sell in a panic, to avoid the risk of further losses? No. You should tear up the statement.

“Short term volatility” is irrelevant. Every decline in price comes with a corresponding rise in

expected return. Evaluating bonds with a one-period mean-variance, alpha-beta framework is silly.

(Though a surprising amount of the bond investing world does it!)

That’s pretty obvious, but now imagine yourself a stock investor in December 2008 — say, your

university’s endowment. Stocks plummeted, shown in Figure 19, and stock volatility in Figure 20

rose dramatically, from 16% to 70%.

Should you sell? The standard formula says so! Picking a mean return and risk aversion to

57Campbell and Viceira (2001), Wachter (2003).
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Figure 18: Bond price through time. A cautionary example.
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Figure 19: S&P500 price index in 2008

justify 60% stocks in normal times, you should reduce the equity share to 4%!

share =
1



()

2()
 06 =

1

2

004

0182
⇒ 1

2

004

0702
= 004?

(You might object that mean returns rose too. But they would have to have risen to 4 ×
07020182 = 60% for this formula to tell you not to change allocation. Dividend yields did not

rise that much! You also may object that many investors including endowments had leverage,

tenured professor salaries to pay or other habit-like considerations for becoming more risk averse.

Fair enough, but then mean-variance theory is particularly inappropriate in the first place.)
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Figure 20: Volatility. VIX index, and 20 day realized daily volatility

But not everyone can do this — the market didn’t fall 93%. If you’re selling, who is buying? Is

everyone else being stupid? Does it make sense to think that the market irrationally overvalued in

the midst of the financial crisis?

The answer, of course, is that one-period mean-variance analysis is completely inappropriate.

If the world were i.i.d., volatility couldn’t change in the first place. Stocks are a bit like bonds;

price/dividend drops increase expected returns.58 To some extent, “short run volatility” doesn’t

matter to a long-run investor. State-variable hedging matters a lot, even for simple real-world

applications. And, by ICAPM logic, we should therefore expect multiple priced factors. Time-

series predictability should be a strong source of additional pricing factors in the “cross section,”

and affect portfolios

5.1.2 Prices and payoffs

Or maybe not. Telling our bond investor to hold 10 year zeros because their price happens to

covary properly with state variables for their investment opportunities just completely confuses

the obvious. It’s much clearer to look at the final payoff and tell him to ignore price fluctuations.

Maybe dynamic portfolio theory overall might get a lot simpler if we look at payoff streams rather

than looking at dynamic trading strategies that achieve those streams.

If you look at payoff streams, it’s totally obvious that an indexed perpetuity (or annuity) is the

risk-free asset for long-term investors, despite arbitrary time-varying return moments, just as the

ten-year zero was obviously the riskfree asset for my bond investor. It’s interesting that coupon-

only TIPS are an exotic product, not the benchmark for every portfolio optimization in place of a

money-market investment.

58Campbell and Vuolteenaho (2004).
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How about risky investments? Here is a simple and suggestive step.59 If utility is quadratic

max
{}



∞X
=0


µ
−1
2

¶
( − ∗)2

it turns out that we can still use two-period mean-variance theory to think about streams of payoffs,

(loosely, streams of dividends) no matter how much expected returns vary over time.

Every optimal payoff stream combines an indexed perpetuity and a claim to the aggregate div-

idend stream. Less risk averse investors hold more of the claim to aggregate dividends, and vice

versa.

Optimal payoffs lie on a long-run mean / long-run variance frontier, where I define “long run”

means ̃() that sum over time as well as states,

̃() =
1

1− 

∞X
=0

(+)

State variables disappear from portfolio theory, just as they did for our 10 year TIP investor,

once he looked at the 10 year problem.

If our stock market investor thought this way, he would answer “I bought the aggregate dividend

stream. Why should I buy or sell? I don’t look at the statements.” This is a lot simpler to explain

and implement than deep time series modeling, value function calculation, and optimal hedge

portfolios!

If investors have outside income, they first short a payoff stream most correlated with their

outside income stream, and then hold the mean-variance efficient payoffs. Calculating correlations

of income streams this way may be easier than trying to impute discount-rate induced changes in

the present value of outside income streams, in order to calculate return-based hedge portfolios.

If investors have no outside income, long-run expected returns (payoffs divided by initial prices)

line up with long-run market betas. A CAPM emerges, despite arbitrary time-variation in expected

returns and variances. ICAPM pricing factors fade away as we look at longer horizons.

If investors do have outside income, an average-outside-income payoff emerges as a second priced

factor, in the style of Fama and French’s (1996) human capital story for the value effect.

Of course, quadratic utility is a troublesome approximation, especially for long-term problems.

Still, this simple example captures the possibility that a price and payoff approach can give a much

simpler view of pricing and portfolio theory than we get by focusing on the high-frequency dynamic

trading strategy that achieves those payoffs in a given market structure.

5.2 Alphas, betas, performance evaluation

In the 1970 view, there is one source of systematic risk, the market index. Active management

chases “alpha,” which means uncovering inefficiently-priced assets.

