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1 Introduction

The purpose of this paper is to review recently developed bias-adjusted methods of es-

timation of nonlinear panel data models with fixed effects. Standard estimators such as

maximum likelihood estimators are usually inconsistent if the number of individuals n

goes to infinity while the number of time periods T is held fixed. For some models, like

static linear and logit regressions, there exist fixed-T consistent estimators as n → ∞
(see, e.g., Andersen, 1970). Fixed T consistency is a desirable property because for many

panels T is much smaller than n. However, these type of estimators are not available in

general, and when they are, their properties do not normally extend to estimates of aver-

age marginal effects, which are often parameters of interest. Moreover, without auxiliary

assumptions, the common parameters of certain nonlinear fixed effects models are simply

unidentified in a fixed T setting, so that fixed-T consistent point estimation is not possible

(see, e.g., Chamberlain, 1992). In other cases, although identifiable, fixed-T consistent
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estimation at the standard root-n rate is impossible (see, e.g., Honoré and Kyriazidou,

2000, and Hahn, 2001).

The number of periods available for many household, firm-level or country panels is

such that it is not less natural to talk of time-series finite sample bias than of fixed-T

inconsistency or underidentification. In this light, an alternative reaction to the fact that

micro panels are short is to ask for approximately unbiased estimators as opposed to

estimators with no bias at all. That is, estimators with biases of order 1/T 2 as opposed to

the standard magnitude of 1/T . This alternative approach has the potential of overcoming

some of the fixed-T identification difficulties and the advantage of generality.

The paper is organized as follows. Section 2 describes fixed effects estimators and

the incidental parameters problem. Section 3 explains how to construct analytical bias

correction of estimators. Section 4 describes bias correction of the moment equation.

Section 5 presents bias corrections for the concentrated likelihood. Section 6 discusses

other approaches leading to bias correction, including Cox and Reid’s and Lancaster’s

approaches based on orthogonality, and their extensions. Section 7 describes quasi max-

imum likelihood estimation for dynamic models. Section 8 considers the estimation of

marginal effects. Section 9 discusses automatic methods based on simulation. Section 10

concludes.

2 Incidental Parameters Problem with Large T

We first describe fixed effects estimators. Let the data observations be denoted by zit =

(yit, x
0
it)
0, (t = 1, ..., T ; i = 1, ..., n), where yit denotes the ‘dependent’ variable, and xit

denotes the strictly exogenous ‘explanatory’ variable.1 Let θ denote a parameter that is
1Throughout most of the paper except in Section 7, we will assume away dynamics or feedback.
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common to all i, αi a scalar individual effect,2 and f (yi1, . . . , yiT | θ0,αi0)

f (yi1, . . . , yiT | θ0,αi0) = f (yi1, . . . , yiT | xi1, . . . , xiT , θ0,αi0)

a density function of yi1, . . . , yiT conditional on the strictly exogenous explanatory vari-

ables xi1, . . . , xiT . Assuming that yit are independent across i and t, we obtain the log

likelihood
nX
i=1

TX
t=1

log fit (yit | θ,αi) .

where fit (yit | θ,αi) denotes the density of yit conditional on xi1, . . . , xiT . For notational
simplicity, we will write f for fit below. The fixed effects estimator is obtained by doing

maximum likelihood treating each αi as a parameter to be estimated. Concentrating out

the αi leads to the characterization

bθT ≡ argmax
θ

nX
i=1

TX
t=1

log f (yit | θ, bαi (θ)) , bαi (θ) ≡ argmax
α

TX
t=1

log f (yit | θ,α) .

Here the bαi (θ) depends on the data only through the ith observation zi1, . . . , ziT . Let
L (θ) ≡ lim

n→∞
n−1

nX
i=1

E

"
TX
t=1

log f (yit | θ, bαi (θ))# .
It will follow from the usual extremum estimator properties (e.g. Amemiya, 1985) that

as n→∞ with T fixed, bθT = θT + op (1), where θT ≡ argmaxθ L (θ). In general, θT 6= θ0.

This is the incidental parameters problem noted by Neyman and Scott (1948). The

source of this problem is the estimation error of bαi (θ). Because only a finite number T
of observations are available to estimate each αi, the estimation error of bαi (θ) does not
vanish as the sample size n grows, and this error contaminates the estimates of parameters

of interest.

2Our analysis extends easily, albeit with some notational complication, to the case where there are

multiple fixed effects, i.e., where αi is a multi-dimensional vector.
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Example 1 Consider a simple model where yit
i.i.d.∼ N (αi0, σ

2
0), (t = 1, ..., T ; i = 1, ..., n),

or

log f
¡
yit; σ

2,αi
¢
= C − 1

2
log σ2 − (yit − αi)

2

2σ2
.

This is a simpler version of the model considered by Chamberlain (1980). Here, we may

write θ = σ2, and the MLE is such that

bαi = 1

T

TX
t=1

yit ≡ yi, bθ = 1

nT

nX
i=1

TX
t=1

(yit − yi)2 .

It is straightforward to show that bθ = θ0 − 1
T
θ0 + op (1) as n → ∞ with T fixed. In this

example, the bias is easy to fix by equating the denominator with the correct degrees of

freedom n (T − 1).

Note that the bias should be small for large enough T , i.e., limT→∞ θT = θ0. Further-

more, for smooth likelihoods we usually have

θT = θ0 +
B

T
+O

µ
1

T 2

¶
(1)

for some B. In Example 1, B = −θ0. The fixed effects estimator bθ will in general be as-
ymptotically normal, although it will be centered at θT : as n, T →∞,

√
nT
³bθ − θT

´
d→

N (0,Ω) for some Ω. Under these general conditions the fixed effects estimator is asymp-

totically biased even if T grows at the same rate as n. For n/T → ρ, say,

√
nT
³bθ − θ0

´
=
√
nT
³bθ − θT

´
+
√
nT
B

T
+O

µr
n

T 3

¶
d→ N (B

√
ρ,Ω) .

Thus, even when T grows as fast as n, asymptotic confidence intervals based on the fixed

effects estimator will be incorrect, due to the limiting distribution of
√
nT
³bθ − θ0

´
not

being centered at 0.

Similar to the bias of the fixed effects estimand θT − θ0, the bias in the expected fixed

effects score at θ0 and the bias in the expected concentrated likelihood at an arbitrary θ
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can also be expanded in orders of magnitude of T :

E

"
1

T

TX
t=1

∂

∂θ
log f (yit | θ0, bαi (θ0))# = 1

T
bi (θ0) + o

µ
1

T

¶
(2)

and

E

"
1

T

TX
t=1

log f (yit | θ, bαi (θ))− 1

T

TX
t=1

log f (yit | θ,αi (θ))
#
=
1

T
βi (θ) + o

µ
1

T

¶
(3)

where αi (θ)maximizes limT→∞E
h
T−1

PT
t=1 log f (yit | θ,α)

i
. These expansions motivate

alternative approaches to bias correction based on adjusting the estimator, the estimating

equation, or the objective function. We next discuss these three approaches in turn. We

shall refer to B/T , bi/T , and βi/T as the order 1/T biases of the fixed effects estimand,

expected score, and expected concentrated likelihood, respectively.

