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Abstract

It is well known from anecdotal, survey and econometric evidence that the re-

lationship between the exchange rate and macro fundamentals is unstable. The

aim of this paper is both to understand what drives this instability and to inves-

tigate some key implications. We develop a model where large time variation in

the relationship between the exchange rate and macro fundamentals endogenously

develops from a combination of incomplete information and very gradual changes

in structural parameters of the economy. After calibrating the model to exchange

rate and interest rate data for industrialized countries, we investigate the impact

of parameter instability on the statistical properties of exchange rates and interest

rates and on the ability to forecast exchange rates out of sample. We �nd the im-

pact to be remarkably small, even when the relationship between exchange rates

and fundamentals is highly unstable.



1 Introduction

\The dollar's resilience in the wake of recent dire US economic data has raised the

prospect that the currency market may be experiencing one of its periodic changes

in focus" (Financial Times, February 11, 2008)

\The dollar's latest stumble ... came despite optimistic economic data from the

US. But analysts said the movement of the US currency was no longer driven by

growth fundamentals. All the focus is on the de�cit now..." (Financial Times,

February 11, 2003)

As reected in these quotes, it has been widely reported in the �nancial press

that foreign exchange traders regularly change the weight they attach to di�erent

macro indicators. Yin-Wong Cheung and Menzie Chinn (2001) further con�rm this

through a survey of U.S. foreign exchange traders in 1998. It is also consistent with

widespread evidence of parameter instability in the relationship between exchange

rates and macro fundamentals, as documented for example by Wol� (1987), Schi-

nasi and Swamy (1989), Rossi (2006) and Sarno and Valente (2008). The latter

show that to achieve the best exchange rate forecast, one needs to continuously

change the set of variables used. More generally there are numerous studies that

document structural breaks and regime switching in nominal and real exchange

rates.

The aim of this paper is both to propose an explanation for what drives this

unstable relationship between exchange rates and fundamentals and to investigate

some key implications. We �rst develop a model where large time-variation in

the relationship between the exchange rate and macro fundamentals endogenously

develops from a combination of incomplete information and very gradual changes

in structural parameters of the economy. After calibrating the model to data on

exchange rates and interest rates for industrialized countries, we investigate the

impact of parameter instability on the statistical properties of exchange rates and

interest rates and on the ability to forecast exchange rates out of sample.

We frame the analysis in a context of a setup common to many nominal ex-

change rate models. Equilibrium exchange rates are determined by two equations:

an interest rate arbitrage equation and a relationship between the interest rate
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di�erential and a set of macro variables. The latter is usually derived from money

market equilibrium or from monetary policy rules. We introduce two key elements

to this setup. First, we allow for unobserved gradual changes in the structural

parameters that characterize the relationship between interest rates and macro

fundamentals. This can for example be the result of gradual changes in money

demand, gradual policy changes or a gradual change in the structural relationship

between variables targeted by policy makers and other macro variables.1 Second,

we also allow the interest di�erential to be a�ected by unobserved macroeconomic

shocks which makes it harder for agents to learn about structural parameters as-

sociated with observed macro variables.2

We show that even when structural parameters change very slowly, the reduced

form relationship between exchange rates and fundamentals can become highly

unstable in the short to medium run. This is a result of estimation mistakes as

agents continuously update their views of the structural parameters. Particularly

the unobserved variables generate considerable confusion in the short to medium

run. When the exchange rate uctuates as a result of an unobserved macroeco-

nomic shock, it can be optimal for agents to blame this on an observed macro

fundamental by giving it more weight and therefore making it a \scapegoat". For

example, when the dollar depreciates it is natural to attribute it to a large cur-

rent account de�cit. This happens even when the depreciation is unrelated to the

current account de�cit.3

1That macroeconomic relationships are time varying has been widely documented. An early

paper is Stock and Watson (1996). Recent contributions include Boivin (2006), Canova (2005),

Clarida, Gali and Gertler (2000), Cogley and Sargent (2005), Del Negro and Otrok (2007), Inoue

and Rossi (2007), Primiceri (2005), Sims and Zha (2006) and Fernandez-Villaverde and Rubio-

Ramirez (2007).
2This could reect unobserved shocks to money demand, to monetary policy or to any other

part of the economy to the extent that it feeds into equilibrium interest rates (e.g. by a�ecting

variables targeted by the central bank).
3In a previous short paper, Bacchetta and van Wincoop (2004), we developed the idea of such

a scapegoat e�ect in the context of a simple static noisy rational expectations model in which

some parameters are unknown. We showed that excessive weight could be given to a variable

depending on the correlation between the noise shock and the fundamental shock. However, since

that model is static it could not be used to address the unstable dynamic relationship between

exchange rates and fundamentals and its implications. Apart from the dynamic setup, the model

in this paper also di�ers in that there is no private information as in Bacchetta and van Wincoop
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Having established that in an environment with incomplete information an

unstable relationship between exchange rates and fundamentals naturally develops,

we next investigate its implications. Our main focus is on the ability to forecast out

of sample. It is exactly in this context that the issue of parameter instability has

most frequently been discussed in the exchange rate literature.4 Meese and Rogo�

(1983) �rst showed that models do not outperform the random walk in forecasting

future exchange rates, even when the actual future macro fundamentals are used

to forecast. Their results have largely held up since then, even with a lot more

data available.5

If the parameters that characterize the relationship between exchange rates

and macro variables were known and constant, the model would by construction

outperform the random walk.6 Even if parameters were constant, the fact that they

are not known may explain the Meese-Rogo� �ndings due to parameter estimation

error in small samples. This has received considerable attention in the recent

literature and tests have been developed to correct for small sample bias (e.g.