Now we have dozens of dimensions of systematic risks. Many hedge fund strategies include

an element of option writing. For example, Figure 21 shows the annual returns of “equity-market-

neutral” hedge funds together with the market return. “Providing liquidity” looks a lot like writing

out-of-the-money puts60!

59Results from Cochrane (2008).
60Mitchell and Pulvino (2001), Asness, Krail and Liew (2001), Agarwal,and Naik (2004).
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Figure 21: One year excess returns of the “equity market neutral” hedge fund index and the CRSP

value-weighted portfolio. Data source: hedgeindex.com and CRSP.

I tried telling a hedge fund manager, “You don’t have alpha. I can replicate your returns with

a value-growth, momentum, currency and term carry, and short-vol strategy.” He said, “‘Exotic

beta’ is my alpha. I understand those systematic factors and know how to trade them. You don’t.”

He has a point. How many investors have thought through their exposures to carry trade or short

volatility “systematic risks,” and are ready to consider those as “passive,” mechanical investments?

To an investor who hasn’t heard of it and holds the market index, a new factor is alpha. And has

nothing to do with informational inefficiency.

Most active management and performance evaluation just isn’t well described by the alpha-

beta, information-systematic, selection-style split anymore. There is no more alpha. There is just

beta you understand and beta you don’t understand, and beta you are positioned to buy vs. beta

you are already exposed to and should sell.

5.3 Procedures, corporate, accounting, regulation

Time-varying discount rates and multiple factors deeply change many applications.

The first slide in a capital budgeting lecture looks something like this

Value of investment =
Expected payout

 +  [()− ]


with a 6% market premium. All of which, we now know, is completely wrong. The market premium

isn’t always 6%, but varies over time by as much as its mean. Expected returns don’t line up with

CAPM betas, but rather with multifactor betas. And since expected returns change over time, the

discount rate is different for cashflows at different horizons.

It’s interesting that investment decisions got so close to right anyway, with high investment

following high stock prices. (Remember Figure 10.) Evidently, a generation of our MBAs figured

out how to jigger the numbers and get the right answer despite a dramatically wrong model. Perhaps
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what we often call “irrational” cash flow forecasts, optimistic in good times and pessimistic in bad

times, are just a good way to offset artificially constant discount rates. Or perhaps they understood

the Q theory lecture and just follow its advice.

I don’t think the answer lies in multifactor betas61 or discounting with dynamic present value

models and time-varying risk premia, at least not yet. Capital budgeting is a “relative pricing”

exercise — we want to use available information in asset markets to help us decide what the discount

rate for a project should be. For this purpose, simply looking at average returns of “similar”

securities is enough. Understanding discount rates as a function of characteristics — or, better,

understanding valuations directly as a function of characteristics (the use of “comparables”) — may

end up being more fruitful. We don’t have to explain discount rates — relate expected returns to

betas, and understand their deep economics — in order to use them. Even when they are explained,

the characterization (characteristic models) may be a better measure for practical relative-pricing

than the explanation (beta models). And capital budgeting gives the same answer if discount rates

are “wrong.” When you shop for a salad, all you care about is the price of tomatoes. Whether

tomatoes are expensive because the trucks got stuck in bad weather, or because of an irrational

bubble in the tomato futures market makes no difference to your decision.

Many procedures in accounting, regulation and capital structure implicitly assume that returns

are independent over time, and hence that prices only reflect cashflow information.

Suppose that a firm has a single cashflow in 10 years, and is funded by a zero-coupon bond

and equity. In most accounting, capital structure, and regulation we would use the stock and bond

prices to calculate the probability and distance to default. But if prices decline because discount

rates rise, that fact has no implication for the probability or distance to default.

Perhaps banks’ complaint that low asset prices represent “illiquidity” or “temporarily depressed

valuations” rather than insolvency — a lesser chance of making future interest and principal repay-

ments — make some sense. Perhaps capital requirements do not have to respond immediately to

such events. Perhaps “hold to maturity” accounting is not as silly as it sounds. Perhaps the fact

that firms change capital structures very slowly in response to changes in equity valuations also

makes some sense.62

Of course, in such an event the risk-neutral probability of default has risen. Maybe regulators,

bondholders, and capital structure should respond to a rise in the state-price of the default event

exactly as they respond to a rise in the real probability of that event. Possibly, but at least it’s a

very different issue and worth asking the question.

I am not arguing that mark-to-market accounting is bad, or that fudging the numbers is a good

idea. The point is only that what you do with a mark-to-market number might be quite different

in a world driven by discount-rate variation than one driven by cashflow variation.63 The mark-

to-market value is no longer a sufficient statistic. Decisions need to incorporate expected future

returns as well as current values.

The view that the stock price is driven by expected earnings lies behind stock-based executive

compensation as well. It’s already a bit of a puzzle that executives should be forced to hold the

“systematic” risks due to market beta or commodity-price exposures, about which they can do

nothing. Understanding that a large fraction of stock returns reflect changes in discount rates or

new-factor beta exposures, makes the logic of such incentives even more curious. Perhaps stock-

61Fama and French (1997) try.
62Welch (2004).
63Heaton, Lucas and McDonald (2009).
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based compensation has less to do with effort and operating performance, but more with incentives

for risk management or tax treatment.