3 Bias-Correction of the Estimator

An analytical bias correction is to plug into the formula for B estimators of its unknown

components to construct bB, and then form a bias corrected estimator

bθ1 ≡ bθ − bB
T
. (4)

3.1 Formulae for the Order 1/T Bias

In order to implement this idea, we need to have an explicit formula for B. For this

purpose, it is convenient to define

uit (θ,α) ≡ ∂

∂θ
log f (yit|θ,α) , vit (θ,α) ≡ ∂

∂αi
log f (yit|θ,α) ,

V2it (θ,α) = v2it (θ,α) +
∂vit (θ,α)

∂αi
,

Uit (θ,α) ≡ uit (θ,α)− vit (θ,α)E [vαiit ]−1E [uαiit ] , Ii ≡ −E
∙
∂Uit (θ0,αi0)

∂θ0

¸
.

Note that E [Uαi
it ] = 0, which in the MLE case implies that Uit and vit are orthogonalized.

We will denote the derivative with respect to θ or αi by appropriate superscripts, e.g.,
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Uαi
it (θ,α) ≡ ∂Uit (θ,α) /∂αi, U

αiαi
it (θ,α) ≡ ∂2Uit (θ,α) /∂α

2
i . For notational convenience

we suppress the arguments when expressions are evaluated at the true values θ0 and αi0,

e.g. vαiit = ∂vit (θ0,αi0) /∂αi.

It can be shown that

B =

Ã
lim
n→∞

1

n

nX
i=1

Ii
!−1

lim
n→∞

1

n

nX
i=1

bi (θ0) (5)

where bi (θ0) /T is the 1/T bias of the score function. It can also be shown that

bi (θ0) = −
µ
E [vitU

αi
it ]

E [vαiit ]
− E [U

αiαi
it ]E [v2it]

2 (E [vαiit ])
2

¶
. (6)

or

bi (θ0) =

µ−E [v2it]
E [vαiit ]

¶ ∙
− 1

(−E [v2it])
µ
E [vitu

αi
it ]−E [vitvαiit ]

E [uαiit ]

E [vαiit ]

¶
− 1

2E [vαiit ]

µ
E [uαiαiit ]−E [vαiαiit ]

E [uαiit ]

E [vαiit ]

¶¸
. (7)

Intuition on the derivation of the bias of the score function is provided in Section 4 below.

See also Hahn and Newey (2004), for example. The bias correction formula (5) does not

depend on the likelihood setting, and so would be valid for any fixed effects m-estimator.

However, in the likelihood setting because of the information identity E [v2it] = −E [vαiit ]
and the Bartlett equality

E [vitU
αi
it ] +

1

2
E [Uαiαi

it ] = −1
2
E [V2itUit] , (8)

we can alternatively write

B =
1

2

Ã
lim
n→∞

1

n

nX
i=1

Ii
!−1

lim
n→∞

1

n

nX
i=1

E [UitV2it]

E [vαiit ]
. (9)
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In Example 1 with θ = σ2, we can see that

uit = − 1

2θ0
+
(yit − αi)

2

2θ20
, vit =

yit − αi0
θ0

, E [vαiit ] = −
1

θ0

E [uitvit] = 0, Uit = uit = − 1

2θ0
+
(yit − αi0)

2

2θ20
,

E [Ii] = 1

2θ20
, V2it =

(yit − αi0)
2

θ20
− 1

θ0
,

E [UitV2it] =
1

θ20
,

E [UitV2it]

E [vαiit ]
= − 1

θ0
,

B = −1
2

µ
1

2θ20

¶−1
1

θ0
= −θ0,

and we obtain bθ1 = bθ − bB
T
=
T + 1

T
bθ.

Recall that bθ = θ0 − 1
T
θ0 + op (1) as n→∞ with T fixed. It follows that

bθ1 = θ0 − 1

T 2
θ0 + op (1) ,

which shows that the bias of order T−1 is removed.

3.2 Estimators of the Bias

An estimator of the bias term can be formed using a sample counterpart of the previous

formulae. One possibility is

bB (θ) = Ã1
n

nX
i=1

bIi!−1 1
n

nX
i=1

bbi (θ) (10)

where bIi = −³ bET £buθit¤− bET [buαiit ] bET [bvαiit ]−1 bET £buαi0it ¤´ (11)

bbi (θ) =

Ã
− bET [bv2it]bET [bvαiit ]

!⎡⎣− 1³
− bET [bv2it]´

Ã bET [bvitbuαiit ]− bET [bvitbvαiit ] bET [buαiit ]bET [bvαiit ]
!

− 1

2 bET [bvαiit ]
ÃbET [buαiαiit ]− bET [bvαiαiit ]

bET [buαiit ]bET [bvαiit ]
!#

(12)
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where bET (.) = PT
t=1 (.) /T , buθit = uθit (θ, bαi (θ)), buαiit = uαiit (θ, bαi (θ)), etc. The bias cor-

rected estimator can then be formed with bB = bB ³bθT´.
The other possibility exploits the likelihood setting to replace some derivatives by

outer product terms:

eB (θ) = Ã1
n

nX
i=1

eIi!−1 1
n

nX
i=1

ebi (θ) (13)

where

eIi = −³ bET [buitbu0it]− bET [buitbvit] bET £bv2it¤−1 bET [bvitbu0it]´ = − bET ³bUit bU 0it´ , (14)

ebi (θ) = PT
t=1
bUit (θ, bαi (θ))V2it (θ, bαi (θ))
2
PT

t=1 v
αi
it (θ, bαi (θ)) , (15)

and bUit ≡ bUit (θ, bαi (θ)) = uit (θ, bαi (θ))− bET [buitbvit]bET [bv2it] vit (θ, bαi (θ)) , (16)

so that an alternative bias correction can be formed with eB = eB ³bθT´.
3.3 Infinitely Iterated Analytic Bias-Correction

If bθ is heavily biased and it is used in the construction of bB, it may adversely affect the
properties of bθ1. One way to deal with this problem is to use bθ1 in the construction of
another bB, and then form a new bias corrected estimator as in equation (4). One could

even iterate this procedure, updating bB several times using the previous estimator ofbθ. To be precise, let B (θ) denote an estimator of B depending on θ, and suppose thatbB = B ³bθ´. Then bθ1 = bθ−B ³bθ´ /T . Iterating gives bθk = bθ−B ³bθk−1´ /T , (k = 2, 3, ...).
If this estimator were iterated to convergence, it would give bθ∞ solving

bθ∞ = bθ −B ³bθ∞´ /T. (17)

In general this estimator will not have improved asymptotic properties, but may have

lower bias for small T . In Example 1 with θ0 = σ20, we can see that

bθk = T k + T k−1 + . . .+ 1
T k

bθ = T k+1 − 1
T k (T − 1)

bθ → T

T − 1
bθ = bθ∞
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as k→∞, and the limit bθ∞ has zero bias.
4 Bias-Correction of the Moment Equation

Another approach to bias correction for fixed effects is to construct the estimator as the

solution to a bias corrected version of the first-order conditions. Recall that the expected

fixed effects score has the 1/T bias equal to bi (θ0) at the true value, as noted in (2). Let us

consider bS (θ) =Pn
i=1

PT
t=1 uit (θ, bαi (θ)) / (nT ), so that the fixed effects estimator solvesbS ³bθT´ = 0, and let bbi (θ) /T be an estimator of the 1/T bias of the expected score at

the true value. A score-corrected estimator is obtained by solving the modified moment

equation bS (θ)− 1

nT

nX
i=1

bbi (θ) = 0. (18)

In order to understand the idea of correcting the moment equation and its connection

to estimating B, it is convenient to note that the MLE bθ is a solution to
nX
i=1

TX
t=1

uit

³bθ, bαi´ = 0.
Consider an infeasible estimator θ based on bαi (θ0) rather than bαi, where θ solves the first
order condition 0 =

Pn
i=1

PT
t=1 Uit

¡
θ, bαi (θ0)¢. Standard arguments suggest that

√
nT
¡
θ − θ0

¢ ≈ µ1
n

Pn
i=1 Ii

¶−1 1√
nT

Pn
i=1

PT
t=1 Uit (θ0, bαi (θ0)) .