Clark and West (2006)). It is remarkable though that even with much longer

samples the Meese-Rogo� puzzle has continued to hold up. It is therefore natural

to investigate the role of parameter instability as the alternative explanation for

the Meese-Rogo� puzzle.7

We can use our model to investigate the extent to which parameter instability

is responsible for the weak forecasting performance. Maybe surprisingly, we �nd

that even when the relationship between exchange rates and fundamentals is highly

unstable, this cannot explain the Meese-Rogo� �ndings.8 The impact of parameter

(2004). Scapegoat e�ects naturally develop as long as there is incomplete information about

parameters; the information does not need to be private.
4See Wol� (1987), Schinasi and Swamy (1989), Rossi (2005), Sarno and Valente (2008) and

Meese and Rogo� (1988).
5See for example Cheung, Chinn and Pascual (2005) and Rogo� and Stavrakeva (2008).
6This is the case as long as the macro variables have any explanatory power at all.
7More broadly, the only other possible explanation involves changes in the model, which could

involve either the structure of the model or its parameters. If the model remains the same, and

so do its parameters, with a long enough sample we should be able to estimate these parameters

and therefore outperform the random walk.
8Perhaps related to this, the literature on exchange rate parameter instability referred to in

the opening paragraph �nds that allowing for time-varying parameters does not systematically

improve forecasting performance. But this may again be due to the di�culty in estimating
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instability on forecasting performance is only large when the macro fundamentals

have signi�cant explanatory power to start with. But when that is the case, the

model signi�cantly outperforms the random walk in out of sample forecasts both

with and without parameter instability, in contrast to the evidence. Our analysis

implies that the Meese-Rogo� �ndings most likely result from a combination of the

well-known weak explanatory power of observed macro fundamentals and small

sample parameter estimation bias.

The next section presents the model. It also discusses the signal extraction

method used to solve the model and the implications for the relationship between

exchange rates and fundamentals. Section 3 calibrates the model based on data

on interest rates and exchange rates for 13 industrialized countries and presents

numerical results for the relationship between exchange rates and fundamentals

based on simulations. Section 4 uses the model to analyze the impact of the

unstable relationship between exchange rates and fundamentals on the statistical

properties of exchange rates and interest rate and the ability to forecast out of

sample. Section 5 concludes.

2 A Model with Unknown Parameters

We assume that agents know the structure of the model, but not the speci�c

parameter values. The underlying parameters themselves gradually change over

time, so that agents need to keep learning about them. While the underlying

parameters change smoothly, their estimate may vary signi�cantly. This a�ects

the exchange rate and, more importantly, the relationship between exchange rates

and fundamentals. In this section we �rst describe the model, then discuss how

expectations about parameters are formed and �nally consider the implications for

the relationship between exchange rates and fundamentals.

2.1 Basic Framework

Many models of exchange rate determination can be reduced to two equations: an

interest rate arbitrage equation and an equation for the interest rate di�erential.

Together these imply a solution for the equilibrium exchange rate as the present

parameters in small samples, particularly when they are time-varying.
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value of fundamentals. We write these two equations as

Etst+1 � st = it � i�t + �t (1)

it � i�t = ��(Ft + bt) + �st (2)

Equation (1) is the interest rate arbitrage equation. We denote Et as the expecta-

tion of the representative investor, st as the log nominal exchange rate (domestic

per foreign currency), it and i
�
t as the domestic and foreign nominal one-period

interest rates and �t as the risk premium. This equation means that the expected

excess return on the foreign bond is equal to a risk premium �t. Equation (2)

gives an expression for the interest rate di�erential. Here Ft depends on a linear

combination of observed macro fundamentals fit, but is not observed directly, and

bt captures unobserved macro fundamentals.

Equation (2) is a reduced form equation that can be derived from interest

policy rules, from a standard monetary model, or from a DSGE model (e.g., see

Engel and West, 2005, or Nason and Rogers, 2008). It is usually assumed that

all macro fundamentals are observed. We generalize this by allowing for both

observed and unobserved fundamentals. There are many possible justi�cations for

this. When derived from money market equilibrium, bt could reect the aggregate

of idiosyncratic money demand components, which is not observed. When derived

as a monetary policy rule, bt could capture the idiosyncrasies of policy makers that

are not easily connected to observed fundamentals. Yet another interpretation is

that policy makers respond to a perfectly observable macro fundamental such as

the unemployment rate, while the latter is driven by both observed and unobserved

macro fundamentals. Under that interpretation Ft+bt would be the unemployment

rate.

In the data both st and Ft are non-stationary and typically considered in �rst

di�erences. We will therefore focus on the �rst di�erence of fundamentals and

assume the following linear relationship9

�Ft = �f
0
t�t (3)

9An alternative speci�cation is Ft = f 0t�t, so that �Ft = (�ft)
0�t + f

0
t��t. In that case,

however, the impact of small changes in parameters on Ft, and therefore on the exchange rate,

eventually explodes to plus or minus in�nity. The reason is that a parameter change is multiplied

with the level of the fundamental, which is unbounded due to non-stationarity.
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where ft = (f1t; f2t; :::; fNt)
0 is the vector of N observed macroeconomic fundamen-

tals and �t = (�1t; �2t; :::; �Nt)
0 is the vector of associated parameters. In contrast

to most of the literature, we allow the coe�cients associated with the observed

fundamentals to vary over time. Moreover, we assume that investors do not know

�t and need to estimate it. However, the process of �t is known (and is speci�ed

below).

Since Ft is not directly observable, there is uncertainty about the underlying

model. Investors need to estimate current and future �t. They have two sources of

information regarding �t. First, they know the process of �t. Second, by observing

the exchange rate and the interest rate di�erential, they know Ft+bt from (2). We

describe below how investors combine optimally these two sources of information

to form expectations about �t. The use of Ft + bt gives more precise information

on average. But it is also a source of estimation errors.

Consider for example the expectation of the parameter �nt for fundamental

n. While �nt a�ects Ft + bt, the latter is also a�ected by bt, all current and past

fundamentals and all current and past parameters. Therefore to the extent that

Ft + bt is used as a source of information about �nt, its expectation can change

without any change in �nt itself. We will see that it is this rational confusion

that is the key driver behind the unstable relationship between exchange rates and

observed fundamentals.