5.4 Macroeconomics

Large variation in risk premia implies exciting changes for macroeconomics.

Most of macroeconomics focuses on a single intertemporal price, “the” interest rate, which

intermediates saving and investment, without worrying about risk premia. Yet in Figure 11, interest

rates paid by borrowers (and received by any investors willing to lend) spiked up, while short term

government rates went down. Recessions are all about changes in credit spreads, in the willingness

to bear risk and the amount of risk to be borne, far more than they are about changes in the desire

for current vs. future certain consumption. And most of the Federal Reserve’s response to the

Great Recession consisted of targeting risk premiums, not changing the level of interest rates or

addressing a transactions demand for money.

Macroeconomics and finance have thought very differently about consumer (we call them in-

vestors) and firm behavior. For example, the consumers in the Cambpell and Cochrane (1999)

habit model balance very strong precautionary saving motives with very strong intertemporal sub-

stitution motives, and have large and time-varying risk aversion. Their behavior is very far from

the permanent-income intuition (or constrained alternative) in macroeconomic thinking.

As one simple story, macroeconomists often think about how consumers will respond to a change

in “wealth,” coming from a change in stock prices or house prices. Financial economists might

suspect that consumers will respond quite differently to a decline in value coming from a discount

rate rise — a temporary change in price with no change in capital stock or cashflow — than one that

comes from a change in expected cashflows, or destruction of physical capital stock.

Financial models also emphasize adjustment costs or irreversibilities: If firms can freely trans-

form consumption goods to capital, then stock prices (q) are constant. Yet, most “real business

cycle” literature following King, Plosser and Rebelo (1988) left out adjustment costs, because they

didn’t need them to match basic quantity correlations. The first round of “new-Keynesian” litera-

ture abstracted from capital altogether, and much work in that tradition continues to do so.

But that omission can lead to basic differences in analysis. For example, a lot of macroeconomics

worries right now about the “zero bound,” that the real rate of interest, tied to marginal product

of capital  0(), should be negative but nominal rates cannot be negative. With adjustment costs,
however, the price of capital can always fall enough to give a positive real rate of interest.

As another simple story, Figure 10 linking investment to stock price/dividend ratios, together

with the regression evidence of Table 1, strongly suggests that variations in the risk premium drive

variations in the cost of capital and hence investment, not variation in the level of riskfree interest

rates emphasized by macro policy-makers.

Formal macroeconomics has started to introduce some of the same ingredients that macro-

finance researchers are using to understand discount rate variation, including “new” preferences,

adjustment cost or other frictions in capital formation, and financial frictions in credit markets.64

And macroeconomic models with financial frictions are all the rage since the financial crisis. Still,

64For example Christiano, Eichenbaum and Evans (2005). However, this is also a good example of remaining

differences. They use a one-period habit, which does not generate slow-moving expected excess returns, and an

adjustment cost tied to investment growth not the investment/capital ratio, which does not generate the q theory

predictions of Figure 10 and related finance literature.
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we are a long way from a single general-equilibrium model that matches basic facts from both

quantity and asset prices.

Everyone is aware of the importance of the question. The job is just hard. Macro models are

technically complicated. First-order approximations are hard enough to work out. To capture risk

premia, you need second-order approximations, and to capture time-varying risk premia you need

third order approximations. Putting “financial frictions” in such models is harder still. At a deeper

level, successful “grand synthesis” models do not consist of just mixing all the popular ingredients

together and stirring the pot; they must maintain the clear quantitative parable feature of good

economics.

An asset-pricing perspective also informs monetary economics, and the interaction between

monetary and fiscal policy. From a finance perspective, nominal government debt is “equity” in

the government: it is the residual claim to primary fiscal surpluses. Hence, the price level must

satisfy the standard asset pricing equation,

Debt

Price level
= 

∞X
=0

+ (real primary surplus+) (10)

and inflation can absorb shocks to surpluses, just as as equity absorbs shocks to profit streams.

This fact is at least an important constraint on monetary policy, especially in a time of looming

deficits.65 This approach can determine the price level with no special or transactions status for

money, no need for limited money supply, or even no money at all. The analogy to stocks suggests

that variation in the discount rate + for government debt will be important: A “flight to

quality” such as in the recent recession lowers the discount rate for government debt. People want

to hold more government debt, which means getting rid of goods and services, i.e. lower aggregate

demand. We see a recession and pressure towards deflation on the left side of (10). This story links

the “rising risk premium” which finance people see as the core of a recession with the “decline in

aggregate demand” which macroeconomists see. The standard corporate finance perspective also

then illuminates the choice of government debt maturity structure, denomination (foreign currency

debt is debt, that must be repaid or defaulted rather than inflated) and the “control” or other

rights that must accompany “government equity.”

6 Conclusions

Discount rates vary a lot more than we thought. The puzzles and anomalies that we face amount

to discount rate variation we don’t understand. Our theoretical controversies are about how dis-

count rates are formed. We need to recognize and incorporate discount rate variation in applied

procedures.

