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BARGAINING, REPUTATION, AND EQUILIBRIUM SELECTION IN
REPEATED GAMES WITH CONTRACTS

BY DILIP ABREU AND DAVID PEARCE1

Consider a two-person intertemporal bargaining problem in which players choose
actions and offers each period, and collect payoffs (as a function of that period’s ac-
tions) while bargaining proceeds. This can alternatively be viewed as an infinitely re-
peated game wherein players can offer one another enforceable contracts that govern
play for the rest of the game. Theory is silent with regard to how the surplus is likely
to be split, because a folk theorem applies. Perturbing such a game with a rich set of
behavioral types for each player yields a specific asymptotic prediction for how the sur-
plus will be divided, as the perturbation probabilities approach zero. Behavioral types
may follow nonstationary strategies and respond to the opponent’s play. In equilibrium,
rational players initially choose a behavioral type to imitate and a war of attrition en-
sues. How much should a player try to get and how should she behave while waiting
for the resolution of bargaining? In both respects she should build her strategy around
the advice given by the “Nash bargaining with threats” (NBWT) theory developed for
two-stage games. In any perfect Bayesian equilibrium, she can guarantee herself virtu-
ally her NBWT payoff by imitating a behavioral type with the following simple strategy:
in every period, ask for (and accept nothing less than) that player’s NBWT share and,
while waiting for the other side to concede, take the action Nash recommends as a
threat in his two-stage game. The results suggest that there are forces at work in some
dynamic games that favor certain payoffs over all others. This is in stark contrast to
the classic folk theorems, to the further folk theorems established for repeated games
with two-sided reputational perturbations, and to the permissive results obtained in the
literature on bargaining with payoffs as you go.

KEYWORDS: Bargaining, equilibrium selection, repeated games, reputation, behav-
ioral types, war of attrition.

1. INTRODUCTION

WHAT KIND OF REPUTATION should a bargainer try to establish? Should she
claim that her demand will never change or that she will become more aggres-
sive over time? Should improvements in her opponent’s offer be punished as
signs of weakness or should she promise to reward them with a softening of her
own position? Is it useful to announce deadlines after which offers will be with-
drawn? This paper addresses these questions in an essentially full-information
two-person bargaining model in which there is a small possibility that each
player might be one of a rich variety of behavioral types. For example, to use
the terminology of Myerson (1991), rather than optimizing as a fully ratio-
nal player would, the player might use an “r-insistent strategy” that always

1We would like to thank Ennio Stacchetti for his help and seminar participants at numerous
universities for their comments. We are grateful to the editor and the anonymous referees, who,
in addition to making many helpful suggestions, were instrumental in shifting the focus of this
paper from repeated games without contracts to the more tractable environment in which legally
enforceable contracts are available. This research was supported by NSF Grant SES-0417846 and
by NYU, Princeton University, and Yale University.
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demands the amount r and never accepts anything less. However, the player
might instead employ a complex history-dependent strategy—a possibility not
considered in previous papers in the behavioral bargaining literature.2

Now think about broader bargaining problems in which the players inter-
act in payoff-significant ways before an agreement is reached. Such considera-
tions were introduced by Fernandez and Glazer (1991) and Haller and Holden
(1990).3 For example, before two countries sign a treaty on trade or pollution
abatement, their unilateral policies affect one another’s payoffs. Here, possi-
bilities for strategic posturing are even more interesting. Does each party max-
imize its immediate payoff before agreement or is some degree of cooperation
possible during negotiations? As time passes without agreement, do players
treat one another more harshly? Is a player’s behavior related to her demand
and to the opponent’s demand?

Because our framework will generalize the model of Abreu and Gul (2000)
in two ways, we pause now to summarize their work. An exogenous protocol
specifies the times at which each of two impatient bargainers can make offers
about how a fixed surplus will be divided. When an offer is made, the other
party can accept (and the proposed division is implemented) or reject (and
the bargaining continues). Payoffs of rational players are common knowledge,
but for each player i, there are exogenous initial probabilities that player i is a
k-insistent type who will never settle for any amount less than k. At the start
of play, normal players mimic behavioral types. Following the initial choice of
types, in the limit as one looks at bargaining protocols that allow more and
more frequent offers, a war of attrition ensues in which players simply either
stick with their initial demands or concede to their opponent’s. Equilibrium
outcomes are essentially unique and do not depend on the fine details of the
protocol. The way the surplus is divided and the delay to agreement depend
on the set of behavioral types available for each player to imitate and their ini-
tial probabilities, and the discount factors of the players. If initial probabilities
that players are behavioral are sufficiently low, there is usually almost no delay

2Adopting the idea of introducing behavioral perturbations from Kreps, Milgrom, Roberts,
and Wilson (1982), Myerson (1991) studied a two-person bargaining game with one-sided uncer-
tainty, one-sided offers, and a single type. Abreu and Gul (2000) performed a two-sided analysis
with multiple types that we will summarize below, prompting Kambe (1999) to do a limit analysis
of a related model as the perturbation probabilities approach zero. Working with a model with
a single behavioral type on either side, Kornhauser, Rubinstein, and Wilson (1989) took pertur-
bation probabilities to zero to select one equilibrium in a war of attrition game. Investigating the
role of outside options in a model that builds on Abreu and Gul (2000), Compte and Jehiel (2002)
also took perturbation probabilities to zero.

3These papers show that even in an alternating-offers bargaining game with symmetric in-
formation, it is possible to have a multitude of subgame perfect equilibria, including many with
substantial delay to agreement. This class of models is now known as bargaining with payoffs as you
go and has been studied in much greater generality by Busch and Wen (1995). Lee and Sabourian
(2007) show that in the presence of complexity considerations, equilibrium selection in these
models is extremely sensitive to the addition of transactions costs to bargaining.
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to agreement. In the limit as these probabilities approach zero, each player’s
expected payoff coincides with the payoff she would get if the Nash bargaining
solution (Nash (1950a)) were used to divide the surplus (with disagreement
point zero). Kambe (1999) was the first investigator to obtain this kind of Nash
bargaining result in his modification of the Abreu and Gul model.

Our paper considers two impatient players who are bargaining over the sur-
plus generated by the “component game”G that they play in each period. After
any history of play and of offers that have been made, the players have the op-
tion to enter into an enforceable Pareto-efficient agreement that governs the
play of both parties from that time on. There is some chance that either bar-
gainer might be a behavioral player drawn from a rich finite set of behavioral
types. Each of those types plays a particular dynamic strategy in the bargain-
ing game. Its actions and demands might vary over time, and might respond in
complicated ways to what the other side offers and does. Both the complexity
of behaviors allowed in the sets of types and the fact that a game is played while
bargaining proceeds make this a much more complicated model than that of
Abreu and Gul.

We obtain strong characterizations of equilibria in the limit analysis as the
probabilities of behavioral types approach zero. In particular, the “Nash bar-
gaining with threats” concept (Nash (1953)) describes the equilibrium behavior
and expected payoffs in a manner analogous to how the simpler Nash bargain-
ing solution describes the asymptotic equilibria in Kambe (1999) and Abreu
and Gul (2000). Thus, perturbing the full-information, play-as-you-bargain
game with the slight possibility of behavioral types replaces a vast multiplicity
of equilibria with a strong prediction about outcomes. This strong prediction is
more striking when one views the model as a repeated game in which players
can sign binding contracts.4 When those contracts are unavailable, the prob-
lem of multiple sustainable expectations about future play is so powerful that
folk theorems persist even in the face of reputational perturbations (see Chan
(2000) and the discussion below). The contractual option provides enough sta-
bility to allow reputational perturbations to resolve the issue of how surplus is
divided.

Section 2 introduces the model. Section 3 establishes the result for the spe-
cial case of stationary postures. In Section 4, we provide the general charac-
terization result. Section 5 establishes existence of equilibrium and Section 6
concludes. Lemmas that support or expand the constructions in the text have
been excised and reposited in the Appendix. Lapses in numerical sequence for
lemmas in the text implement easy cross-reference to this material.

4The ability to make offers also affords the players a communication channel. Therefore, this
paper is not a contribution to the literature started by Aumann and Sorin (1989) on achieving
coordination without communication.
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Further Related Literature

The study of “reputation effects” in repeated games originated in three cel-
ebrated papers: Kreps, Milgrom, Roberts, and Wilson (1982), Kreps and Wil-
son (1982), and Milgrom and Roberts (1982). A decisive paper by Fudenberg
and Levine (1989) showed that a sufficiently patient long-run player, facing a
series of uninformed short-run players, can achieve approximately his Stack-
elberg payoff or better for any prior distribution over types he might be that
put positive weight on his Stackelberg type. Analogously, we assume a positive
probability that each of the players may be the Nash bargaining with threats
type.

When both players are infinitely lived, even if player 1 is much more patient
than player 2, the lower bounds available for 1’s perfect equilibrium payoffs
are much weaker than those provided by Fudenberg and Levine (see espe-
cially Schmidt (1993) and Cripps, Schmidt, and Thomas (1996)). One difficulty
for an informed player 1 is his lack of transparency: player 2 cannot tell what
type she is facing and, therefore, may be unwilling to risk playing a myopic best
response to the informed player’s Stackelberg action for fear that he is a vindic-
tive type who will then switch to an action that “minimaxes” her, for example.5

Two papers get around this problem and obtain strong reputation effects by
considering trembling-hand perfect equilibria (Aoyagi (1996)) or by studying
imperfect monitoring with a full-support assumption (Celentani, Fudenberg,
Levine, and Pesendorfer (1996)). We avoid these complications by assuming
that whereas rational players may pretend to be behavioral, a behavioral type
announces that type and does not pretend to be some other behavioral type.
Thus rational player i always knows that j �= i is either rational or the particular
behavioral type that corresponds to the posture that j originally declared.

When players are equally patient, reputation effects are much more likely
to be overwhelmed by the multiplicity of possible expectations regarding con-
tinuation payoffs. Chan (2000) proved a folk theorem for repeated games with
one informed and one uninformed player. In two exceptional cases, covered,
respectively, by Chan (2000) and Cripps, Dekel, and Pesendorfer (2005), rep-
utational effects prevail. The case covered by Chan generalizes examples of
Celentani et al. (1996) and Cripps and Thomas (1997).

In our play-as-you-bargain model with enforceable contracts, some of the
multiplicity of rational expectations one sees in repeated games is absent (al-
though without reputational types, we show that a folk theorem for the effi-

5Another difficulty is that player 2 may avoid her “Stackelberg follower” action, for fear that
playing it would cause player 1 to reveal rationality, and in the ensuing full information subgame,
they might play an equilibrium giving player 2 an average discounted payoff that is less than
her Stackelberg follower payoff. In our setting, the availability of binding contracts resolves this
dilemma (see the closing paragraph of this section).
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ciency frontier still applies).6 When i offers j a contract, j knows exactly what
will happen if she accepts it. We demonstrate that this is enough to produce
essential determinacy of the division of surplus in the game. In an infinitely
repeated game without contracts, i has no way to guarantee j a particular share
of the future surplus. In a reputationally perturbed version of that infinitely re-
peated game, if i reveals rationality and j does the same, they are in a subgame
identical to the unperturbed game and subject to the same vast multiplicity of
equilibria. Abreu and Pearce (2002) gave exogenous restrictions on continua-
tion beliefs that suffice to pin down a particular division and again it coincides
with the Nash bargaining with threats allocations. We hope in future work to
be able to dispense with these exogenous restrictions in the standard repeated
game setting without contracts by working with the renegotiation-proof equi-
libria proposed by Pearce (1989).

2. THE MODEL

In each round n = 0�1�2� � � � � the actions chosen in a finite game G =
(Si�Ui)

2
i=1 determine the flow payoffs to players 1 and 2. Thus, when players use

actions (s1� s2) ∈ (S1� S2), player i’s payoff in that round is Ui(s1� s2)
∫ 1

0 e
−rt dt,

where r > 0 is the common rate of interest. The overall payoff from an infi-
nite stream is the present discounted value of the flow payoffs. If at any time
players agree on a payoff pair in Π—the convex hull of the set of feasible pay-
offs of G—that flow payoff is realized for the remainder of the round and in
all subsequent rounds: players sign an enforceable contract and there are no
further strategic decisions. At the beginning of any round before agreement
is reached, each player chooses a demand and action pair (ui�mi) ∈ (Πi�Mi),
where Πi is the set of player i’s feasible payoffs (the ith coordinate projection
of Π) and Mi is the set of mixed strategies in G. The players choose these
pairs in some prespecified order, which might be different in different periods
(player 1 choosing first in odd periods, for example). Changing this exogenous
ordering does not affect our results. We do not analyze the case in which the
(demand, action) pairs are changed simultaneously.

Although actions and demands can be changed only at integer times, one
player’s demands can be agreed to at any time t ≥ 0 by the other player.7 A de-
mand ui by player i can be interpreted as an offer to j �= i of the best payoff for
j consistent with i receiving ui, which we denote by φj(ui). (Because the stage
gameG is finite, this best payoff is clearly well defined.) Thus, an offer made at

6The alternating offers protocol explored by Busch and Wen (1995) is less conducive to equi-
librium multiplicity and a folk theorem does not apply. Nonetheless they give conditions under
which significant indeterminacy arises.

7This mixture of discrete and continuous time simplifies the analysis of the war of attrition that
arises, without causing problems with the definition of strategies and outcomes. We note that a
more detailed variant of this hybrid model of time is introduced and used in Section 4.
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integer time n is valid (stands) until it is replaced by another offer (possibly the
same) at n+ 1; a standing offer may be accepted at any time. Bargaining ter-
minates at the first instant that offers made are mutually compatible or that a
standing offer is accepted. An accepted offer is implemented instantaneously.
If two standing offers are accepted at the same instant, the final agreement
is taken to be either of the standing offers with equal probability. A similar
tie-breaking rule applies when players make mutually compatible offers. Until
agreement is reached, a player’s choice of a (demand, action) pair at any n > 1
can depend on the entire past history of (demand, action) pairs.

Each player is either “normal” (an optimizer) or, with initial probability zi,
“behavioral.” A behavioral player i may be one of a finite set of types γi ∈
Γi. Each type is a strategy in the dynamic bargaining game. At the start of
play, a behavioral player i announces (simultaneously with the other player)
her true type γi ∈ Γi. We interpret this as an announcement of a bargaining
posture. Let Π∗ be the set of strictly efficient and individually rational payoffs
in the convex hull of feasible payoffs of the stage game G and let Π∗

i be the
ith coordinate projection of Π∗. Each γi ∈ Γi is a machine defined by a finite
set of states Qi, an initial state q0

i ∈ Qi, an output function ξi :Qi → (Π∗
i ×

Mi), and a transition function ψi :Qi ×Π∗
j ×Mj →Qi.8 Denote by πi(γi) the

(strictly positive) probability of posture/machine γi� conditional on player i
being behavioral. The set of postures and these conditional probabilities are
held fixed throughout.

A normal player i also announces a machine in Γi as play begins, but of
course she need not subsequently conform to her announcement. More gener-
ally, we could allow her to announce something outside Γi or to keep quiet al-
together. (This would not change our characterization results (see footnote 17
in Section 4) nor would it affect the existence result in Section 5, but it would
necessitate some clumsy additions to the proof.) A normal player can condi-
tion (ui(n)�mi(n)), her choice of demand and mixed action in the nth round,
on both players’ initial announcements (γ1�γ2) and on (ul(k)�ml(k)), l= 1�2
and k = 1� � � � � (n − 1) (the history of play in the preceding rounds) and on
(uj(n)�mj(n)) if j moves before i in period n. Notice that this assumes a
player’s choice of mixed action is observable. One can interpret this to mean
that a player has access to randomizing devices that can be verified ex post and
that behavioral types use these devices when randomizing.9 A rational player
who is imitating a behavioral type γi will use these devices also, but in addition
may (typically will, in equilibrium) conduct further, nonobservable randomiza-
tion regarding whether or not to continue imitating γi. Players do not condition

8The current state determines i′s behavior in round n; hence, there would be no gain in gener-
ality if the machine conditioned behavior in round (n+ 1) on its own past behavior.

9We invoke this assumption to simplify the analysis of situations in which a player’s Nash threat
involves randomization. There is no need for it in the large class of games in which both players’
Nash threats are pure actions.
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on the outcomes of the observable randomizing devices; allowing this would be
akin to adding public randomization, which would have no impact on the re-
sult.

Interpreting the interval over which players can concede as the limit of a se-
quence of increasingly fine discrete divisions of time, we assume that if players
adopt a pair of mixed actions (m1�m2) in the nth round, as round n progresses
they experience flow payoffs (U1(m1�m2))� (U2(m1�m2)), rather than payoffs
associated with the realization of a particular pure strategy pair. It is as if ran-
domization were done not once at the beginning of the round, but over and
over again.

For all z = (z1� z2) ∈ (0�1)2, denote by G(z) the dynamic bargaining game
described above, with initial probabilities zi, i= 1�2, that player i is behavioral.
Recall that conditional probabilities that i is a certain type, given that she is
behavioral, are held fixed.

3. STATIONARY POSTURES

This section studies the case where each behavioral type γi ∈Mi� i = 1�2�
is stationary; that is, γi demands the same amount in any period, regardless of
the history of play (and never accepts less), and plays the same action in every
period until settlement is reached. These are the natural generalizations of the
behavioral types of Myerson (1991) and Abreu and Gul (2000) to settings in
which bargainers make payoff-relevant strategic choices in each period before
reaching agreement. Whereas Abreu and Gul (2000) do a stationary perturba-
tion of a bargaining game similar to that of Rubinstein (1982), with many be-
havioral types on each side, this section does the same sort of perturbation of
the more complex bargaining problems of the kind introduced by Fernandez
and Glazer (1991) and Haller and Holden (1990), and generalized by Busch
and Wen (1995).