Because E [Uit (θ0, bαi (θ0))] 6= 0, we cannot apply the central limit theorem to the numer-
ator on the right side. We use a second order Taylor series expansion to approximate

Uit (θ0, bαi (θ0)) around αi0:

1√
nT

Pn
i=1

PT
t=1 Uit (θ0, bαi (θ0)) ≈ 1√

nT

Pn
i=1

PT
t=1 Uit

+
1√
nT

Pn
i=1

PT
t=1 U

αi
it (bαi (θ0)− αi0) +

1

2
√
nT

Pn
i=1

PT
t=1 U

αiαi
it (bαi (θ0)− αi0)

2 .
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The first term on the right will follow a central limit theorem because E [Uit] = 0. As for

the second and third terms, we note that bαi (θ0) − αi0 ≈ −T−1
PT

t=1 vit (E [v
αi
it ])

−1, and

substituting for bαi (θ0)− αi0 in the approximation for Uit (θ0, bαi (θ0)) leads to
Pn

i=1

PT
t=1 Uit (θ0, bαi (θ0)) ≈Pn

i=1

PT
t=1 Uit

−
nX
i=1

" PT
t=1 vit√
TE [vαiit ]

#"
1√
T

TX
t=1

µ
Uαi
it −

E [Uαiαi
it ]

2E [vαiit ]
vit

¶#
. (19)

Taking an expectation of the second term on the right and subtracting it from the LHS,

we expect that

Pn
i=1

PT
t=1 Uit (θ0, bαi (θ0)) + nX

i=1

µ
E [vitU

αi
it ]

E [vαiit ]
− E [U

αiαi
it ]E [v2it]

2 (E [vαiit ])
2

¶
=

Pn
i=1

PT
t=1 Uit (θ0, bαi (θ0))− nX

i=1

bi (θ0)

is more centered at zero than
Pn

i=1

PT
t=1 Uit (θ0, bαi (θ0)).

An estimator of the 1/T bias of the moment equation is given by bbi (θ) /T in (12). We
then expect the solution to

Pn
i=1

hPT
t=1 uit (θ, bαi (θ))−bbi (θ)i = 0 (20)

to be less biased than the MLE bθT . Alternatively, the bias can be estimated using the
estimator of the bias in (15) that exploits Bartlett identities, leading to the moment

equation Pn
i=1

hPT
t=1 uit (θ, bαi (θ))−ebi (θ)i = 0. (21)

The first expression would be valid for any fixed effectsm-estimator, whereas the second is

appropriate in a likelihood setting. These two versions of bias corrected moment equation

are discussed in Hahn and Newey (2004).

In a likelihood setting it is also possible to form an estimate of bi (θ) that uses expected

rather than observed quantities, giving rise to alternative score-corrected estimators, such

as those considered by Carro (2004) and Fernández-Val (2005) for binary choice models.
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In order to see a connection between bias-correction of the moment equation and

iterated bias-correction of the estimator, it is useful to note that bθ∞ solves the equationbθ − θ = B (θ) /T or
nX
i=1

∙
Ii (θ)

³bθ − θ
´
− 1

T
bi (θ)

¸
= 0 (22)

where B (θ) is as in (10) or (13). This equation can be regarded as an approxima-

tion to the previous corrected moment equations as long as I i (θ) is an estimator of
∂ bET [uit (θ, bαi (θ))] /∂θ and bi (θ) /T is an estimator of the 1/T bias for bET [uit (θ, bαi (θ))].
Thus, the bias-correction of the moment equation can be loosely understood to be an

infinitely iterated bias-correction of the estimator.

5 Bias-Correction of the Concentrated Likelihood

Due to the noise of estimating bαi (θ), the expectation of the concentrated likelihood is not
maximized at the true value of the parameter. See (3). In this section, we discuss how

such problem can be avoided by correcting the concentrated likelihood.

Let `i (θ,α) =
PT

t=1 `it (θ,α) /T where `it (θ,α) = log f (yit | θ,α) denotes the log
likelihood of one observation. Moreover, let αi (θ) = argmaxα plimT→∞ `i (θ,α), so that

under regularity conditions αi (θ0) = αi0. Following Severini (2000) and Pace and Salvan

(2005), the concentrated log likelihood for unit i

b̀
i (θ) = `i (θ, bαi (θ)) (23)

can be regarded as an estimate of the unfeasible concentrated log likelihood

`i (θ) = `i (θ,αi (θ)) . (24)

The function `i (θ) is a proper log likelihood which assigns data a density of occurrence

according to values of θ and values of the effects along the curve αi (θ). It is a least-

favorable target log likelihood in the sense that the expected information for θ calculated
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from `i (θ) coincides with the partial expected information for θ (c.f. Stein, 1956; Severini

and Wong, 1992; and Newey, 1990, for related discussion on semiparametric bounds).

`i (θ) has the usual log likelihood properties: it has zero mean expected score, it satisfies

the information matrix identity, and is maximized at θ0.

Now, define

Hi (θ) = −E
∙
∂vit (θ,αi (θ))

∂α

¸
, Υi (θ) = E

©
[vit (θ,αi (θ))]

2ª .
A stochastic expansion for an arbitrary fixed θ gives

bαi (θ)− αi (θ) ≈ H−1
i (θ) vi (θ,αi (θ)) (25)

where vi (θ,α) =
PT

t=1 vit (θ,α) /T . Next, expanding `i (θ, bαi (θ)) around αi (θ) for fixed

θ, we get

`i (θ, bαi (θ))−`i (θ,αi (θ)) ≈ vi (θ,αi (θ)) [bαi (θ)− αi (θ)]− 1
2
Hi (θ) [bαi (θ)− αi (θ)]

2 . (26)

Substituting (25) we get

`i (θ, bαi (θ))− `i (θ,αi (θ)) ≈ 1
2
Hi (θ) [bαi (θ)− αi (θ)]

2 . (27)

Taking expectations, we obtain

E [`i (θ, bαi (θ))− `i (θ,αi (θ))] ≈ 1
2
Hi (θ)V ar [bαi (θ)] ≈ βi (θ)

T

where

βi (θ) =
1

2
Hi (θ)V ar

³√
T [bαi (θ)− αi (θ)]

