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1. Introduction

It is commonly accepted in the psychological literature1 that people categorize the
world around them. In particular, information about other people is often processed
with the aid of social categories. As Macrae and Bodenhausen (2000) write

“ Given basic cognitive limitations and a challenging stimulus world,
perceivers need some way to simplify and structure the person percep-
tion process. This they achieve through the activation and implemen-
tation of categorical thinking. Rather than considering individuals in
terms of their unique constellations and proclivities, perceivers prefer
instead to construe them on the basis of the social categories (e.g.
race, gender, age) to which they belong. . .”

The purpose of the current paper is to study some issues related to categorical
thinking in the context of decision making. Specifically, our concern here is with
equilibrium behavior of agents in a non-cooperative normal form game. Equilibrium
is viewed here as a steady state of a recurring interaction between agents with no
strategic links among the repetitions. As such, it is highly sensitive to the information
(and the way its being processed) that each agent has about the actions of her
opponents. It is a key assumption of this paper that categorical thinking affects
exactly this information.

To study the implications of categorization in such scenarios, we define a solution
concept called Conjectural Categorical Equilibrium (CCE). This is a special case of
Battigalli and Guaitoli’s (1988) conjectural equilibrium. Each player i is equipped
with an exogenously given partition of her opponents. This is the categorization
that i uses in order to facilitate the process of information about the behavior of
her opponents. As a consequence, i is unable to observe the actions taken by each
individual player. Instead, she can only tell what is the average behavior within each
category in her partition. Thus, when deciding what action to choose, player i is
faces uncertainty as to the actual choices of her opponents. In this case it is natural
to assume that i has some conjecture (which conforms to her information) about the
profile of actions that her opponents actually play, and that she plays a best response
to her conjecture. When all players behave in this way the resulting strategy profile
is a CCE.

When an agent is categorizing her opponents there is a risk that it will lead her to
make sub-optimal decisions and to lose utility. Therefore, in order for categorization
to be efficient it should have the property that the loss of information incurred by
the categorical representation of other agents will not result in choosing the wrong
action. In other words, each agent wants to choose the action that she would choose
had she known the entire strategy profile of her opponents. If the categorization of

1See Section 6 for references.
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every player has this property then every CCE is also a Nash equilibrium. We call
such a profile of categorizations sufficient. The main result of the paper concerns the
existence of non-trivial sufficient categorization profiles.

Our solution concept is plausible only if the number of participating players is
large. We therefore consider families of games with an increasing number of players.
The result we obtain is asymptotic. It is shown that, with appropriate anonymity
and continuity assumptions on the payoff functions, certain categorization profiles
become close to being sufficient as the number of players grows to infinity. These
categorization profiles are those in which each player lumps together players that
have symmetric influence on her payoffs.

The aforementioned result can be interpreted in several ways. First, it highlights
the advantage of categorization as a simplifying tool in complex environments. With
much less information in their hands agents behave as if they see the full picture.
The second interpretation is of a normative nature. The result can be seen as a
recommendation for how one should categorize others when involved in a game-like
situation. Finally, the result also increases the plausibility of Nash equilibrium in
large games since it shows that an equilibrium must emerge even if players have
limited information about the strategies of their opponents.

The model we use to obtain the asymptotic result is adopted from Kalai (2004).
There is a finite universal set of actions S. Γ(S) is a family of normal-form games such
that for every game G in Γ(S) and for every player i in G the set of (pure) strategies
available to i is some subset of S. With a fixed family Γ(S) in hand, one can very
naturally define notions of uniform continuity and anonymity in Γ(S). These are the
key assumptions needed to obtain the asymptotic existence of a sufficient categoriza-
tion profile. For a detailed discussion of the relation between our assumptions and
results and those of Kalai (2004, 2005), see Section 6.

As noted before, CCE is appealing when the number of players is large. It is
therefore natural to study it also in the setting of a game with a continuum of players.
Working in the model of Schmeidler (1973), we define CCE for a non-atomic game
similarly to its definition in the finite case. A simple sufficient condition for the
existence of a sufficient categorization profile is provided. We then show that this
condition holds for a dense set of non-atomic games. Thus, every non-atomic game
can be approximated by a game in which a sufficient categorization profile exists.

The results described so far are of a ‘positive’ nature. They emphasize the ad-
vantages of categorization as an information processing mechanism. But these ad-
vantages may cease to exist if an agent makes use of the ‘wrong’ categorization. To
illustrate this point we analyze two examples of non-atomic games in which agents
categorize their opponents not as one may think they should. In the first example it
is shown that this can lead to a CCE in which all the players get the worst possible
payoff. In the second example there is a CCE which yield a higher total payoff for the
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society than the Nash equilibrium of the game (though the payoffs to some players
are lower than their equilibrium payoffs).

The paper is organized as follows. In Section 2 we formally define CCE for both
finite and non-atomic games. Section 3 contains the main results of the paper about
sufficient categorization profiles. The influence that different categorizations may
have on social efficiency is exemplified in Section 4. Some remarks about the model
are in Section 5. These include a possible refinement of CCE and a result regarding
CCE as a purifying device. Related literature is discussed in Section 6. All the proofs
are in Section 7.

2. Definition of CCE

2.1. Finite games. A game G in normal form is defined by a triplet G = (N, {Si}i∈N ,

{ui}i∈N ). N = {1, . . . , n} is the set of players. For each i ∈ N , Si is the finite set
of pure strategies (actions) of player i. Denote by S the product S = ×i∈NSi and
for every player i ∈ N let S−i = ×j 6=iSj . A typical element of S (Si, S−i) will be
denoted by2 s (si, s−i). ui : S → R is the utility function of player i ∈ N . Each
player i may use a mixed strategy which is a probability distribution over Si, usually
denoted by3 σi. If σ = (σ1, . . . , σn) is a profile of strategies then σ−i denotes the
strategies of players other than i. As usual, ui will also be used to denote expected
utility whenever players use mixed strategies.

Assume that every player i ∈ N categorizes the rest of the players according to
some criteria. Formally, for every i ∈ N , let Ci be a partition of the set N \ {i}.
That is, Ci = {B1, . . . , Bm} where each Bj is a non-empty subset of N \ {i}, j 6= k

implies Bj ∩ Bk = ∅, and ∪m
j=1Bj = N \ {i}. A categorization profile is a vector

C = (C1, . . . , Cn), where each Ci is a partition of N \ {i}. For two categorization
profiles C = (C1, . . . , Cn) and C ′ = (C ′

1, . . . , C
′
n), we say that C is finer than C ′ if4

Ci is finer than C ′
i for every i ∈ N .

Assume that there is a finite universal set of actions S (not to be confused with
the product set S) such that Si ⊆ S for every i ∈ N . Every profile of (possibly
mixed) strategies5 σ = (σ1, . . . , σn) ∈ ×i∈N∆(Si) and a non-empty set of players
B ⊆ N induce a probability distribution over S, denoted σB, which is defined by6

σB(s) = 1
|B|

∑
i∈B σi(s) for every s ∈ S. Thus, σB(s) is the expected proportion of

players choosing s in the set B according to the profile of strategies {σi}i∈B.

2The underline is used to emphasize that this is a vector of actions. The index s will be used for
another purpose in the sequel.

3Thus, for every si ∈ Si, σi(si) is the probability of player i choosing the action si according to
the mixed strategy σi.

4For two partitions P and P ′ of the same set, P is finer than P ′ (or equivalently, P ′ is coarser
than P ) if every cell of P ′ is a union of cells of P .

5If X is a finite set then ∆(X) denotes the family of all probability measures over X.
6σi(s) = 0 whenever s ∈ S \ Si.
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Given a player i ∈ N , a categorization Ci of N \ {i} and a profile of strategies
σ = (σ1, . . . , σn), let FCi(σ−i) = {τ−i : τB

−i = σB
−i for every B ∈ Ci} be the set of

all strategy profiles of players other than i which induce the same distribution over
S like σ in every set B ∈ Ci. Elements of FCi(σ−i) are called consistent conjectures
of player i at σ−i.

Definition 1. σ = (σ1, . . . , σn) is a Conjectural Categorical Equilibrium (CCE)
w.r.t. the categorization profile C = (C1, . . . , Cn) if, for every i ∈ N , there exists a
profile of strategies τ−i ∈ FCi(σ−i) such that σi is a best response to τ−i.