The equilibrium existence result of Section 5 applies immediately to this set-
ting; we do not duplicate it here. At the heart of our characterization of equilib-
rium payoffs is the idea of Nash bargaining with threats (Nash (1953)), which
is summarized below:

Recall the Nash (1950a) bargaining solution for a convex nonempty bargain-
ing set Π ⊆ R

2, relative to a disagreement point d ∈ R
2� The Nash bargaining

solution, denoted uN(d), is the unique solution to the maximization problem

max
u∈Π

(u1 − d1)(u2 − d2)

when there exists u ∈Π such that u� d; if there does not, uN(d) is defined to
be the strongly efficient point u ∈Π that satisfies u≥ d.

In Nash (1953) the above solution was derived as the unique limit of solu-
tions to the noncooperative Nash demand game when Π is perturbed slightly
and the perturbations go to zero. Nash’s paper also endogenizes the choice of



660 D. ABREU AND D. PEARCE

threats and, consequently, disagreement point; this second contribution plays
a central role here. Starting with a gameG, the bargaining set Π is taken to be
the convex hull of feasible payoffs of G. The threat point d is determined as
the noncooperative (Nash) equilibrium of the following two “stage” game:

Stage 1: The two players independently choose (possibly mixed) threats mi,
i = 1�2. The expected payoff from (m1�m2) is the disagreement payoff, de-
noted d(m1�m2).

Stage 2: The player’s final payoffs are given by the Nash bargaining solution
relative to the disagreement point determined in Stage 1.

Thus players choose threats to maximize their Stage 2 payoffs given the
threats chosen by their opponent. Note that the set of player i’s pure strate-
gies in the threat game is her set of mixed strategies in the gameG. Because the
Nash bargaining solution yields a strongly efficient feasible payoff as a function
of the threat point, the Nash threat game is strictly competitive in the space of
pure strategies (of the threat game). Nash showed that the threat game has
an equilibrium in pure strategies (i.e., players do not mix over mixed strategy
threats). All equilibria of the threat game are equivalent and interchangeable.
In particular, the threat game has a unique equilibrium payoff (u∗

1�u
∗
2), where

u∗ = uN(d(m∗
1�m

∗
2)) and m∗

i is an equilibrium threat for player i. To avoid dis-
tracting qualifications, we assume henceforth that the stage game is nondegen-
erate in the sense that u∗ > d(m∗

1�m
∗
2). Our solution essentially yields (u∗

1�u
∗
2)

as the only equilibrium payoff that survives in the limit as the probability of
behavioral types goes to zero.

We assume that one of the behavioral types on each side plays the Nash bar-
gaining with threats (NBWT) strategy, demanding the Nash payoff and playing
the Nash threat action. There are no restrictions on the demands and threats
of all the other types that may be present; a clumsier assumption that would
have essentially the same effect would be the requirement of a rich set of types
on each side. The earliest analog of Assumption 1 in the reputational literature
is the presence of a “Stackelberg leader” type in Fudenberg and Levine (1989).

ASSUMPTION 1—NBWT: For each player i, there exists γ∗
i ∈ Γi such that in

each period γ∗
i demands u∗

i (and accepts nothing less) and takes action m∗
i .

For a given stationary posture γi, let ui denote player i’s stationary demand
and letmi denote her stationary action. Recall that φj(ui) is the corresponding
offer to player j (that is, (ui�φj(ui)) is an efficient feasible payoff in the stage
game).

ASSUMPTION 2: For all postures γi ∈ Γi,
φj(ui) > dj(m

′
j�mi) ∀m′

j ∈Mj (i �= j� i� j = 1�2)�
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Assumption 2 implies that postures penalize nonacceptance. That is, no mat-
ter what a player does when facing a particular behavioral type, she cannot get
a flow payoff that is higher than what she has been offered. Lemma 1 will es-
tablish that being the first to reveal rationality is tantamount to conceding to
one’s opponent.10 This need not be true in the absence of Assumption 2: after
a certain history that has revealed i′s rationality and left her fairly sure that j
is behavioral, i might benefit from not conceding. No analogous assumption
is required in the general nonstationary environment of Section 4, where we
develop a quite different line of attack, but in Section 5, the proof of existence
is facilitated by again assuming that postures penalize nonacceptance (see As-
sumption 4).

LEMMA 1: Invoke Assumptions 1 and 2, and for any perfect Bayesian equilib-
rium σ , consider the continuation game following the choice of a pair of postures
(γ1�γ2) such that u1 >φ1(u2). Suppose that neither player has revealed rational-
ity prior to time t and that revealing rationality at t (conditional on neither player
having revealed rationality earlier) is in the support of j’s equilibrium strategy.
Then if player j reveals rationality at t and i does not, the resultant equilibrium
continuation payoff is (ui�φj(ui)).

See the Appendix for the proof.
According to Lemma 2, once each side has adopted a posture, players con-

cede with constant hazard rates. At no time other than zero does anyone con-
cede with strictly positive probability (as opposed to conditional density). For
notational convenience, when particular postures and their associated mixed
actions have been fixed, we write (d1� d2) for the corresponding threat point.

Let µi(γi) be the equilibrium probability with which player i adopts the pos-
ture γi, conditional on i being normal. Recall that zi is the prior probability that
i is behavioral and that πi(γi) is the probability that i is of type γi, conditional
on being behavioral. Let ηi(γi) denote the (endogenous) posterior probability
that a player i who chooses γi is behavioral. Then, by Bayes rule,

ηi(γi)= ziπi(γi)

ziπi(γi)+ (1 − zi)µi(γi) �

When there is no danger of confusion, we will suppress the argument γi in
µi(γi), πi(γi)� and so on.

10After revealing rationality and facing a possibly irrational opponent, a player is in a situation
similar to that of the uninformed bargainer in Myerson (1991) (see the Introduction) or a durable
goods monopolist facing a distribution of buyers with different valuations (see especially Coase
(1972), Stokey (1981), Bulow (1982), Fudenberg, Levine, and Tirole (1985), Gul, Sonnenschein,
and Wilson (1986), and the discussion in Abreu and Gul (2000, pp. 97–98, 103–104)).
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LEMMA 2: Invoke Assumptions 1 and 2, and for any perfect Bayesian equi-
librium σ , consider the continuation game following the choice of a pair of pos-
tures (γ1�γ2) such that u1 > φ1(u2). This game has a unique perfect Bayesian
equilibrium. In that equilibrium, at most one player concedes with positive prob-
ability at time zero. Thereafter, both players concede continuously with hazard
rates λi = (r(φj(ui)− dj))/(uj −φj(ui)), i �= j, i� j = 1�2, until some common
time T ∗ <∞ at which the posterior probability that each player i is behavioral
reaches 1. Furthermore, the probability with which player j concedes to player i
at the beginning of the continuation game is max{0�1 − (ηj/(ηi)λj/λi )}, where ηi
denotes the posterior probability that a player i who chooses γi is behavioral.

The proof is omitted. It is similar to Theorem 1 in Abreu and Gul (2000) and
follows as a special case of the discussion in Section 4. We provide an intuitive
treatment below.

Fixing an equilibrium σ and postures (γ1�γ2)� denote by Fi(t) the proba-
bility that player i (unconditional on whether i is behavioral or normal) will
reveal rationality by time t, conditional on j �= i not revealing rationality prior
to t. Because by Lemma 1, the payoff to i from revealing rationality is just what
j has offered her, the game (following the choice of postures) reduces to a war
of attrition in which an opponent may be behavioral or rational.

Let λ1(t) = (f1(t))/(1 − F1(t)) denote player 1’s hazard rate of concession
at t > 0. This is calibrated to keep player 2 indifferent between conceding at t
or t + . The cost to player 2 of delaying concession is (φ2(u1)− d2), while
the benefit is ((u2 −φ2(u1))/r)λ1(t) (ignoring terms of order 2 and higher).
Equating costs and benefits yields

λ1(t)= r(φ2(u1)− d2)

u2 −φ2(u1)
≡ λ1� a constant independent of t�

Hence,

1 − F2(t)= c2e
−λ2t �

where c2 ∈ (0�1] is a constant of integration to be determined by equilibrium
conditions. Observe that Fj(0) = 1 − cj� where Fj(0) is the probability with
which j concedes at t = 0� Clearly ci ∈ [0�1] and equilibrium considerations
imply that (1 − c1)(1 − c2) > 0�

Because behavioral types never concede, we require that

1 − Fi(t)≥ ηi for all t ≥ 0�

where ηi is the posterior probability that player i who chooses posture γi is
behavioral.
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The above requirements pin down the equilibrium uniquely. It follows from the
latter condition that a normal player i must concede with probability 1 in finite
time, indeed, at the latest, by Ti, where

e−λiTi = ηi and Ti = − logηi
λi

is the instant by which normal i would finish conceding if ci = 1 or, equivalently,
if player i did not concede with positive probability at t = 0� In equilibrium,
normal types of both players must finish conceding at the same instant, and at
most one player can concede with positive probability at t = 0.

Let T ∗ = min{T1�T2}. If Ti = T ∗, then ci = 1 and cj ∈ (0�1] is determined by
the requirement that

1 − Fj(t)= cje−λiT ∗ = ηj
⇒ 1 − cj = Fj(0)= 1 − ηj

(ηi)
λj/λi

�

More generally,

Fj(0)= max
{

0�1 − ηj

(ηi)
λj/λi

}
independently of whether Tj < Ti or Tj ≥ Ti.

Let ηi(t) denote the posterior probability that player i is behavioral, absent
concession until time t. Then ηi(t)= ηi/(1 − Fi(t))= (1/ci)ηieλit . That is, λi
is the rate of growth of player i’s reputation (for being behavioral). If Ti >
T ∗, then ci is less than 1 and is chosen to boost i’s reputation (conditional on
nonconcession at t = 0) by just enough for both players’ reputations to reach 1
simultaneously at T ∗.

It follows that the player with the larger concession hazard rate, ceteris paribus,
is at an advantage in the war of attrition. Suppose, for example, that in equi-
librium, after adopting some particular pair of profiles, players have the same
initial reputations and λ1 > λ2. Suppose further (counterfactually, as we shall
see) that neither player concedes with positive probability at time zero. Player
1’s reputation will reach 1 before player 2’s reputation does, in violation of
Lemma 2. The only way to keep this from happening is for player 2 to concede
with enough probability at time zero so that in the event that she is observed
not to have conceded, her reputation jumps just enough that the two players’
reputations will reach 1 together after all. If initial reputations are tiny, even
a small difference in hazard rates must be compensated for by concession at
zero with probability close to 1. This follows from the formula for Fj(0) given
above.

Naive intuition might suggest that player i will tend to imitate the greediest
possible type, but the formula in Lemma 2 indicates that by moderating the
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FIGURE 1.

demand, i increases λi and decreases λj , which may serve i better in the war
of attrition. The formula further shows that i should choose an action (while
waiting) that hurts the opponent j without hurting i too much. Of course that
is also what a player has in mind when choosing a threat in the NBWT game.
The connection can be made precise as follows.

LEMMA 3: Suppose that player 1 adopts his NBWT posture. Then for all pos-
tures 2 could adopt, except those that give player 1 at least as much as he is asking
for, λ1 > λ2.

PROOF: This is most easily seen graphically. Let player 1 adopt the NBWT
posture γ∗

i = (u∗
i �m

∗
i ) and player 2 adopt any posture γ2 = (u2�m2) with u2 >

u∗
2. The NBWT threat point and allocation are denoted d∗ and u∗� respectively.

Let d ≡ d(m∗
1�m2) and u≡ (φ1(u2)�u2). See Figure 1.

By Assumption 2, d1 < φ1(u2). Because (m∗
1�m

∗
2) is an equilibrium of the

Nash threat game, d lies on or below the line through d∗u∗ (if not,m2 would be
a strictly improving deviation for player 2 in the Nash threat game). By Nash’s
(1950a) characterization of the Nash bargaining solution, the slope of the line
d∗u∗ equals the absolute value of the slope of some supporting hyperplane to
the set Π (the convex hull of the feasible set of G) at u∗. Hence, slope de >
slope du∗ ≥ slope d∗u∗ ≥ |slope uu∗|.

However,

λ1 = r(u∗
2 − d2)

u2 − u∗
2

>
r(u1 − d1)

u∗
1 −φ1(u2)

= λ2
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if and only if

slope de > |slope uu∗|�
Q.E.D.

If normal player 2 adopts a particular posture with extremely low probabil-
ity in equilibrium, her reputation jumps dramatically when she is observed to
adopt the posture in question. This gives her a major advantage in the ensu-
ing war of attrition. However, given any lower bound on this probability and
any upper bound on the ratio of any two ex ante probabilities (of behavioral
types), the latter probabilities z1� z2 can be chosen small enough so that in the
continuation game following that choice of posture, player 1’s expected payoff
is close to (or greater than) his Nash bargaining with threats payoff.

LEMMA 4: Invoke Assumptions 1 and 2. For any ξ > 0,R ∈ (0�∞), and µ> 0,
there exists δ > 0 such that if zi ≤ δ� i = 1�2 and max{ z1

z2
� z2
z1

} ≤ R, then for any
perfect Bayesian equilibrium σ , the payoff to a rational player 1 in the continuation
game (γ∗

1�γ2) is at least (u∗
1 − ξ/2) for any γ2 ∈ Γ2 that a rational player 2 adopts

in equilibrium with probability µ2(γ2)≥ µ.

PROOF: Consider the continuation game with (γ∗
1�γ2). By Lemma 3, either

γ2 demands u2 with φ1(u2) ≥ u∗
1 or λ1 > λ2. Suppose u∗

1 > φ1(u2) and that
rational player 2 adopts γ2 with at least probability µ> 0. Then

η1 ≥ z1π1(γ1)

(1 − z1) · 1 + z1π1(γ1)
�

η2 ≤ z2π2(γ2)

(1 − z2) ·µ+ z2π2(γ2)
≤ z2B

⇒ η2

η1
≤ z2

z1
· π2(γ2)

π1(γ1)
· (1 − z1)+ z1π1(γ1)

(1 − z2) ·µ+ z2π2(γ2)
≤RC

for given R and some finite constants B�C independent of (z1� z2). Recall that
the conditional probabilities πi(γi) are exogenous constants.

From Lemma 2,

F2(0)= 1 − η2

η1
(η1)

1−λ2/λ1

if the latter term is nonnegative. By the preceding inequalities,

F2(0) ≥ 1 −RC(z2B)
1−λ2/λ1

≥ 1 −Rδ1−λ2/λ1�
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where R=RCB1−λ2/λ1 <∞. Hence, for δ small enough, F2(0) is close to 1.
Player 1’s payoff is

F2(0)u∗
1 + (1 − F2(0))φ1(u2)≥ u∗

1 − ξ

2

for δ small enough and (consequently) F2(0) close enough to 1. Q.E.D.

Suppose that player 1 adopts his NBWT posture. When he meets a type
that player 2 chooses extremely rarely, Lemma 4 does not apply, but because
this happens so rarely, it has negligible influence on the weighted average that
determines player 1’s expected payoff. In all other cases, Lemma 4 guarantees
him virtually his NBWT payoff. Theorem 1 and its proof make this precise.

THEOREM 1: Invoke Assumptions 1 and 2. Then for any ε > 0 and R ∈
(0�∞), there exists δ > 0 such that if zi ≤ δ� i= 1�2 and max{z1/z2� z2/z1} ≤R,
then for any perfect Bayesian equilibrium σ of G(z)� |U(σ)− u∗|< ε.

PROOF: For any given perfect Bayesian equilibrium (PBE) σ and µ > 0�
let Γ̂2 = {γ2 ∈ Γ2|µ2(γ2) ≤ µ}� Then

∑
γ2∈Γ̂2

µ2(γ2) ≤ |Γ̂2|µ ≤ |Γ2|µ� Hence,∑
γ2∈Γ2/Γ̂2

µ2(γ2) = 1 − ∑
γ2∈Γ̂2

µ2(γ2) ≥ 1 − |Γ2|µ� Under the conditions of
Lemma 4, for any γ2 ∈ Γ2/Γ̂2� the payoff to a rational player 1 in the con-
tinuation game (γ∗

1�γ2) is at least (u∗
1 − ξ/2) and, consequently, the payoff to

adopting γ∗
1 is at least

(1 − |Γ2|µ)
(
u∗

2 − ξ

2

)
+ |Γ2|µwi�

where wi is the lowest payoff to i in the (finite) stage game G.
Clearly we can choose µ> 0 such that |Γ2|µ≤ 1 and

(1 − |Γ2|µ)
(
u∗

2 − ξ

2

)
+ |Γ2|µwi ≥ u∗

2 − ξ�

For such a µ > 0, Lemma 4 immediately implies that, under the stated condi-
tions, the payoff to adopting γ∗

1 is at least u∗
1 − ξ in any PBE σ . It follows that

U1(σ)≥ u∗
1 −ξ. This is true for both players and u∗ is an (strongly) efficient fea-

sible payoff of the stage game.11 Hence, the theorem follows directly. Q.E.D.

In summary, when a repeated game with contracts is perturbed slightly by the
addition of stationary behavioral types on each side, the continuum of perfect
Bayesian equilibria in the unperturbed game is replaced by a precise prediction

11That is, there does not exist feasible u′ such that u′
i > u

∗
i and u′

j ≥ u∗
j .
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about how surplus is shared. The prediction is virtually independent of the ex
ante distribution over behavioral types as long as the NBWT type is included
on each side. With probability close to 1, the demands made by each side,
and the actions taken while waiting, are those suggested by Nash (1953) in
a much simpler context. Interestingly, Theorem 1 does not require r, the rate
of interest, to be close to zero. If r is relatively high, concession hazard rates
λ1 and λ2 will be correspondingly high to make the players indifferent between
waiting or conceding.