´
=
1

2
H−1
i (θ)Υi (θ) . (28)

Thus, we expect that
nX
i=1

TX
t=1

`it (θ, bαi (θ))− nX
i=1

βi (θ)

is a closer approximation to the target log likelihood than
Pn

i=1

PT
t=1 `it (θ, bαi (θ)). Lettingbβi (θ) be an estimated bias, we then expect an estimator eθ that solves

eθ = argmax
θ

nX
i=1

"
TX
t=1

`it (θ, bαi (θ))− bβi (θ)
#

(29)
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to be less biased than the MLE bθT .
We can consistently estimate βi (θ) by

bβi (θ) = 1

2

Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

!−1
1

T

TX
t=1

[vit (θ, bαi (θ))]2 . (30)

Using this form of bβi (θ) in (29), eθ solves the first-order conditions
nX
i=1

TX
t=1

uit (θ, bαi (θ))− nX
i=1

∂bβi (θ)
∂θ

= 0. (31)

Because bαi (θ) satisfies
0 =

TX
t=1

vit (θ, bαi (θ)) , (32)

we can obtain
∂bαi (θ)
∂θ

= −
PT

t=1 v
θ
it (θ, bαi (θ))PT

t=1 v
αi
it (θ, bαi (θ)) . (33)

Using this equation and the fact vθit = u
αi
it , it follows that

∂bβi (θ)
∂θ

= bbi (θ) (34)

where bbi (θ) corresponds to the estimated score bias in (12). Therefore, the first-order
conditions from (29) and the bias corrected moment (20) are identical.

Moreover, in the likelihood context, we can consider a local version of the estimated

bias constructed as an expansion of bβi (θ) at θ0 using that at the truthH−1
i (θ0)Υi (θ0) = 1

(Pace and Salvan, 2005): bβi (θ) = eβi (θ) + Oµ 1T
¶

(35)

where

eβi (θ) = −12 log
Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

!
+
1

2
log

(
1

T

TX
t=1

[vit (θ, bαi (θ))]2) . (36)

This form of the estimated bias leads to the modified concentrated likelihood

`i (θ, bαi (θ)) + 1
2
log

(
− 1
T

TX
t=1

∙
∂vit (θ, bαi (θ))

∂α

¸)
− 1
2
log

(
1

T

TX
t=1

[vit (θ, bαi (θ))]2) . (37)
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This adjustment was considered by DiCiccio and Stern (1993) and DiCiccio, Martin,

Stern, and Young (1996). They showed that (37) reduces the bias of the concentrated

score to O (1/T ) in the likelihood setting. In fact, it can be shown that (37) is maximized

at 1
n(T−1)

Pn
i=1

PT
t=1 (yit − yi)2 in Example 1.

It can be easily shown that

∂eβi (θ)
∂θ

=
bET [bvαiit ]³
− bET [bv2it]´bbi (θ) . (38)

Therefore, the DiCiccio—Stern first-order condition is using a valid estimate of the con-

centrated score 1/T bias as long as the information identity holds, so that in general it

will be appropriate in likelihood settings. Note that ∂eβi (θ) /∂θ differs from ebi (θ) in (15),
which exploits Bartlett identities as well as the information equality.

In the likelihood setting it is also possible to form estimates of Hi (θ) and Υi (θ) that

use expected rather than observed quantities. An estimator of the bias of the form of (36)

that uses the observed Hessian but an expectation-based estimate of the outer product

term Υi (θ) is closely related to Severini (1998)’s approximation to the modified profile

likelihood. Severini (2002) extends his earlier results to pseudo ML estimation prob-

lems, and Sartori (2003) considers double asymptotic properties of modified concentrated

likelihoods in the context of independent panel or stratified data with fixed effects.

6 Other Approaches Leading to Bias Correction

The incidental parameters problem in panel data models can be broadly viewed as a

problem of inference in the presence of many nuisance parameters. The leading statis-

tical approach under this circumstance has been to search for suitable modification of

conditional or marginal likelihoods. The modified profile likelihood of Barndorff-Nielsen

(1983) and the approximate conditional likelihood of Cox and Reid (1987) belong to this

category (see Reid (1995) for an overview). However, the Barndorff-Nielsen formula is

14



not generally operational, and the one in Cox and Reid requires the availability of an

orthogonal effect.

We begin with discussion of Cox and Reid’s (1987) adjustment to the concentrated

likelihood followed by Lancaster’s (2002) proposal.

6.1 Approaches Based on Orthogonality

6.1.1 Cox and Reid’s Adjusted Profile Likelihood Approach

Cox and Reid (1987) considered the general problem of inference for a parameter of interest

in the presence of nuisance parameters. They proposed a first-order adjustment to the

concentrated likelihood to take account of the estimation of the nuisance parameters.

Their formulation required information orthogonality between the two types of para-

meters. That is, that the information matrix be block diagonal between the parameters of

interest and the nuisance parameters. Suppose that the individual likelihood is given by
TY
t=1

f (yit | θ,αi). In general, the information matrix for (θ,αi) will not be block-diagonal,
although it may be possible to reparameterize αi as a function of θ and some ηi such

that the information matrix for (θ, ηi) is block-diagonal (Cox and Reid explained how to

construct orthogonal parameters).

The discussion of orthogonality in the context of panel data models is due to Lancaster

(2000, 2002), together with a Bayesian proposal that we consider below. The nature of

the adjustment in a fixed effects model and some examples were also discussed in Cox

and Reid (1992).

In the panel context, the Cox-Reid (1987) approach maximizes

nX
i=1

TX
t=1

`it (yit; θ, bαi (θ))− 1
2

nX
i=1

log

Ã
−

TX
t=1

∂2`it (yit; θ, bαi (θ))
∂α2i

!
. (39)

The adjusted profile likelihood function (39) was derived by Cox and Reid as an approx-

imation to the conditional likelihood given bαi (θ). Their approach was motivated by the
15



fact that in an exponential family model, it is optimal to condition on sufficient statistics

for the nuisance parameters, and these can be regarded as the MLE of nuisance parame-

ters chosen in a form to be orthogonal to the parameters of interest. For more general

problems the idea was to derive a concentrated likelihood for θ conditioned on the MLE

bαi (θ), having ensured via orthogonality that bαi (θ) changes slowly with θ.

Relation to Bias-Correction of the Moment Equation It is useful to spell out the

first order condition corresponding to the adjusted profile likelihood:

0 =
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))− 1
2

PT
t=1 u

αiαi
it (θ, bαi (θ))PT

t=1 v
αi
it (θ, bαi (θ)) − 12

PT
t=1 v

αiαi
it (θ, bαi (θ)) ∂bαi(θ)

∂θPT
t=1 v

αi
it (θ, bαi (θ))

#
(40)

where we used the fact vθit = u
αi
it . Moreover, using equations (32) and (33), we obtain that

the moment equation of the adjusted profile likelihood is equal to

nX
i=1

"
TX
t=1

uit (θ, bαi (θ))−ebCRi (θ)

#
= 0 (41)

where ebCRi (θ) =
1

2

bET [buαiαi ]bET [bvαiit ] − 12
bET [bvαiαiit ] bET [buαiit ]³ bET [bvαiit ]´2 . (42)

Ferguson, Reid, and Cox (1991) showed that under orthogonality the expected moment

equation has a bias of a smaller order of magnitude than the standard expected ML score.

Under information orthogonality E [uαiit ] = 0 and E [vitu
αi
it ] = −E [uαiαiit ]. Using these

facts and the information identity, the bias formula (7) becomes

bi (θ0) =
1

2

E [uαiαiit ]

E [vαiit ]
. (43)

Comparison with the Cox—Reid moment equation adjustment ebCRi (θ) reveals that the

latter has an extra termwhose population counterpart is equal to zero under orthogonality.