Assuming that a categorization profile is exogenously given, a profile of strate-
gies constitutes a CCE (w.r.t. the given categorization profile), if every player best
responds to some conjecture about the strategies of the others. However, the con-
jecture of each player must be consistent with what she knows about the strategies
of others, i.e., within the set FCi(σ−i).

The set of all CCE in a game G w.r.t. a given categorization profile C is denoted
by CCEG(C). NEG is the set of Nash equilibria of the game G. The following
observation is simple but important (the proof is omitted).

Lemma 1. For every game G,
(i) If C refines C ′ then CCEG(C) ⊆ CCEG(C ′).
(ii) If C is the finest categorization profile in G (every cell of every categorization
contains only one player) then CCEG(C) = NEG.

Corollary 1. Every Nash equilibrium is a CCE w.r.t. any categorization profile.

2.2. A continuum of players. By its nature, the concept of CCE is more plausible
when the number of players is large. It is therefore natural to study this concept
in the environment of a non-atomic game. As we shall see below, working in the
limit with a continuum of players removes the need for many of the technical details
involved in the finite model. As a consequence the results become sharper and clearer.

We follow the model and notation of Schmeidler (1973)7. The set of players is
identified with the T = [0, 1] interval equipped with the Lebesgue measure λ. There
are n pure strategies, each of them represented by a vector ei from the standard basis
of Rn. The set of possible mixed strategies of every player is8 P = conv({e1, . . . , en}).
A T -strategy is (the equivalence class of) a measurable function x̂ from T to P ,
specifying the strategy chosen by each of the players. P̂ is the set of all T -strategies
endowed with the L1 weak topology.

The utility of player t0 ∈ T when she chooses ei and almost every player in T plays
according to the T -strategy x̂ is ui(t0, x̂). Denote u(t0, x̂) = (u1(t0, x̂), . . . , un(t0, x̂)).

7Since we are interested in games which are not necessarily anonymous, the models of Mas-Colell
(1984) and of Rath (1992) are not suitable here.

8conv(A) denotes the convex hull of the set A.
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The payoff to player t0 when almost every player in T plays according to x̂ (and, of
course, t0 is playing x̂(t0)) is the scalar product x̂(t0) · u(t0, x̂). Thus, a game with a
continuum of players can be identified with the function u : T × P̂ → Rn.

We will only consider games u with the following two properties:

(1) u is continuous on P̂ for every t ∈ T ; and
(2) u is measurable on T for every x̂ ∈ P̂ .

As in the finite case, assume that every player t ∈ T has a finite and measurable
partition Ct of the set T of players9. Define FCt(x̂) = {ŷ ∈ P̂ :

∫
B x̂dλ =

∫
B ŷdλ

for every B ∈ Ct}. Again, if ŷ ∈ FCt(x̂) we say that ŷ is a consistent conjecture of
player t at x̂.

Definition 2. A T -strategy x̂ ∈ P̂ is a Conjectural Categorical Equilibrium (CCE)
w.r.t. the categorization profile C = {Ct}t∈T if, for λ-almost every t ∈ T , there is a
T -strategy ŷt ∈ FCt(x̂) such that x̂(t) · u(t, ŷt) ≥ p · u(t, ŷt) for every p ∈ P .

Similarly to the finite case, we denote by CCEu(C) the set of all CCE in the game
with a continuum of players u w.r.t. the categorization profile C. NEu is the set
of Nash equilibria of u. The following is the analogue of Lemma 1 for the case of a
continuum of players.

Lemma 2. For every game with a continuum of players u,
(i) If C refines C ′ then CCEu(C) ⊆ CCEu(C ′).
(ii) NEu ⊆ CCEu(C) for every categorization profile C in u.

3. Sufficient categorization profiles

The current section contains the main results of the paper. It deals with a prop-
erty of categorization profiles which we call sufficiency. A categorization profile is
sufficient if a best response to every consistent conjecture of every player is also a best
response to the actual profile of actions. When an agent categorizes her opponents
according to a sufficient categorization she maintains her utility level with signifi-
cantly less mental effort. Exact and approximated sufficiency are formally defined
as follows.

Definition 3. Fix a game (either finite or non-atomic) and let ε ≥ 0. A categoriza-
tion profile C is ε-sufficient if every CCE w.r.t. C is an ε-Nash equilibrium10 of the
game. A categorization profile is sufficient if it is 0-sufficient.

9In this non-atomic setting it is not important for our purposes whether the partition is of T or
of T \ {t}. We also assume that the measure of each set in the partition is strictly positive.

10A strategy profile constitute an ε-Nash equilibrium in a finite game if no player can gain more
than ε by deviating. In the non-atomic case the same should hold almost everywhere.
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The rest of this section discusses sufficient conditions for the existence of sufficient
categorization profiles. Of course, the finest categorization (in the finite case) in
which every category consists of only one agent is always sufficient. What we show,
however, is that for a wide family of games there are also non-trivial sufficient cate-
gorization profiles. We start with finite games and then move on to the non-atomic
case.

3.1. Sufficiency in finite games. We start with some notation. Fix a game G.
For a profile of actions s = (s1, . . . , sn) ∈ S and two players j, k ∈ N with Sj = Sk,
let sjk be the profile of actions in which every player other than j and k plays the
same as in s and players j and k exchange their choices. That is, player j plays sk,
player k plays sj and every player l ∈ N \ {j, k} plays sl. For a player i ∈ N , we say
that the players j, k ∈ N \ {i} are exchangeable for i (denoted j ∼i k) if Sj = Sk and
ui(s) = ui(sjk) for every s ∈ S.

If j ∼i k then player i only cares about the pair of actions taken by players j and
k. She is not concerned with who plays what. Thus, assuming that i observes the
distribution of actions in each cell of her categorization, it is natural for her to put
j and k in the same cell.

It is easy to verify that ∼i is transitive and symmetric over N \ {i}. Let Ĉi be
the partition of N \ {i} to the equivalence classes of ∼i and let Ĉ = (Ĉ1, . . . , Ĉn).
The element of Ĉi which contains player j will be denoted by Ĉi(j). Notice that
our notation neglects the dependence of the categorization profile Ĉ on the game G.
This is so since it will always be clear what is the relevant game. Notice also that Ĉ

is endogenous: Nothing besides the description of the game is required in order to
determine it.

If players were only allowed to play pure strategies and, in addition, players would
always conjecture that their opponents play pure strategies then Ĉ would have been
sufficient (see Lemma 6 in subsection 7.1). However, since players may randomize,
some conditions on the game must be added in order to maintain the sufficiency of
Ĉ. Although restricting the generality of our discussion, these conditions are valid
for a wide family of games.

Definition 4. Fix a finite set of actions S. Let Γ(S) denote a family of normal form
games such that, for every game G ∈ Γ(S) and for every11 i ∈ N , Si ⊆ S.
(i) Γ(S) is uniformly bounded if there is M > 0 such that |ui| ≤ M for every
G ∈ Γ(S) and for every utility function ui ∈ G.
(ii) Γ(S) exhibits a diminishing effect of a single player if there is M > 0 such that
|ui(s) − ui(s′j ; s−j)| ≤ M

|N | for every G ∈ Γ(S), every two players i, j ∈ N , every
s ∈ S and every s′j ∈ Sj.

11Throughout the paper, a quantifier of the form “for every game G ∈ Γ(S) and for every i ∈ N”
should be understood as “for every game G = (N, {Si}i∈N , {ui}i∈N ) ∈ Γ(S) and for every i ∈ N”.
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The uniform boundness condition is standard. The diminishing effect of a single
player is a continuity condition. It states that the effect of some player j changing
his action on the payoff of another player i should be inversely proportional to the
number of players in the game. Finally, we will also need to impose a restriction on
the categorizations Ĉi in the family Γ(S). Namely, the games in Γ(S) should have a
sufficient degree of anonymity. This intuition is captured by the following conditions.

Definition 5. Let Γ(S) be as in Definition 4. Say that Γ(S) satisfies condition
(A1) if for every ε > 0 there is ρ > 0 such that #{j ∈ N \ {i} : |Ĉi(j)| < ρ|N |} <

ε|N | for every game G ∈ Γ(S) and for every i ∈ N .
(A2) if for every r, ε > 0 there is n0 such that |Ĉi|e−rd(G)i < ε for every game
G ∈ Γ(S) with |N | > n0 and for every i ∈ N , where d(G)i = minB∈Ĉi

|B|.
Theorem 1. Consider a family Γ(S) of normal form games which is uniformly
bounded, exhibits a diminishing effect of a single player and satisfies at least one of the
conditions (A1) or (A2) of Definition 5. For every ε > 0 there exists n0 = n0(Γ(S), ε)
such that if G ∈ Γ(S) satisfies |N | > n0 then the categorization profile Ĉ in G is ε-
sufficient.