4. NONSTATIONARY POSTURES

Following Fernandez and Glazer (1991) and Haller and Holden (1990),
Busch and Wen (1995) have provided a general analysis for repeated games
with complete information where a long-run enforceable contract can be
signed. In conformity with their results, in many games there is a significant
multiplicity of equilibrium outcomes.12 Our goal is to be able to say that any
rich perturbation of such a game leads to an essentially unique outcome and
that the outcome is not sensitive to the small ex ante probabilities of the re-
spective behavioral types. This is true if perturbations are restricted to station-
ary strategies, as Section 3 has shown. Which of the results there survive the
introduction of nonstationary strategies?

We revert now to the general model specified in Section 2. Behavioral types
are finite automata that announce and follow repeated game strategies that
may have complicated intertemporal features and can respond to the oppo-
nent’s play. Suppose one asks how well player 1’s stationary NBWT strategy
would do against any nonstationary posture player 2 might adopt. How dif-
ferent from Section 3 would the analysis look, and does player 1 do himself
harm by not taking advantage of the opportunity to use a dynamic closed-loop
strategy himself?

We formulate a new hybrid discrete/continuous model of time that simplifies
the war of attrition calculations without introducing any of the logical difficul-
ties associated with games played in continuous time. It would appear that a
natural way to accomplish this is to restrict players to changing their offers and
actions at discrete intervals (say, at integer times), while allowing them to ac-
cept the opponent’s offer at any moment (in continuous time). It is necessary
to elaborate this model slightly, to avoid “openness” problems. In the event
that player j responds to player i’s offer at time 5 with an offer that i consid-
ers attractive, i may want to accept j’s offer as soon as possible, at the first
moment following 5, as it were. Similarly, if i’s offer to j decreases at 5, it is

12In our formulation, there is no discounting between the offers of players 1 and 2, and of-
fers that are on the table can be accepted simultaneously by both players. This makes it easy to
establish a folk theorem result (see Section 5).
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natural to provide a last time for j to accept the more generous offer. To ac-
commodate this formally, we split the integer time 5 into four “dates,” which
we call (5�−2)� (5�−1)� (5�1), and (5�2). The date (5�−2) is the last time at
which players can accept offers made at time 4. If i is the player specified to
make her offer first at time 5, she does so at date (5�−1)� Player j �= i then
makes his offer at (5�1) and players get their first opportunities to accept the
new offers at (5�2)� Although these four dates are sequential from a logical
point of view, they are considered to occur at calendar time 5, so no discount-
ing occurs between them.13 This device simply ensures that the set of times at
which a player can accept an offer on the table is compact.

We now introduce the notation regarding time that is used in the argument
to follow. Our primitive notion of time is a date. The set of dates is T . A date
τ ∈ T has two dimensions: τ = (t�k). For τ ∈ T , let t(τ) denote the first di-
mension and let k(τ) denote the second. The first dimension t(τ) specifies the
calendar time at which date τ occurs. The second dimension allows us to order
different events that occur at the same calendar time, as explained in the pre-
ceding paragraph. Only for integer time is the splitting discussed above needed.
Hence, for n ∈N ≡ {0�1�2� � � �}, {(n�−2)� (n�−1)� (n�+1)� (n�+2)} ⊆ T . For
t /∈ N � (t�k) ∈ T if and only if t > 0 and k= 0� At dates (n�−1) and (n�+1),
n ∈N , players can make new (offer, action) choices in an arbitrary prespecified
order. The new offer can be accepted at dates (n�+1)� ((n+ 1)�−1), and all
dates in between. Thus the end of a round and the beginning of the next round
are distinct. Discounting depends only on the pure time component of a date.
The ordering on T is lexicographic: for any τ�τ′ ∈ T , τ′ ≡ (t ′�k′)� (t�k)≡ τ
if t ′ > t or if t ′ = t and k′ > k. A player’s choices at date (n�+1)� say, can
be conditioned on observed choices at dates (n�−1)� (n�−2), and, of course,
all preceding dates. For i = 1�2 and n ∈ N , we define kni to equal −1 or +1
depending on whether i has the move at (n�−1) or (n�+1)�

For later reference, we define the infimum of a set of dates Ω ⊆ T . De-
note ω ≡ infΩ. Let Ωt = {t(ω)|ω ∈ Ω} and t ≡ infΩt� If t /∈ N , then ω ≡
(t�0)� If t ∈ N , define Ω(t) = {ω ∈ Ω|t(ω) = t}� If Ω(t) �= ∅, then ω ≡ {ω ∈
Ω(t)|k(ω) ≤ k(ω′) all ω′ ∈ Ω(t)}� If Ω(t) = ∅, then ω ≡ (t�+2)� The supre-
mum is defined analogously. These are the natural extensions of the usual de-
finitions.

With player 1’s strategy fixed at the stationary NBWT action and demand,
player 2’s situation is similar in some ways to what she faced in Section 3.
Whenever player 2 reveals rationality, one can show that she does so by, in
effect, accepting player 1’s offer. This is the one-sided analog of Lemma 1 in
Section 3. However, the same is not true for player 1, who faces a nonstationary
type. Suppose that player 1 is offered 5 until some date τ, and 10 thereafter.

13To interpret this model, think of a setting in which players accept offers in continuous time,
except in the “time-out” pauses (open intervals) during which new actions and offers are chosen.
Then let the duration of each time-out approach zero.
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Rather than wait to get 10 at τ, at an earlier time τ′ he might offer a Pareto-
superior contract: give me 9 right now. Player 2 might accept this (as long as
she does not expect to do better in the subgame in which she instead reveals
rationality without accepting player 1’s offer). Thus, the offer from player 2’s
machine γ2 at τ′ is just a lower bound on 1’s equilibrium expectation of the
payoffs he would receive if τ′ arrives without either player having revealed ra-
tionality.

The reader may wonder why player 1 would wait until τ′ to make this sug-
gestion and, for that matter, why player 1 does not ask for an even greater
amount. The answer lies in the full-information subgames after players 1 and
2 have both revealed rationality. These typically have a continuum of subgame
perfect equilibria, and in the construction of a solution of the full game, the
selection from this set can depend on arbitrary details of the history of play.
For example, if player 1 demands 9 at τ′′ prior to τ′ instead of at τ′, or 9�3 at
τ, say, player 2 could believe that she would fare extremely well, and player 1
badly, if she revealed rationality instead of accepting player 1’s offer.

The above example might leave the impression that player 1’s expected pay-
off at τ′ could exceed player 2’s offer there only because γ2 later makes a more
generous offer in response to player 1’s constant play of his NBWT position.
This is not true. For example, because player 2’s behavioral type may make
offers that depend on player 1’s past offer or actions, player 1 may be able
to induce more generous offers from player 2 by departing from his NBWT
posture. At τ, for example, if player 1 reveals rationality without accepting the
offer of 10, he may be able to manipulate γ2 into offering him 15. His expected
payoff at τ could therefore easily exceed 10.

To summarize, when player 1’s static NBWT strategy faces more complex
strategies of player 2, player 1’s expected payoff in a particular continuation
game is no longer given by what player 2 offers him and may vary greatly across
different equilibria of that continuation game. A normal player 1 may want to
reveal rationality (by abandoning the NBWT posture at some point) but not
accept player 2’s offer. Furthermore, we shall see that nonstationarity in player
2’s posture induces discontinuities in the war of attrition, with one or more
players conceding away from time zero with strictly positive probability.

All of the above makes it impossible to replicate the line of attack of Sec-
tion 3. Perhaps surprisingly, the main result concerning players’ payoffs is es-
sentially unchanged, along with the power of the static NBWT posture. The
proofs, however, are quite different and much more elaborate. This section
states and proves our main result, Theorem 2.

Let ui(τ|γ1�γ2) denote player i’s demand at time τ and let di(τ|γ1�γ2) de-
note the flow payoff to i at τ, given that both players conform with (γ1�γ2) until
τ. So far for integer nwe have not introduced a date (n�0). It will be convenient
later to define di((n�0)|γ1�γ2)� We set di((n�0)|γ1�γ2) ≡ di((n�+2)|γ1�γ2)�
When there is no danger of confusion, we will drop the arguments γ1 and γ2.

For the profile of postures (γ∗
1�γ2)� take as given all elements of γ2 except

the mapping from the finite set of states to demands. If the latter demands are
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chosen randomly, ties between demands and flow payoffs will occur with prob-
ability 0. When demands exactly equal flow payoffs, potential indeterminacies
in player 1’s response create a profusion of cases to be treated. We avoid this
by making the following genericity assumption.

ASSUMPTION 3—Generic Types: For all γ2 ∈ Γ2, consider the continuation
game defined by (γ∗

1�γ2). For all n, φ1(u2((n�+2)|γ∗
1�γ2)) �= d1((n�+2)|γ∗

1�γ2).
A corresponding assumption applies to types γ1 ∈ Γ1.

THEOREM 2: Invoke Assumptions 1 and 3. Then for any ε > 0 and R ∈ (0�∞)
there exists δ > 0 such that if zi ≤ δ� i = 1�2, and max{z1� z2� z2/z1} ≤ R� then
for any perfect Bayesian equilibrium σ of G(z)� |U(σ)− u∗|< ε.

Theorem 2 says that no matter how high you allow the bound on the relative
probabilities that the respective players are behavioral to be and no matter how
close to u∗

1 you want player 1’s expected utility to be, this is achieved uniformly
across all perfect Bayesian equilibria when behavioral players have sufficiently
low prior probabilities.

Before providing the proof, we give a quick account of the main ideas. Given
the unavoidable fact that a typical continuation game (following the choice of
postures) may suffer from a vast multiplicity of perfect Bayesian equilibria, our
strategy is as follows. Any particular equilibrium of the full game offers player
1 expected payoffs at each date in each continuation game, following the real-
ization of player 2’s choice of posture γ2. Just as one can graph the offers γ2

makes to player 1 over time, one can graph the payoffs player 1 would get by
first revealing rationality at any date (n�kn1) by departing from the (offer, ac-
tion) pair as given by the initial posture γ1 (in the case under consideration γ∗

1 ,
of course) in interaction with the opponent’s posture γ2� It is the maximum of
these two values that drives the war of attrition. In analyzing that war of attri-
tion, one can treat the stream of these maxima as exogenous variation, just as
one accepts the possibility of arbitrary strategies γ2. Once the characterization
result is established for all possible streams, it holds a fortiori for all graphs
that could actually arise in equilibrium.14

Recall from Section 3 that the more player i demands, the slower i’s rate
of concession must be and the slower i’s reputation will grow. If i’s demand is
sufficiently greedy, this will require i to concede at time zero with high prob-
ability. The same basic force is at work here. If player 2 is asking for more
than her NBWT payoff, she has to concede slower than player 1 (if he chooses
his NBWT posture). The rate changes as her demands change, and one has

14More precisely, Lemma 11 will establish a uniform upper bound on the maxima in question
for the interval of dates relevant for our arguments. Our characterization result holds for any
stream that satisfies the upper bound, so it is not necessary to figure out exactly which streams
could actually arise in equilibrium.
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to integrate these rates and add them to discrete probability concessions.15 It
is necessary to make cross-player comparisons of payoff discontinuities of dif-
ferent sizes and with qualitatively different effects. This is the most delicate
part of the argument. The same picture ultimately emerges: overall, player 2’s
reputation grows more slowly than player 1’s and this becomes decisive when
prior behavioral probabilities are low.

Nonstationarities in player 2’s posture typically induce discrete concession
episodes by both players. The simplest case, which we call a downward jump,
involves a decrease in the value of player 2’s offer to player 1. Suppose that at
date (n�kn2) before τ∗, player 2’s offer falls from a to b < a. If player 1 ever
accepts the offer of b in equilibrium immediately after (n�+2), he must be
compensated at (n�+2) for letting the offer fall from a to b by a probabilistic
concession from player 2. The probability P2 of player 2’s concession at (n�+2)
that makes player 1 indifferent between accepting the offer of a or waiting
satisfies16

a= P2u
∗
1 + (1 − P2)b�

Upward jumps have more interesting repercussions. Assume for simplicity
that player 2’s action choice is constant and that at some date τ ∈ (0� τ∗], player
2’s offer jumps up from b to a > b (or, alternatively, that at τ, the equilibrium
implicitly offers player 1 the payoff a for revealing rationality at τ without ac-
cepting player 2’s offer). For some time interval of length  before τ, player 1
would rather wait until τ to get a than to concede immediately and get b (see
Figure 2). Because player 1 experiences flow payoffs while waiting,  solves

b

r
=

∫ t1

t1−
d1((s�0))e−r(s−(t1−)) ds+ e−r a

r
�

where t1 ≡ t(τ) and d1((s�0)) is player 1’s flow payoff (given (γ∗
1�γ2)) at date

(s�0)�
Notice that player 2 will not concede in the  interval before t(τ) either: be-

cause player 1 never concedes in that interval, player 2 is strictly better off con-
ceding at the start of the interval than at any point in its interior. For player 2

15The subsequent paragraphs explain how increases in player 2’s offer at (n�kn2) induce dis-
crete concessions by player 1 at time n and decreases in player 2’s offer induce discrete conces-
sions by player 2.

16As noted earlier, player 1’s expected payoff at some date may exceed what player 2 offers him
there. A fall in this expected value will induce a compensating discrete concession by player 2,
even in the absence of any change in player 2’s offer. The initial higher value could be player 1’s
payoff to revealing rationality at (n�kn1); the lower value might itself exceed player 2’s offer,
because it might be player 1’s present discounted value from waiting for a superior offer player 2
will make later (see the discussion of shadows in the paragraphs after equation (1)).
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FIGURE 2.

to be just compensated for waiting through the barren interval , player 1 must
concede at t(τ) with (conditional) probability P1 that solves

u∗
2

r
=

∫ t1

t0

d2((s�0))e−r(s−t0) ds+ e−r(t1−t0)
[
P1
v2

2(τ)

r
+ (1 − P1)

u∗
2

r

]
�(1)

where t0 ≡ t1 −  and v2
2(τ) is normal player 2’s payoff when player 1 reveals

rationality at τ.
We say that the jump at τ “casts a shadow” of length  over the time period

preceding τ. What if no P1 ≤ 1 solves the equation? Then player 2 cannot be
induced to wait and normal player 2 should concede with probability 1 weakly
before the shadow begins (contradicting our assumption that τ ∈ (0� τ∗]). This
expression makes it clear that changes in flow payoffs d1((s�0)) can also con-
tribute to or even cause shadows. For instance, even if b = a� if there are
changes in player 2’s action choices so that initially player 1’s flow payoffs
d1((s�0)) are less than a and later d1((s�0)) exceeds a, so that∫ t1

t1−
d1((s�0))e−r(s−(t1−)) ds= a

∫ t1

t1−
e−r(s−(t1−)) ds�

then we have a shadow of length  generated exclusively by changes in flow
payoffs.

Interestingly, there can be an upward jump at τ, followed by a downward
jump at the same instant. Suppose that player 2’s posture γ2 is as illustrated in
Figure 2, but that the equilibrium offers c > a at τ ≡ (n�k), k ∈ {−1�+1} (and
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nowhere else, for simplicity). Clearly player 1’s option of getting c at (n�k)
casts a shadow (a longer one than that cast by a) over an interval in which nei-
ther player 1 nor 2 will concede. Player 1 reveals rationality probabilistically at
(n�k) (without accepting player 2’s offer) to compensate player 2 for waiting
through the barren period. In the event that he does not concede, he faces an
immediate drop in expected payoff from c to a. To make player 1 indifferent
between revealing rationality and waiting, player 2 must concede with proba-
bility

P2 = c− a
u∗

1 − a
conditional on player 1’s not revealing rationality at (n�k).

PROOF OF THEOREM 2: Theorem 2, the analog of Theorem 1, follows from
Lemma 5 below in the same way as Theorem 1 follows from Lemma 4 (see
the proof of Theorem 1). Lemma 5 establishes the effectiveness of player 1’s
NBWT posture γ∗

1 against any relevant posture of player 2. The following no-
tation will be used in the proof.

Fix z = (z1� z2) and an equilibrium of the overall game, and consider the
continuation game following the choice of (arbitrary) postures (γ1�γ2). The
dependence of various functions and terms introduced below on z, on the
equilibrium in question, and on (γ1�γ2) is not made explicit in the notation,
but should be understood in what follows.

Associated with the continuation game are “distribution functions” Fi(·),
i = 1�2, where Fi(τ) is the probability that player i reveals rationality by τ
conditional on player j not revealing rationality prior to τ. Note that the dis-
tribution functions and the terms defined below are specific to the equilibrium
in question.

The proof proceeds by demonstrating the effectiveness of player 1’s NBWT
posture γ∗

1 against any relevant posture of player 2. This is formalized in the
following lemma:

LEMMA 5: Invoke Assumption 1. For any ξ > 0, R ∈ (0�∞), and µ> 0, there
exists δ > 0 such that if zi ≤ δ, i = 1�2, and max{z1/z2� z2/z1} ≤ R, then for any
perfect Bayesian equilibrium σ , the payoff to a rational player 1 in the continuation
game (γ∗

1�γ2) is at least (u∗
1 − ξ/2) for any γ2 ∈ Γ2 that a rational player 2 adopts

in equilibrium with probability µ2(γ2)≥ µ.

The proof of Lemma 5 is presented in nine steps.