2.2 Exchange Rates and Fundamentals

After substituting (2) into (1) we obtain the following standard reduced form (e.g.,

see Engel and West, 2005, or Engel, Mark, and West, 2008):

st = (1� �)Ft + �zt + �Etst+1 (4)

Here � = 1=(1+�) and zt = �bt��t. This can be used to solve for the equilibrium
exchange rate as a familiar present value equation:

st = (1� �)Ft + �zt +
1X
i=1

�iEt ((1� �)Ft+i + �zt+i) (5)

For convenience, in the remainder of this section we consider the special case

without a risk premium and where bt and �ft are iid. More precisely, for the rest
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of this section we assume that: i) �t = 0, 8t; ii) bt = "bt with "
b
t � N(0; �2b ); iii)

�fnt = "fnt with "
f
nt � N(0; �2f ). A more general speci�cation will be considered in

the numerical analysis in the next section. We maintain the assumption throughout

the paper that shocks to fnt, bt and parameters are uncorrelated with each other.

Under these assumptions,
P1
i=1 �

iEt(1��)Ft+i = �EtFt because EtFt+i = EtFt.

The �rst di�erence of the present value equation (5) then becomes:

�st = (1� �)�Ft + (1� �)�bt + �(EtFt � Et�1Ft�1) (6)

When parameters �t are known, EtFt � Et�1Ft�1 = �Ft, so that (6) becomes:

�st = �f
0
t�t + (1� �)�bt (7)

In this case, the impact of a change in fundamental fnt on the exchange rate is

simply given by �nt: �st = �nt�fnt.

When parameters are time varying, however, the expression EtFt � Et�1Ft�1

is much more complex as it depends on expectations of parameters. In order to

avoid having to compute expectations of parameter innovations going back to the

in�nite past, we assume that parameters are known after T periods. In practice

we will set T very large. In that case, we can write (6) as:

�st = �f
0
t ((1� �)�t + �Et�t) + (1� �)�bt+ �

TX
i=1

�f 0t�i(Et�t�i�Et�1�t�i) (8)

From (8) we see that the impact of fundamentals changes on exchange rate changes

depends on the parameter expectation Et�t and on the change in expectations

Et�t�i�Et�1�t�i of past parameters.10 More generally, if changes in fundamentals
are not iid, �st also depends on expectations about future values of the parameters.

The general setup is discussed in the Appendix.

As can be seen from the �rst term in (8), the change �ft in the vector of current

fundamentals is now multiplied by a weighted average of actual and expected

parameter values. Since � tends to be close to 1 (� is small), most of the weight is

on the expected value of parameters rather than the actual level of parameters. The

10The reason is that the impact of past changes in fundamentals on Ft depends on past pa-

rameter values, while agents continuously change expectations not only about current but also

about past parameter values. This contrasts with the case of constant parameters where only

current changes in fundamentals matter when fundamentals follow a random walk.
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reason is that the exchange rate is forward looking and depends on expectations

of future fundamentals. In this particular example, where fundamentals follow a

random walk, expected future levels of F are equal to the expected level of F

today, which depends on the expectation of the current set of parameters �t.

Moreover, we will show that changes in current fundamentals lead to changes

in the expectation of both current and past parameters. Thus, changes in funda-

mentals also a�ect the last element of equation (8). The derivative of the exchange

rate with respect to current fundamentals is then:

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@Et�t�i
@�fnt

(9)

2.3 Expectation of Parameters

In order to determine the impact of fundamentals on the exchange rate, we need

to determine the expectation of current and past parameters. We do this by �rst

assuming a process for the parameters and then solving a signal extraction problem.

We consider the case where a parameter �nt depends on a �nite number T of

past innovations:

�nt = �n +
TX
i=1

�ni"n;t�i+1 (10)

where "nt � N(0; �2�). As discussed above, we assume that parameters at dates

t�T and earlier are known at date t. This assumption is for technical convenience
only. It implies that only parameter innovations over the past T periods are

unknown, which are the innovations that a�ect the current �nt. By assuming that

T is �nite, the signal extraction problem becomes tractable as there is only a �nite

number of unknowns. However, we will set T very large in the numerical analysis

in the next section, so that we allow for uncertainty in parameter innovations going

far back in time.

In terms of vector notation (10) can be written as

�t = � +��t (11)

where � =(�1; �2; :::; �N)
0 is a N-vector of constants; �t is a NT vector that stacks

all the vectors �nt = (�nt; :::; �n;t�T+1)
0; and � is a N �NT matrix with �[n; T (n�

1) + 1 : Tn] = �0n = (�n1; �n2; :::; �nT ) and zeros otherwise.
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In order to form expectations about current and past values of �t we need to

compute expectations about the vector �t of current and past parameter innova-

tions. Since the problem is linear and all the shocks are normal, we can use stan-

dard signal extraction techniques. Leaving some of the details to the Appendix,

we sketch how this is done. We start from the knowledge that the unconditional

distribution of �t is normal with mean zero and variance �
2
�INT , where INT is an

identity matrix of size NT . We combine this with knowledge of dt = Ft + bt over

the past T periods. De�ning Yt =
�
d�t ; ::; d

�
t�T+1

�
, where d�t subtracts the known

components from dt, we have

Yt = H
0
t!t (12)

where !0t = (�
0
t; "

b
t ; "

b
t�1; :::; "

b
t�T+1) and Ht is a matrix that depends on current and

lagged changes in observed fundamentals: �ft�i for 0 < i < T + 1. The precise

form of Ht can be found in the Appendix.

The unconditional distribution of !t is normal with mean zero and variance

~P =

0@ �2�INT 0

0 �2b IT

1A (13)

Combining this with (12), standard signal extraction11 implies that the conditional

distribution of !t is normal with mean

Et!t =MtYt (14)

Mt=~PHt

h
H0
t
~PHt

i�1
and variance

P = ~P�MH0 ~P

Therefore

Et!t = Ct!t (15)

where Ct = MtH
0
t. Given the de�nition of !t, we can determine Et�t�i, i =

1; 2; :::; T � 1, from (15) and use this to compute Et�t�i from (11).

We then have

Et�t�i = �̂t�i +
ti!t (16)

11See for example Townsend(1983, p.556).
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Here �̂t�i is equal to � plus (for i > 1) a vector that depends on parameter

innovations more than T periods ago that are known time t. The matrix 
ti is

equal to �0eIiCt, where eIi is a matrix of zeros and ones that maps !t into the
unknown elements of �t�i.