Remark 1. If Γ(S) satisfies the conditions of Theorem 1 then, by Lemma 1, every
categorization profile which is finer than Ĉ is also ε-sufficient.

Remark 2. None of the conditions (A1) and (A2) implies the other. It is clear that
(A1) doesn’t imply (A2) since (A1) puts no restrictions on the size of the smallest
set in Ĉi. On the other hand, if the categorizations Ĉi contain

√
|N | elements of size√

|N | each then (A2) will be satisfied while (A1) will not.

Remark 3. If the number of categories in each of the categorizations Ĉi in the family
Γ(S) is uniformly bounded12, then condition (A1) of Definition 5 is satisfied. Indeed,
#{j ∈ N \ {i} : |Ĉi(j)| < ρ|N |} ≤ ρ|N ||Ĉi| ≤ ρ|N |M , so for a given ε > 0
one can take ρ = ε

M . In particular, if the game is anonymous (any two players are
exchangeable for any third player) then (A1) is satisfied.

We illustrate the result of Theorem 1 and the importance of the various conditions
with the following examples.

Example 1. (village versus beach) This example is taken from Kalai (2004,
Example 1). The universal set of actions is S = {v (village), b (beach)}. The family
Γ(S) contains games with |N | = 2n (n ∈ N) players of which n are ‘males’ and n

are ‘females’. The payoff of a male is equal to the proportion of females his choice
matches and the payoff of a female is equal to the proportion of males her choice
mismatches.

12Formally, there is M > 0 such that |Ĉi| < M for every G ∈ Γ(S) and for every i ∈ N .
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The categorization Ĉi of every player lumps together players of the same gender.
Indeed, the payoff of every player is not changed if two males (or females) exchange
their choices. Notice that the family Γ(S) is uniformly bounded (by M = 1) and
exhibits a diminishing effect of a single player (again, with M = 1). Moreover, Γ(S)
satisfies conditions (A1) and (A2) of Definition 5 (In fact, the condition in Remark
3 is also satisfied since always |Ĉi| = 2). Thus, by Theorem 1, when the number of
players is large every CCE w.r.t. the profile Ĉ is almost Nash.

As a matter of fact, in this particular example Theorem 1 is redundant and a
stronger result can be achieved by a much simpler argument. The reason is that the
signal that every player observes is the expected proportions of males and females in
each of the locations v and b. But from this signal a player can deduce his/her payoff
for every possible choice. Thus, if a player’s choice is optimal w.r.t. some consistent
conjecture then it is also optimal w.r.t. the true strategy profile of his/her opponents.
It follows that in the village versus beach game, no matter what is the number of
players, Ĉ is sufficient (and not just ε-sufficient).

Example 2. (A generalized village versus beach) Let S be as in the previous
example and fix two Lipschitz and non-decreasing functions f, g : [0, 1] → R. We
consider games of the following form. For each player i ∈ N there is a set F i ⊆
N \ {i} of i’s friends and a set Ei ⊆ N \ {i} of i’s enemies (F i ∩ Ei = ∅)13. The
payoff to player i is f(p)+g(q) where p is the proportion of i’s friends that her choice
matches and q is the proportion of i’s enemies that her choice mismatches.

It is clear that, without any further restrictions on the sets of friends and enemies,
a family Γ(S) of games in the above form will be uniformly bounded and will satisfy
condition (A1) (since always |Ĉi| ≤ 3. See Remark 3). However, in order to make
sure that the family of games exhibits a diminishing effect of a single player we need
that, for every i ∈ N , the sets F i and Ei contain a non-vanishing fraction of players.

If, on the other hand, F i and Ei are not large enough then Theorem 1 may
fail. Indeed, assume that F 1 = {2, 3, 4}, E1 = ∅, and F i = Ei = ∅ for every
player i > 1. Moreover, assume that f(p) = p3. The following strategy profile is a
CCE (w.r.t. Ĉ) which does not become close to being Nash equilibrium when the
number of players increases. Player 1 plays v, players 2 and 3 play v with probability
3/4 and b with probability 1/4, and player 4 plays b (the strategies of the other
players, if there are any, are arbitrary). The true payoff to player 1 in this case is
0 · f(1) + 9/16 · f(2/3) + 6/16 · f(1/3) + 1/16 · f(0) = 13/72, whereas if she would
switch to b she will get 0 · f(0) + 9/16 · f(1/3) + 6/16 · f(2/3) + 1/16 · f(1) = 14/72.
Thus, the action of player 1 is suboptimal.

13We do not assume that the relations ‘to be a friend of’ and ‘to be an enemy of’ are symmetric
nor transitive.
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To see that the above profile is a CCE notice that one of the consistent conjectures
of player 1 is that players 2,3 play v with probability 1/4 and b with probability 3/4,
and player 4 plays v. If this is the belief that player 1 has then it is optimal for her
to play v since, by symmetry, this would give her a payoff of 14/72. Switching to b,
however, would reduce the payoff to 13/72.

Example 3. Let S = {v, b} as in the previous examples and consider a family Γ(S)
such that, for every positive integer n, Γ(S) contains a game with 3n + 1 players
defined as follows. For every k = 1, 2, . . . , n denote Ak = {3k − 1, 3k, 3k + 1}. The
payoff to player 1 is 1

n

∑n
k=1

(
ak
3

)3 where ak is the number of players from the set Ak

which player 1’s choice matches (k = 1, 2, . . . , n). The payoff functions of all other
players are constant.

The purpose of the this last example is to show that the uniform boundness and di-
minishing effect conditions alone are not sufficient for Theorem 1 to hold. Notice first
that the payoffs in Γ(S) are uniformly bounded by 1. Also, the maximal difference
in player 1’s payoff when some player j 6= 1 changes his action is 1− 8

27n = 19
27n < 10

|N |
which means that the diminishing effect condition is satisfied. However, none of the
conditions (A1) or (A2) is satisfied since, for every n, Ĉ1 = {A1, A2, . . . , An} and
|Ak| = 3 for every 1 ≤ k ≤ n.

Now, consider the following strategy profile. For every k = 1, 2, . . . , n, players
number 3k− 1 and 3k play v with probability 3

4 and b with probability 1
4 and player

number 3k+1 plays b with probability 1. The expected payoff to player 1 if he chooses
v is 1

n · n ·
[
0 · 13 + 9

16 ·
(

2
3

)3 + 6
16 ·

(
1
3

)3 + 1
16 · 03

]
= 13

72 , while choosing b yields an

expected payoff of 1
n · n ·

[
0 · 03 + 9

16 ·
(

1
3

)3 + 6
16 ·

(
2
3

)3 + 1
16 · 13

]
= 14

72 . However, a
consistent conjecture for player 1 is that, for every 1 ≤ k ≤ n, players 3k− 1 and 3k
play v with probability 1/4 and b with probability 3/4, and player 3k + 1 plays v.
By symmetry, the expected payoff to player 1 according to this conjecture is 14

72 for
playing v and 13

72 for playing b. Thus, the lose of utility for player 1 doesn’t vanish
as the number of players in the game grows.

3.2. Sufficiency in non-atomic games. When there is a continuum of players it
will be meaningless to define a relation ∼t analogous to the relation ∼i in the finite
case. What we need in order to insure that a categorization profile will be sufficient is
that the utility of every player only depends on the distribution of actions in each set
of her partition. No other assumptions should be made and the sufficiency obtained
is not approximated as in the finite case. Thus, we have the following result.

Theorem 2. Let u be a game with a continuum of players. If C = {Ct}t∈T is a
categorization profile such that, for every t ∈ T , u(t, x̂) depends only on {∫B x̂dλ}B∈Ct

then C is sufficient.
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Example 4. (A non-atomic generalized village versus beach) The following
example is taken (with cosmetic changes) from Schmeidler (1973)14. The number of
possible actions for every player is n = 2. For i = 1, 2 the utility of player t ∈ T

when she chooses ei and when the T -strategy is x̂ is ui(t, x̂) = − ∫ t
0 x̂idλ, where x̂i is

the i’th component of the vector function x̂. Thus, every player t prefers the action
which was less frequently used by her predecessors - the players [0, t). This situation
can be seen as a continuous analogue of the generalized village versus beach game,
where for every player t ∈ T the set of enemies is [0, t) and the set of friends is
empty.