We are really only beginning these tasks. The facts about discount rate variation need at least a

dramatic consolidation. Theories are in their infancy. And most applications still implicitly assume

i.i.d. returns and the CAPM, and therefore that price changes only reveal cashflow news.

65Sargent and Wallace (1981), Cochrane (2011).
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8 Appendix

8.1 Present values and identities

8.1.1 Return identity

To keep the presentation self-contained, I start with a derivation of the Campbell-Shiller (1988)

linearization. The return is by definition,

+1 =
+1 ++1


=

³
1 +

+1
+1

´



+1



Therefore the log return is

+1 = log
³
1 + −+1

´
+  +∆+1

where  ≡ log(),  = log()  = log(). I Taylor expand the first term about a constant

. This constant need not be the mean.

+1 = log(1 + )− 

1 + 
(+1 − ) +  +∆+1

Denoting  ≡ 
1+

, we can write the approximation

+1 = − +1 +  +∆+1 (11)

where

 = −(1− ) log(1− )−  log()

In time-series applications where we will only consider second moments we interpret symbols as

deviations from means and ignore  leaving

+1 = −+1 +  +∆+1 (12)

8.1.2 Present value identity.

To derive the present value identity (1), rearrange the return identity as

 = +1 −∆+1 + +1

Iterating forward

 =

X
=1

−1+ −
X

=1

−1∆+ + +

Assuming the latter term goes to zero — the “transversality condition” which rules out “rational

bubbles”— we have

 =

∞X
=1

−1+ −
∞X
=1

−1∆+  (13)

This is an ex-post identity, so it also holds in conditional expectations using any information set.
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8.1.3 Dividend construction.

I create dividends from the CRSP annual return series with and without dividends,

 ≡ +1 ++1


; +1 ≡ +1



Then,
+1

+1
=

+1

+1
− 1

By using an annual horizon, I avoid the strong seasonal in dividend payments.

Annual dividend growth also includes some return information, because this definition one

reinvests dividends to the end of the year at the market return. Sums of dividends are a good deal

less volatile; and have the conceptual advantage of not mixing in any return information. However,

if one uses sums of dividends over the year, then the identity +1 = (+1 ++1) does not

hold. It’s nice to use data definitions for which identities hold!

This definition of dividends, which cumulates returns, has a second practical advantage. Con-

sider the sharp fall in stocks in the Fall of 2008. Now, using a simple sum of past dividends, we

would see a large decline in price/dividend ratio. But much of that decline surely reflected news

that dividends in 2009 were going to fall dramatically. In this way, the sum-of-dividend definition

gives a measure that should forecast dividend growth as well as forecasting returns. By reinvesting

dividends to the end of the year, the “dividend” series is lower than the sum; this price-dividend

ratio already includes the information that dividends will decline next year and therefore produces

a better return forecast.

I construct dividend growth by

+1


=
(+1+1)

()


For the VAR in Tables 2-4 I use instead dividend growth implied by the identity (11),

∆+1 = + +1 + +1 − 

Actual dividend growth gives very similar results. However, this construction means that Cambpell-

Shiller approximate identities hold exactly, so it is easier to see their impact in the results. It’s

important to use “pure” returns rather than infer returns from dividend growth, otherwise approx-

imation errors can show up as magic investment opportunities.

8.2 VARs

8.2.1 Shock definition

I identified the shocks in Figure 5 by setting changes to the other variables in turn equal to zero.

The return identity (12) means that therefore some of the shocks must come with contemporaneous

shocks to returns.

The dividend growth shock is a shock to dividend growth with no change in dividend yield or

cay. Hence, it must come with a contemporaneous return shock,

+1 = 1 

+1 = 0 


+1 = 0 


+1 = 1
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The dividend yield shock has no change in dividend growth or cay. If dividends don’t change and

 rises, it means  and  fell a lot. Intuitively, a pure rise in discount rates lowers current return

so it can raise subsequent returns.

+1 = 0 

+1 = 1 


+1 = 0 


+1 = −

The cay shock is a change in  with no change in dividend yield  or dividend growth ∆,

and hence no change in return .

+1 = 0 

+1 = 0 


+1 = 1 


+1 = 0

I choose this definition of shocks. because it leads to nicely interpretable responses, e.g. “cash-

flow” and “discount rate.” Because dividends remain roughly unpredictable, this “short run” iden-

tification gives almost the same result as a “long run” identification. I.e., if rather than define the

first shock as 

+1 = 0 


+1 = 0, we had identified it by

(+1 −)

∞X
=1

−1+ = 0

we would have gotten nearly the same result. The resulting shocks are nearly uncorrelated, which

is also convenient.

This VAR is very simple, since I left dividend growth out of the right hand side. My purpose is

to distill the essential message of more complex VARs, and in such VARs, coefficients on dividend

growth are small.

8.2.2 Identities in the cay VAR.

The present-value identity (13), conditioned down and reproduced here,

 = 

⎡⎣ ∞X
=1

−1+ |

⎤⎦−

⎡⎣ ∞X
=1

−1∆+ |

⎤⎦ 
suggests that an extra variable can only help dp to forecast long horizon returns if it forecasts long

horizon dividend growth; it can help to forecast one year returns by changing the term structure of

return forecasts as well. Here I show how that intuition applies algebraically to multiple regression

coefficients and the impulse response function.