It can in fact be shown that this term does not contribute anything to the asymptotic

distribution of the resultant estimator under the large n large T asymptotics.
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Relation to Bias-Correction of the Concentrated Likelihood To see the connec-

tion between the Cox—Reid’s adjustment, which requires orthogonalization, and the one

derived from the bias-reduction perspective in the previous section, which does not, note

that (37) can be written as

`i (θ, bαi (θ))− 1
2
log

(
− 1
T

TX
t=1

∙
∂vit (θ, bαi (θ))

∂α

¸)
− 1
2
logdVar³√T (bαi (θ)− αi (θ))

´
(44)

where dVar³√T (bαi (θ)− αi (θ))
´
=
T
PT

t=1 [vit (θ, bαi (θ))]2³PT
t=1 [v

αi
it (θ, bαi (θ))]´2 . (45)

Thus, a criterion of the form (44) can be regarded as a generalized Cox—Reid adjusted

likelihood with an extra term given by an estimate of the variance of
√
T (bαi (θ)− αi (θ)),

which accounts for nonorthogonality (the discussion of this link is due to Pace and Salvan,

2005). Under orthogonality the extra term is irrelevant because the variance of bαi (θ) does
not change much with θ.

Other Features of Adjusted Likelihood Approach We note that Cox and Reid’s

(1987) proposal and other methods in the same literature, were not developed to explicitly

address the incidental parameter problem in the panel data context. Rather, they were

concerned with inference in models with many nuisance parameters.

We also note that this class of approaches was not developed for the sole purpose of

correcting for the bias of the resultant estimator. It was developed with the ambitious goal

of making the modified concentrated likelihood behave like a proper likelihood, including

the goal of stabilizing the behavior of the likelihood ratio statistic. We can see that it

achieves some of these other goals at least in the context of Example 1, where it can be

shown that bθ = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2

17



maximizes (39), and the second derivative of (39) delivers 2θ2

n(T−1) as the estimated variance

of bθ. Because the actual variance of bθ is equal to 2θ2

n(T−1) , we can note that the Cox-

Reid approach even takes care of the problem of correctly estimating the variance of the

estimator. It is not clear whether such success is specific to the particular example, or

not. More complete analysis of other aspects of inference such as variance estimation is

beyond the scope of this survey.

6.1.2 Lancaster’s (2002) Bayesian Inference

Lancaster (2002) proposed a method of Bayesian inference that is robust to the inci-

dental parameters problem, which like Cox and Reid’s method critically hinges on the

availability of parameter orthogonality, which may not be feasible in many applications.

Sweeting (1987) pointed out that such procedure is in fact approximately Bayesian. These

approaches have been later generalized by Woutersen (2002) and Arellano (2003) to sit-

uations where orthogonality may not be available. Their generalization are based on

correcting the first order condition of the adjusted profile likelihood estimator, and will

be discussed in the next section.

In a Bayesian setting, fixed effects are integrated out of the likelihood with respect to

the prior distribution conditional on the common parameters (and covariates, if present)

π (α | θ). In this way, we get an integrated (or random effects) log likelihood of the form

`Ii (θ) = log

Z
eT`i(θ,α)π (α | θ) dα.

As is well known, the problem with inferences from `Ii (θ) is that they depend on the choice

of prior for the effects and are not in general consistent with T fixed. It can be shown

that under regularity conditions the maximizer of
P

i `
I
i (θ) has a bias of order O (1/T )

regardless of π (α | θ). However, if α and θ are information orthogonal, the bias can be

reduced to O (1/T 2).

18



Lancaster (2002) proposes to integrate out the fixed effects ηi by using a noninforma-

tive prior, say a uniform prior, and use the posterior mode as an estimate of θ. The idea

is to rely on prior independence between fixed effects and θ, having chosen an orthogonal

reparameterization, say αi = α (θ, ηi), that separates the common parameter θ from the

fixed effects ηi in the information matrix sense. In other words, his estimator bθL takes
the form bθL = argmax

θ

Z
· · ·
Z nY

i=1

TY
t=1

f (yit| θ,α (θ, ηi)) dη1 · · · dηn. (46)

In Example 1 with θ = σ2, we have E [uitvit] = 0 so the reparameterization is unnec-

essary. Lancaster’s estimator would therefore maximizeZ
· · ·
Z nY

i=1

TY
t=1

1√
θ
exp

Ã
−(yit − αi)

2

2θ

!
dα1 · · · dαn ∝ 1³√

θ
´T−1 exp

Ã
−
Pn

i=1

PT
t=1 (yit − yi)2
2θ

!
,

and bθL = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2 .

Note that bθL has a zero bias.
Asymptotic properties of bθL are not yet fully worked out except in a small number of

specific examples. It is in general expected bθL removes bias only up to O (T−1), although
we can find examples where bθL eliminates bias of even higher order.
6.2 Overcoming Infeasibility of Orthogonalization

The Cox-Reid and Lancaster approaches are successful only when the parameter of in-

terest can be orthogonalized with respect to the nuisance parameters. In general, such

reparameterization requires solving some partial differential equations, and the solution

may not exist. Because parameter orthogonalization is not feasible in general, such ap-

proach cannot be implemented for arbitrary models. This problem can be overcome by

adjusting the moment equation instead of the concentrated likelihood. We discuss two
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approaches in this regard, one introduced by Woutersen (2002) and the other by Arellano

(2003). We will note that these two approaches result in identical estimators.

6.2.1 Woutersen’s (2002) Approximation

Woutersen (2002) provided an insight on the role of Lancaster’s posterior calculation in

reducing the bias of the fixed effects. Assume for simplicity that the common parameter

θ is orthogonal to αi in the information sense, and no reparameterization is necessary to

implement Lancaster’s proposal. Given the posterior

nY
i=1

ÃZ TY
t=1

f (yit| θ,αi) dαi
!
,

the first order condition that characterize the posterior mode can be written as

0 =
nX
i=1

Z ³PT
t=1 uit (θ,αi)

´YT

t=1
f (yit| θ,αi) dαiZ YT

t=1
f (yit| θ,αi) dαi

. (47)

Woutersen (2002) pointed out that the ith summand on the right can be approximated

by

TX
t=1

uit (θ, bαi (θ))−1
2

PT
t=1 u

αiαi
it (θ, bαi (θ))PT

t=1 v
αi
it (θ, bαi (θ)) +12

³PT
t=1 v

αiαi
it (θ, bαi (θ))´³PT

t=1 u
αi
it (θ, bαi (θ))´³PT

t=1 v
αi
it (θ, bαi (θ))´2 ,

where bαi (θ) is a solution to PT
t=1 vit (θ, bαi (θ)) = 0. Therefore, Woutersen’s estimator

under parameter orthogonality is the solution to

0 =
nX
i=1

⎡⎢⎣ TX
t=1

uit (θ, bαi (θ))− 1
2

bET [buαiαi]bET [bvαiit ] + 12
bET [bvαiαiit ] bET [buαiit ]³ bET [bvαiit ]´2

⎤⎥⎦ . (48)

Note that this estimator solves the same moment equation as Cox & Reid’s moment

equation (41).