Notice that the utility of every player t depends only on the integral
∫ t
0 x̂dλ. Thus,

by Theorem 2 the profile of categorizations C = {Ct}t∈T defined by Ct = {[0, t], (t, 1]}
is sufficient.

The question naturally arises is how ‘common’ are games with the property that
the utility of every player depends only on the average behavior of a finite number
of groups of the participating players. Our next aim is to show that the set of games
with this property is dense within the set of all non-atomic games. This implies
that every non-atomic game can be approximated by a game in which a sufficient
categorization profile exists.

We denote by Y the set of all possible (continuous) utility functions of a player.
That is Y = {v : P̂ → IRn | v is continuous}. Since P̂ is compact we can define
a norm in Y by ‖v‖ = supx̂∈P̂ ‖v(x̂)‖, where ‖ · ‖ is the Euclidean norm of IRn. A
non-atomic game u specifies the utility function of every player and is therefore an
element of the product space Y T . The set of all non-atomic games is denoted by
U ⊆ Y T (since u should be a measurable function of t not every element of Y T is a
game). Let Ũ ⊆ U be the set of all games u with the property that, for each player t,
there is a finite and measurable partition Ct of T such that u(t, x̂) = u(t, ŷ) whenever∫
B x̂dλ =

∫
B ŷdλ for every B ∈ Ct.

Theorem 3. Ũ is dense in U .

4. CCE and social efficiency

The previous section considered the case in which every player categorizes her
opponents “correctly” in the sense that players within each category are anonymous
in the eyes of the categorizer. The aim of the current section is to study some of
the effects that “wrong” categorizations may have. In particular, we are interested
in the social efficiency of profiles of strategies which constitute a CCE in comparison
to the efficiency of profiles which are Nash equilibria.

14The original purpose of this example was to show that not every non-atomic game has a pure
strategy equilibrium.
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There may be various reasons why agents categorize others according to payoff
irrelevant criteria (that is, not according to the partitions Ĉ). First, it may be that
the partition Ĉi contains too many elements for player i to handle. If player i has
a limited computational ability then the number of different categories that she can
create in her mind is bounded. Thus, she cannot sort her opponents optimally if the
number of categories she needs to do so is greater than her ability15.

Another reason for sub-optimal categorization may be lack of information. Namely,
player i may not know the effect that the actions taken by player j have on her payoff.
This naturally brings up the question of how players (should) categorize in a game
with incomplete information, which we will not discuss here.

As opposed to the previous section, here we do not pursue general results. Rather,
we restrict attention to two examples which reflect the implications that categoriza-
tion can have on social efficiency. The first example shows how CCE may cause
all players to lose utility in comparison to their equilibrium payoffs (thus decreasing
the social efficiency of the strategy profile). In the second example it is shown that
a CCE may be more socially efficient than any Nash equilibrium. Both examples
are of non-atomic congestion games16 and can also be seen as special cases of the
(generalized non-atomic) village versus beach game.

Definition 6. Let u be a non-atomic game. The social efficiency of a strategy profile
x̂ ∈ P̂ is eff(x̂) =

∫
T x̂(t)u(t, x̂)dλ(t).

Example 5. Consider the following non-atomic game with 2 possible actions (n =

2). If t ∈ [0, 1
2) then u1(t, x̂) =

∫ 1
2

0 x̂2dλ and u2(t, x̂) = 1
2 −u1(t, x̂). For t ∈ [12 , 1] the

utility function is u1(t, x̂) =
∫ 1

1
2

x̂2dλ and u2(t, x̂) = 1
2 − u1(t, x̂). We call the players

in the interval [0, 1
2) type 1 players and those in [12 , 1] are called type 2 players. Thus,

each player tries to avoid players with his own type and is careless about the choices
of players from the other type.

Since payoffs depend only on the distribution of actions within each type of players,
we may w.l.o.g. restrict attention to pure strategies. Denote by p1(x̂) = λ({t ∈
[0, 1

2) : x̂(t) = e1}) and p2(x̂) = λ({t ∈ [12 , 1] : x̂(t) = e1}) the proportions of players
of types 1 and 2 respectively who choose the first action according to x̂. Then the
social efficiency of a T -strategy x̂ is eff(x̂) = 2p1(x̂)(1

2 − p1(x̂)) + 2p2(x̂)(1
2 − p2(x̂)).

Notice that, in any Nash equilibrium x̂, it must be that p1(x̂) = 1
4 and p2(x̂) = 1

4 .
Therefore, the social efficiency in every equilibrium is 1

4 . Moreover, every equilibrium
is socially optimal in the sense that there is no profile of strategies x̂ with eff(x̂) > 1

4 .

15Recall that one of the reasons for the need to categorize in the first place is to save mental
resources. The issue of “optimal” categorization when there is a bound on the number of categories
seems to be of self interest.

16For a general study of social optimality in non-atomic congestion games see Milchtaich (2004).
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By Theorem 2 the categorization profile defined by Ct = {[0, 1
2), [12 , 1]} for every

t ∈ T , as well as any finer categorization profile, is sufficient. However, assume
that players categorize their opponents differently and that the categorization of all
the players is the same. For instance, this corresponds to the case where players
are categorizing according to some publicly observed property (such as gender or
skin color). For simplicity we restrict attention to the case in which the (common)
categorization has only two elements (say, M=Males and F=Females) each of which
have a measure of 1

2 .
Let α = λ(M ∩ [0, 1

2)) be the measure of the set of type 1 males, and let g(α) =
min {eff(x̂) ; x̂ ∈ CEu({M, F})} be the lowest social efficiency of a CCE17. We have

Proposition 1.

g(α) =





1
4 − 16α2 0 ≤ α ≤ 1

8
0 1

8 ≤ α ≤ 3
8

1
4 − 16(1

2 − α)2 3
8 ≤ α ≤ 1

2

Specifically, if the payoff relevant partition (type 1 versus type 2) and the actual
categorization (males versus females) are statistically independent (α = 1

4) or not
“too dependent” (1

8 ≤ α ≤ 3
8) then there exists a CCE in which all the players get

the worst possible payoff. As α approaches 0 or 1
2 the social efficiency of any CCE

increases to the optimal level.

Example 6. Consider the following non-atomic game with 2 possible actions (n =

2). If t ∈ [0, 3
4) then u1(t, x̂) = 1

4 +
∫ 3

4
0 x̂2dλ + 2

∫ 1
3
4

x̂2dλ and u2(t, x̂) =
∫ 3

4
0 x̂1dλ +

2
∫ 1

3
4

x̂1dλ. For t ∈ [34 , 1] the utility function is u1(t, x̂) = 2
∫ 3

4
0 x̂2dλ +

∫ 1
3
4

x̂2dλ and

u2(t, x̂) = 1 + 2
∫ 3

4
0 x̂1dλ +

∫ 1
3
4

x̂1dλ. Players in the interval [0, 3
4) are called type 1

players and those in [34 , 1) type 2 players. The payoff to players of each type equals
the proportion of players of their own type that their choice mismatches, plus twice
the proportion of players of the other type that their choice mismatches. In addition,
players of type 1 get 1

4 if they choose the first action, and players of type 2 get 1 if
they choose the second action.

As in the previous example, we restrict attention to pure strategy profiles and
denote p1(x̂) = λ({t ∈ [0, 3

4) : x̂(t) = e1}) and p2(x̂) = λ({t ∈ [34 , 1] : x̂(t) = e1})
the proportions of players of types 1 and 2 respectively who choose the first action
according to x̂. the efficiency of a T -strategy x̂ is then given by eff(x̂) = −2p1(x̂)2−
2p2(x̂)2 − 8p1(x̂)p2(x̂) + 11

4 p1(x̂) + 10
4 p2(x̂) + 1

4 . It is not hard to verify that there is
a unique equilibrium in this game. Namely, all type 1 players choose the first action
(p1(x̂) = 3/4) while all type 2 players choose the other option (p2(x̂) = 0). The
social efficiency of the equilibrium strategy is equal to 19

16 = 1.1875.

17One can convince oneself that g indeed depends only on α and not on the choice of the sets M
and F .
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However, assume that the categorization of all the players is trivial. That is,
Ct = {T} for all t ∈ T . In this case there is a CCE which is more efficient than the
Nash equilibrium. Indeed, it is a simple exercise to check that the set of CCE in this
case is {x̂ : 1

2 ≤ p1(x̂) ≤ 3
4 , p2(x̂) = 0}. Taking x̂ to be a profile with p1(x̂) = 11

16

and p2(x̂) = 0 gives a CCE with social efficiency of 153
128

∼= 1.1953. Moreover, such a
profile is socially optimal.