Regressing both sides of (13) on  and , we obtain the generalized restriction on long-run

multiple regression coefficients,

1 =  −  (14)

0 =  −   (15)

where the notation refers to regressions

 =   +   + 

∆ =   +   + 

Equation (14) is the same as before, now applied to the multiple regression coefficient. Equation (15)

expresses the idea that a new variable can only help to forecast long-run returns if it also helps to
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forecast long-run dividend growth. But you see that the extra dividend growth and return forecasts

will be perfectly negatively correlated. In this way, extra long-run dividend growth forecastability

means more long-run return forecastability, not less.

In terms of individual long-horizon regressions

+ = ()  + ()  + +

etc., (13) similarly implies

1 =

∞X
=1

−1() −
∞X
=1

−1()

0 =

∞X
=1

−1() −
∞X
=1

−1() 

A variable can help to forecast one-year returns, 
(1)
 6= 0 only if it correspondingly changes the

forecast of longer-horizon returns, or dividend growth.

Since impluse-response functions are the same as regression coefficients of future variables such

as + on shocks at time , the impulse-response functions

( −−1) + = 
()

→

 + ()→




where  ≡ (·| ) must obey the same relation,

1 =

∞X
=1

−1()→ −
∞X
=1

−1()→∆

0 =

∞X
=1

−1()→ −
∞X
=1

−1()→∆

This fact lets me easily interpret the change in forecastability by adding cay, in the context of the

present value identity, by plotting the impulse responses. The numbers in Figure 5 are terms of

this decomposition.
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8.2.3 Results using Goyal-Welch predictors

To see if the pattern of the cay VAR holds more generally, I tried a number of the forecasting

variables in Goyal and Welch (2008). The results are in Table A1. Each of these variables helps

substantially to forecast one-period returns. Yet they mean-revert quickly and don’t forecast div-

idends much, so the contribution to the variance of dividend yields is still almost all from the

variance of long-run expected returns.

dp cay eqis svar ik dfy

 2.21 -0.71 1.48 -5.30 5.25

() (1.73) (-2.53) (3.40) (-0.85) (1.86)

 0.13 0.10 0.19 0.15 0.11 0.13

() (2.61) (1.82) (3.75) (3.05) (2.16) (2.53)

2 0.10 0.16 0.19 0.15 0.11 0.13

(Σ
∞
=1

−1+) 0.52 0.46 0.49 0.42 0.53 0.49

(Σ
∞
=1

−1∆+) 0.17 0.13 0.16 0.11 0.17 0.14

Table A1. Multiple return-forecasting regressions and implied variance of long-

horizon returns.

+1 = + ×  + ×  + +1

Data are from Goyal and Welch, 1947-2009. I calculate the variance of long-horizon

expected returns and dividend growth from a bivariate VAR, and using actual (not

identity) dividend growth forecasts. Equis, Percentage Equity Issuance is the ratio of

equity issuing activity as a fraction of total issuing activity. Svar is stock variance, com-

puted as sum of squared daily returns on the S&P 500. Ik is the investment to capital

ratio, the ratio of aggregate (private nonresidential fixed) investment to aggregate capi-

tal for the whole economy. Dfy, the default yield spread, is the difference between BAA

and AAA-rated corporate bond yields.

8.2.4 More lags of dividend growth and returns

An obvious first source of additional variables is less restrictive VARs than the simple first-order

VAR that I presented in the text. Even in the information set of lagged { ∆}, there may
be more information.

The second lag of dividend yields is at least economically important. Table A2 presents the

regressions

 ∆ ()  (∆) 2 (())%
(())

()

+1 0.13 0.26 (2.45) (1.83) 0.15 6.76 0.65

∆+1 0.03 0.35 (0.62) (3.27) 0.14 4.98 0.90

+1 0.93 0.10 (24.7) (0.85) 0.91

∆+1 -0.07 0.10 (-1.85) (0.85) 0.06

Table A2. Forecasts using dividend yield and change in dividend yield. CRSP value

weighted return 1947-2009. ∆ =  − −1
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The change in dividend yield helps the return forecast, increasing 2 from 0.09 to 0.15, and

correspondingly increasing the more interesting measures of expected return variation.

The change in dividend yield really helps to forecast dividend growth, with a 3.27 t statistic,

5% standard deviation of forecast and forecast that varies by 90% of the mean. The 0.10 autoc-

correlation in ∆ however suggests that this will be a very short-lived signal, one with little

impact on forecasts of long-run dividend growth or returns, and thus to our view of the sources of

price-dividend ratio volatility.

Similarly, while individual − and ∆− coefficients don’t look big and don’t have much
pattern, they can nonetheless help as a group, or by sensibly restricting the pattern of lagged

coefficients. In this vein, Lacerda and Santa-Clara (2010) and Koijen and van Binsbergen (2009)

find that moving averages of past dividend growth help to forecast both returns and dividend

growth (as they must, given the present value identity), almost doubling the return-forecast 2.