Step 1—Implications of Stationarity of γ∗
1 : Fix a PBE σ and a posture γ2

for player 2, and consider the continuation game starting from date (0�−1)
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after player 1 has adopted his NBWT posture and player 2 has adopted γ2.
The profile σ induces an equilibrium on that continuation game. Recall that

ηi = ziπi(γi)

ziπi(γi)+ (1 − zi)µi(γi)
is the posterior probability that player i, who chooses γi, is behavioral.

Because of the stationarity of player 1’s offer and the nature of the Nash
threat, a rational type of player 2 must concede with probability 1 in finite time
(see Lemma 6 in the Appendix). Moreover, a rational player 2 reveals ratio-
nality by, in effect, accepting player 1’s offer (see Lemma 7 in the Appendix).17

These “Coasean” results are closely related to Lemma 1 of Section 3 and do
not hold for arbitrary nonstationary γ1.

DEFINITION 1: The date τ∗ ≡ inf{τ|u∗
1 ≤φ1(u2(τ)) or 1 − F1(τ)= η1 or 1 −

F2(τ)= η2}.

Thus τ∗ is the first date by which (1) a rational type of either player 1 or 2 re-
veals rationality (i.e., does not follow γi) with probability 1 or (2) the demands
generated by the pair of postures (γ∗

1�γ2) are mutually compatible.

Step 2 —Concession Distribution Functions: Concession behavior strictly
within rounds is driven by the familiar logic of the war of attrition, with parame-
ters given by the constant offers and flow payoffs that correspond to the round
in question. Specifically, suppose that τ′� τ′′ are dates within round n ∈N with
τ∗ � τ′′ � τ′ and (n+ 1) > t(τ′′) > t(τ′) > n , and that Fi(τ′′) > Fi(τ′) for some
i= 1�2�

We first argue that φi(uj(τ)) > di(τ) for all τ ∈ ((n�+2)� τ′′) and i = 1�2�
For i = 2, this follows from the definition of the NBWT posture γ∗

1 (and our
regularity assumption that excludes the exceptional case u∗

2 = d2(m
∗
1�m

∗
2)). Re-

call also Assumption 3: for all γ2� the pair (γ∗
1�γ2) generates offers and flow

payoffs such that φ1( u2(τ)) �= d1(τ)� Finally, suppose that φ1(u2(τ) < d1(τ))�
We show that this contradicts our initial assumption that Fi(τ′′) > Fi(τ′) for
some i= 1�2� The inequality φ1(u2(τ)) < d1(τ) implies that player 1 is strictly
better off conceding at the end of the round than at any date within the round,
independently of player 2’s concession behavior. Hence F1(τ

′′)= F1((n�+2))�
Because u∗

2 > d2(τ), it follows that player 2 is strictly better off conceding at
(n�+2) than at τ′′ or at any date in between. Hence F2(τ

′′) = F2(τ
′) also, a

contradiction.

17Suppose that we had allowed rational players to announce something outside the set of their
behavioral types or to stay silent. For the same reasons as in Lemmas 1 and 7, a player 2 who
made one of those alternative announcements would accept player 1’s NBWT offer immediately,
having revealed rationality.
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For all n ∈N , let

τ̄(n)= inf
{
τ|Fi(τ)= Fi((n+ 1�−2))

}
�

By the preceding argument, φi(uj(t(τ))) > di(t(τ)) for all τ ∈ ((n�+2)� τ̄(n))
and i= 1�2� Consequently, the analysis within the time interval (n� t(τ̄(n))) is
as in the usual war of attrition, with equilibrium behavior governed by the basic
principle that a normal player delays conceding only in the expectation that the
other player might concede in the interim. Thus we have the familiar result
that the players concede with constant hazard rates λi(s) for s ∈ (n� t(τ̄(n)))�
where

λi(s)= r · φj(ui((n�+2)))− dj((n�+2))
uj((n�+2))−φj(ui((n�+2)))

�

Integrating this expression yields

(1 − Fi(τ))= e−λi(s)(t(τ)−n)(1 − Fi((n�+2))
)
�

This discussion is summarized in the following lemma, where τ̄(n) is defined
as above.

LEMMA 8: For all τ′, τ′′, n ∈ N with τ∗ � τ′′ � τ′, and (n + 1) > t(τ′′) >
t(τ′) > n, if Fi(τ′′) > Fi(τ′) for some i= 1�2, then for k= 1�2,

(1 − Fk(τ))= e−λk(n)(t(τ)−n)(1 − Fk((n�+2))
)

for all τ ∈ ((n�+2)� τ̄(n))�

Note for later use that λ1(s) > λ2(s) for s ∈ (n� t(τ̄(n))), where we define

λi(s)=
 r · φj(ui((n�+1)))− dj((n�+1))

uj((n�+1))−φj(ui((n�+1)))
� for s ∈ (n� t(τ̄(n))),

0� otherwise.

The argument is exactly the same as in Lemma 3 of Section 3.
Let θi(τ) denote the probability with which i reveals rationality at τ, condi-

tional on not having revealed rationality prior to τ.
Define Pi(n) by

(1 − Pi(n))=
∏

k∈{−2�−1�+1�+2}

(
1 − θi((n�k))

)
�

Thus, Pi(n) is the probability of player i conceding sometime within the range
(n�−2)� (n�−1)� (n�1), and (n�2), conditional on not having conceded before
then.
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An implication of Lemma 8 is that positive probability concessions can only
occur at the end, between, or at the beginning of rounds, but not strictly within
rounds. Thus the only dates at which player i might reveal rationality with
strictly positive probability are those τ for which t(τ) ∈N .

Hence,

1 − Fi(τ)= e− ∫ t(τ)
0 λi(s)ds

∏
ν≤τ
(1 − θi(ν))

and for τ for which t(τ) /∈N �

(1 − Fi(τ))= e− ∫ t(τ)
0 λi(s)ds

∏
n∈N �n≤t(τ)

(1 − Pi(n))�

Step 3—Discrete Concessions by Player 2: We seek to show that after time
zero, player 1 reveals rationality faster than player 2. This is the case in regions
of continuous concession, for the same reasons as in Section 3. It will also be
necessary to compare discrete concession probabilities by players 1 and 2.

Each discrete concession by player 2 is tightly linked to a contemporaneous
reduction in what player 1 can extract from player 2, that is, to a down jump
(see the preamble to the proof of Theorem 2). Lemma 9 provides an upper
bound on the concession probability by player 2 that can be provoked by a
down jump from value a to b < a.

Some key definitions follow. Define vji (τ) as the supremum over possible
(given player j’s strategy) payoffs to i, conditional on revealing rationality at
τ (given that i and j have not revealed rationality prior to τ). Recall that if
t(τ) /∈ N , the only way to reveal rationality at τ is to accept the opponent’s
offer. It follows that as long as player j does not accept i’s offer at τ with
strictly positive probability, vji (τ)=φi(uj(τ)). Let vjj(τ) denote normal player
j’s expected equilibrium payoff conditional on player i revealing rationality at
τ� It is notationally cumbersome to keep track of which player has the move
at (n�−1) and (n�+1), respectively. In this context, extending the domain of
definition of vji (·) to include the dummy date (n�0) is helpful. Thus we define
v
j
i ((n�0)) ≡ v

j
i (τ), where τ ∈ {(n�−1)� (n�+1)} is the date at which player i

may change her (offer, action) pair between the round ending at (n�−2) and
the round beginning at (n�+2). We define vjj((n�0)) analogously (that is, nor-
mal player j’s expected equilibrium payoff conditional on player i revealing
rationality at τ ∈ {(n�−1)� (n�+1)}).

Let w1(τ) be the expected equilibrium payoff to player 1 (discounted to τ)
conditional on neither player revealing rationality prior to and including τ.

The total size of the down jump at round n is denoted Jd(n) and

Jd(n)= max
{
0�max

{
v2

1((n�−2))� v2
1((n�0))

} −w1((n�+2))
}
�
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LEMMA 9: Suppose u∗
1 >w1((n�+2)). Then

P2(n)≤ Jd(n)

u∗
1 −w1((n�+2))

�

PROOF: Suppose by way of contradiction that

P2(n) >
Jd(n)

u∗
1 −w1((n�+2))

�

Then

P2(n)u
∗
1 + (1 − P2(n))w1((n�+2))

= P2(n)
(
u∗

1 −w1((n�+2))
) +w1((n�+2))

>max
{
v2

1((n�−2))� v2
1

(
(n�0)�w1((n�+2))

)}
�

Let k ∈ {−2�−1�1�2} satisfy θ2((n�k)) > 0 and θ2((n�k)) = 0 for all k =
k + 1� � � � �+2� Because P2(n) > 0, such a k exists. The preceding inequality
implies that player 1’s payoff from conceding at (n�+2) or immediately after if
k= 2� strictly exceeds player 1’s payoff from conceding at (n�k) or just prior to
(n�k) . Hence F1((n�k))= F1(τ) for some τ ≺ (n�k) with t(τ) < n. It follows
that player 2’s payoffs from conceding at τ′ ∈ (τ� (n�k)] strictly exceed player
2’s payoffs from conceding at (n�k), which contradicts θ2((n�k)) > 0� Q.E.D.

Note that Lemmas 11–13 in the Appendix will establish that the maintained
hypothesis of Lemma 9 is indeed true for an initial range of n’s that suffices for
our proof.

Step 4—Subdivision of Downward Jumps: The nonstationarity of some pos-
tures γ2 may induce frequent fluctuations in player 1’s continuation values.
The discrete concessions by player 2 associated with the numerous down jumps
could give player 2 an insurmountable advantage in the war of attrition, unless
the fluctuations induce concessions by player 1 of similar or greater magnitude.
Comparing the effects of up and down jumps of different sizes is difficult. It is
helpful to think of subdividing down jumps, and associating with each of the
smaller jumps the compensating conditional concession probability by player
2 (given by the formula P2 = (a− b)/(u∗

1 − b)). Fortunately the overall proba-
bility of concession by player 2 so obtained satisfies the bound of Lemma 9, as
the following paragraph demonstrates.

Let P2 > 0 be associated with a down jump from u1 ≡ max{v2
1((n�−2))�

v2
1((n�0))} to w1 ≡ w1((n�+2)) (and suppose that u∗

1 > w1((n�+2))). By
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FIGURE 3.

Lemma 9, 1 − P2 ≥ (u∗
1 − u1)/(u

∗
1 − w1). Consider the strictly decreasing se-

quence ul1� l = 0�1� � � � �L, such that u0
1 = u1 and uL1 = w1, and define Pl2 ≡

(ul−1
1 − ul1)/(u∗

1 − ul1). Then 1 − Pl2 = (u∗
1 − ul−1

1 )/(u∗
1 − ul1). Consequently

(1 − P1
2 )(1 − P2

2 ) · · · (1 − PL2 )= u∗
1 − u1

u∗
1 −w1

≤ 1 − P2�

Thus a down jump may be broken up into a sequence of smaller down jumps
that span the same range, and yield an overall probability of concession by
player 2 that weakly overestimates the actual probability of concession by
player 2.

Step 5—Paired Up and Down Jumps: In general, it is possible to have multi-
ple up and down jumps in player 1’s continuation value, all in a single interval
of nonconcession by player 2. Comparison of the respective concession proba-
bilities of players 1 and 2 can be extremely involved, and this is relegated to the
Appendix. To provide a more accessible treatment, we limit attention here to
a simple case that involves two perfectly complementary jumps. Readers inter-
ested in the Appendix may find it useful to get a motivating overview by looking
at Steps 5–7 here before turning to the material in the Appendix concerning
Section 4.

Figure 3 illustrates a scenario in which player 1’s continuation value is ini-
tially a < u∗

1, then falls to b < a, and later returns to a. We assume for simplicity
that these continuation values coincide with what player 2’s posture γ2 offers
player 1 (there are no endogenous rewards to player 1 that augment what γ2

offers). One can solve for the concession probability P1 induced by the increase
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in value and the concession probability P2 induced by the earlier fall in value.
By Lemma 9,

P2 ≤ a− b
u∗

1 − b�(2)

As noted earlier (in the preamble to the proof),

b

r
=

∫ t1

t0

d1((s�0))e−r(s−t0) ds+ e−r(t1−t0) a
r

or, equivalently,

(b− d1)= e−r(t1−t0)(a− d1)�(3)

where  ≡ (t1 − t0) and di((1 − e−r)/r) ≡ ∫ t1
t0
di((s�0))exp(−r(s − t0))ds.

(Note that di is the average discounted flow payoff over the interval (t0� t1).)
Equation (1) may be rewritten as

(u∗
2 − d2)(1 − e−r)= e−rP1(φ2(a)− u∗

2)�(4)

where we have replaced v2
2(τ) (the payoff to a normal player 2) with φ2(a).

This substitution is valid if player 1 obtains a by accepting an improved offer
from player 2 (see the last paragraph of this step).

Combining (3) and (4) yields

P1 = u∗
2 − d2

φ2(a)− u∗
2

· a− b
b− d1

�

Hence P1 >P2 if

u∗
2 − d2

b− d1
>
φ2(a)− u∗

2

u∗
1 − b �

To see that this inequality does hold, refer to Figure 4 and note the following
facts:

1. The point (d1� d2) must be on or below the line joining d(m∗
1�m

∗
2) and u∗.

2. The slope of the latter line equals (the absolute value of) the slope of
some supporting hyperplane to the set of feasible payoffs at u∗.

3. The frontier of the feasible set is concave and b < a < u∗
1.

Thus, although the decline in player 1’s value from a to b appears to give
player 2 an advantage in the war of attrition (by inducing a discrete concession
by player 2), this advantage is outweighed by the larger discrete concession by
player 1 induced by the return from b to a. Player 1’s overall advantage is even
greater if there are many of these paired discrete concessions, rather than the
single pair illustrated here.
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FIGURE 4.

What if there are more (or larger) decreases in value than increases? For ex-
ample, if value decreases from a to b and then stays there forever, player 2 has
a discrete concession that is not matched by a concession from player 1. This
turns out to have an effect similar to player 2 having a moderate reputational
advantage over player 1. It is swamped by other effects as the zi’s approach
zero. The argument in the Appendix shows that as long as all repeated down
jumps are matched by (or “covered by”; see the Appendix) up jumps, player 1’s
asymptotic advantage will be decisive. However, repeated down jumps are in-
deed matched by up jumps: if value falls from 6 to 4, say, it cannot fall through
that range again until it has first risen through that range. Among the diffi-
culties dealt with in the Appendix is the fact that where player 1 has multiple
concession episodes in the same interval of nonconcession by player 2, the re-
spective concession probabilities often are not uniquely defined (and hence
may vary across equilibria).

We are implicitly assuming that player 1 obtains the payoff a by accepting
an improved offer from player 2; it might also be that player 1 obtains a by
revealing rationality but not accepting player 2’s offer. In this case, the resul-
tant equilibrium payoff to a normal player 2 may be different from φ2(a). This
subtlety and related issues are dealt with in the Appendix.

Step 6—Bounds on Equilibrium Distribution Functions: By Lemma 10 in
the Appendix, when t(τ∗)= 0� the conclusion of Lemma 5 follows straightfor-
wardly. Now suppose t(τ∗) > 0� Recall that η2(τ) is the posterior probability
that player 2 is behavioral conditional on player 2 not revealing rationality up
until and including date τ� Let η̃ > 0 be as defined in Lemma 12 in the Appen-
dix. By Lemma 13 (in the Appendix) there exists τ � τ∗ such that η2(τ) ≥ η̃�
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Let τ̃ = inf{τ|η2(τ) ≥ η̃}. For some motivating discussion of Lemmas 11–13,
see the discussion preceding the statement of the lemmas in the Appendix. Let
ηi denote the posterior probability (at the start of the continuation game) that
a player who adopts the posture γi is behavioral. Then

η2(̃τ)= η2

1 − F2(̃τ)
≥ η̃�

Furthermore,

η1(̃τ)= η1

1 − F1(̃τ)
≤ 1�

The goal is to establish that for small zi’s, the only way for the above inequal-
ities to be satisfied is for P2(0) to be close to 1. However, the true distribution
functions are difficult to work with. Instead, we define modified functions F̂i(τ)
for which P̂i(0)= Pi(0) but which otherwise (weakly) underestimate player 1’s
probability of concession and overestimate player 2’s. Combined with the ear-
lier inequalities, this yields

η2 ≥ η̃(1 − F2(̃τ))≥ η̃(1 − F̂2(̃τ))

and

η1 ≤ 1 − F1(̃τ)≤ 1 − F̂1(̃τ)�

We subsequently show that for small zi’s the above inequalities imply that
P̂2(0) is close to 1. That is, player 2 concedes too slowly relative to player 1,
even when we overestimate player 2’s rate of concession and underestimate
player 1’s.

Step 7—Modified Distribution Functions: Recall from Step 2 that

1 − Fi(̃τ)= e− ∫ t (̃τ)
0 λi(s)ds(1 − P0

i )(1 − P1
i ) · · · (1 − PLii )�

where l= 0�1� � � � �Li indexes positive probability concessions by player i until
date τ̃.