There are two important features to notice from (16). First, Et�t�i is de-

termined by a combination of shocks contained in !t. Thus, the expectation of

a speci�c coe�cient �nt�i depends on its own shocks, but also on current and

past shocks to the noise vector bt and to all other coe�cients. Second, 
ti de-

pends on current and past �ft so that shocks to fundamentals a�ect parameter

expectations.12

As we will see, the expectations of �nt can change signi�cantly over a relatively

short period of time even when the true parameters change very slowly. What

matters is not the monthly (or even annual) uctuations in structural parameters

but rather their potential to uctuate over a very long period of time (decades

or longer). The unconditional standard deviation of the parameters then becomes

large even though changes from period to period are small. A large unconditional

standard deviation of parameters, together with the di�culty in learning about

their level, leaves a lot of room for large and frequent changes in expectations about

these parameters. This allows expectations to become signi�cantly disconnected

from the true value of the parameters.

2.4 The Scapegoat E�ect

At times, the weight of a fundamental fnt can increase even if its underlying

parameter �nt does not change. We refer to this phenomenon as a scapegoat e�ect.

To see when this can occur, substitute (16) into (9). The derivative of �st with

respect to �fnt becomes

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@
ti

@�fnt
!t (17)

This expression shows that the impact of a change in a fundamental on exchange

rate depreciation depends only partly on the underlying coe�cient �nt (remember

that � is close to 1). The main elements determining this impact are the last

12Current and past �ft enter Ht, which a�ects Mt, which a�ects Ct, which a�ects 
ti.
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two terms, i.e., the expectation of �nt and the change in expectations of �t�i
caused by the change in �fnt. Both of these factors contribute to instability in

the relationship between exchange rates and fundamentals.

Consider for example a rise in bt. This will increase Ft + bt, which is observed.

If at the same time the fundamental fnt has increased (over the last T periods)

relative to the other fundamentals, one can make this variable the scapegoat for

the observed increase in Ft+ bt by increasing the expectation of the parameter �nt.

This would happen even when �nt has not changed at all.

The scapegoat e�ect can be seen more explicitly by linearizing equation (17).

Let the last term in (17) be xt. The second order term of its linear approximation

gives (see Appendix):

xt(2) = �nt"
b
t where �nt = a

T�1X
j=0

bj�fn;t�j

i.e., �nt depends positively on current and past �fn. Thus, there is a scapegoat

e�ect for fundamental n when there is a positive b shock combined with positive

changes in the fundamental. This expression also shows that the scapegoat e�ect

can be volatile since it depends on a combination of shocks.

The third order term in linearizing the last term in (17) gives

xt(2) = �t�t

where �t depends positively on current and past fundamental shocks. Thus, shocks

to other parameters combined with large values of fundamentals can create a scape-

goat e�ect for variable n. The reason is that changes in parameters of other vari-

ables lead to a change in the observed Ft + bt that can be attributed to �nt when

the variable n is a convenient scapegoat.

In order to illustrate these points and show the magnitude of the scapegoat

e�ect, we now turn to a calibration of the model that is grounded in monthly data

on exchange rates and interest rates.
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3 Numerical Analysis

3.1 Calibration

In the previous section, we considered a special case with no risk-premium shocks

and where both bt and �fnt are iid. For calibration purposes we now turn to a

somewhat more general form of the model. We will consider one period to be a

month.

First, we assume that bt and �fnt follow AR(1) processes:

�fnt = �f�fn;t�1 + "ft

bt = �bbt�1 + "bt

Second, in order to match observed exchange rate volatility we allow for a time-

varying risk premium. Let vt be the present discounted value of the risk premium:

vt =
1X
k=0

�kEt�t+k

To match the observed volatility and autocorrelation of �st, we assume that vt

follows the process

vt+1 � vt =  1(vt � vt�1)�  2vt + "vt (18)

where "vt � N(0; �2v).

We also need to be more precise about the process for the parameters �nt,

i.e., the values for �i in equation (10). For an interesting analysis, the underlying

parameters should have two features. First, they should not be easily predictable.

Otherwise there would be little model uncertainty. Second, they should not be

too variable from period to period. Otherwise their intrinsic variability would

fully explain the time variation in the relationship between exchange rates and

fundamentals. It would appear highly unlikely that structural parameters change

by large amounts from month to month, or from year to year, and on a continuous

basis. In order to get these two features, we set �1 = �T = 1 and then choose

the other parameters �i (i = 2; ::; T � 1) such that we maximize the ratio of
the unconditional standard deviation of �nt relative to the standard deviation of

changes in �nt. This process implies that an innovation impacts the parameter �nt

slowly over time, building up to a maximum impact after T=2 periods.
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Table 1 reports the parameters adopted for the benchmark parameterization.

The �rst �ve parameters are associated with the process for bt and vt. These are

set to closely match the standard deviation and �rst-order autocorrelation of the

monthly exchange rate change and monthly interest di�erential in the data. We

considered monthly data from 1973(1) to 2007(11) for exchange rates and interest

di�erentials for 13 industrialized countries relative to the United States.13 These

moments can be seen from the �rst four rows of the �rst column of Table 2. In

the second column of Table 2, we show the moments produced by the model with

the benchmark parameters. As a by-product the model also generates a signi�cant

negative correlation between the change in the exchange rate and lagged interest

di�erential. The Fama regression coe�cient, reported in the �fth row of Table 2,

is even slightly more negative than in the data.14

The next three parameters relate to the process for �nt. We normalize by

setting its mean value at � = 1. We set T = 1000, so that parameter innovations

over the last 1000 months, or 83 years, are unknown. We set �� = 0:000165. As

reported in the last row of Table 2, this implies a monthly standard deviation of the

change in �nt of 0.27% of the mean value of parameters, which is small. But there

is considerable uncertainty about the level of parameters as their unconditional

standard deviation is 1.2, or 120% of their steady state level. We will compare this

both to the case where parameters are constant and where the standard deviation

of parameters is twice that in the benchmark parameterization.