8.2.5 VAR calculations

To find regression coefficients implied by a first-order VAR as in Table 2, I run

+1 =  + +1 (16)

∆+1 =  + +1

+1 =  + 

+1 (17)

Then I report

() = 
1− ()
1− 



To calculate long run regression coefficients as in Table 4, with  = , I write the VAR as∙
+1
+1

¸
=

∙
 
 

¸ ∙



¸
+

∙


+1

+1

¸
+1 = Φ + +1∙

+1
∆+1

¸
=

∙
 
 

¸ ∙



¸
+

∙
+1
+1

¸
then



∙
+1
∆+1

¸
=

∙
 
 

¸ ∞X
=1

−1Φ−1
∙



¸



∙
+1
∆+1

¸
=

∙
 
 

¸
( − Φ)−1

∙



¸


8.2.6 Univariate implications

While extending the VAR to additional variables adds a lot, the univariate implications of the

VARs are much less than one might think. The middle panel of Figure 5 implies a completely

temporary component of prices; if prices fall and dividends do not, that price movement is expected

completely to melt away. However, the implied univariate representation of returns is almost
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completely independent over time. Returns are predictable by dividend yields, but not by past

returns. If we see a shock to returns without observing dividends, that shock is basically expected

to last forever. As a result, stock return volatility does not decline substantially with investment

horizon. One has to see the state variable  to have any effect on forecastability or classic portfolio

theory.

The reason is easy to see in a simplified example. Write the VAR as

+1 =  ×  + +1

∆+1 = 0×  + +1

+1 = ×  + 

+1

and note that the return identity (12) means

+1 = +1 − 

+1

 = 1− + 0

Now, examine (1− )+1

(1− )+1 = (1− ) + +1 − 

(1− )+1 = (1− ) 

 +

³
+1 − 


+1

´
− 

³
 − 




´
(1− )+1 = −+1 + +1 + 


 − 

Thus, +1 is an ARMA(1,1) in its univariate representation.

(1− )+1 = (1− )+1

Now,  ≈ 096 and ̂ ≈ 094, and is biased down. Hence  =  is a good approximation. In that

case, and with ( ) = 0 which is also very close to the data,

 [(1− )+1] =
¡
1 + 2

¢
2 =

¡
1 + 2

¢ ¡
2 + 2

¢
 [(1− )+1 (1− )] = −2 = −

¡
2 + 2

¢
Hence,  =  and returns are uncorrelated over time,

+1 = +1

In general, with  6= , we still have  very near  (between  and  in fact), so returns follow an

ARMA with very slight mean-reversion and a large permanent component.

8.3 Asset Pricing as a function of characteristics

8.3.1 Portfolio spreads.

In the text, I related 1-10 portfolio means to Sharpe ratios of underlying factors. Here is the result.

Consider the ideal world for such an investigation: Expected returns rise with a characteristic 

(for example b/m)

() = + × 
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and this variation corresponds exactly to a factor (for example, hml)


 =  ×  + 

with betas that also rise with the characteristic

 =


()
+



()
× 

and uncorrelated residuals

( ) = 0.

Now, consider the usual 1-10 or 1-20 portfolio difference

( −) = ( − )

2( −) =
¡
 − 

¢2
2 + 2

2

=

2

()2

¡
 − 

¢2
2 + 2

2


where  is the number of securities in each portfolio. Therefore, the Sharpe ratio, which is

proportional to the t statistic
√
for the mean spread-portfolio return, is

( −)

( −)
=

()



( − )r
2 ( − )

2
+ 2

2


()2

2


This Sharpe ratio rises as we look at further separated portfolios. As  −  increases, it

approaches the pure Sharpe ratio of the factor ()(). It does not increase forever. Splitting in

to finer portfolios can get the magic 1% per month portfolio mean or alpha, but cannot arbitrarily

raise Sharpe ratios or t statistics. Splitting the portfolio more finely reduces  , so splits that are

too fine end up reducing the Sharpe ratio and t statistic by including too much idiosyncratic risk.

Having seen this analysis, of course, we see that it’s more efficient simply to examine the statisti-

cal significance of the cross-sectional regression coefficient ̂, which uses information in all the securi-

ties, not just the end portfolios. Since ̂ = (() )() = (×£ −()
¤
)()

this regression coefficient is the same thing as testing the mean () of a factor which is also formed

as a linear function of the characteristic  = 
 ×

£
 −()

¤
.

8.3.2 Value, betas, and samples.

In the text, I emphasized that all puzzles are joint puzzles of expected returns and betas, and

cautioned that the value puzzle does not hold in pre- 1963 US data. Figure 22 presents the CAPM

in the Fama-French 10 book/market portfolios before and after 1963. In the left hand panel, you

see the familiar failure of the CAPM — average returns are higher in the value portfolio, but there

is no association between the wide spread in average returns and market betas. The right-and

panel shows average returns and betas before 1963. Here the CAPM is working remarkably well.

The big change is not in the pattern of average returns. Value still earns more than growth, 45 bp

compared to roughly 60 bp in the post 63 period. The big change is betas — in the pre-63 period

value firms have higher betas, just as they “ought” to do.66

66Davis, Fama, and French (2000), Cambpell and Vuolteenaho (2004), Ang and Chen (2007), Fama and French

(2006).