For player 2, any positive probability concession must be associated with a
down jump (Lemma 9). Let the lth down jump occur at date τ(l) (assumed
to be increasing in l) and entail a drop in payoff to player 1 from a(l) to b(l)�
For any l such that a(l+ 1) > b(l), Lemma 14 in the Appendix establishes the
intuitively plausible result that between dates τ(l) and τ(l+1) there must exist
a consecutive sequence of shadows that correspond to up jumps in player 1’s
payoffs from a payoff b≤ b(l) to a≥ a(l+ 1)� Down jumps over payoff drops
that have also occurred at an earlier date are offset by up jumps that cover (at
least) the same range (see Lemmas 15 and 16). By Steps 4 and 5, we can match
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such repeated down jumps with up jumps that span the same range. Thus one
can construct new functions F̂i, i = 1�2, for which up jumps and down jumps
are matched as follows:

1 − F̂1(̃τ)= (1 − P̂0
1)(1 − P̂1

1 ) · · · (1 − P̂K1 )e− ∫ t (̃τ)
0 λ1(s)ds�

1 − F̂2(̃τ)= (1 − P̂0
2)(1 − P̂1

2 ) · · · (1 − P̂K2 )(1 − P̂K+1
2 )e− ∫ t (̃τ)

0 λ2(s)ds�

where for k= 1� � � � �K� P̂k2 corresponds to a down jump from some uk1 to uk1 −
 and P̂k1 corresponds to a matched up jump from uk1 − to uk1 between times
tk and t̄k, respectively. We set P̂0

i = P0
i � The latter is the probability of revealing

rationality at the very start of the game and is the same for the original and the
modified distributions. The unmatched term P̂K+1

2 accounts for the possibility
of nonrepeating down jumps. The modified distribution function F̂1 neglects
some concession episodes for the following reasons:

1. It is possible that some Pl1 > 0 are not associated with up jumps (see the
remarks preceding the proof of Theorem 2).

2. Some up jumps might not simply be offsetting repeated down jumps.
Of course this reasoning is consistent with underestimating player 1’s distri-

bution function, and as desired we have

(1 − F̂1(̃τ))≥ (1 − F1(̃τ))�

By setting P̂K+1
2 generously, we can further guarantee that (1− F̂2(̃τ))≤ (1−

F2(̃τ)). By Lemmas 11–13 there exists ε > 0 such that u∗
1 −ε is an upper bound

on player 1’s expected equilibrium payoff at any τ � τ̃ for τ̃ as defined in Step 6.
The highest possible P̂K+1

2 is associated with an offer that drops from u∗
1 − ε to

u1, the smallest payoff to player 1 in the efficiency frontier of the stage game.
Thus a generous specification of P̂K+1

2 is

(1 − P̂K+1
2 )= ε

u∗
1 − u1

≡ a2 > 0�

By the analysis of Step 4, all nonrepeating down jumps are covered by the
term P̂K+1

2 as defined above.

Step 8 —Player 1 Concedes Faster than Player 2: As noted following
Lemma 8,

λ1(s)

{
> λ2(s)� for s ∈ (n� t(τ̄(n))),
= λ2(s)= 0� otherwise.

Can we compare P̂k1 corresponding to an up jump from wk
1 to wk

1 between
times tk and t̄k to P̂k2 corresponding to a down jump from wk

1 to wk
1 ? Let P̂k2 =



REPEATED GAMES WITH CONTRACTS 683

(wk
1 − wk

1)/(u
∗
1 − wk

1) as usual. As defined in the Appendix (see the proof of
Lemma 16), P̂k1 solves

u∗
2

r
=

∫ t̄k

tk

d2((s�0))e−r(s−tk) ds+ e−r(t̄k−tk)
[
φ̃2(w

k
1 )

r
P̂k1 + u∗

2

r
(1 − P̂k1 )

]
�

where wk
1 ∈ (wk

1 �w
k
1 ]� φ̃2(·) ≡ φ2(·)+ κ, and κ is as given in Lemma 12. This

yields

P̂k1 = u∗
2 − d2

φ̃2(w
k
1 )− u∗

2

· w
k
1 −wk

1

wk
1 − d1

�

The formulas for P̂k1 correspond to those in Step 5 with a replaced by wk
1

and b replaced by wk
1 . In addition φ2(w

k
1) is replaced by φ̃2(w

k
1 ) for some wk

1 ∈
(wk

1 �w
k
1 ]. As in Step 5, it follows that P̂k1 > P̂

k
2 if

u∗
2 − d2

wk
1 − d1

>
φ̃2(w

k
1 )− u∗

2

u∗
1 −wk

1

�

If we had φ2(w
k
1 ) on the right-hand side, the inequality would follow by the

same reasoning (as in Step 5). However, if κ > 0 (recall that φ̃2(·) = φ2(·)+
κ) is chosen small enough, the inequality is preserved, indeed uniformly as
clarified in the next paragraph.

By Lemmas 11–13 there exists ε > 0 such that for all τ � τ̃, w+
1 (τ)≤ u∗

1 − ε
uniformly across (z1� z2) ∈ (0�1)2 and possible equilibria. Hence u1((n�+1))≤
u∗

1 − ε and w̄k
1 ≤ u∗

1 − ε. It follows that there exists α′ > 1 such that

λ1(s)≥ α′λ2(s) for all s�

Fixing ε > 0, we may choose κ > 0 small enough so that for some α ∈ (1�α′)
we also have

(1 − P̂k1 )≤ (1 − P̂k2 )α for all k= 1� � � � �K�

uniformly across z1, z2, and possible equilibria.

Step 9—P2(0)∼= 1 for z1� z2
∼= 0: To complete the proof, we show that when

the perturbation probabilities z1 and z2 are small, player 2 must concede with
probability close to 1 at time zero, which, as noted earlier, establishes the de-
sired lower bound on player 1’s expected payoff.

Recall that

η1 ≤ 1 − F̂1(̃τ)= (1 − P0
1 )A1�

η2

η̃
≥ 1 − F̂2(̃τ)= (1 − P0

2 )A2(1 − P̂K+1
2 )�
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whereAi = e− ∫ t (̃τ)
0 λi(s)ds(1− P̂i(1)) · · · (1− P̂i(K)) and Pi(0)= P̂i(0) is the initial

probability with which player i concedes.
It follows that

η1 ≤ (1 − P1(0))Aα
2 �(5)

η2

η̃(1 − P2(0))(1 − P̂2(K + 1))
≥

[
η1

(1 − P1(0))

]1/α

�

η2

η1
·ηα−1

2 ≥ (1 − P2(0))α

(1 − P1(0))
· aα2 �

where a2 ≡ η̃(1 − P̂2(K + 1)) > 0 and α> 1 is as defined in Step 8.

This analysis applies to any z1� z2. Suppose z2/z1 ≤ R and µ2(γ2;z2) ≥ µ.
Then, as shown in the proof of Lemma 4 of Section 3,

η2

η1
≤RC

for a given R ∈ (0�∞) and some finite constant C independent of (z1� z2).
Returning to (5), we obtain

RC(z2B)
α−1 ≥ (1 − P0

2 )
α

(1 − P0
1 )

· aα2 �

where B is also a finite constant independent of (z1� z2). Hence P0
2 ≥ 1 −

(RC)1/α(1 −P0
1 )

1/α 1
α
(z2B)

(α−1)/α, which is close to 1 for δ > 0 small enough and
z2 ≤ δ. Normal player 1’s payoff is at least P2(0)u∗

1 + (1 − P2(0))d1� which in
turn is at least u∗

1 − ξ

2 for δ small enough and (consequently for) P2(0) close
enough to 1. (Recall that d1 is the lowest possible payoff to player 1 in the
stage game G). This completes the proof of Lemma 5, from which Theorem 2
follows, as noted earlier. Q.E.D.

5. EXISTENCE OF EQUILIBRIUM

This section establishes the existence of perfect Bayesian equilibrium (PBE)
for a wide class of perturbed bargaining games. For any such game G(z) (de-
fined in Section 2), we define in turn three more games, each more tractable
than the last. The first simplification involves replacing G(z) with a conces-
sion game. From this is defined a concession game in discrete time, which is
then truncated to yield one that is equivalent to a discrete, finite-horizon game.
Standard arguments (Nash (1950b)) guarantee that this last game has a Nash
equilibrium.

It then remains to show that this equilibrium can be extended to Nash equi-
librium in the games from which the simplest game was derived and finally to
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a PBE of G(z). Moving back to continuous time requires some analysis of se-
quences of discrete-time games. Going from the concession game back to G(z),
the game of interest, is a greater challenge. As pointed out in the preceding sec-
tion, players might, in equilibrium, reveal rationality but not accept the oppo-
nent’s current offer. This leads to potentially intractably complex equilibrium
behavior and to continuation payoffs that may depend on player i’s reputation
at the time when j reveals rationality. Nonetheless, we are able to use the rela-
tively simple (albeit possibly highly nonstationary) equilibrium proved to exist
in C(z) to construct a PBE of G(z) in which payoffs when i reveals rationality
depend on the date at which this occurs and on the initial postures (but not on
reputations at that date).

Given a bargaining game G(z)� the concession game C(z) associated with
G(z) is identical with G(z) except that after the choice of any pair of postures
(γ1�γ2), in the subsequent game a player’s only options are to stick to her initial
posture or to concede, with one exception: if, at some date (n�−1), player i
moves first and, according to the initial postures (γ1�γ2)� player j’s demand
at (n�1) would be more than compatible with i’s demand, then i is allowed to
increase her demand to make it exactly compatible. In this situation, if i does
not increase her demand sufficiently, then j is allowed to increase his demand
to the point of exact compatibility. In C(z)� revealing rationality ends the game;
it is free of the complications alluded to in the preceding paragraph.

We will consider discrete-time versions of the concession game that we index
by  ∈ (0�1) and that differ from the original (concession) game only in that
players move discretely within rounds. That is, in round n, player 1 moves singly
at times (n + )� (n + 3)� � � � � and player 2 moves singly at (n + 2)� (n +
4)� � � � � the alternating pattern continues until (n+W ), where W satisfies

W < 1 ≤ (W + 1)�

(The dates corresponding to these times are (n+�0)� (n+2�0), and so on.)
Denote such a game C(z�).

We now define truncated concession games. In a τ̄-truncated concession
game, if play reaches date τ̄, both players must conform to their initial pos-
tures thereafter. Denote such a game C(z�� τ̄)� We denote by C(z� τ̄) the
continuous-time game derived by truncating C(z) at τ̄.

Notice that C(z�) is a standard extensive form game in which:
1. At an initial date, Nature chooses types of both players simultaneously.
2. Next, players announce their postures.
3. Subsequently, they play the concession game defined by their initial

choice of postures (γ1�γ2).
A behavioral type γi can only announce γi and play according to γi. A normal

type of player i can announce any γi ∈ Γi and, moreover, may subsequently
deviate from the announced γi by accepting the opponent’s current offer. Note
finally that when t(τ̄) <∞, the truncated game C(z�� τ̄) can be expressed as
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a finite extensive form game: because after τ̄ even normal players can only
conform to their initial postures, we can make all the nodes at date τ̄ terminal
nodes, with the appropriate specification of payoffs.

Several lemmas that culminate in Lemma 23 are stated and proved in the
Appendix.

LEMMA 23: The concession game C(z) has a Nash equilibrium.

We now turn to G(z)� the actual game of interest. First consider G(0), the
bargaining game of complete information (that is, z = 0). Recall that

ui = min{ui|(u1�u2) ∈Π∗}�
ui = max{ui|(u1�u2) ∈Π∗}�

where Π∗ is the set of strictly efficient and individually rational payoffs in the
convex hull of feasible payoffs of the (finite) stage game G.

LEMMA 24: The set of perfect Bayesian equilibrium payoffs of G(0) is a superset
of Π∗�

PROOF: Let mi be a strategy for i that minimaxes player j. The following
pair of strategies defines a PBE for any a ∈ [u1�u1]:

player 1 plays (a�m1) initially;
player 2 plays (φ2(a)�m2) initially�

If player 2 deviates to a more aggressive demand, player 1 plays (u1�m1) and
player 2 plays (φ2(u1)�m2) when it is next their turn to make offers; the con-
verse is true for player 1. Moreover, following any deviation to an incompatible
demand by a single player at the beginning of a round, the deviator immedi-
ately accepts the opponent’s equilibrium offer, while the player who did not
deviate waits for her offer to be accepted. Subsequent single-player deviations
that yield incompatible demands are responded to in the same manner. Sup-
pose at the beginning of round n both players deviate from the prescribed (de-
mand, action) pairs as given by the rules above. Let i be the player who moves
at (n�−1) and let j be the player who moves at (n�+1)� If j’s flow payoff in
round n does not exceed i’s offer to j, then j’s prescribed strategy is to accept
i’s offer at (n�+2) (and at all subsequent dates in that round conditional upon
the game not having terminated prior to that date) and i’s strategy is to wait
for her offer to be accepted. If this condition does not hold for j but does for i,
then the prescription is as above with the roles of i and j reversed. If both play-
ers’ flow payoffs strictly exceed what they have been offered, let b be player
i’s round n flow payoff. Then neither player concedes in round n and at the
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beginning of the next round, prescribed behavior from that point on is as de-
scribed at the beginning of the proof, with b replacing a and player i replacing
player 1. This completes the recursive description of the strategy profile.

It may be verified that this pair of strategies defines a PBE. By an analogous
argument, (φ1(u2)�u2) is a PBE payoff of G(0) for any u2 ∈ [u2�u2]� Q.E.D.

Lemma 24 yields an elementary “perfect folk theorem” for the efficiency
frontier for this class of complete information bargaining games. (Compare to
Busch and Wen (1995); see footnote 3.)

To construct a PBE of G(z) from any Nash equilibrium of C(z), we employ an
assumption that was not needed for our characterization results in Sections 3
and 4.

DEFINITION 2: A posture γi ∈ Γi is nonmanipulable if, after any history and
at the beginning of any round, player j is strictly better off accepting player i’s
current offer than adopting a strategy of waiting for a future offer under the
hypothesis that player i will conform with γi forever after.

ASSUMPTION 4 —Nonmanipulability: All postures γi ∈ Γi i = 1�2, are non-
manipulable.

After any history, a posture γi explicitly offers the opponent j a contract
with a certain present discounted value for j. Assumption 4 rules out absurd
postures that give rational j an incentive to refuse the offer even when j is sure
i is the behavioral type γi.

THEOREM 3 —Existence: Let G(z) be a bargaining game that satisfies As-
sumption 4. Then G(z) has a perfect Bayesian equilibrium.

Theorem 3 follows directly from Lemma 25 below and our existence result
for C(z).

LEMMA 25: Given Assumption 4, if C(z) has a Nash equilibrium, then G(z)
has a perfect Bayesian equilibrium.

PROOF: Fix a Nash equilibrium σ of C(z). Consider a strategy profile in
G(z) such that a normal player imimics postures in Γi with the same probability
with which normal i mimics postures in the equilibrium σ of C(z) and for any
pair of postures (γ1�γ2).

(i) At dates (n�−1) and (n�+1)�n ∈ N , prior to which neither player has
revealed rationality, players conform to their postures γi. They reveal ratio-
nality only at other dates (that is, by accepting an opponent’s standing offer at
that date). The only exception is in the event that the postures would lead to
more than compatible demands at some first date (n�+1). In this case, nor-
mal player i who has the move at (n�−1) makes the just compatible demand
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φi(uj((n�+1))) and chooses the action mi, where mi is a strategy for i that
minimaxes j. If i chooses some ui < φi(uj((n�+1))), then normal j chooses
(φj(ui)�mj). This follows the treatment of the more than compatible case in
the concession game.

(ii) Each player’s distribution over concession times is the same as in σ�
(iii) After a deviation from property (i) by player j alone, a normal i plays

the (demand, threat) pair (ui�mi) when it is next player i’s turn to make a de-
mand. Thereafter, i adopts the same strategy that yields the PBE payoff pair
(ui�φj(ui)) in the full-information game G(0). Normal player i never accepts
j’s offer and j always accepts i’s offer. If player i is behavioral, by the nonma-
nipulability assumption it is optimal for j to accept i’s offer at the beginning of
the round following the revelation of rationality by j. In the out-of-equilibrium
event that j does not accept and the next round is reached, if rational player
i’s offer reveals that i is rational, then in the ensuing full information game it
is again optimal for j to accept i’s equilibrium offer right away. On the other
hand, if i’s offer does not reveal rationality, player j should also accept, be-
cause acceptance is a best response to i’s strategy, whether i is behavioral (by
the nonmanipulability assumption) or normal.

(iv) If both players deviate from property (i) and their offers are not com-
patible, let (ui�mi) denote player i’s (offer, action) pair in the round in ques-
tion.

(a) For player j, if φj(ui) weakly exceeds j’s flow payoff in that round (and
if the symmetric statement is not true for player i), then from the next round
onward players play a PBE of the continuation game that gives j a payoff
φj(ui) and i a payoff ui. Within the round, j’s strategy is to concede imme-
diately at all dates and i does not concede at any date. If instead both players
have received offers weakly exceeding their flow payoff, follow the instruction
in (iii) above with j set to 1.

(b) If both players’ flow payoffs strictly exceed what they have been offered,
respectively, let a be player 1’s current-round flow payoff. Assign to the next
round the PBE that gives player 1 the payoff a and player 2 the payoff φ2(a).
In the current round neither player ever concedes.

It is easy to verify that the strategy profile defined above is a perfect Bayesian
equilibrium of G(z). Q.E.D.

6. CONCLUSION

Infinitely repeated games have an extreme multiplicity of equilibria. This re-
mains true when players can offer one another long-term contracts. We show
that if a two-player repeated game with contracts is perturbed slightly by the
introduction of behavioral types on each side, the players’ expected discounted
payoffs vary only negligibly across all perfect Bayesian equilibria. Those pre-
dicted payoffs are almost independent of the exogenous distribution of behav-
ioral types, as long as Nash bargaining with threats is one of the behavioral
types on each side.
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More concisely, the folk theorem is replaced by a specific prediction.
A player will do well by following the advice of Nash (1953) regarding her
demand and her action while waiting. A player gains essentially nothing by
imitating a dynamic behavioral type rather than the static NBWT type. Estab-
lishing this requires arguments quite different from those in the existing liter-
ature. We introduce a hybrid discrete–continuous-time model that facilitates
the analysis of the war of attrition.