The next three parameters relate to the process of the fundamentals. We

assume that N = 5, so there are �ve fundamentals. Under the benchmark para-

meterization we assume that fundamentals follow a random walk and the standard

deviation of innovations is 0.2%. As can be seen from Table 2, this implies an R2

of 0.04 of a regression of the monthly exchange rate change on the change in the

�ve fundamentals (computed for a sample of 1300 months). This captures the

well-known weak explanatory power of observed fundamentals for exchange rate

uctuations. At an annual level this corresponds to an R2 of 0.11. These num-

13The countries are Australia, Austria, Belgium, Canada, Finland, Germany, Italy, Japan,

Netherlands, Norway, Spain, Switzerland, United Kingdom.
14We emphasize that this is not intended as an explanation for the forward discount puzzle

as it is due to entirely exogenous risk-premium shocks. It does imply though that the model is

well grounded in the data as it conforms to the basic statistical properties of exchange rates and

interest rates.
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bers are not unrealistic, as documented for example in Bacchetta, Beutler and van

Wincoop (2008). But we will conduct sensitivity analysis with respect to both the

standard deviation and persistence of changes in fundamentals.

Finally, we have set � relatively small at 0.03, implying a discount rate � in

the present value equation for the exchange rate of 0.97. This is consistent with

evidence by Engel and West (2005) that the discount rate is close to 1.

3.2 Results

We simulate the model over 2300 months. All moments reported drop the �rst 1000

months in order to generate a prior history of shocks. Unless otherwise indicated,

the moments reported in the Tables are based on the subsequent 1300 months.

Derivative Exchange Rate with Respect to Fundamentals

Figures 1 and 2 show @�st=@�fnt for each of the �ve fundamentals. From now

on we simply refer to this as the derivative of the exchange rate with respect to

fundamentals. Figure 1 does so for a 10-year period (observations 1601-1720 in the

simulation), while Figure 2 does so for a 100-year period (observations 1001-2200

in the simulation). Both Figures also show �nt, which would be the derivative of

the exchange rate with respect to fundamentals if parameters were known.

It is evident from Figure 1 that the derivative of the exchange rate with respect

to fundamentals is far more volatile than the underlying parameters. As reported

in Table 2, the average standard deviation of monthly changes in the derivative

is 25.66%, or 26% of the mean value of the derivative. By contrast, the standard

deviation of monthly changes in the underlying parameters is only 0.27%, i.e., 100

times smaller. While Figure 1 would suggest that the derivative of exchange rates

with respect to fundamentals is entirely disconnected from the true underlying

parameters, Figure 2 shows that this is not the case when we take a much longer

100-year view. There are large changes in parameters over long cycles of several

decades, while the derivative of the exchange rate with respect to the fundamentals

broadly catches up with these long term swings. This implies that when there are

persistent changes in parameters, agents do eventually learn about them.

But, as illustrated in both Figures 1 and 2, short-term uctuations around

such long-term cycles can be very large and even dominate the trend itself. It
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is precisely the possibility that parameters can change a lot in the long-run that

creates signi�cant uncertainty about their level and gives rise to scapegoat e�ects

that lead to large changes in the derivatives over the short to medium run.

Expectation of Parameters

It is useful to recall equation (9), which is displayed here again for convenience:

@�st
@�fnt

= (1� �)�nt + �Et�nt + �
TX
i=0

�f 0t�i
@Et�t�i
@�fnt

(19)

Since � is close to 1, the derivative of the exchange rate with respect to fundamen-

tals is primarily driven by the last two terms. The second term is proportional to

the expectation Et�nt of parameter n. Focusing on variable 3, Figure 3 compares

the evolution of �3t with Et�3t over the samples of 10 and 100 years used in Figures

1 and 2. The top panels illustrate that Et�nt can be signi�cantly more volatile than

the underlying parameter �nt. But a comparison with Figures 1 and 2 also shows

that the overall derivative @�st= @�fnt has even much larger uctuations at high

frequencies. This is illustrated in the bottom panels of Figure 3, which show �nt,

Et�nt as well as @�st=@�fnt.

It follows that the high frequency volatility in @�st=@�fnt is caused by the last

term in (19). It is driven not so much by the expectation of parameters, but rather

by the derivative of the expectation of parameters with respect to fundamentals.

However, the weight of a given variable is best measured by Et�nt, since this is how

agents would measure the importance of a variable. In this perspective, Figure 3

is consistent with anecdotal evidence that occasionally agents signi�cantly change

the weight they attach to certain macro variables in driving the exchange rate. The

high volatility of the derivative of the exchange rate with respect to fundamentals

at the monthly frequency should therefore not be misinterpreted as implying that

every month agents completely change their view on the importance of parameters.

3.3 Sensitivity Analysis

We now examine the extent to which the results in the benchmark case are sensitive

to changes in parameter values. We consider three types of parameters: the degree

of parameter instability; the variability and persistence of fundamentals; and the

horizon T after which parameters are known.
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3.3.1 Sensitivity Moments to Parameter Instability

The instability of underlying parameters a�ects substantially the link between ex-

change rates and fundamentals. However, some basic moments involving exchange

rates and interest rates are remarkably insensitive to the degree of parameter in-

stability. This is illustrated in Table 2, which reports moments under two scenarios

in addition to the benchmark. The third column shows the results with constant

parameters, while the fourth column shows the case where the standard devia-

tion of parameter innovations is twice that under the benchmark (�� = 0:00033).

In the latter case the standard deviation of the derivative of the exchange rate

with respect to fundamentals is 100%. For monthly changes in this derivative the

standard deviation is 40.9%.

On the ohter hand exchange rate volatility rises only slightly. The standard

deviation of exchange rate changes rises from 2.94% to 3.20%, from the case of

constant parameters to the extreme case where parameter volatility is twice that

under the benchmark. The standard deviation of the interest rate di�erential,

as well as the autocorrelation of monthly exchange rate change and the interest

di�erential, are all virtually una�ected by parameter volatility. The same is the

case for the monthly Fama regression coe�cient of �st+1 on it � i�t .

The reason for these results is that most exchange rate volatility is unrelated to

changes in fundamentals. For the benchmark parameterization the R2 is 0.04 for

monthly data and 0.11 for annual data (based on a long sample of 1300 months).

We examine below what happens when we change the volatility of fundamentals.