5. Discussion

5.1. Simple conjectures: A refinement. In a CCE the conjecture of an agent
is limited only by the signal she observed (and by the restriction that agents play
independently of each other). One may want to restrict the belief that an agent can
have even more by requiring that it will be simple in some sense18. By so doing, a
refinement of CCE can be obtained.

Among all the possible conjectures of a player there is one which can quite naturally
be considered as the simplest, namely, the conjecture in which all players in each cell
of her partition are playing the same strategy. A player holding this belief can be
seen as having a prototypical agent for each set in her partition. All the players in
each set are playing the same as their representing prototype. The common strategy
in each cell is then uniquely determined by the signal the player observed.

Such a refinement leads (in finite games) to a special case of Jehiel’s (2005) Analogy
Based Expectation Equilibrium (ABEE). The scope of ABEE is much wider since it
is defined for extensive form games and for any partition of opponents’ nodes in the
game tree. Notice that it may well be that all Nash equilibria will not survive the
suggested refinement. However, by a standard fixed point argument (or by Jehiel’s
theory in the finite case) existence is guaranteed.

5.2. Correlated conjectures. The sufficiency result of subsection 3.1 relies heav-
ily on the assumption that a player takes into account only independent profiles of
strategies of her opponents. That is, we rule out the possibility that some player
thinks that other players correlate their strategies, even though this correlated strat-
egy might be consistent with the signal that this player observes. The fact that
correlated conjectures are not allowed enables us to use the power of the laws of
large numbers, which otherwise fail.

To emphasize this point we return to the generalized village versus beach game
(Example 2). Assume that, for some player i ∈ N , F i = N \{i} and Ei = ∅, and that
F j = Ej = ∅ for all other players j. As opposed to Example 2, we do not assume

18This idea is certainly not new. Eliaz (2003) and Spiegler (2002 and 2004) are examples of
papers in which the solution concept takes into account the complexity of the belief of an agent
about what others will do.
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that the function f is non-decreasing19. Specifically, consider the function f defined
by f(x) = 3x for 0 ≤ x ≤ 1

3 and f(x) = 4
3 − x for 1

3 ≤ x ≤ 1.
If correlated conjectures were allowed then the following profile of strategies would

constitute a CCE w.r.t. the categorization profile Ĉ. Player i plays v with probability
1 and every other player plays v with probability 2

3 and b with probability 1
3 . Indeed,

a consistent (correlated) conjecture of player i is that either all the players play v

(with probability 2
3) or all the players play b (with probability 1

3). For this conjecture
the best response of i is v since 2

3f(1)+ 1
3f(0) > 2

3f(0)+ 1
3f(1). However, this profile

of strategies does not become approximately Nash as the number of players increases.
This is because the payoff to player i will be close to f(2

3) = 2
3 while deviating to b

would result in a payoff close to f(1
3) = 1.

5.3. Pure equilibrium. The fact that Nash equilibrium in pure strategies may fail
to exist is seen by many as a drawback of this solution concept. Even in games with
a continuum of players, a certain degree of anonymity is required in order to insure
the existence of a pure equilibrium (see Remarks 2 and 3 in Schmeidler, 1973). The
reason that players need to randomize in equilibrium is to hide their action from
their opponents. The same goal can be achieved by using the CCE solution concept.
The fact that an agent cannot predict accurately her opponents behavior in some
cases eliminates the need for randomization in equilibrium. This phenomenon is
demonstrated in the following theorem.

Theorem 4. Let u be a game with a continuum of players, and let C∗ be a (finite)
partition of T . Assume that C = {Ct}t∈T is a profile of categorizations such that C∗

is finer than Ct for every t ∈ T . Then there is a pure CCE w.r.t. C.

To illustrate the idea consider Example 4. Assume that Ct = {T} for every t ∈ T .
Thus, the signal to every player is just the average behavior of the entire set of
players. The pure T -strategy x̂ defined by x̂(t) = e1 for 0 ≤ t ≤ 1

2 and x̂(t) = e2 for
1
2 < t ≤ 1 is a CCE w.r.t. C = {Ct}t∈T . Indeed, for every t ∈ T , FCt(x̂) contains a
T -strategy for which x̂(t) is a best response.

Finally, we note that the condition that Ct is coarser than some C∗ for all t ∈ T is
necessary for the theorem to hold. This can be seen by considering the categorization
profile Ct = {[0, t], (t, 1]}, t ∈ T in the above example.

5.4. Self-categorization. Throughout the discussion of finite games the categoriza-
tion of player i is of the set N \ {i}. Thus, i doesn’t include herself in any of the
groups of her categorization. The reason for this modeling choice is the common
assumption that every agent knows the action he plays. Inserting i into one of the
cells of her partition Ci (say B) can create a situation in which i’s conjecture (about

19A possible interpretation is that a player wants to be with her friends, but not with too many
of them.
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what the players in B are playing) is consistent with her signal (the average behavior
within B) but not with the action which she actually plays. Leaving i out of her own
partition prevents such an awkward situation.

It should be noted, however, that individuals do not exclude themselves from their
categorical perception of the society. In fact, self-categorization and identity are
among the most studied subjects in social psychology (for references see Ellemers et
al., 2002). The social categories to which one belongs and the way these categories are
seen by the society can have significant implications on one’s choices. This important
issue is not addressed by the current paper.

6. Related literature

Our main result (Theorem 1) is inspired by the works of Kalai (2004, 2005) on the
robustness of equilibria in large games. There, it is shown that, when the number
of players is large, Nash equilibria of a wide family of games are immune to many
modifications of the game. These modifications include various extensive form ver-
sions of the game such as sequential play (instead of simultaneous play) and versions
in which players can revise their initial choices. The main difference between the
current paper and Kalai’s is that here we keep the game unchanged while allowing
players’ beliefs about their opponents strategies to be incorrect. Since in general it
is impossible to construct an extensive version of a game in which Nash equilibria
corresponds to CCE of the original game, the results of Kalai do not imply ours.

It is interesting to compare our model and assumptions to those of Kalai. The
first difference is that we study only complete information games while Kalai allows
players to be of several types (though a key assumption in his paper is that types
are drawn independently from some universal finite set). Another difference is in
the anonymity and continuity assumptions used. In Kalai’s paper the payoff to a
player depends on his own type and action and on the empirical distribution of type-
action characters of the other players. This implies that, with probability 1, the
categorization Ĉi will be the same for all the players20. In the current paper ‘types’
of players are subjective in the sense that the categorization Ĉi is likely to depend
on i. Moreover, the number of different ‘types’ (elements of the categorization Ĉi) is
not bounded and can grow to infinity as |N | grows to infinity21.

The condition of diminishing effect of a single player (Definition 4 (ii)) is slightly
different from the uniform equicontinuity condition of Kalai (2004, Definition 3).
None of them implies the other. Uniform equicontinuity implies semi-anonymity in
the sense of Kalai (2004, Definition 2) which will make our analysis trivial. But

20More accurately, for every two players i, j the partitions Ĉi excluding player j and Ĉj excluding
player i will be identical. Notice, however, that when different profiles of types are realized this
common categorization may very well change.

21If |Ĉi| is uniformly bounded in Γ(S) then, by Remark 3, Theorem 1 holds.
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the diminishing effect condition requires that the change in payoff when one player
changes his action will be inversely proportional to the number of players in the
game. This property is not implied by uniform equicontinuity.

The concept of Nash equilibrium in normal form games with a continuum of players
originated in the work of Schmeidler (1973). The main result there is the existence of
a pure equilibrium when the game is anonymous. Similar results in different models
were obtained by Mas-Colell (1984) and by Rath (1992). Theorem 4 shows that
CCE can in some cases eliminate the need for randomization even if the game is not
anonymous. A comprehensive survey of the literature about games with a continuum
of players can be found in Ali Khan and Sun (2002).

CCE is a special case of Battigalli and Guaitoli’s (1988) Conjectural Equilibrium
(CE). Rubinstein and Wolinsky (1994) introduced the notion of Rationalizable Con-
jectural Equilibrium (RCE) by adding common knowledge of rationality, thus refining
CE. One may ask why we use CE and not RCE as our solution concept. Two rea-
sons justify this choice. The first is that the games we analyze have many players.
It is natural to assume that in this case players do not “get into the head” of their
opponents and draw conclusions which change their beliefs, simply because it is too
complicated to do so. Second, every RCE is also a CE. Thus, our main results
wouldn’t change had we defined CCE using RCE and not CE.