One would like to know how behavior in a repeated game depends on the
properties of the one-shot game. How much advantage is attached to the ability
to hurt an opponent? Is it important whether price or quantity, for example, is
the strategic variable? Do fixed costs affect the division of surplus? Our results
allow the application of Nash bargaining with threats to give questions of this
kind a relatively simple treatment.
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APPENDIX

Stationary Postures (Section 3)

PROOF OF LEMMA 1: Fix a PBE σ and postures (γ1�γ2). Suppose without
loss of generality that i= 1 and j = 2. Between rounds, the only way for player
2 to reveal rationality is to accept player 1’s standing offer in that round. Hence
if t is not an integer, the result follows trivially. Now suppose that t is an integer
and furthermore that player 2’s turn to change his (demand, action) pair at t
comes after player 1’s. Then we have the following steps:

Step 1: There exists T̃ < ∞ such that player 2 accepts player 1’s demand
with probability 1 by t + T̃ if γ1 continues to be played until t + T̃ .

Because (1) φ2(u1) > maxm′
2
d2(m

′
2�m1), (2) player 2 is impatient, and (3)

player 2’s payoffs in G are bounded above (G is finite), it follows that there
exist β> 0 and T <∞ such that player 2 will accept player 1’s offer right away
unless player 2 believes that player 1 will reveal rationality with probability at
least β, between t and t + T .

(To see this, let β satisfy

βu2 + (1 −β)max
m′

2

d2(m
′
2�m1) < φ2(u1)

mailto:dabreu@Princeton.edu
mailto:david.pearce@nyu.edu
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and let T <∞ satisfy

βu2 + (1 −β)
(
(1 − e−rT )max

m′
2

d2(m
′
2�m1)+ e−rTu2

)
<φ2(u1)�)

Conditional on player 2 not accepting player 1’s offer and on player 1 con-
tinuing to conform with γ1 until t + T , a similar conclusion follows between
t + T and t + 2T , and so on. Because π1(γ1) > 0, the posterior probability η1

that player 1 is behavioral at t is strictly positive, and conditional on confor-
mity by player 1 and nonacceptance by player 2 the posterior probability that
player 1 is behavioral at t+nT is η1/(1 −β)n. Because it is also necessary that
η1/(1 − β)n ≤ 1, this leads to contradiction for large n. It follows that there
exists T <∞ such that player 2 accepts player 1’s demand u1 by T with prob-
ability 1, conditional on player 1 continuing to conform with γ1 between t and
t + T . Suppose T is chosen such that the preceding statement is false for any
T̃ < T .

Step 2—T = 0: Suppose not. Then ũ2, player 2’s demand immediately prior
to t+ T , exceedsφ2(u1) and there exists ε > 0 such that player 1 strictly prefers
u1e

−ε to φ1(ũ2). It follows that conditional on sticking with γ1 until t + T − ε,
player 1 will continue to stick with γ1 with probability 1 until t + T . Therefore,
player 2 should accept player 1’s demand u1 with probability 1 strictly prior to
t + T , contradicting the definition of T .

This completes the proof for the case under consideration. Finally suppose
that player 2 moves before player 1 at integer t. The preceding argument im-
plies that if player 1 sticks with γ1, then player 2 accepts player 1’s offer imme-
diately. Hence player 1’s payoff is at least u1. On the other hand, by sticking
with γ2� player 2 can guarantee herself at least φ2(u1). (If player 1 reveals
rationality at t, then the preceding two-step argument with the roles of play-
ers 1 and 2 reversed, implies that player 2’s payoff is u2 > φ2(u1)� If player 1
sticks with γ1� player 2 may accept player 1’s offer at the beginning of round
t.) Hence player 2’s payoff from the equilibrium revelation of rationality at t is
at least φ2(u1)� Because (u1� φ2(u1)) is an efficient payoff pair, the conclusion
follows for this case also. Q.E.D.

Nonstationary Postures (Section 4)

LEMMA 6: There exists τ with t(τ) <∞ such that 1 − F2(τ)= η2.

PROOF: By our regularity assumption, maxm′
2
d2(m

∗
1�m

′
2) < u

∗
2. The rest of

the argument is virtually identical to Step 1 in the proof of Lemma 1. Q.E.D.
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LEMMA 7: Consider equilibrium in the continuation game following the choice
of postures (γ∗

1�γ2). Suppose that neither player has revealed rationality prior to
date τ, and that player 2 reveals rationality at τ and player 1 does not. Then the
resultant equilibrium continuation payoff to normal player 1 is at least u∗

1�

PROOF: The lemma follows directly from the proofs of Lemmas 1 and 6.
Note that if τ = (n�−1) for some integer n, then player 1 may stick with γ∗

1 at
(n�1) and the two-step argument of Lemma 1 implies that player 2 will accept
player 1’s offer immediately at (n�2)� yielding the payoff pair (u∗

1�u
∗
2). How-

ever, depending on the equilibrium, it is possible that normal player 1 reveals
rationality at (n�1) also, and in the continuation game that follows obtains
more than u∗

1� Q.E.D.

Recall that di is the lowest possible payoff to player i in G, and that ui and
ui are, respectively, the minimum and maximum payoffs to i on the (strictly)
Pareto-efficient frontier of G.

LEMMA 10: If t(τ∗)= 0, then a rational player 1’s payoff is at least (1−η2)u
∗
1 +

η2d1.

PROOF: Recall from Step 1 of the proof of Lemma 5 in the text that
τ∗ = inf{τ|u∗

1 ≤φ1(u2(τ)) or 1 − F1(τ)= η1 or 1 − F2(τ)= η2}� We argue that
if t(τ∗)= 0, the strategy “always conform with γ∗

1 ” yields a rational player 1 a
payoff that is at least(1 − η2)u

∗
1 + η2d1. If u∗

1 ≤ φ1(u2(τ
∗)), then the conclu-

sion follows directly. If (1 − F2(τ
∗)) = η2, then normal player 2 reveals ratio-

nality for sure by τ∗� If player 1 conforms with γ∗
1 , the result now follows from

Lemma 7. Finally, if (1−F1(τ
∗))= η1, then, in the event of player 1 not reveal-

ing rationality at τ∗, a rational player 2 should reveal rationality immediately
thereafter. The conclusion again follows directly. Q.E.D.

The faster rate of concession by player 1 (both continuous and lumpy) is
driven by the gap between what player 1 can extract from player 2 by revealing
rationality (or by conceding to 2’s current demand) and player 1’s “reason-
able” demand u∗

1. If the gap goes to zero, then the difference in the rates goes
to zero also: player 1 no longer “wins the race” by an overwhelming margin
and the argument that player 2 needs to give in at the start with probability
close to 1 breaks down. The next lemma establishes that this gap (which is
date-dependent) is uniformly bounded above zero, until player 2’s posterior
probability of being behavioral reaches a threshold η̃.

Let w+
1 (τ) be the expected equilibrium payoff to normal player 1 at τ condi-

tional on neither player revealing rationality strictly prior to τ.

LEMMA 11: For all γ2 ∈ Γ , there exist κ ∈ (0�1) and ε > 0 such that κd1 +
(1 − κ)u∗

1 > u
∗
1 − ε and such that for all (z1� z2) ∈ (0�1)2 and for any perfect
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Bayesian equilibrium of G(z1� z2), it is the case that in the continuation game
following the choice of postures (γ∗

1�γ2), either (1) t(τ∗)= 0 or (2) for all τ � τ∗,
if η2(τ)≤ κ, then w+

1 (τ)≤ u∗
1 − ε�

PROOF: Suppose t(τ∗) > 0. Because γ∗
1 and γ2 have a finite number of states,

there exists ε1 > 0 such that φ1(u2(τ)) < u
∗
1 − ε1 for all τ such that u2(τ) > u

∗
2

(equivalently φ1(u2(τ)) < u
∗
1). Clearly there exist 0 < ε2 < ε1 and  > 0 such

that u∗
1 − ε1 < e

−r(u∗
1 − ε2) + (1 − e−r)d1� where d1 is the lowest possible

payoff to player 1 in G. (The right-hand side of the preceding inequality is
the payoff to player 1 if player 1 waits for time  to receive (u∗

1 − ε2) while
receiving the lowest possible flow payoff in the interim.) It follows that if at
some τ, w+

1 (τ)≥ u∗
1 − ε2 for the first time, then player 1 will reveal rationality

with probability zero for an interval of time > 0 prior to τ. (Note that we can
choose > 0 such that < t(τ)�)

For normal player 2 not to concede with probability 1 for  units of time
prior to τ, it must be the case that u∗

2 ≤ e−ru2 + (1 − e−r)d2, where u2 is
normal player 2’s expected equilibrium payoff at τ and d2 is player 2’s (dis-
counted average) flow payoff in the interim. By the definition of γ∗

1 and m∗
1,

player 2’s payoff in any round must be less than or equal to u∗
2� and by our

regularity assumption must, in fact, be strictly less. Because each posture has
a finite number of states, there exists a > 0 such that d2 < u

∗
2 − a� Hence

u2 ≥ u∗
2 + b for some b > 0. It follows that if w+

1 (τ)≥ u∗
1 − ε2� then conditional

on player 2 being normal, player 1’s expected payoff at τ is at most u∗
1 − ε3

for some ε3 > 0. Consequently, w+
1 (τ) ≤ η2(τ)u1 + (1 − η2(τ))(u

∗
1 − ε3). Let

ε= min{ε2� ε3/2}� Clearly there exists κ ∈ (0�1) such that κd1 + (1 − κ)u∗
1 >

u∗
1 − ε and η2(τ)u1 + (1 − η2(τ))(u

∗
1 − ε3) < u

∗
1 − ε for all η2(τ) ≤ κ. (Set

κ = 1
2 min{ε/(u∗

1 − u1)� ε/(u1 − u∗
1 + 2ε)}.) The result now follows for ε and κ

so defined. Q.E.D.

The argument that compares the rates of concession by players 1 and 2, re-
spectively, also requires a tight connection between the payoff from revealing
rationality to player 1 and the corresponding payoff to a normal player 2. When
the posterior probability of a behavioral player 2 is large (above η̃), it is possi-
ble both that normal player 1 can obtain a payoff v2

1(τ) in excess of u∗
1 and that

normal player 2 can obtain a payoff substantially in excess of φ2(v
2
1(τ))�

LEMMA 12: Let κ be defined as in Lemma 11. For any κ > 0, there exists η̃ ∈
(0�κ) such that for all (z1� z2) ∈ (0�1)2 and for any perfect Bayesian equilibrium
of G(z1� z2), it is the case in the continuation game following the choice of (γ∗

1�γ2)
that for all τ � τ∗, if η2(τ)≤ η̃, then v2

2(τ)≤φ2(v
2
1(τ))+ κ.
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PROOF: Let X be player 1’s expected payoff if player 2 is behavioral and
x be player 1’s expected payoff if player 2 is normal. By definition, v2

1(τ) =
η2(τ)X + (1 −η2(τ))x. Then v2

1(τ)≤ η2(τ)u1 + (1 −η2(τ))x. Hence

x≥ v2
1(τ)−η2(τ)u1

1 −η2(τ)
�

Consequently,

v2
2(τ)≤φ2(x)≤φ2

(
v2

1(τ)−η2(τ)u1

1 −η2(τ)

)
�

It follows that for any κ > 0, there exists η̃ strictly positive and small enough
such that if η2(τ)≤ η̃, then v2

2(τ)≤φ2(v
2
1(τ))+ κ� as required. Q.E.D.

DEFINITION 3: Fix κ > 0 and let φ̃2(·)≡φ2(·)+ κ.

The function φ̃2(·) appears in Step 8 of the proof of Lemma 5 in the text and
in Lemma 15 below.

LEMMA 13: For any equilibrium, consider the continuation game following the
choice of (γ∗

1�γ2). Let η̃ be defined as in Lemma 12. Then either t(τ∗) = 0 or
η2(τ

∗)≥ η̃.

PROOF: Suppose t(τ∗) > 0 and η2(τ
∗) < η̃. Then 1 − F2(τ

∗) > η2. (If 1 −
F2(τ

∗)= η2, then η2(τ
∗)= 1> η̃.) Also, by Lemma 11, w+

1 (τ) < u
∗
1 − ε for all

τ � τ∗ (because η2(τ) ≤ η2(τ
∗) ≤ η̃ for all τ � τ∗). From the definition of τ∗

it therefore follows that 1 − F1(τ
∗)= η1. Consequently, normal player 2 must

reveal rationality/concede immediately after τ∗. Hence, w+
1 (τ

∗) ≥ η̃u1 + (1 −
η̃)u∗

1 > u
∗
1 − ε, which contradicts Lemma 11. Q.E.D.

The discussion below elaborates elements of Steps 5 and 7 in the text, in
particular, the discussion of repeated down jumps. As in the text, consider the
lth down jump and suppose that player 1’s payoff b(l) after the lth down jump
is strictly less than player 1’s payoff a(l+ 1) at the start of the (l+ 1)th down
jump. Between these down jumps, we wish to argue that there are offsetting up
jumps.

Recall from Step 5 of the proof of Theorem 2 that there is a formula for the
conditional concession probability by player 1 that is needed to compensate
player 2 for waiting while player 1 waits for an upward jump of a given size in
player 1’s value. Call this the canonical formula. There are complicated cases
in which this formula does not apply directly. For example, suppose that an
increase in value from b to a at some time τ2 casts a shadow over the inter-
val [τ0� τ2]. There might be some date τ3 ∈ (τ0� τ2) at which the continuation
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equilibrium rewards player 1 for revealing rationality (but not conceding) just
enough so that he is indifferent between doing so or waiting until τ2. His indif-
ference means that there are many combinations of concession probabilities at
τ1 and τ2 by player 1 that are compatible with maximizing his utility, and ex-
actly compensate player 2 for her wait from τ0 to τ2. In such cases one cannot
use the canonical formula to associate with the jumps at τ2, a particular con-
cession probability by player 1. Various other possible complications must also
be addressed, as will become evident in the proof of Lemma 15.

Because of the indeterminacy just described, it is important to look at the
interval [τ0� τ2] as a whole, rather than at the concession episodes at τ1 and τ2

separately (hence the introduction of Definition 4).

DEFINITION 4: The interval I is an interval of zero concession by player 2 if
for all τ′� τ′′ ∈ I� F2(τ

′)= F2(τ
′′). Such an interval is a maximal interval of zero

concession by player 2 if for all I+ ⊇ I�I+ �= I , there exist τ′� τ′′ ∈ I+ such that
F2(τ

′′) > F2(τ
′).

Lemma 14 asserts that between any two episodes in which player 1’s value
falls over a certain range, say from 20 to 14, there must be a sequence (called
a spanning sequence; see Definition 5 following Lemma 14) of (weakly over-
lapping) up jumps whose union covers the interval [14�20]. For example, if the
value falls from 22 to 13, it might later fall from 20 to 14, but before doing so it
would have to somehow rise to at least 20. Associated with these up jumps are
corresponding intervals of zero concession by player 2.

LEMMA 14: Suppose for some n′� n′′ ∈ N such that n′ < n′′ the following con-
ditions hold:

(i) P2(n)= 0 for all n ∈N � n′ < n< n′′;
(ii) P2(n

′)�P2(n
′′) > 0; and

(iii) w1((n
′�+2)) <max{v2

1((n
′′�−2))� v2

1((n
′′�0))}.

Then there exists a sequence of maximal intervals of zero concession by player 2,
I(q)� q= 1� � � � �Q� with associated left and right endpoints τ(q)≡ infI(q) and
τ(q)≡ supI(q), respectively, such that

w1(τ(1))≤w1((n
′�+2))�

w1(τ(Q))≥ max
{
v2

1((n
′′�−2))� v2

1((n
′′�0))

}
�

w1(τ(q+ 1))≤w1(τ(q)) (q= 1� � � � �Q− 1)(6)

and

w1(τ(q)) < w1(τ(q)) (q= 1� � � � �Q)�(7)

(n′�+2)� τ(1)≺ τ(Q)� (n′′�+2)�

τ(q)≺ τ(q+ 1) (q= 1� � � � �Q)�(8)
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PROOF: Given that w1((n
′�+2)) < max{v2

1((n
′′�−2))� v2

1((n
′′�0))}, there

must exist a first date τ̂ � (n′�+2) at which v2
1 (̂τ) > w1((n

′�+2)). It follows
that player 1 does not concede in an interval immediately prior to τ̂. Hence
neither does player 2 in an interval prior to τ̂. We now argue that θ2(̂τ) = 0
(recall that θ2(̂τ) is the conditional probability with which player 2 concedes at
date τ̂). Clearly τ̂ = (n�k) for integer n and k ∈ {−1�+1�+2}� Unless k = 2,
the result follows by definition. Now suppose k = 2 and θ2(̂τ) > 0. Then for
the usual reasons θ1(̂τ) = 0 (if not, both players would strictly prefer to de-
lay conceding momentarily). Given that θ1(̂τ) = 0 and that player 1 does not
concede in an interval immediately prior to τ̂� player 2 should strictly prefer
to concede prior to τ̂� a contradiction. It follows that there exists a maximal
interval I (of zero concession by player 2) with associated left and right end-
points τ and τ, respectively, containing τ̂� such that w1(τ) ≤ w1((n

′�+2)). It
is, however, possible that w1(τ) < w1((n

′�+2)). In this case, t(τ) < n′′ and
we can repeat the preceding argument, replacing the starting date (n′�+2)
for the preceding argument, with τ. (That is, we look for the first date τ̂ � τ
at which v2

1(̂τ) > w1(τ)� and so on.) Proceeding in this manner, we obtain
a first maximal interval (τ(1)� τ(1)) for which w1(τ(1)) ≤ w1((n

′�+2)) and
w1(τ(1)) < w1(τ(1)). If w1(τ(1)) < max{v2

1((n
′′�−2))� v2

1((n
′′�0))}, τ(1) now

plays the role of (n′�+2) in the initial argument and so on, until the required
sequence is obtained. Because P2(n

′′) > 0, t(τ(q))≤ n′′ for all q. Q.E.D.