3.3.2 Sensitivity to Process Fundamentals

We �rst examine the impact of the fundamentals process on the link between ex-

change rates and these fundamentals. We consider lower and higher standard de-

viations of the innovations of the fundamentals and positive persistence of changes

in the fundamentals. We �nd that the volatility of @�st
@�fnt

decreases with �f . When

we set the standard deviation of innovations �ve times as large as under the bench-

mark (�f = 0:01), the volatility of monthly changes in the derivative declines from

25.7% to 12.4%. Similarly, when the standard deviation of fundamental innova-

tions is half of that under the benchmark (�f = 0:001), the derivative increases

slightly to 26.4%.$
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The explanation for these results is that when �f is larger, the signal Ft +

bt becomes more informative as structural parameter innovations are multiplied

by fundamentals that uctuate more. As a result there is less confusion and

the expectation of �nt is closer to its actual value. The derivative
@�st
@�fnt

is then

more similar to �nt, reducing volatility in the monthly and annual changes in the

derivative.

Introducing persistence in �fnt has little e�ect on the overall volatility of
@�st
@�fnt

.

If we set �f = 0:2 (0:4) the volatility of monthly changes in the derivative increases

to 28:9% (32:6%).

Changing the volatility of fundamentals also a�ects their explanatory power

and the role of parameter instability. In particular the impact of parameter insta-

bility on exchange rate volatility is larger for a larger �f . For example, if we set the

standard deviation of fundamental innovations at �f = 0:01, �ve times as large

as under the benchmark, the standard deviation of the exchange rate increases

from 3.6% for �� = 0 to 4.9% for the benchmark case. But in that case the R2 is

excessive: 0.59 for monthly data.15

3.3.3 Sensitivity to the horizon T

A smaller T implies that parameters �nt become easier to predict. This reduces

the scapegoat e�ect. This is illustrated in Figure 4, by comparing the case of

T = 1000 to the case of T = 300. Figure 4 reports the correlation between the

derivative @�st=@�fnt and �nt.
16 This correlation would be 1 if parameters were

known. A higher T further disconnects the derivative of the exchange rate with

respect to fundamentals from the underlying structural parameters as reected in

a lower correlation. For example, over a 10-year sample the correlation between

@�st=@�fnt and �nt is 0.42 for T = 300 and 0.25 for T = 1000.

15Another way to increase the volatility of fundamentals is to make changes in fnt persistent.

This also increases the impact of parameter volatility, although the e�ect is rather modest. For

example, for �f = 0:4, the standard deviation of �st rises from 3.0% to 3.2% when �� is raised

from 0 to 0.000165.
16This correlation is computed as a function of the sample length based on the average of this

correlation overall samples of that length. The �rst sample starts at observation T + 1.
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4 Time-Varying Coe�cients and Forecasting Per-

formance

The previous section has shown that a signi�cantly unstable relationship between

exchange rates and fundamentals results from gradual changes in structural para-

meters coupled with the unobservability of the structural parameters. In this sec-

tion we investigate the implications of this unstable relationship for out-of-sample

forecasting and the corresponding Meese-Rogo� puzzle. If parameters were known

and constant (and non zero), then by construction the model would outperform a

random walk in predicting exchange rates. Since the empirical evidence shows that

this is not the case, one would therefore have to assume either that parameters are

not constant or that they are not known, or both.

4.1 Out-of-Sample Forecasting in the Data

4.1.1 The Meese-Rogo� experiment

In their seminal paper, Meese and Rogo� (1983a) conduct an out-of-sample fore-

casting exercise. It is not true forecasting as they forecast the future exchange

rate using information about future macro fundamentals. The statistic they con-

struct may be better called a measure of out-of-sample �t of the model. They �rst

regress the exchange rate on a set of fundamental variables over a sample of L

months, using the �rst L observations of their data. They use the estimate from

this regression to compute a forecast at L + 1, using the observed fundamentals

at L+ 1.17 Using rolling regressions, they repeat this P times, each time starting

the sample one month later. They then compute the ratio of the resulting Mean

Square Error (MSE) with the one obtained assuming that the exchange rate fol-

lows a random walk.18 They assume L = 45 and P = 55, but subsequent studies

have considered larger numbers for L and P as data samples became longer. For

17Meese and Rogo� (1983a) estimated the exchange rate equation in levels, using several lags

of the exchange rate, but the subsequent literature has regressed the change in the exchange rate

on fundamentals, sometimes including a cointegration term.
18More precisely, Meese and Rogo� (1983a) look at the RMSE which is the square root of

MSE. They also look at the mean error and at the mean absolute error. They also consider the

RMSE for forecasts further than 1 months ahead, in particular 6 and 12-month ahead forecasts.
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example, in Molodstova and Papell (2008) L = 108 and P = 292.

The key result of Meese and Rogo� (1983a) is that the MSE ratio is generally

above 1, so that the average forecast error is larger when using the fundamentals

than adopting a random walk assumption. This result has largely held up to

extensive scrutiny in the more than two decades of research that followed. For

example, Cheung, Chinn and Pascual (2005) consider a longer sample of data, more

currencies, and more fundamental variables. In only 2 out of 216 combinations that

they consider does the model signi�cantly outperform the random walk at a 10%

signi�cance level. Rogo� and Stavrakeva (2008) discuss recent models that have

been somewhat more successful but continue to �nd that the MSE ratio is generally

above 1 or just slightly below 1.

Figure 5 con�rms this evidence. It shows the MSE ratio as we increase L from

40 to 220 and with P = 200. The fundamentals considered are money, industrial

production and CPI ination. Figure 5 shows the average over 5 exchange rates

to the dollar (Canadian dollar, Japanese Yen, Swiss franc, British pound, and

euro/DM). We see that the ratio is much higher than 1 when L is small, and that

it decreases towards 1. However, it never goes below 1, meaning that the linear

model does not beat the random walk.