52



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G

2345
6

7
8

9

V

Rf

Betas

A
ve

ra
ge

 R
et

ur
n

1963−2009

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Betas

1926−1963

G
23

4

5 6
7

8 9 V

Rf

Figure 22: Value effect before and after 1963. Average returns on Fama - French 10 portfolios

sorted by book/market equity vs. CAPM betas. Monthly data. Source: Ken French’s website.

8.3.3 Time series and cross section

As a first step towards understanding mean returns as a function of characteristics, and to help make

the ideas concrete, Table A3 presents regressions using the Fama-French 25 size and book-market

portfolios. I use log book/market and log size relative to the market portfolio.

The first row of Table A3 gives a pure cross-sectional regression. The fitted values of this

regression fit the portfolio average returns quite well, with a 77% 2 (One does better still with a

×  cross-term, allowing the growth portfolios to have a different slope on size than the value

portfolios.)

size bm ∆size ∆bm

1. Cross section -0.030 0.27

2. Pooled -0.022 0.55

3. Time dummies -0.031 0.29

4. Portfolio dummies -0.087 1.48

5. Pooled -0.030 0.46 -0.38 1.11

Table A3 Regressions of Fama-French 25 size and B/M portfolio returns on size and

book/market characteristics. The regression specification is in the first row is


¡

+1

¢
= + × () + ×() + ;  = 1 2 25

The remaining rows are


+1 = +()+()+×+×+×(−−12)+×(−−12)

Terms in parentheses only appear in some regressions.  is log(market equity/total

market equity).  is log(book/market). Monthly data 1947-2009. Data from Ken

French’s website.
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The second row of Table A3 gives a pooled forecasting regression, which is the most natural

way to integrate time series and cross section. The size coefficient is a little smaller, and the bm

coefficient is much larger.

To diagnose the difference between the cross-section and pooled regressions, rows 3 and 4 present

a regression with time dummies and a regression with portfolio dummies. Variation over time in

a given portfolio’s bm is a much stronger signal of return variation than the same size variation

across portfolios in average bm.

When we run such regressions for individual firms, we can’t use dummies, since the average

return of a specific company over the whole sample is meaningless. The goal of this regression is to

mirror portfolio formation and remove firm-name completely from the list of characteristics. The

last line of Table A3 gives a way to capture the difference between time-series and cross section

without dummies — it allows an independent effect of recent changes in the characteristics. This

specification accounts quite well for the otherwise unpalatable time and portfolio dummies. The

portfolio dummy regression coefficient that captures time-series variation is quite similar to the

sum of the level and recent-change coefficients. It is also gratifyingly similar to the “recent-change”

effect in aggregate dividend-yield regressions of Table A2. One could of course capture the same

phenomenon with portfolios, by sorting based on level and recent change of characteristics. But

my goal is to explore the other direction of this equivalence.

Next, we want to run regressions like this on individual data, and find similar characterization of

the covariance matrix as a function of characteristics. Then, we can expand to multiple right-hand

variables.

8.3.4 Prices in the cross section

Section 3.3 suggested merging time-series and cross-sectional approaches, to understand the vari-

ation in prices (price-dividend ratios) across time and portfolios by exploring long-run return pre-

dictability in the cross-section. How much of the difference between one asset’s price-dividend,

price-earnings, book-market, etc. ratio and another’s is due to variation in expected returns, and

how much to expected dividend growth or other cashflow expectations?67

To explore this question and clarify the idea, I examine the 10 Fama-French book/market port-

folios. Eventually, we’re looking for an estimates that are functions of size and other characteristics

in individual data. Figure 23 presents the average return, dividend growth, and dividend yield of

the portfolios.

Over long horizons, dividend yields are stationary so long-term average returns come from

dividend yields and dividend growth. Taking unconditional means of the return identity (12),


¡

¢
= (1− )

¡

¢
+(∆)

Figure 23 shows that value portfolio returns come roughly half from greater dividend growth and

half from a larger average dividend yield. From a valuation perspective, this is a surprising result.

High prices — low dividend yields — should correspond to higher subsequent dividend growth, not

lower.68

Our objective is to produce variance decompositions across time and securities as with the

67Vuolteenaho (2002), Cohen, Polk and Vuolteenaho (2003).
68Chen, Petkova and Zhang (2008) section 2.2.2 discuss this puzzle.
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Figure 23: Average return +1, dividend growth ∆+1, and dividend yield  for the Fama -

French 10 book/market portfolios, 1947-2008. The dashed ∆ line gives mean dividend growth

implied by the approximate identity ∆+1 = +1 − + +1 − 

market return. Flipping this around, we have


¡

¢
=

1

1− 

£

¡

¢−(∆)

¤
 (18)

Now, we can see that a purely cross-sectional regression of average returns, dividend growth on

dividend yields must obey

1 =

1− 

− 
1− 



where the  are the cross-sectional regression coefficients of the terms in (18). We can interpret

these coefficients as the fraction of cross-sectional dividend yield variation

() =
1



X
=1

£
()−()

¤2
driven by discount rates and driven by dividend growth. (Vuolteenaho (2002) uses a different

present value identity to understand variation in the book / market ratio directly, rather than use

dividend yields as I have. This is a better procedure for individual stocks, which often do not pay

dividends. I use dividend yields here for simplicity.)