Woutersen pointed out that the moment function

uit (θ,α) ≡ uit (θ,α)− ρi (θ,α) vit (θ,α) (49)

20



where

ρi (θ,α) ≡
R
uαi (y; θ,α) fi (y; θ,α) dyR
vαi (y; θ,α) fi (y; θ,α) dy

(50)

would satisfy the orthogonality requirement in the sense that at true values

E [uαit (θ0,αi0)] = 0.

Recall that Uit (θ,αi) ≡ uit − vitE [v2it]−1E [vituit] defined in Section 3 cannot be used
as a basis of estimation because the ratio E [v2it]

−1
E [vituit] is not known in general. It

was used only as a theoretical device to understand the asymptotic property of various

estimators. On the other hand, ρ (θ0,αi0) = E [vαit]
−1E [uαit] = E [v

2
it]
−1
E [vituit], so we can

consider uit (θ,αi) as a feasible version of Uit (θ,αi). Woutersen’s moment equation when

parameter orthogonality is unavailable is therefore obtained by replacing uit (θ, bαi (θ)) in
(48) by uit (θ, bαi (θ)).
6.2.2 Arellano’s (2003) Proposal

An orthogonal transformation is a function ηi = ηi (θ,α) such that

ηθi
ηαi

= ρi (θ,α)

where ηθi = ∂ηi/∂θ, ηαi = ∂ηi/∂α, and ρi (θ,α) is given in (50). Such a function may or

may not exist, and if it does it need not be unique.

Arellano (2003) considers a Cox & Reid’s (1987) objective function that is written

for some transformation of the effects ηi = ηi (θ,α) and he rewrites it in terms of the

original parameterization. The resulting criterion is given by (39) with the addition of

the Jacobian of the transformation:
TX
t=1

`it (yit; θ, bαi (θ))− 1
2
log

Ã
−

TX
t=1

∂2`it (yit; θ, bαi (θ))
∂α2i

!
+ log (bηαi)

where bηαi = ¡ηαi |α=bαi(θ)¢. The corresponding moment equation is
TX
t=1

uit (θ, bαi (θ))−ebCRi (θ) +mi (θ)
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where ebCRi (θ) is given in (42) and

mi (θ) =
∂

∂θ
log (bηαi) = bηαθibηαi + bηααibηαi ∂bαi (θ)∂θ

=

µ
∂

∂α

ηθi
ηαi

|α=bαi(θ)
¶
− bηααibηαi

Ã bET [buαiit ]bET [bvαiit ] − bηθibηαi
!
.

If ηi (θ,α) is an orthogonal transformation

mi (θ) =
∂ρi (θ,α)

∂α
|α=bαi(θ) −bηααibηαi

Ã bET [buαiit ]bET [bvαiit ] − ρi (θ, bαi (θ))
!

(51)

so that

mi (θ0) =
∂ρi (θ0,α)

∂α
|α=bαi(θ0) +O

µ
1

T

¶
.

Thus, regardless of the existence of an orthogonal transformation, it is always possible to

obtain a locally orthogonal Cox & Reid moment equation. Arellano’s moment equation

is therefore obtained as

0 =
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))−ebCRi (θ) +
∂ρi (θ,α)

∂α
|α=bαi(θ)

#
, (52)

after supressing the transformation specific term in (51) that is irrelevant for the purpose

of bias reduction. Indeed, Carro (2004) has shown that Arellano’s moment equation

reduces the order of the score bias regardless of the existence of an information orthogonal

reparameterization.

It can be shown that this moment equation is identical to Woutersen’s (2002) moment

equation. This can be shown in the following way. Now note that Woutersen’s (2002)

moment equation is equal to

0 =
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))− 1
2

PT
t=1 u

αiαi
it (θ, bαi (θ))PT

t=1 v
αi
it (θ, bαi (θ))

+
1

2

³PT
t=1 v

αiαi
it (θ, bαi (θ))´³PT

t=1 u
αi
it (θ, bαi (θ))´³PT

t=1 v
αi
it (θ, bαi (θ))´2

⎤⎥⎦ . (53)
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Using (32), we can obtain:

TX
t=1

uit (θ, bαi (θ)) = TX
t=1

uit (θ, bαi (θ)) ,
TX
t=1

uαiit (θ, bαi (θ)) = TX
t=1

uαiit (θ, bαi (θ))−
Ã

TX
t=1

vαiit (θ, bαi (θ))
!

ρi (θ,α)|α=bαi(θ)
and

TX
t=1

uαiαiit (θ, bαi (θ)) =
TX
t=1

uαiαiit (θ, bαi (θ))−Ã TX
t=1

vαiαiit (θ, bαi (θ))! ρi (θ,α)|α=bαi(θ)
−2
Ã

TX
t=1

vαiit (θ, bαi (θ))
!

∂ρi (θ,α)

∂α

¯̄̄̄
α=bαi(θ) .

Plugging these expressions to (53), we obtain after some simplification an alternative

characterization of Woutersen’s (2002) moment equation:

0 =
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))− 1
2

PT
t=1 u

αiαi
it (θ, bαi (θ))PT

t=1 v
αi
it (θ, bαi (θ))

+
1

2

³PT
t=1 v

αiαi
it (θ, bαi (θ))´³PT

t=1 u
αi
it (θ, bαi (θ))´³PT

t=1 v
αi
it (θ, bαi (θ))´2 +

∂ρi (θ,α)

∂α

¯̄̄̄
α=bαi(θ)

⎤⎥⎦ ,
which can be seen to be identical to moment equation (52). We can therefore conclude

that Woutesen’s (2002) is identical to Arellano’s (2003).

6.2.3 Relation to Bias-Correction of the Moment Equation

The moment equation used by Woutersen, Arellano, and Carro can be written as

nX
i=1

"
TX
t=1

uit (θ, bαi (θ))−ebWi (θ)
#
= 0 (54)

where ebWi (θ) = ebCRi (θ)− ∂ρi (θ,α)

∂α
|α=bαi(θ), (55)

ebCRi (θ) =
1

2 bET [bvαiit ]
ÃbET [buαiαi ]− bET [bvαiαiit ]

bET [buαiit ]bET [bvαiit ]
!
,
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and at true values

∂ρi (θ0,αi0)

∂α
=

1

E [vαit]

µ
E [uααit ]− E [vααit ]

E [uαit]

E [vαit]

¶
+

1

E [vαit]

µ
E [uαitvit]− E [vαitvit]

E [uαit]

E [vαit]

¶
.

(56)

Comparing the resulting expression with the theoretical bias (7), we note that moment

condition (54) is using a valid estimate of the concentrated score 1/T bias as long as the

information identity holds, so that in general it will be appropriate in likelihood settings.

The estimated bias ebWi (θ) uses a combination of observed and expected terms. Note that,
contrary to the situation under orthogonality when the theoretical bias reduces to (43),

there is no redundant term here.

The term ∂ρi (θ, bαi (θ)) /∂α in (52) can be interpreted as a measure of how much

the variance of bαi (θ) changes with θ. In this respect, note the equivalence between the

derivative of the log variance of bαi (θ) in (45) and a sample counterpart of (56):
− ∂

∂θ

1

2
logdVar³√T (bαi (θ)− αi (θ))

´
=

1bET [vαiit ]
ÃbET [buαiαiit ]− bET [bvαiαiit ]

bET [buαiit ]bET [bvαiit ]
!