DEFINITION 5: A sequence as specified in Lemma 14 is said to span [b�a],
where b=w1((n

′�+2)) and a= max{v2
1((n

′′�−2))� v2
1((n

′′�0))}�
By our regularity assumption regarding generic type sets (Assumption 3),

φ1(u2(τ)) �= d1(τ) for all τ � τ∗. It follows that if within a round n, there is
zero concession by player 2, conceding at (n�+2) strictly dominates conceding
at any subsequent date within round n for player 1 if φ1(u2(τ)) > d1(τ), while
if the opposite strict inequality is satisfied, conceding at ((n+ 1)�−2) strictly
dominates conceding at a prior date within the round. Hence, within an inter-
val such as I(q), player 1 reveals rationality or concedes only at the beginning,
in between, or at the end of rounds contained within I(q).

For a sequence of maximal intervals as in Lemma 14 and Definition 5,
let x = 1� � � � �X index the finite set of instances at which player 1 concedes
at a date in I(q) for some q ∈ {1� � � � �Q} or at τ(Q)� (It is possible that
τ(Q) /∈ I(Q); however, if player 1 concedes with positive probability at τ(Q),
our proof requires that we keep track of this.) Let Px1 denote the corresponding
conditional probability of concession by player 1.

Lemma 15 translates the probabilities Px1 just defined into modified proba-
bilities P̂1

1 � � � � � P̂
Y
1 such that (i) the overall probability of concession by player 1

is weakly lower according to the modified probabilities than the true probabil-
ities, and (ii) the modified probabilities are less than or equal to the numbers
one would obtain by applying the canonical formula (see Step 5 in the text) to
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the respective up jumps in player 1’s value that occur in the maximal interval in
question. Property (ii) is useful because if a probability P1 is obtained by apply-
ing the canonical formula to an up jump, it can be compared easily (see Step 5)
to the concession probability by player 2 associated with a down jump over the
same interval. Both (i) and (ii) are consistent with our need to underestimate
player 1’s concession probabilities (see Step 6).

LEMMA 15: Consider a sequence of maximal intervals of zero concession by
player 2 that span [b�a] and suppose that η2(τ(Q)) ≤ η̃, where η̃ is as defined
in Lemma 12 and τ(Q) is as defined in Lemma 14. Let P1

1 � � � � �P
X
1 be a se-

quence of (conditional) probabilities as specified above. Then there exist a se-
quence of probabilities P̂1

1 � � � � � P̂
Y
1 and a corresponding sequence of values and

dates wy
1�w

y
1�w

y
1 ∈ (wy

1�w
y
1]� ty , and ty , y = 1� � � � �Y , such that

w
y
1 <w

y
1�

w
y
1 <w

y+1
1 ≤wy

1�

w
y
1 <w

y+1
1 �

ty ≤ t̄y �
w1

1 ≤ b� wY
1 ≥ a�

where the P̂y′1 s solve the canonical equation

u∗
2

r
=

∫ t̄y

ty

e−r(s−ty )d2((s�0))ds+ e−r(t̄y−ty )
[
φ̃2(w

y
1)

r
P̂
y
1 + u∗

2

r
(1 − P̂y1 )

]
and

(1 − P1
1 ) · · · (1 − PX1 )≤ (1 − P̂1

1 ) · · · (1 − P̂Y1 )�

PROOF: Let I be a maximal interval as defined above, and let τ and τ, re-
spectively, be the left and right endpoints of the interval. Let τ1� � � � � τL be the
finite set of dates (in ascending order) at which player 1 reveals rationality
within I ∪ {τ} with corresponding conditional probabilities Pl1, l = 1� � � � �L.
Define

τ0 ≡
{
(t(τ)�+2)� if t(τ) ∈N ,
τ� otherwise,

tl ≡ t(τl)�
Let wl

2 be normal player 2’s expected (average discounted) payoff at date
τl, conditional on player 1 not having revealed rationality until τl (inclusive).
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Then

wl
2

r
=

[∫ tl+1

tl

d2((s�0))e−r(s−tl) ds
]

(9)

+ e−r(tl+1−tl)
[
v2

2(τl)

r
Pl+1

1 + wl+1
2

r
(1 − Pl+1

1 )

]
�

where v2
2(τ) denotes the expected equilibrium payoff to normal player 2, con-

ditional on player 1 revealing rationality at τ.
We will define a new sequence τ̂0� � � � � τ̂K and a corresponding sequence of

probabilities P̂1
1 � � � � � P̂

K
1 such that

(1 − P1
1) · · · (1 − PL1 )≤ (1 − P̂1

1 ) · · · (1 − P̂K1 )�
where P̂k1 corresponds to an up jump from wk

1 to wk
1 that can be matched with a

down jump from wk
1 to wk

1 . Furthermore, w1
1 ≤w1

1, wk
1 <w

k+1
1 ≤wk

1 , and wK
1 =

wL
1 .
The argument proceeds by modifying the original Pl1’s in successive steps

such that the modified Pl1’s (denote those in generic step s′ by Pl1(s
′)) yield a

product (1 −P1
1 (s

′)) · · · (1 −PL1 (s′)) that is weakly higher than the correspond-
ing product from the preceding step.

Within any maximal interval of zero concession (by player 2), we wish
to assign concession probabilities by player 1 in the most conservative way,
so that our modified concession distribution function F̂1, will underestimate
player 1’s probability of conceding by any date, as desired. The following pro-
cedure achieves this, using basic properties of the incentive constraints of
both players. Begin by defining a sequence q(0) = 0 and, for k = 1� � � � �K,
q(k) = max{l |v2

1(τl) ≤ v2
1(τ)� τ = τq(k−1)+1� � � � � τl}� The new sequence termi-

nates at K such that q(K)= L. Observe that v2
1(τq(k)) < v

2
1(τ) for all τ � τq(k)�

Consequently, v2
1(τq(k)) is strictly increasing in k.

Define

k∗(l)= min{τq(k)|q(k)≥ l}�
Let

Pl1(0)= Pl1 (l= 1� � � � �L)

and

wl
2(0)=wl

2 (l= 0�1� � � � �L)�

We seek to define Pl2(1) and wl
2(1) inductively, starting with l =L and mov-

ing backward to l= 0 (or 1 as the case may be). Recall that s′ in Pl2(s
′) refers to
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the s′th step in modifying the initial Pl1’s. Each step itself involves an inductive
definition starting with l=L and moving backward to l= 1.

We first argue thatwL
2 (0)≤ u∗

2� This argument involves considering a number
of different cases.

a. Suppose t(τ̄) /∈N . Then by standard arguments θ1(τ̄)= θ2(τ̄)= 0. By the
definition of τ̄, conceding immediately after τ̄ is in the support of normal
player 2’s equilibrium strategy (F2(τ) > F2(τ̄) for all τ � τ̄). It follows that
wL

2 ≤ u∗
2 with strict inequality if τL ≺ τ̄ (recall that against γ∗

1 , player 2’s
flow payoff is always strictly less than u∗

2).
When t(τ̄)= n ∈N , there are many subcases to consider:

b. τ̄ = (n�+2). For the usual reasons, if θi((n�+2)) > 0, then θj((n�+2))=
0. Clearly if θ2(τ̄) > 0, then τL ≺ τ̄ and the result follows. If, on the other
hand, θ1(τ̄) > 0, then τL = τ̄ and the rest of the argument is as in case a.
(Conceding immediately after τ̄ is in the support of player 2’s equilibrium
strategy.) Finally, if θ1(τ̄)= θ2(τ̄)= 0, the argument is as in case a.

c. τ̄ = (n�−1). By our definition of maximal intervals and τ̄, θ2((n�−1)) > 0
when player 2 has the move at (n�−1) and, conversely, θ2((n�+1)) > 0
when player 2 has the move at (n�+1). In the former case, τL ≺ (n�−1);
in the latter case, τL ≺ (n�+1). Now Lemma 7 yields the desired conclu-
sion.

d. τ̄ = (n�−1). Now we must have θ2((n�+2)) > 0 when player 2 has
the move at (n�−1) and either θ2((n�+1)) > 0 or θ2((n�+1)) = 0
and θ2((n�+2)) > 0 when player 2 has the move at (n�+1). The case
θ2((n�+1)) > 0 is dealt with in case c above and θ2((n�+2)) > 0 is dealt
with in case b above.

e. τ̄ = (n�−2). Now we must have θ2((n�−2)) > 0 unless player 2 has
the move at (n�−1). In this case, it is possible that θ2((n�−2)) = 0
and θ2((n�−1)) > 0, when the conclusion follows as in case c above.
If θ2((n�−2)) > 0 and θ1((n�−2)) = 0, then the result follows from
Lemma 7 (and τL ≺ τ̄).
Finally we are left with the possibility that θ2((n�−2)) > 0 and θ1((n�
−2)) > 0. The payoffs to player 2 at (n�−2) are summarized in the ta-
ble below, where C stands for concede, NC stands for not concede, and
u2((n�−2)) is player 2’s standing demand at (n�−2).

2
C NC

C
u2((n�−2))+ u∗

2

2
u2((n�−2))

1
NC u∗

2 a
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Because u2((n�−2)) > u∗
2, player 2’s indifference condition requires that

a < u∗
2. Hence wL

2 , player 2’s expected payoff at τL = (n�−2) conditional
on player 1 not conceding and on player 2’s equilibrium randomization,
is strictly less than u∗

2.
Hence wL

2 (0)≤ u∗
2� We set wL

2 (1)= u∗
2 ≥wL

2 (0)≡wL
2 �

At each stage, Pl+1
1 (1) solves the trivial minimization problem

minx

subject to

wl
2(0) ≥ r

∫ tl+1

tl

d2((s�0))e−r(s−ti) ds(10)

+ e−r(tl+1−tl)[wl+1
2 (1)+ x(φ̃2(v

2
1(k

∗(l)))−wl+1
2 (1)

)]
and

x≥ 0�(11)

The definition of Pl+1
1 (1) also leads to the definition of wl

2(1) as

wl
2(1)= r

∫ tl+1

tl

d2((s�0))e−r(s−tl) ds

+ e−r(tl+1−tl)[wl+1
2 (1)+ Pl+1

1 (1)
(
φ̃2(v

2
1(k

∗(l)))−wl+1
2 (1)

)]
�

Lemmas 11–13 and the assumption η2(τ(Q)) ≤ η̃ imply v2
2(τL) ≤

φ̃2(v
2
1(k

∗(L)))� Furthermore, we have set wL
2 (1) = u∗

2 ≥ wL
2 (0)� Comparing

equations (9) and (10) and using the preceding inequalities, it may be directly
verified that

PL1 (1)≤ PL1 (0) and wL−1
2 (1)≥wL−1

2 (0)�

Analogously, because

v2
2(τl+1)≤ φ̃2

(
v2

1(k
∗(l+ 1))

)
� wl+1

2 (1)≥wl+1
2 (0)�

it follows that at stage (l+ 1) of the inductive definition,

Pl+1
1 (1)≤ Pl+1

1 (0) and wl
2(1)≥wl

2(0)�

The next step in the argument relies on the result that wl
2(1) ≥ u∗

2, l =
0�1� � � � �L − 1. To demonstrate these inequalities, we first establish the fol-
lowing useful fact for l = 1� � � � �L− 1: If wl

2(0) < u
∗
2, then k(τl) = −2, τl+1 =

(t(τl)�k) (where k = −1 or +1, depending on when player 1 has the move),
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and v2
2(τl+1) < u

∗
2. To see this, note that strictly within a round, player 1 can only

reveal rationality by conceding to player 2’s current demand, which prior to τ∗

must exceed u∗
2. Furthermore, strictly within a round, player 2 can always ob-

tain u∗
2 by conceding to player 1. The only possibility of payoffs below u∗

2 arises
due to player 1 revealing rationality between rounds in a manner that yields
normal player 2 less than u∗

2. Player 2 accepts this eventuality precisely because
of the possibility of positive probability concession by player 1 a moment ear-
lier at the end of the preceding round (τl = (t(τl)�−2)), which yields player 2
u2(τl) > u

∗
2 (where u2(τl) is her standing demand in the preceding round).

These considerations and the definition of τ0 directly imply thatw0
2 ≥ u∗

2 also.
Now we argue that wL−1

2 (1) ≥ u∗
2. Recall that wL

2 (1)= u∗
2 ≥ wL

2 (0)≡ wL
2 . Sup-

pose, by way of contradiction, that wL−1
2 (1) < u∗

2. Because wL−1
2 (1)≥wL−1

2 (0)�
wL−1

2 (0) < u∗
2 also. By the preceding discussion, this is only possible if k(τL−1)=

−2, t(τL) = t(τL−1), and v2
2(τL) < u∗

2. By Lemma 11, v2
1(τL) < u∗

1; hence
φ̃2(v

2
1(τL)) > u

∗
2� Then the definition of PL1 yields

PL1 (1)= 0

and

wL−1
2 (1)= 0 + e−r0wL

2 (1)= u∗
2�

which contradicts the initial supposition that wL−1
2 (1) < u∗

2�
Continue to suppose that the lemma is false and let

l= max{m≤L− 1|wm
2 (1) < u

∗
2}�

Now we can repeat the preceding argument with l replacing L − 1 to obtain
the same contradiction as before.

This demonstrates that wl
2(1)≥ u∗

2� l= 0�1� � � � �L− 1, as required.
Define

wL
2 (2)≡wL

2 (1)= u∗
2�

wl
2(2)≡ u∗

2 (l= 1� � � � �L− 1)�

w0
2(2)≡w0

2(1)�

The Pl1(2)’s are uniquely defined by the equations

wl−1
2 (2)= dl−1

2 (1 − e−r(tl−tl−1))

+ e−r(tL−tL−1)
[
wl

2(2)+ Pl1(2)
(
φ̃2(k

∗(l))−wl
2(2)

)]
�

where dl−1
2 is the average discounted flow payoff to player 2 between tl−1 and

tl. Because dl−1
2 < u∗

2 (see the proof of Lemma 11), the Pl1(2) so defined exist,
and are strictly positive and unique.
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Furthermore, we show that

(1 − P1
1(1))(1 − P2

1 (1)) · · · (1 − PL1 (1))
≤ (1 − P1

1 (2))(1 − P2
1 (2)) · · · (1 − PL1 (2))

as required. The P2
1 (2)’s differ from the P2

1(1)’s in that the former are obtained
by reducing the continuation payoffs to u∗

2 while keeping the initial value w0
2(2)

unaltered. Much of the rest of the proof is devoted to establishing that the
iterative reduction of continuation payoffs increases the compound probability
that player 1 does not concede by the end of the L concession episodes.

Consider

w2 = d̂1(1 − e−r1)+ e−r1[wa
2 + x(ς1 −wa

2)]�
wb

2 = d̂2(1 − e−r2)+ e−r2[w2 + y(ς2 −w2)]�

where wa
2�w

b
2� ς

1� ς2� d̂1, and d̂2 are fixed, and we think of the probabilities x
and y as functions of w2. (Here wa

2 is the continuation value after w2 and wb
2 is

the continuation value before w2.)
Differentiating these equations with respect to w2 yields

1 = e−r1(ς1 −wa
2)
dx

dw2
�

0 = (ς2 −w2)
dy

dw2
+ (1 − y)�

It follows that

d(1 − x(w2))(1 − y(w2))

dw2
= −(1 − y) dx

dw2
− (1 − x) dy

dw2
< 0

⇔ er1(ς2 −w2) > (1 − x)(ς1 −wa
2)

⇔ ς2 −w2 > e−r1ς1 − e−r1wa
2 − e−r1x(ς1 −wa

2)

⇔ ς2 − e−r1ς1 > d̂1(1 − e−r1)�

Consequently, if d̂1 < u∗
2 and ς2 ≥ ς1 > u∗

2, then indeed

d(1 − x(w2))(1 − y(w2))

dw2
< 0�(12)

Now, if we set

wa
2 =wL

2 (2)� 1 = tL − tL−1�
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d̂1(1 − e−r1)= r
∫ tL

tL−1

d2(s)e
−r(s−tL−1) ds�

ς1 = φ̃2

(
v2

1(k
∗(L))

)
�

ς2 = φ̃2

(
v2

1(k
∗(L− 1))

)
�

wb
2 =wL−2

2 (1)� 2 = tL−1 − tL−2�

d̂2(1 − e−r2)= r
∫ tL−1

tL−2

d2(s)e
−r(s−tL−2) ds�

then the latter inequalities indeed hold. Observe that w2 represents wL−1
2 , the

(L− 1)th continuation value. Hence (12) implies

(1 − x(u∗
2;L))(1 − y(u∗

2;L))≥ (1 − PL1 (1))(1 − PL−1
1 (1))

because

PL1 (1)= x(wL−1
2 (1))�

PL−1
1 (1)= y(wL−1

2 (1))�

and wL−1
2 (1)≥ u∗

2. (The argument L in x(u∗
2;L) indexes the values chosen for

wa
2�w

b
2� ς

1� ς2� d̂1� d̂2, and the time arguments in the integral.)
This step yields (only) PL1 (2)= x(u∗

2;L). Proceeding inductively in this man-
ner, we next obtain PL−1

1 (2)= x(u∗
2;L−1); then PL−2

1 (2)= x(u∗
2;L−2) and so

on. For instance, the second step would entail wa
2 = wL−1

2 (2), 1 = tL−1 − tL−2,
wb

2 = wL−3
2 (1), ς1 = φ̃2(v

2
1(k

∗(L − 1))), and ς2 = φ̃2(v
2
1(k

∗(L − 1))), and w2

would represent wL−2
2 . It follows that

(1 − P1
1 (1))(1 − P2

1 (1)) · · · (1 − PL1 (1))
≤ (1 − P1

1 (1))(1 − P2
1 (1)) · · · (1 − PL−3

1 (1))(1 − y(u∗
2;L))

× (1 − PL1 (2))
≤ (1 − P1

1 (1))(1 − P2
1 (1)) · · · (1 − y(u∗

2;L− 1))(1 − PL−1
1 (2))

× (1 − PL1 (2))
���

≤ (1 − P1
1 (2))(1 − P2

1 (2)) · · · (1 − PL1 (2))�
Finally, we set

P̂k1 = Pq(k)+1
1 (2)�

wk
1 = v2

1(τq(k))�
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wk
1 = v2

1(τq(k)+1)�

tk = t(τq(k))�
t̄k = t(τq(k)+1)

to obtain the desired result for a single interval. The extension to the collection
of intervals is straightforward. Q.E.D.