4.1.2 Small Sample Bias

When parameters are constant, but their level is not known and has to be esti-

mated, one can face small sample problems. This has been the focus of a lot of

recent literature. Estimating an exchange rate equation over a short data sample

can lead to spurious noise in the estimation of � even if it is constant. This can lead

to a noisy forecast, raising the mean squared forecast error of the model compared

to the random walk, which does not su�er from any estimation bias. This bias

is also illustrated in Figure 5, where the MSE ratio is high for small L. This can

indeed be a serious problem and statistics have been developed to correct for such

small sample bias (e.g. Clark and West (2006)). However, even for relatively large

values of L, involving more than two decades of data, it has been hard to outper-

form the random walk (e.g. Rogo� and Stavrakeva (2008)). This suggest that it

is di�cult to explain the Meese-Rogo� �ndings while maintaining the assumption

of constant parameters.
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4.2 E�ect of Time-Varying Parameters: Simulation Re-

sults

In order to investigate the relationship between time-varying parameters and the

Meese-Rogo� results we compute the MSE ratio in the benchmark model for dif-

ferent values of L and a large value of P equal to 1000. The �rst estimation sample

uses observations T +1 to T +L from the simulation to predict the exchange rate

at T + L + 1. We then use rolling regressions, as in Meese and Rogo� (1983a),

with the last estimation sample using observations T + P to T + P + L� 1 from
the simulation to predict the exchange rate at T + P + L.

Figure 6 reports the results for L ranging from 40 months to 300 months.

Results are reported both for the benchmark parameterization with time-varying

parameters and the case of constant parameters. It can be seen that the MSE

ratio declines as the sample length L increases, as in the data in Figure 5. This

illustrates the small sample bias.

A puzzling result emerges when we compare the MSE ratio of the time-varying

coe�cient model with the one of the constant coe�cient model. We see that the

forecasting performance is better with time-varying coe�cients. There is, however,

a straighforward explanation to this result. It turns out that in the speci�c set of

simulation the average parameters �nt are higher under time-varying coe�cients.

Under constant coe�cients, the average of �nt is 1 by assumption. But, with time

varying coe�cient the average of �nt is higher than 1; as can be seen in Figure

2. As shown in Table 2, this implies that the R2 is higher under time-varying

coe�cients (0:04 vs. 0:02).

To match the expectations of the underlying parameters, we consider the "ad-

justed" constant parameter case, where we set �nt equal to the average of each �n

in the benchmark, time-varying, scenario.19 With this adjustment, Figure 6 shows

that the constant coe�cient model has a slightly better forecasting performance,

even though the di�erence is hard to distinguish.

4.3 E�ect of Time-Varying Parameters: Explanation

19We use �1t = 1:795, �2t = 1:531, �3t = 1:621, �4t = 1:659, �5t = 2:005
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The limited explanatory power of the fundamentals is key in understanding the

forecasting performance, both with time-varying and with constant coe�cients.

It is obvious that a larger explanatory power will give better predictions. This is

illustrated in Figure 7, which considers two alternative values of �f : half that under

the benchmark (�f = 0:001) and twice that under the benchmark (�f = 0:004). In

these cases, the R2 are 0.7% and 16.1%. The di�erence in forecasting performance

is substantial.

On the other hand, the di�erence between time-varying coe�cients and con-

stant coe�cients still remains very small (and is not shown in the graph). Thus, for

time-varying coe�cients to matter, the explanatory power of fundamentals should

be much higher. But this would be inconsistent with the empirical �t of exchange

rate equations. We examine these issues in more details in in Bacchetta, Beutler

and van Wincoop (2008).20

5 Conclusion

Anecdotal, survey and econometric evidence all suggest that the relationship be-

tween the exchange rate and macro fundamentals is highly unstable. We have

developed a model where this instability naturally results from a combination of

incomplete information and very gradual changes in structural parameters of the

economy. Nonetheless we �nd that even very large time-variation in the relation-

ship between exchange rates and fundamentals has little impact on the statistical

properties of exchange rates, the in-sample explanatory power of macro fundamen-

tals and the ability to forecast out of sample.

20To facilitate our understanding, instead of the current model we consider a setup with ex-

ogenous time variation in the relationship between exchange rate and fundamentals.
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Appendix

A Solving the General Model

In this Appendix we describe the model's solution in the more general case, where

the processes for �fnt, bt, and vt are as speci�ed in Section 3. A Technical Appen-

dix provides further details towards the implementation of the simulations with

Gauss. We start from the present value equation (5) of the exchange rate. We

need to express it in way we can easily substitute the expectation terms. This

equation can be rewritten as:

st =
�

1 + �
Ft +

�

1 + �
bt �

1

1 + �
�t +

�

1 + �

1X
k=1

 
1

1 + �

!k
Et (Ft+k + bt+k) (20)

First, consider the term involving the present discounted value of F . Use that

Ft+k = Ft +
NX
n=1

kX
i=1

�n;t+i (fn;t+i � fn;t+i�1) (21)

Therefore

1X
k=1

 
1

1 + �

!k
Ft+k =

1

�
Ft +

1 + �

�

NX
n=1

1X
i=1

 
1

1 + �

!i
�n;t+i (fn;t+i � fn;t+i�1) (22)

The present value of b can be written as ~bEtbt, where

~b =
�

1 + �

�b
1 + �� �b

(23)

Using this, (20) becomes

st =
�

1 + �
Ft +

1

1 + �
EtFt +

�

1 + �
bt �

1

1 + �
�t

NX
n=1

1X
i=1

 
�

1 + �

!i
Et�n;t+i (fn;t � fn;t�1) + ~bEtbt (24)
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Therefore

st � st�1 =
�

1 + �

NX
n=1

�nt (fnt � fn;t�1) +
1

1 + �
[EtFt � Et�1Ft�1] +

NX
n=1

Et ~�nt (fn;t � fn;t�1)�
NX
n=1

Et�1 ~�n;t�1 (fn;t�1 � fn;t�2) + (25)

�

1 + �
(bt � bt�1) + ~b (Etbt � Et�1bt�1)�

1

1 + �
(�t � �t�1)

where

~�nt =
1X
i=1

 
�

1 + �

!i
�n;t+i (26)

Finally, we can write

EtFt � Et�1Ft�1 = Et(Ft � Ft�1) + [EtFt�1 � Et�1Ft�1] = (27)
NX
n=1

Et�nt (fnt � fn;t�1) +
NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i]