+
1³

− bET [bv2it]´
Ã bET [buαiit bvit]− bET [bvαiit bvit] bET [buαiit ]bET [bvαiit ]

!
. (57)

7 QMLE for Dynamic Models

The starting point of our discussion so far has been the assumption that the fixed effects

estimator actually maximizes the likelihood. When we defined bθT to be a maximizer of
nX
i=1

TX
t=1

log f (yit| θ, bαi (θ)) ,
we assumed that (i) xs are strictly exogenous, (ii) ys are independent over t given xs,

and (iii) f is the correct (conditional) density of y given x. We noted that some of the

bias-correction methods did not depend on the likelihood setting, while others, that relied
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on the information or Bartlett identities, did. However, in all cases assumptions (i) and

(ii) were maintained. For example, if the binary response model

yit = 1 (x
0
itθ + αi + eit > 0) , (58)

where the marginal distribution of eit is N (0, 1), is such that eit is independent over t,

and if it is estimated by nonlinear least squares, our first bias formula is valid.

In the likelihood setting, assumption (ii) can be relaxed choosing estimates of bias

corrections that use expected rather than observed quantities. This is possible because

the likelihood fully specifies the dynamics, and it is simple if the required expected quan-

tities have closed form expressions, as in the dynamic probit models in Carro (2004) and

Fernández-Val (2005).

In a nonlikelihood setting, our analysis can be generalized to the case when the fixed

effects estimator maximizes
nX
i=1

TX
t=1

ψ (zit; θ, bαi (θ))
for an arbitrary ψ under some regularity conditions, thereby relaxing assumptions (i) and

(ii). For example, the binary response model (58) can still be analyzed by considering the

fixed effects probit MLE even when eit has an arbitrary unknown serial correlation.

The intuition for this more general model can still be obtained from the approximation

of the moment equation as in (19), which can be corrected by calculating the approximate

expectation of the correction term

nX
i=1

" PT
t=1 vit√
TE [vαiit ]

#"
1√
T

TX
t=1

µ
Uαi
it −

E [Uαiαi
it ]

2E [vαiit ]
vit

¶#
.

The analysis for this more general model gets to be more complicated because calculation

of the expectation should incorporate the serial correlation in vit and U
αi
it , which was a

non-issue in the simpler context. Hahn and Kuersteiner (2004) provide an analysis that

incorporate such complication.
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8 Estimation of Marginal Effects

It is sometimes of interest to estimate quantities such as

1

nT

nX
i=1

TX
t=1

m (zit; θ,αi) (59)

where zit = (yit, x0it)
0. For example, it may be of interest to estimate the mean marginal

effects
1

nT

nX
i=1

TX
t=1

φ (x0itθ + αi) θ

for the binary response model (58), where φ denotes the density of N (0, 1). It would be

sensible to estimate such quantities by

1

nT

nX
i=1

TX
t=1

m
³
zit;eθ, bαi ³eθ´´

where eθ denotes a bias corrected version of bθ computed by one of the methods discussed
before, and bαi ³eθ´ denotes the estimate of αi at eθ. Hahn and Newey (2004), Carro (2004),
and Fernandez-Val (2005) discuss estimation and bias-correction of such quantity.

In order to relate our discussion with the bias-correction formula developed there, it is

useful to think about the quantity (59) as a solution to the (infeasible) moment equation

nX
i=1

TX
t=1

(m (zit; bαi (θ0))− bµ) = 0, TX
t=1

v (zit; bαi (θ0)) = 0 (60)

where, for simplicity of notation, we suppressed the dependence of m on θ. Let

M (zit;αi) = m (zit;αi)− v (zit;αi) E [m
αi (zit;αi)]

E [vαi (zit;αi)]

and note that bµ in (60) solves
0 =

nX
i=1

TX
t=1

(M (zit; bαi (θ0))− bµ) . (61)

Assuming that serial correlation can be ignored, we can bias-correct this moment equation

using the same intuition as in Section 4. We then obtain a bias corrected version of the
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moment equation

0 =
nX
i=1

TX
t=1

³
M (zit; bαi (θ0))− bbµ´+ nX

i=1

⎛⎝PT
t=1 vitM

αi
itPT

t=1 v
αi
it

+

PT
t=1M

αiαi
it

2
³PT

t=1 v
αi
it

´
⎞⎠ (62)

when the fixed effects estimator is based on a correctly specified likelihood, or

0 =
nX
i=1

TX
t=1

³
M (zit; bαi (θ0))− bbµ´+ nX

i=1

⎛⎜⎝PT
t=1 vitM

αi
itPT

t=1 v
αi
it

−
³PT

t=1 v
2
it

´³PT
t=1M

αiαi
it

´
2
³PT

t=1 v
αi
it

´2
⎞⎟⎠
(63)

in general. Replacing M (zit; θ0, bαi (θ0)) in (62) by the feasible version
m
³
zit;eθ, bαi ³eθ´´− v ³zit;eθ, bαi ³eθ´´

PT
t=1m

αi

³
zit;eθ, bαi ³eθ´´PT

t=1 v
αi

³
zit;eθ, bαi ³eθ´´ ,

we obtain the same bias corrected estimator bbµ as in Hahn and Newey (2004), and
Fernandez-Val (2005).

9 Automatic methods

We have so far discussed methods of bias correction based on some analytic formulae.

Depending on applications, we may be able to by-pass such analysis, and rely on numerical

methods. We discuss two such procedures here.

9.1 Panel Jackknife

The panel jackknife is an automatic method of bias correction. To describe it, let bθ(t) be
the fixed effects estimator based on the subsample excluding the observations of the tth

period. The jackknife estimator is

eθ ≡ Tbθ − (T − 1) TX
t=1

bθ(t)/T (64)

or eθ ≡ bθ − eB
T
,

eB
T
= (T − 1)

µ
1

T

XT

t=1

bθ(t) − bθ¶ .
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To explain the bias correction from this estimator it is helpful to consider a further

expansion

θT = θ0 +
B

T
+
D

T 2
+O

µ
1

T 3

¶
. (65)

The limit of eθ for fixed T and how it changes with T shows the effect of the bias correction.
The estimator eθ will converge in probability to

TθT − (T − 1) θT−1 = θ0 +

µ
1

T
− 1

T − 1
¶
D +O

µ
1

T 2

¶
= θ0 +O

µ
1

T 2

¶
(66)

or

(T − 1) (θT−1 − θT ) =
B

T
+O

µ
1

T 2

¶
.

Thus, we see that the asymptotic bias of the jackknife corrected estimator is of order

1/T 2. Consequently, this estimator will have an asymptotic distribution centered at 0

when n/T → ρ. Hahn and Newey (2004) formally established that
√
nT
³eθ − θ0

´
has

the same asymptotic variance as
√
nT
³bθ − θ0

´
when n/T → ρ. This implies that the

bias reduction is achieved without any increase in the asymptotic variance. This suggests

that, although there may be some small increase in variance as a result of bias reduction,

the increase is so small that it is ignored when n/T → ρ.

In Example 1, it is straightforward to show that

eθ = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2 , (67)

which is the estimator that takes care of the degrees of freedom problem. It is interest-

ing to note that the jackknife bias correction completely removed bias in this example:

E
³eθ´ = θ. This happens only because the O (T−2) term is identically equal to zero in

this particular example, which is not expected to happen too often in practice.