Each one of these solution concepts is weaker than Nash equilibrium. In the final
section of their paper Rubinstein and Wolinsky (1994) suggest that the plausibility
of Nash equilibrium increases when every RCE is also Nash. They write

“. . . In games with this property the Nash equilibrium concept is
more compelling, because in a sense the equilibrium requires less in-
formation on the part of the players. It may therefore be of interest
to identify conditions under which, for some natural signal function
such as one’s own payoff, RCE and Nash equilibria are equivalent.”

Theorems 1 and 2 provide precisely the kind of conditions that Rubinstein and
Wolinsky are talking about. The signal function of a player, however, is not her own
payoff but the expected behavior of groups of her opponents.

Attempts to weaken the assumption that agents predict accurately the actions
of their opponents have been made in settings other than normal form games. For
extensive form games Fudenberg and Levine’s (1993) self-confirming equilibrium is
based on the fact that agents’ beliefs are correct only along the equilibrium path of
play22. For repeated games, Kalai and Lehrer (1993a, 1993b) introduced the notion
of subjective equilibrium where player’s beliefs are not contradicted by the observed
choices of their opponents.

22See also Dekel et al. (1999).
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Some recent papers discuss issues related to categorical thinking in the context of
decision making. Fryer and Jackson (2004) develop a model of how past experiences
are sorted into categories and show that certain biases in decision making emerge from
this process. Pȩski (2006) shows that in symmetric environments categorization is
an optimal way for predicting properties of future instances based on past instances.
Azrieli and Lehrer (2007) axiomatize categorizations that are generated by proximity
to a set of prototypical cases. Finally, for surveys about categorization in social
psychology see Fiske (1998) and Macrae and Bodenhausen (2000).

7. Proofs

7.1. Proof of Theorem 1. We start with several lemmas. Fix a family of games
Γ(S) which is uniformly bounded (by a constant M > 0) and exhibits a diminishing
effect of a single player (w.l.o.g. with the same constant M).

For the following Lemmas 3-8 and 10-11 fix a game G = (N, {Si}i∈N , {ui}i∈N ) ∈
Γ(S), a player i ∈ N , a profile of strategies σ and two positive numbers δ, ρ > 0. A
typical element of the categorization Ĉi will be denoted by B. Let

Eρ =
{

B ∈ Ĉi : |B| ≥ ρ|N |
}

and Hρ = Ĉi \Eρ =
{

B ∈ Ĉi : |B| < ρ|N |
}

.

For every B ∈ Ĉi and for every s ∈ S let

Dδ(B, s) =
{

s−i ∈ S−i :
∣∣∣∣
#{j ∈ B : sj = s}

|B| − σB(s)
∣∣∣∣ ≥ δ

}
,

and denote

Dδ,ρ =
⋃

B∈Eρ

⋃

s∈S
Dδ(B, s), Dδ =

⋃

B∈Ĉi

⋃

s∈S
Dδ(B, s).

Let Pσ−i denote the probability measure on S−i induced by the profile of strategies
σ−i.

Lemma 3. Pσ−i(Dδ(B, s)) ≤ 2e−2|B|δ2
For every B ∈ Ĉi and for every s ∈ S.

Proof. For a given B ∈ Ĉi and s ∈ S consider the sequence of independent random
variables (Xj)j∈B defined by Xj = 1 if player j’s realized strategy is s and Xj = 0

otherwise. Let X =
∑

j∈B Xj . We have Dδ(B, s) =
{∣∣∣ X

|B| − σB(s)
∣∣∣ ≥ δ

}
where

σB(s) is the expected value of the random variable X
|B| . By a classical bound of

Hoeffding (see for instance Petrov, 1975 chapter III) the probability of this event is
not greater than 2e−2|B|δ2

.

Lemma 4. Pσ−i(Dδ,ρ) ≤ 2|S|e−2|N|ρδ2

ρ and Pσ−i(Dδ) ≤ 2|S||Ĉi|e−2d(G)iδ
2
.
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Proof. Using the previous lemma, and by the definition of Eρ

Pσ−i(Dδ,ρ) ≤
∑

B∈Eρ

∑

s∈S
2e−2|B|δ2

= 2|S|
∑

B∈Eρ

e−2|B|δ2

≤ 2|S|
∑

B∈Eρ

e−2ρδ2|N | ≤ 2|S|e−2|N |ρδ2

ρ
.

Also,

Pσ−i(Dδ) ≤
∑

B∈Ĉi

∑

s∈S
2e−2|B|δ2

= 2|S|
∑

B∈Ĉi

e−2|B|δ2 ≤ 2|S||Ĉi|e−2d(G)iδ
2
.

Lemma 5. If τ−i ∈ FĈi
(σ−i) then the bounds of Lemma 4 hold when Pσ−i is replaced

with Pτ−i. In particular, |Pσ−i(Dδ,ρ) − Pτ−i(Dδ,ρ)| ≤ 2|S|e−2|N|ρδ2

ρ and |Pσ−i(Dδ) −
Pτ−i(Dδ)| ≤ 2|S||Ĉi|e−2d(G)iδ

2
.

Proof. τ−i ∈ FĈi
(σ−i) means that σB(s) = τB(s) for every B ∈ Ĉi and for every

s ∈ S. Thus, Lemma 4 may be applied without any change to Pτ−i . It follows

that both Pτ−i(Dδ,ρ) and Pσ−i(Dδ,ρ) are in the interval
[
0, 2|S|e−2|N|ρδ2

ρ

]
. Similarly,

Pτ−i(Dδ) and Pσ−i(Dδ) are both in the interval
[
0, 2|S||Ĉi|e−2d(G)iδ

2
]
.

Lemma 6. Fix two profiles of actions s, s′ ∈ S. If s−i ∈ FĈi
(s′−i) then ui(s) = ui(s′).

Proof. s−i ∈ FĈi
(s′−i) means that #{j ∈ B : sj = s} = #{j ∈ B : s′j = s} for

every s ∈ S and for every B ∈ Ĉi. Thus, for every B ∈ Ĉi, there is a permutation
of players’ names in the set B which transforms the restriction of s to B to the
restriction of s′ to B. However, every such permutation of players in the set B can
be achieved by a sequence of exchanges of pairs of players. By the definition of the
partition Ĉi, every such exchange doesn’t affect the payoff of player i. The assertion
follows.

Lemma 7. If s−i, s
′
−i ∈ S−i \Dδ then |ui(si ; s−i)−ui(si ; s′−i)| ≤ δ|S|M for every

si ∈ Si.

Proof. Since both s−i and s′−i are not in Dδ it follows that |#{j ∈ B : sj =
s} −#{j ∈ B : s′j = s}| ≤ 2δ|B| for every B ∈ Ĉi and for every s ∈ S. Thus, there
is a profile of actions s′′−i ∈ FĈi

(s′−i) such that s′′−i is obtained from s−i by no more
than

∑
B∈Ĉi

∑
s∈S δ|B| = δ|S|(|N | − 1) changes in players’ actions. By the previous

lemma, we have that |ui(si ; s−i) − ui(si ; s′−i)| = |ui(si ; s−i) − ui(si ; s′′−i)|. By
the diminishing effect assumption, the influence of some player j 6= i changing her
action on the utility function ui is not greater than M

|N | . It follows that |ui(si ; s−i)−
ui(si ; s′′−i)| ≤ δ|S| (|N | − 1) M

|N | ≤ δ|S|M .
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Lemma 8. If s−i, s
′
−i ∈ S−i\Dδ,ρ then |ui(si ; s−i)−ui(si ; s′−i)| ≤ M

(
δ|S|+

∑
B∈Hρ

|B|
|N |

)

for every si ∈ Si.

Proof. Repeat the same argument as in the previous lemma for every set B ∈ Eρ.
The total number of players which belong to one of the sets in Hρ (the complement
of Eρ) is

∑
B∈Hρ

|B|. By the diminishing effect assumption the total influence of

these players on the payoff of i is bounded by
M

∑
B∈Hρ

|B|
|N | . The assertion follows.