The first column of Table A4 presents this cross-sectional regression. The results are quite

similar to the time-series regressions for the market portfolio from Tables 2 - 4: More than all of the

cross-sectional variation in average dividend yields of these portfolios comes from cross-sectional

variation in expected returns (1.33). Expected dividend growth goes “the wrong way” — low prices

correspond to high dividend growth, as seen in Figure 23. (Sample means obey the identity


¡

¢
=

1

1− 

∙

¡
+1

¢−
¡
∆+1

¢
+ 

1



¡
 − 1

¢¸

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The last term is fairly large, which is why the (1− ) column does not add up to one.)

Cross section Portfolio dummies Time dummies Pooled Pooled

 
1−  

1−  
1−  

1− −1 ∆−1
 0.053 1.33 0.107 0.903 0.044 0.325 0.095 0.967 0.090 0.074

∆ 0.036 0.89 -0.005 -0.041 -0.083 -0.611 0.004 0.042 -0.004 0.073

∆∗ 0.026 0.64 -0.011 -0.097 -0.092 -0.675 -0.003 -0.033 -0.012 0.076

 0.92 0.90 0.94 0.94 0.002

Table A4. Cross-sectional regression coefficients of average returns (+1), average

dividend growth (∆+1), and dividend yield change on dividend yields (
), 10

Fama-French B/M portfolios. Implied dividend growth ∆∗ is calculated from the

approximate identity ∆∗+1 = +1 − + +1 − . I use  = 096

We can, of course, ask how much of the time-variation in these dividend yields around their

portfolio average corresponds to return vs. dividend growth forecasts. A regression that includes

portfolio dummies, shown next in Table A4, addresses this question. The 0.11 return-forecasting

coefficient for portfolios is almost the same as the return forecasting coefficient for the market as

a whole seen in Tables 2-4. The dividend growth forecast is also nearly zero. So all variation

in book/market sorted portfolio dividend yields over time, about portfolio means, corresponds to

variation in expected returns, much like that of market returns.

The regression with time dummies, next in Table A4, paints a different picture. The return

coefficient is smaller at 0.044, and  is smaller as well, so expected returns only account for 33%

of the variation in dividend yields. Finally we see an important dividend growth forecast, with the

right sign, -0.08-0.09, accounting for 61-68% of dividend yield volatility. The strong contrast of

this result with the pure cross sectional regression means that a time of unusually large cross-

sectional dispersion in dividend yields corresponds to an unusually high dispersion in dividend

growth forecasts. Dividend yields of these portfolios move overall with a very slow trend. About this

trend, there are times in which the dispersion widens and tightens. This widening and tightening

does not add up to a large variation in individual dividend yields about their portfolio means, so

we don’t see it in the regression with portfolio dummies.

This is an important regression, in that it gives us a sense that there is a component of variation

in valuations that does correspond to dividend growth forecasts. The unusual dispersion in dividend

growth forecasts adds up to zero, so this kind of variation cannot be seen in the aggregate dividend

yield and its forecasting relations. We get a sense here that there is individual-security variation in

forecastable dividend growth, which drives some individual variation in prices, but which averages

out across all securities, so that the aggregate dividend yield is driven primarily by expected returns.

A pooled regression with no dummies looks much like the time-series regression with portfolio

dummies. There is more time-variation in dividend yields than cross-sectional variation, so adding

them up evenly the time-variation dominates the pooled regression.

The last column of Table A4 takes a hint from Table A3, to try to unite time-series and cross-

sectional variation without using dummies. It shows a very similar result, with the ∆−1 variable
accounting for much of the dividend growth forecastability. The next step is to calculate the price

implications of this multivariate regression, as I did with cay, but that takes us too far afield of this

simple example.
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The Fama-French size portfolios, shown in Table A5, present a quite different picture. The pure

cross-sectional regression (first column) finally shows cashflow effects: Higher pieces (low dividend

yields) are associated with higher subsequent dividend growth, which by one measure fully accounts

for the dividend yield variation! However, with portfolio dummies we again see that practically all

dividend yield variation over time for a given portfolio comes from expected return variation, just

as for the market as a whole. With time dummies, variation across portfolios in a given time period

is split between return and dividend growth forecasts.

Cross section Portfolio dummies Time dummies Pooled

 
1−  

1−  
1−  

1−
 -0.014 -0.355 0.077 1.022 0.023 0.267 0.067 0.947

∆ -0.030 -0.757 0.016 0.207 -0.045 -0.525 0.011 0.150

∆∗ -0.048 -1.197 0.002 0.022 -0.063 -0.733 -0.004 -0.053

 0.963 0.952 0.968

Table A5. Cross-sectional regression coefficients of average returns (+1), average

dividend growth (∆+1), and dividend yield change on dividend yields (
), 10

Fama-French ME (size) portfolios. Implied dividend growth is calculated from the

approximate identity ∆+1 = +1 − + +1 − .
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