It is natural to speculate that a higher order version of the panel jackknife may correct

even higher order bias. For this purpose, assume that an expansion even higher than (65)

is valid:

θT = θ0 +
B

T
+
D

T 2
+
F

T 3
+
G

T 4
+O

µ
1

T 5

¶
.
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Because

1

2
T 2θT − (T − 1)2 θT−1 + 1

2
(T − 2)2 θT−2

= θ0 +
F

T (T − 1) (T − 2) +
3T 2 − 6T + 2

T 2 (T − 1)2 (T − 2)2G+O
µ
1

T 3

¶
= θ +O

µ
1

T 3

¶
,

we can conjecture that an estimator of the form

eeθ ≡ 1
2
T 2bθ − (T − 1)2PT

s=1
bθ(s)

T
+
1

2
(T − 2)2

P
s 6=s0 bθ(s,s0)
T (T − 1) ,

where bθ(s,s0) denotes the delete-2 estimator, will be centered at zero even at the asymptotics
where n = o (T 5).

The panel jackknife is easiest to understand when yit is independent over time. When

it is serially correlated, which is to be expected in many applications, it is not yet clear

how it should be modified. In order to understand the gist of the problem, it is useful

to investigate the role of
PT

t=1
bθ(t)/T in (64). Note that it is the sample analog of θT−1

in (66). When yit is serially correlated, what should be used as the sample analog?

One natural candidate is to use the same formula as in (64), with the understanding

that bθ(t) should be the MLE maximizing the likelihood of (yi1, . . . , yi,t−1, yi,t+1, . . . , yT )
i = 1, . . . , n. We are not aware of any formal result that establishes the asymptotic

properties of the panel jackknife estimator, even in the simple dynamic panel model

where yit = αi + θyi,t−1 + εit with εit ∼ N (0,σ2). Even if this approach is shown

to have a desirable asymptotic property, we should bear in mind that such approach

requires complete parametric specification of the distribution of (yi1, . . . , yiT ). In many

applications, we do not have a complete specification of the likelihood.

Another possibility is to use bθ(T ) as the sample analog of θT−1. Note that bθ(T ) is the
MLE based on the first T − 1 observations. It turns out that such procedure will be
accompanied by some large increase in variance. In order to understand this problem, it
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is useful to examine Example 1 again. It can be shown that

bθ(T−1) = T

T − 1
bθ − T

n (T − 1)2
nX
i=1

(yi − yiT )2

and therefore,

Tbθ − (T − 1)bθ(T−1) = T

n (T − 1)
nX
i=1

(yi − yiT )2 .

We can write with some abuse of notation that Tbθ − (T − 1)bθ(T−1) ∼ θ0
n
χ2n, whereas eθ in

(67) is distributed as θ0
n(T−1)χ

2
n(T−1). This implies that (i) Tbθ− (T −1)bθ(T−1) is indeed bias

free; and (ii) the variance of Tbθ − (T − 1)bθ(T−1) is T − 1 times as large as that of as the
jackknife estimator eθ. When T is sufficiently large, this delete-last-observation approach
will be unacceptable. We expect a similar problem when yit is subject to serial correlation,

and eliminate Tbθ − (T − 1)bθ(T−1) from our consideration.

We argued that the panel jackknife may not be attractive when serial correlation is

suspected. The bootstrap is another way of reducing bias. A time series version of the

bootstrap is block-bootstrap, which has been shown in many occasions to have desirable

properties. We conjecture that some version of a bootstrap bias correction would also

remove the asymptotic bias (e.g. with truncation as in Hahn, Kuersteiner, and Newey,

2002).

9.2 Bootstrap Adjusted Concentrated Likelihood

Simulation methods can also be used for bias correction of moment equations and objective

functions. Pace and Salvan (2005) have suggested a bootstrap approach to adjust the

concentrated likelihood.

Consider generating parametric bootstrap samples {yi1 (r) , ..., yiT (r)}ni=1 (r = 1, ..., R)
from the models

nQT
t=1 f

³
yt | bθ, bαi´on

i=1
to obtain bα[r]i (θ) as the solution to

bα[r]i (θ) = argmax
α

TX
t=1

log f (yit (r) | θ,α) (r = 1, ..., R) .
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Pace and Salvan (2005)’s simulation adjusted log-likelihood for the i-th unit is

`
S

i (θ) =
1

R

RX
r=1

TX
t=1

`it
³
θ, bα[r]i (θ)´ . (68)

The criterion `
S

i (θ) is invariant under one-to-one reparameterizations of αi that leave θ

fixed (invariant under “interest respecting reparameterizations”).

Alternatively, Pace and Salvan consider the form in (30), using a bootstrap estimate

of Vi [bαi (θ)] given by eVi [bαi (θ)] = 1

R

RX
r=1

hbα[r]i (θ)− bαi (θ)i2 , (69)

which leads to

`
SA

i (θ) =
TX
t=1

`it (θ, bαi (θ))− 1
2

Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

! eVi [bαi (θ)] . (70)

10 Concluding Remarks

We discussed a variety of methods of estimation of nonlinear fixed effects panel data

models with reduced bias properties. Alternative approaches to bias correction based

on adjusting the estimator, the moment equation, and the criterion function have been

considered. We have also discussed approaches relying on orthogonalization and automatic

methods, as well as the connections among the various approaches.

All the approaches that we discuss in the paper are based on an asymptotic approx-

imation where n and T grow to infinity at the same rate. Therefore, they are likely to

be useful in applications in which the value of T is not negligible relative to n. Examples

of this kind include data sets constructed from country or regional level macropanels, the

balance-sheet-based company panels that are available in many countries, or the house-

hold incomes panel in the US (PSID). However, for n too large relative to T , the sampling

distributions of the 1/T bias-corrected estimators will not provide accurate confidence in-

tervals because their standard deviation will be small relative to bias. In those situations,

31



an asymptotic approximation where n/T 3 converges to a constant may be called for, lead-

ing to 1/T 2 bias-corrected estimators. A more general issue is how good are the n and

T asymptotic approximations when the objective is to produce confidence intervals, or to

test a statistical hypothesis. This is a question beyond the scope of this paper.

Next in the agenda, it is important to find out how well each of these bias correction

methods work for specific models and data sets of interest in applied econometrics. In this

regard, the Monte Carlo results and empirical estimates obtained by Carro (2004) and

Fernández-Val (2005) for binary choice models are very encouraging. For a dynamic logit

model, using the same simulation design as in Honoré and Kyriazidou (2000), they find

that a score-corrected estimator and two one-step analytical bias-corrected estimators are

broadly comparable to the Honoré—Kyriazidou estimator (which is consistent for fixed T )

when T = 8 and n = 250. However, the finite sample properties of the bias correction seem

to depend on how they are done. For dynamic logit, Carro’s score-corrected estimator and

Fernández-Val’s bias-corrected estimator, which use expected quantities, are somewhat

superior to a bias-corrected estimator using observed quantities, but more results are

needed for other models and simulation designs.

We have focused on bias reduction, but other theoretical properties should play a role

in narrowing the choice of bias-reducing estimation methods. In the likelihood context it

is natural to seek an adjusted concentrated likelihood that behaves like a proper likeli-

hood. In this respect, information bias reduction and invariance to reparameterization are

relevant properties in establishing the relative merits of different bias-reducing estimators.
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