Lemma 9. Let Ω be a finite set, P, Q two probability measures on Ω, X : Ω → R a
random variable and ε > 0. Let A ⊆ Ω be an event such that |P (A) − Q(A)| ≤ ε,
and assume that r ≤ X(ω) ≤ R for every ω ∈ A (r ≤ R are two constants). Then∣∣∑

ω∈A X(ω)(P (ω)−Q(ω))
∣∣ ≤ R− r + εmax(|r|, |R|).

Proof. Denoting EP (EQ) the expectation operator w.r.t. to the measure P (Q), one
has ∣∣∣∣∣

∑

ω∈A

X(ω)(P (ω)−Q(ω))

∣∣∣∣∣ = |P (A)EP (X|A)−Q(A)EQ(X|A)|

≤ |P (A)EP (X|A)−Q(A)EP (X|A)|+ |Q(A)EP (X|A)−Q(A)EQ(X|A)|
= |P (A)−Q(A)||EP (X|A)|+ Q(A)|EP (X|A)− EQ(X|A)|
≤ ε max(|R|, |r|) + R− r.

Lemma 10. If τ−i ∈ FĈi
(σ−i) then

|ui(si ; σ−i)− ui(si ; τ−i)| ≤ M |S|
(
δ + 6|Ĉi|e−2d(G)iδ

2
)

for every si ∈ Si.

Proof.

|ui(si ; σ−i)− ui(si ; τ−i)| ≤
∣∣∣∣∣∣

∑

s−i∈Dδ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

s−i∈S−i\Dδ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣
.

The first sum can be estimated by∣∣∣∣∣∣
∑

s−i∈Dδ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣

≤ M ·
∑

s−i∈Dδ

|Pσ−i(s−i)− Pτ−i(s−i)| ≤ M · (Pσ−i(Dδ) + Pτ−i(Dδ)
)

≤ M · 4|S||Ĉi|e−2d(G)iδ
2
,
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where the first inequality is due to the fact that Γ(S) is uniformly bounded by M , and
the third inequality is by Lemmas 4 and 5. In order to estimate the second sum we
use Lemma 9 with Ω = S−i, P = Pσ−i , Q = Pτ−i , X(ω) = ui(si ; ω), A = S−i \Dδ

and ε = 2|S||Ĉi|e−2d(G)iδ
2
. Notice that, by Lemma 7, the utility ui(si ; ·) is bounded

in an interval of length not larger than δ|S|M . Thus,
∣∣∣∣∣∣

∑

s−i∈S−i\Dδ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣
≤ δ|S|M + M · 2|S||Ĉi|e−2d(G)iδ

2
.

Summing up the two inequalities gives the desired bound.

Lemma 11. If τ−i ∈ FĈi
(σ−i) then

|ui(si ; σ−i)− ui(si ; τ−i)| ≤ M

(
δ|S|+

∑
B∈Hρ

|B|
|N | +

6|S|e−2|N |ρδ2

ρ

)

for every si ∈ Si.

Proof. Similarly to the previous proof,

|ui(si ; σ−i)− ui(si ; τ−i)| ≤
∣∣∣∣∣∣

∑

s−i∈Dδ,ρ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

s−i∈S−i\Dδ,ρ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣
.

By Lemmas 4 and 5,∣∣∣∣∣∣
∑

s−i∈Dδ,ρ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣
≤ M · 4|S|e−2|N |ρδ2

ρ
.

The second sum is estimated by Lemma 9 with Ω = S−i, P = Pσ−i , Q =

Pτ−i , X(ω) = ui(si ; ω), A = S−i \ Dδ,ρ and ε = 2|S|e−2|N|ρδ2

ρ . Notice that, by
Lemma 8, the utility ui(si ; ·) is bounded in an interval of length not larger than

M

(
δ|S|+

∑
B∈Hρ

|B|
|N |

)
. Thus,

∣∣∣∣∣∣
∑

s−i∈S−i\Dδ,ρ

ui(si ; s−i)
(
Pσ−i(s−i)− Pτ−i(s−i)

)
∣∣∣∣∣∣
≤ M

(
δ|S|+

∑
B∈Hρ

|B|
|N | +

2|S|e−2|N |ρδ2

ρ

)
.

Summing up the two inequalities gives the desired bound.

The proof of Theorem 1 with condition (A1):
Assume that Γ(S) satisfies (A1) and fix ε > 0. Choose 0 < δ < ε

6M |S| . By (A1), there

is ρ > 0 such that
∑

B∈Hρ
|B|

|N | < ε
6M for every G ∈ Γ(S) and for every i ∈ N . After
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fixing such δ and ρ, let n0 be large enough so that 6|S|e−2n0ρδ2

ρ < ε
6M . Fix G ∈ Γ(S)

with |N | > n0 and let σ be a CCE w.r.t. Ĉ in G.
Then, for every i ∈ N , there is a strategy profile τ−i ∈ FĈi

(σ−i) such that σi is a
best response to τ−i. It follows from Lemma 11 that, for every i ∈ N and for every
si ∈ Si, |ui(si ; σ−i)− ui(si ; τ−i)| ≤ ε

2 . Thus,

ui(si ; σ−i) ≤ ui(si ; τ−i) +
ε

2
≤ ui(σi ; τ−i) +

ε

2
≤ ui(σi ; σ−i) + ε.

The proof of Theorem 1 with condition (A2):
Assume that Γ(S) satisfies (A2) and fix ε > 0. Fix 0 < δ < ε

4M |S| . By (A2) there

is n0 large enough so that 6|Ĉi|e−2d(G)iδ
2

< ε
4M |S| for every G ∈ Γ(S) with |N | > n0

and for every i ∈ N . Fix G ∈ Γ(S) with |N | > n0 and let σ be a CCE w.r.t. Ĉ in G.
Then, for every i ∈ N , there is a strategy profile τ−i ∈ FĈi

(σ−i) such that σi is a
best response to τ−i. It follows from Lemma 10 that, for every i ∈ N and for every
si ∈ Si, |ui(si ; σ−i)− ui(si ; τ−i)| ≤ ε

2 . Thus,

ui(si ; σ−i) ≤ ui(si ; τ−i) +
ε

2
≤ ui(σi ; τ−i) +

ε

2
≤ ui(σi ; σ−i) + ε.

7.2. Proof of Theorem 2. Assume that x̂ ∈ P̂ is a CCE w.r.t. a categorization
profile C = {Ct}t∈T which satisfy the conditions of the theorem. For every player
t ∈ T , the payoff function u(t, ·) is constant on the set FCt(x̂). Also, it is clear that
x̂ ∈ FCt(x̂). Thus, since, for almost every t ∈ T , x̂(t) is a best response to some
ŷ ∈ FCt(x̂), it follows that, for almost every t ∈ T , x̂(t) is also a best response to x̂.
This means that x̂ is also a Nash equilibrium.

7.3. Proof of Theorem 3. Let Πt : Y T → Y be the projection function on the
coordinate t. Since we work with the product topology in Y T it will be sufficient to
show that Πt(Ũ) is dense in Y for every t ∈ T . Since Πt(Ũ) is independent of t we
denote A = Πt(Ũ).

Recall that A is the set of all continuous functions v : P̂ → IRn with the property
that there exists a finite measurable partition R of T such that v(x̂) = v(ŷ) whenever∫
B x̂dλ =

∫
B ŷdλ for every B ∈ R. In order to prove that A is dense in Y it is

sufficient to do so for each one of the n coordinates of v separately. Thus, with abuse
of notation, we let Y = {v : P̂ → IR | v is continuous} and A ⊆ Y is the class of
(real valued) functions which depend only on the integral of the T -strategy over a
finite number of sets in T .

Claim 1. A is a vector subspace of Y .

Proof. Let v1, v2 ∈ A. Then there are finite partitions R1, R2 of T such that v1

depends only on
{∫

B x̂dλ
}

B∈R1
and v2 depends only on

{∫
B x̂dλ

}
B∈R2

. let R be a
finite partition which is finer than both R1 and R2. If

∫
B x̂dλ =

∫
B ŷdλ for every

B ∈ R then
∫
B x̂dλ =

∫
B ŷdλ for every B ∈ R1 ∪ R2. Thus, for such x̂, ŷ ∈ P̂ ,
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v1(x̂) + v2(x̂) = v1(ŷ) + v2(ŷ). This implies that v1 + v2 ∈ A. Finally, if α ∈ IR then
obviously αv1 ∈ A.

Claim 2. A is a subalgebra of (the algebra) Y . Moreover, A contains the constant
functions.