Lemma 16 uses the collection of up-jump intervals constructed in Lemma 15
to define modified conditional concession probabilities for player 2, to be used
in the modified distribution functions of Step 7 in the text. It applies the for-
mula for P2 from Step 5 to those constructed intervals to get the modified
probabilities for player 2; this overestimates (as desired) player 2’s probability
of concession (away from 0) because, as Lemma 16 shows, there is a parti-
tion of the actual down-jump range whose elements are subsets of the con-
structed intervals in question (and by the subdivision result of Step 4, every
partition of that range has an aggregate implication for concession probability
that weakly overestimates the actual probability of concession by player 2).
Lemma 15 guarantees that the modified concession probabilities it assigns
to player 1 yield lower overall concession probability than the true value for
player 1 (as desired). Step 8 adapts the analysis for perfectly paired jumps in
Step 5 to ensure that the modified up-jump probabilities (uniformly) outweigh
the modified down-jump probabilities.

LEMMA 16: Consider the sequence of values wy , wy , y = 1� � � � �Y from the
previous lemma. Define

P̂
y
2 = w

y
1 −wy

1

u∗
1 −wy

1

(y = 1� � � � �Y )

and

P2 = a− b
u∗

1 − b�

Then

(1 − P2)≥ (1 − P̂1
2 ) · · · (1 − P̂Y2 )�

PROOF: Consider the sequence of values as defined in Lemma 15, and
construct the new sequences vy1� v

y
1, y = 1� � � � �Y , where v

y
1 = wy−1� v

y
1 =

min{a�wy}, and we define w0 = b�
The intervals [vy1� vy1] partition [b�a]. Down jumps over the range [b�a] may

be subdivided (see Step 4) into Y down jumps from v
y
1 to vy1, y = 1� � � � �Y ,
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respectively. Let P̃y2 denote the positive probability of concession by 2 associ-
ated with a down jump from v

y
1 to vy1. Then (1 − P̃y2 ) ≤ (u∗

1 − vy1)/(u∗
1 − vy1) by

Lemma 9. Let P̂y2 be defined by (1− P̂y2 )= (u∗
1 −wy

1)/(u
∗
1 −wy

1), that is, it corre-
sponds to a down jump from w

y
1 to wy

1. Then clearly (1 − P̃y2 )≥ (1 − P̂y2 ). Con-
sequently, (1 − P2)= (1 − P̃1

2 ) · · · (1 − P̃Y2 )≥ (1 − P̂1
2 ) · · · (1 − P̂Y2 ). Q.E.D.

Existence (Section 5)

In the notation defined in Section 5, let C(z�k� τ̄), k = 1�2� � � � � be a se-
quence of τ̄-truncated, discrete-time concession games such that k ∈ (0�1)
decreases monotonically to zero and t(τ̄) <∞�

An equilibrium of C(z�k� τ̄) is specified by the behavior of the normal types
of both players (µki ;Hk

i (·|γ)�γ ∈ Γ )i=1�2 , where µki (γi) is the probability with
which a normal type of player i mimics γi ∈ Γi and Hk

i (τ|γ1�γ2) is the prob-
ability with which normal i concedes to j by date τ (inclusive) in the game
following the choice of types (γ1�γ2) ∈ Γ1 × Γ2.

Let hki (τ|γ) denote the ex ante probability that a normal player i con-
cedes/reveals rationality at τ, given γ1, γ2. Then

Hk
i (τ|γ)=

∑
τ′�τ

hki (τ
′|γ)�

Because C(z�k� τ̄) is a finite extensive form game, an equilibrium exists.
Let T̄ = t(τ̄), and define H̃k

i : [−1� T̄ ] → [0�1] as

H̃k
i (s)=


0� if s ∈ [−1�0),
Hk
i ((s�0))� if s > 0, s /∈N ,

Hk
i ((s�+2))� if s ∈N ,

and define h̃ki : [−1� T̄ ] → [0�1] as

h̃ki (s)=
∑

τ : t(τ)=s
hki (τ)�

LEMMA 17: There exists τ with t(τ) <∞ such that for all  ∈ [0�1] (where
 = 0 corresponds to the continuous-time concession game) and in any perfect
Bayesian equilibrium of C(z�), and after any choice of postures (γ1�γ2), normal
player i concedes to player j with probability 1 by date τ̄, conditional on the game
not having terminated prior to τ̄.

PROOF: If the postures (γ1�γ2) lead to more than compatible demands at
some first date (n�+1)� the result follows trivially. If not, the argument is es-
sentially the same as in Step 1 of the proof of Lemma 1. Q.E.D.
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Henceforth we take τ̄ to be such that Lemma 17 applies. Consequently,
a normal player must, in equilibrium, concede with probability 1 by date τ̄.
Hence, H̃k

i is a distribution function (if Hk
i corresponds to an equilibrium).

Note that we have defined the H̃k
i ’s over the domain [−1� T̄ ] (as opposed to

simply [0� T̄ ]) to clarify that the “tightness” condition referred to below is sat-
isfied.

Let N +(τ̄) = {τ|t(τ) ∈ N and τ � τ̄}. Because the set of dates in N +(τ̄)
and the set of types for each i are finite, there exists a subsub· · ·subsequence
(which, abusing notation we also denote by k) for which µki (γi) and Hk

i (τ|γ)
converge for all γi ∈ Γi, τ ∈N +(τ̄), and i= 1�2.

We now obtain convergence for all τ strictly within rounds, that is,

τ ∈ ((n�+1)� (n+ 1�−1))�

First note that by Helly’s theorem (Theorem 25.9) and Theorem 25.10 (the
tightness condition of the latter applies trivially), both from Billingsley (1986),
there exists a subsub· · ·subsequence (which again we index by k) such that
∀i� ∀γ ∈ Γ there exists a distribution function H̃i(·|γ) : [−1� T̄ ] → [0�1] such
that H̃k

i (·|γ) : [−1� T̄ ] → [0�1] converges to H̃i(·|γ) at every continuity point of
H̃i(·|γ).

LEMMA 18: Consider C(z�k� τ̄) and an associated equilibrium (µki �H
k
i )i=1�2.

Fix γ ∈ Γ and consider t ∈ (n�n + 1) such that player 1 moves at time t and
t ≥ n+3k. If h̃k1(t|γ) > 0, then h̃k2(t−k|γ), h̃k1(t−2k|γ)� � � � � h̃k2(n+2k|γ)
are all strictly positive. Similarly, if h̃k2(t|γ) > 0 for t ≥ n+4k, then h̃k1(t−k|γ),
h̃k2(t − 2k|γ)� � � � � h̃k2(n+ 3k|γ) are all strictly positive.

PROOF: The proof follows from the standard war of attrition logic (that is,
the only reason for a player to delay conceding is the possibility that the op-
ponent will concede in the interim) applied to the discrete-time alternating-
move case. When t = n + 2k, it is possible that h̃k1(n + k|γ) = 0� because
n+ 2k is the first date after (n�+1) at which player 2 has an opportunity to
move, and player 2 might delay conceding because h̃k1(n|γ) > 0 (specifically,
hk1((n�+1)|γ) > 0). Q.E.D.

LEMMA 19: The function H̃i(t|γ) is continuous at all t /∈N �

PROOF: Suppose not and that for some n with t ∈ (n�n+ 1), H̃i(t|γ) has an
upward jump at t of size 2a > 0. For any ε′ > 0, there exists ε ∈ [0� ε′] such
that t − ε and t + ε are continuity points of H̃i. Hence, by Helly’s theorem,
limk↑∞[H̃k

i (t + ε|γ)− H̃k
i (t − ε|γ)] ≥ 2a.

Hence, there exists k < ∞ such that for all k ≥ k, H̃k
i (t + ε|γ) − H̃k

i (t −
ε|γ) ≥ a. Consequently, for small enough ε′ > 0, player j should not concede
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between (t − 2ε) and (t − ε) (that is, immediately prior to (t − ε)), generating
a contradiction to Lemma 18 for k≥ k such that k < (t − n− 2ε)/4. Q.E.D.

It follows from Lemma 19 and the cited theorems from Billingsley (1986)
that Hk

i (τ|γ) converges for all τ such that t(τ) /∈N . We have chosen a subse-
quence such that Hk

i (τ|γ) (and µki (γi)) converges for i ∈ {1�2}� all γ ∈ Γ , and
τ ∈N +(τ̄). Hence limk H

k
i (τ|γ) exists for all τ � τ̄�

Let Hi(τ|γ) ≡ limk H
k
i (τ|γ). Define hi(τ|γ) ≡ Hi(τ|γ) − limτ′↑τ Hi(τ

′|γ).
Let µi(γi) ≡ limk µ

k
i (γi). We will argue that (µi�Hi)i=1�2 is an equilibrium of

C(z� τ̄).
We say that τ is a point of increase of Hi(·|γ) if hi(τ|γ) > 0 or if for all τ′� τ′′

such that τ′ ≺ τ ≺ τ′′,Hi(τ
′|γ) <Hi(τ|γ) <Hi(τ

′′|γ). If τ ∈N + and τ is a point
of increase of Hi(·|γ), then it must be the case that hi(τ|γ) > 0.

Applying the above definition to Hk
i (·|γ)� observe that τ is a point of in-

crease of Hk
i (·|γ) if and only if hki (τ|γ) > 0.

Let Ui(τ|γi�γj) be the expected payoff to player i of conceding/revealing
rationality at τ given (µl�Hl)l=1�2 and conditional on (γi� γj) being chosen at
the start of play. A pure strategy for player i is a choice of some γi ∈ Γi and a
set of dates {τγj |γj ∈ Γj} such that i concedes at τγj if j chooses γj at the start of
play. It follows that the tuple (µi�Hi)i=1�2 is an equilibrium of (C�� τ̄) if, for
all γi ∈ Γi such that µi(γi) > 0 and for any set of dates {τγj |γj ∈ Γj} such that
for each γj , τγj is a point of increase of Hi(·|γi�γj),∑

γj

Ui(τγj |γi�γj)[zjπi(γj)+ (1 − zj)µi(γj)](13)

≥
∑
γj

Ui(τ
′
γj
|γ′
i� γj)[zjπi(γj)+ (1 − zj)µi(γj)]

for all γ′
i ∈ Γi and τ′

γj
� γj ∈ Γj .

This corresponds to the usual definition, according to which pure strategies
used in equilibrium must yield at least as high a payoff as any other pure strate-
gies.

Let T k
i be the set of dates at which player i moves in the concession game

C(z�k� τ̄) and define

ζki (τ)= min{τ′ ∈ T k
i |τ′ � τ}�

LEMMA 20: If τ is a point of increase of Hi(·|γ), then there exists k̄ such that
hki (ζ

k
i (τ)|γ) > 0 for k≥ k̄.

PROOF: If τ ∈ N +(τ̄), then because τ is a point of increase of Hi(·|γ),
hi(τ|γ) > 0 and ζki (τ) = τ. We have chosen a sequence such that hki (τ|γ)→
hi(τ|γ) for all τ ∈ N +(τ̄). The conclusion now follows directly in this case.
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Now suppose τ /∈ N +. Then t(τ) ∈ (n�n + 1) for some n and Lemma 18 ap-
plies. Let τ̄k = max{τ′|t(τ′) ∈ (n�n+ 1) and hki (τ

′|γ) > 0}. Then τ̄k � τ for k
large enough. If not, there exists a subsequence (kl) with τ̄kl � τ along the sub-
sequence. It follows from Lemma 18 that Hkl

i (τ
′′|γ)=H

kl
i (τ|γ) for all τ′′ � τ

such that t(τ′′) < (n+ 1)�
Consequently, Hi(τ

′′|γ) = liml→∞H
kl
i (τ

′′|γ) = liml→∞H
kl
i (τ|γ) = Hi(τ|γ)�

contradicting the initial assumption that τ is a point of increase of Hi(·|γ)�
Q.E.D.

It follows from the preceding lemma that∑
γj

Uk
i (ζ

k
i (τγj )|γi�γj)[zjπj(γj)+ (1 − zj)µkj (γj)](14)

≥
∑
γj

Uk
i (ζ

k
i (τ

′
γj
)|γ′

i� γj)[zjπj(γj)+ (1 − zj)µkj (γj)]

for all γ′
i ∈ Γi and {τ′

γj
|γj ∈ Γj}.

LEMMA 21: For i= 1�2, all (γ1�γ2) ∈ Γ1 × Γ2, and τ � τ̄�

Uk
i (ζ

k
i (τ)|γ1�γ2)→Ui(τ|γ1�γ2)�

PROOF: Fix (γ1�γ2) and i, and for notational simplicity suppress the argu-
ments (γ1�γ2) in the various functions below. Let Vi(τ) be the realized payoff
to i if player j concedes at τ and i does not concede at or before τ. Then

Vi(τ)=
∫ t(τ)

0
di((s�0))e−rs ds+ e−rt(τ)ui(τ)�

Let

Ĥk
j (s)=

{
H̃k
j (s)� for s /∈N ,

H̃k
j (n)− hkj ((n�+2))� for n ∈N ,

and

V̂i(s)=
{
Vi((s�0))� for s /∈N ,
Vi((n�−2))� for n ∈N .

For x ∈ R, let �x� denote the largest integer less than or equal to x. Then

Uk
i (ζ

k
i (τ)|γ1�γ2)

=
�t(τ)�∑
n=0

hkj ((n�+2))Vi((n�+2))
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+
�t(τ)�−1∑
n=0

∫ min{n+1�t(ζki (τ))}

n

V̂i(s)dĤ
k
j (s)− hkj (ζki (τ))Vi(τ)

+ hkj (ζki (τ))
[∫ t(ζki (τ))

0
di((s�0))e−rs ds

+ e−rt(ζki (τ)) 1
2
[
ui(ζ

k
i (τ))+φi(uj(ζki (τ)))

]]
+ (

1 −Hk
j (ζ

k
i (τ))

)
×

[∫ t(ζki (τ))

0
di((s�0))e−rs ds+ e−rt(τ)φi(uj(ζki (τ)))

]
�

The term Ui(τ|γ1�γ2) has the same form except that the k superscripts are
missing. In the expression above, because of the alternating-move structure,
hkj (ζ

k
i (τ))= 0 unless τ ∈ N +. In this case, of course, ζki (τ)= τ� For τ ∈ N + it

follows by the construction of our initial sub· · ·subsequence that hkj (ζ
k
i (τ))→

hj(ζ
k
i (τ)).

We complete the proof by establishing that∫ m

n

V̂i(s)dĤ
k
j (s)→

∫ m

n

V̂i(s)dĤj(s)�

where m= min{n+ 1� t(ζki (τ))}.
Integrating by parts yields∫ m

n

V̂i(s)dĤ
k
j (s)= V̂i(s)Ĥk

j (s)
∣∣m
n

−
∫ m

n

Ĥk
j (s)dV̂i(s)�

The first term on the right-hand side clearly converges to V̂i(s)Ĥj(s)|mn .
Now consider the second term:∫ m

n

Ĥk
j (s)dV̂i(s)=

∫ m

n

Ĥk
j (s)

[
di((n�+2))− rui((n�+2))

]
e−rs ds

because V̂ ′
i (s)= [di((n�+2))− rui((n�+2))].

Furthermore Ĥk
j (s)→ H̃j(s) for all s /∈ N . The desired conclusion now fol-

lows directly from the Lebesgue convergence theorem (see Royden (1968,
Theorem 15, Chap. 4)). Q.E.D.

LEMMA 22: For all  ∈ [0�1], a Nash equilibrium of C(z�� τ̄) is also a Nash
equilibrium of C(z�).
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PROOF: By Lemma 17, following the choice of γi by a normal player i, there
is no strategy of player j for which it is a best response for normal i to concede
after date τ̄ (conditional on player j not having conceded to i prior to that
time). The result follows directly. Q.E.D.

LEMMA 23: The concession game C(z) has a Nash equilibrium.

PROOF: To establish the lemma, take limits with respect to k in (14). By
Lemma 21, taking limits yields (13), establishing that (µi�Hi)i=1�2 defines an
equilibrium of C(z� τ̄). By Lemma 17, this is also a Nash equilibrium of
C(z)� Q.E.D.
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