Proof. To prove that if v1, v2 ∈ A then v1 · v2 ∈ A repeat the argument of Claim 1.
Also, it is clear that every constant function is in A.

Claim 3. A separates points of P̂ . That is, for every x̂ 6= ŷ ∈ P̂ there is v ∈ A such
that v(x̂) 6= v(ŷ).

Proof. Fix x̂ 6= ŷ ∈ P̂ . For i = 1, . . . , n define the sets B1
i = {t ∈ T : x̂i(t) > ŷi(t)}

and B2
i = {t ∈ T : x̂i(t) < ŷi(t)}. x̂ 6= ŷ implies that there is 1 ≤ i ≤ n such that

λ(B1
i ) > 0 or λ(B2

i ) > 0. Assume w.l.o.g. that λ(B1
1) > 0. Consider the function

v ∈ Y defined by v(ẑ) =
∫
B1

1
ẑ1dλ for every ẑ ∈ P̂ .

First, notice that v ∈ A since it only depends on the integral of the T -strategy
over the set B1

1 . Also, by construction, x̂1(t) > ŷ1(t) for every t ∈ B1
1 . Since B1

1 has
a positive measure it must be that

∫
B1

1
x̂1dλ >

∫
B1

1
ŷ1dλ. Thus, v(x̂) > v(ŷ) and the

claim is proved.

Finally, recall that P̂ is a compact set. By the previous claims the conditions of
the Stone-Weierstrass theorem (see e.g. Ha, 2006, Theorem 5.4.1 in page 398) hold.
Thus, we can conclude that A is dense in Y . This proves the theorem.

7.4. Proof of Proposition 1. First, it is clear that g is symmetric around 1
4 , so

g(α) = g(1
2 − α) for every α ∈ [0, 1

4 ]. It is therefore sufficient to compute g on the
interval [0, 1

4 ].
Fix 1

8 ≤ α ≤ 1
4 and consider the T -strategy where all type 1 players choose e1 and

all type 2 players e2. Obviously, the efficiency of such profile is 0. We claim that
this is a CCE. To see this, let F ′ be a set of type 1 females with measure α, and
let M ′ be a set of type 2 males with measure α. Then the T -strategy Ŷ defined by
Ŷ (t) = e1 for t ∈ (

[0, 1
2) \ (M ∪ F ′)

) ∪M ′ ∪ (
F ∩ [12 , 1]

)
and Ŷ (t) = e2 otherwise is

a consistent conjecture for every player. The best response for such a belief is e1 for
type 1 players and e2 for type 2 players.

Next, consider the case where 0 ≤ α ≤ 1
8 . Let F ′ be a set of type 1 females with

measure 1
4 + α, and let M ′ be a set of type 2 males with measure 1

4 + α. Define x̂ by
x̂(t) = e1 for t ∈ F ′ ∪ (

M ∩ [0, 1
2)

) ∪ (
[12 , 1] \ (F ∪M ′)

)
and x̂(t) = e2 otherwise. We

have p1(x̂) = 1
4 + 2α and p2(x̂) = 1

4 − 2α so eff(x̂) = 4(1
4 + 2α)(1

4 − 2α) = 1
4 − 16α2.

To see that x̂ is a CCE, consider the following T -strategy ŷ. The set M ∩ [0, 1
2)

of type 1 males play e2 and not e1 as in x̂. Instead, a set of measure α of type 2
males who played e2 according to x̂ is switching to e1. Similarly, the set of type 2
females is switching from e2 in x̂ to e1 in ŷ and a set of measure α of type 1 females
is switching from e1 to e2. It is clear that ŷ ∈ FCt(x̂) for every player t. Moreover,
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p1(ŷ) = 1
4 and p2(ŷ) = 1

4 so for every player both actions give the same payoff (thus
both are best responses to ŷ).

Finally, notice that the efficiency of a T -strategy x̂ is decreasing in the distance
of p1(x̂) and p2(x̂) from 1

4 . It can therefore be verified that there is no CCE which
yields a lower social efficiency.

7.5. Proof of Theorem 4. For a partition R of T and a player t ∈ T , let R(t)
denotes the element of R which contains t. If x̂ ∈ P̂ is a T -strategy, let fR(x̂)
denote the T -strategy defined by fR(x̂)(t) = 1

λ(R(t))

∫
R(t) x̂dλ. Notice that always

fR(x̂) ∈ FR(x̂). Before proving the theorem we need the following lemma.

Lemma 12. For every finite partition R of T the map fR : P̂ → P̂ is continuous in
the L1 weak topology on P̂ .

Proof. Since fR is linear, continuity in the weak topology is equivalent to continuity
in the metric topology (see Dunford and Schwartz, 1988, Theorem 15, page 422).
The latter is guaranteed by the inequality

∫
T |fR(x̂)−fR(ŷ)|dλ ≤ ∫

T |x̂− ŷ|dλ, which
follows from the fact that fR is the projection to the subspace of T -strategies which
are measurable w.r.t. the partition R.

Fix a game u and a categorization profile C = {Ct}t∈T , with Ct coarser than some
C∗ for every t ∈ T . By Lemma 2, it is sufficient to show that there is a pure CCE
w.r.t. the categorization profile {Ct = C∗}t∈T .

Consider the map fC∗ : P̂ → P̂ . By Lemma 12 it is continuous. It follows that
the game ū defined by ū(t, x̂) = u(t, fC∗(x̂)) satisfies assumptions (1) and (2) of
subsection 2.2. Moreover, ū is an anonymous game, so by Theorem 2 in Schmeidler
(1973, see also Remark 2 there) there is a pure Nash equilibrium in ū.

Denote by x̂ one such pure equilibrium of ū. We claim that x̂ is CCE in u. Indeed,
for almost every t ∈ T , x̂(t) · ū(t, x̂) ≥ p · ū(t, x̂) for all p ∈ P . For every such t, by
definition of ū, x̂(t) · u(t, fC∗(x̂)) ≥ p · u(t, fC∗(x̂)) for all p ∈ P .

8. References

Ali Khan, M., Sun, Y., 2002. Non-cooperative games with many players. In: Au-
mann, R., Hart, S. (Eds.), Handbook of Game Theory. Elsevier, Amsterdam/New
York.
Azrieli, Y., Lehrer, E., 2007. Categorization generated by extended prototypes – an
axiomatic approach. Journal of Mathematical Psychology 51, 14-28.
Battigalli, P., Guaitoli, D., 1988. Conjectural equilibrium. mimeo.
Dekel, E., Fudenberg, D., Levine, D.K., 1999. Payoff information and self-confirming
equilibrium. Journal of Economic Theory 89, 165-185.
Dunford, N., Schwartz, J.T., 1988. Linear operators, part 1, Wiley.

24



Eliaz, K., 2003. Nash equilibrium when players account for the complexity of their
forecasts. Games and Economic Behavior 44, 286-310.
Ellemers, N., Spears, R., Doosje, B., 2002. Self and social identity. Annual Review
of Psychology 53, 161-186.
Fiske, S.T., 1998. Stereotyping, prejudice and discrimination. In: Gilbert, D.T.,
Fiske, S.T., Lindzey, G. (Eds.), The handbook of social psychology (vol. 2). Oxford
University Press, New-York, 357-411.
Fryer, R.G., Jackson, M.O., 2004. A categorical model of cognition and biased
decision making. mimeo.
Fudenberg, D., Levine, D.K., 1993. Self-confirming equilibrium. Econometrica 61,
523-545.
Ha, D.M., 2006. Functional analysis (vol. 1). Matrix Editions.
Jehiel, P., 2005. Analogy-based expectation equilibrium. J. Economic Theory 123,
81-104.
Kalai, E., 2004. Large robust games. Econometrica 72, 1631-1665.
Kalai, E., 2005. Partially-specified large games. Lecture Notes in Computer Science
3828, 3-13.
Kalai, E., Lehrer, E, 1993. Rational learning leads to Nash equilibrium. Economet-
rica 61, 1019-1045.
Kalai, E., Lehrer, E, 1993. Subjective equilibrium in repeated games. Econometrica
61, 1231-1240.
Macrae, C.N. Bodenhausen, G.V., 2000. Social cognition: Thinking categorically
about others. Annual Review of Psychology 51, 93-120.
Mas-Colell, A., 1984. On a theorem of Schmeidler. Journal of Mathematical Eco-
nomics 13, 201-206.
Milchtaich, I., 2004. Social optimality and cooperation in non-atomic congestion
games. Journal of Economic Theory 114, 56-87.
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