Using (27) and collecting terms multiplying fnt � fn;t�1, (25) becomes

st � st�1 =
NX
n=1

 
�

1 + �
�nt +

1

1 + �
Et�nt + Et ~�nt

!
(fnt � fn;t�1) +

�
NX
n=1

Et�1 ~�n;t�1 (fn;t�1 � fn;t�2) + (28)

1

1 + �

NX
n=1

TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i] +

�

1 + �
(bt � bt�1) + ~b (Etbt � Et�1bt�1)�

1

1 + �
(�t � �t�1)

Given the processes of �t and bt, the terms including expectations can be

written as:

Et�nt � � = !̂Et�nt

Et ~�nt �
�

1 + �� �
� = �̂Et�nt

Etbt = b̂Etbt + �Tb bt�T
TX
i=1

(fn;t�i � fn;t�i�1) [Et�n;t�i � Et�1�n;t�i] =

TX
i=1

(fn;t�i � fn;t�i�1) �T�i+1�n;t�T + ĥntEt�nt � f̂n;t�1Et�1�n;t�1
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where ��, �̂, b̂, ĥ and �h are 1 by T vectors with

!̂(j) = �j (29)

�̂(j) =
T�jX
i=1

�j+i

 
�

1 + �

!i
(30)

b̂(j) = �j�1b (31)

ĥnt(j) =
j�1X
i=1

(fn;t�i � fn;t�i�1)�j�i (32)

f̂n;t�1(j) =
jX
i=1

(fn;t�i � fn;t�i�1)�j�i+1 (33)

and ĥnt(1) = 0.

Substituting these results into (28) gives
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�
The expectation terms can be derived from the signal extraction problem, where

Et!t = Ct!t. This gives:

st � st�1 =
NX
n=1
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�
Here ��n is a 1 by (N +1)T vector with �̂ in elements T (n� 1)+1 through Tn and
zeros otherwise. The vectors �!n, �hnt and

�fnt�1 are de�ned analogously.
�b is a 1 by

(N + 1)T vector with b̂ in elements NT + 1 through NT + T and zeros otherwise.
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Collecting terms in Ct!t and Ct�1!t�1, we can rewrite this as
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The derivative with respect to the current fundamental is:

@�st=@�fnt =
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B Signal Extraction

The signal extraction problem is described in Section 2.3. The matrixHt is de�ned

as:

H0
t = [A1t; :::;ANt;B] (38)

with

Ant =

2666664
f̂nt(1) f̂nt(2) ::: f̂nt(T )

0 f̂n;t�1(1) ::: f̂n;t�1(T � 1)
::: ::: :::

0 0 ::: f̂n;t�T+1(1)

3777775
and

B =

2666664
1 �b ::: �T�1b

0 1 ::: �T�2b

::: ::: :::

0 0 ::: 1

3777775

25



C Linearization

We linearize the last element of (17). This basically requires the linearization of

Ct =MtH
0
t.

C.1 First order linearization

We have:

Ct(1) =M(0)H
0
t(1) +Mt(1)H

0(0) (39)

with:

H0(0) = [0; :::;0;B] (40)

H0
t(1) = [A1t; :::;ANt;0] (41)

Using (14) we �nd that:

M(0) =

0@ 0

B�1

1A (42)

We also have:

Mt(1) = ~PHt(1)
h
H0
t
~PHt

i�1
(0) + ~PHt(0)

h
H0
t
~PHt

i�1
(1) (43)

We �rst show that the second element of the RHS of (43) is equal to zero. De�ne

Q =
h
H0
t
~PHt

i
: Since QQ�1= I, we can write (from �rst order linearization):

Q(0)Q�1(1) +Q(1)Q�1(0)= 0 (44)

We note that Q(1) = H0
t(1)Ht(0) + 'H0

t(0)Ht(1) = 0, where ' = �2=�2b .

Consequently, from (44) and the fact that Q(0) is full rank, Q�1(1) = 0. This

implies that ~PHt(0)
h
H0
t
~PHt

i�1
(1) = 0: It is then easy to see that:

Mt(1) = 'Ht(1) [B
0B]

�1
(45)

Finally, using the above equations:

Ct(1) =

0@ 0

B�1H0
t(1)

1A+ '
�
0 Ht(1)B

0�1
�
=

0@ 0NT 'Dt

D0
t 0T

1A (46)
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where

Dt =

0BBBBBBBBBBB@

f̂1t(1) 0 ::::: 0

f̂1t(2)� �bf̂1t�1(1) f̂nt(1) 0

::: f̂1t�1(2)� �bf̂1t�2(1) 0

f̂1t(T )� �bf̂1t�1(T � 1) 0

::: :::

f̂Nt(T )� �bf̂Nt�1(T � 1) f̂Nt�1(T � 1)� �bf̂Nt�2(T � 2) ::::: f̂Nt�T+1(1)

1CCCCCCCCCCCA
Using the above and the expectation of �t from (16), we can write the deriva-

tive:
@Et�nt(1)

@�fnt
=

 
'

TX
i=1

�2i

!
"bt (47)

Similarly the derivative of the past parameter is:

@Et�nt�1(1)

@�fnt
= '

 
T�1X
i=1

�i�i+1

!
"bt (48)

On the other hand, Et�nt is not a�ected by other fundamentals. Hence, we can

compute the last term of equation (17) as:

TX
i=0

�f 0t�i
@Et�t�i(1)

@�fnt
= '

0@T�1X
j=0

�fnt�j

0@T�jX
i=1

�i�i+j

1A1A "bt � �nt"
b
t

C.2 Second order linearization

The second order term of Ct is:

Ct(2) =M(0)H
0
t(2) +Mt(1)H

0(1) +Mt(2)H
0(0) (49)

It is to see that M(0)H0
t(2), so that the �rst term is equal to zero. The second

term can be derived from the results of the previous subsection. To derive the

third term, notice that:

Mt(2) = ~PHt(0)
h
H0
t
~PHt

i�1
(2)+ ~PHt(2)

h
H0
t
~PHt

i�1
(0)+ ~PHt(1)

h
H0
t
~PHt

i�1
(1)

(50)

The last two terms are equal to zero given the results in the above subsection.

Again using QQ�1= I, and taking a second order linearization, we �nd:

Q�1(2) = �Q�1(0)Q(2)Q�1(0) (51)
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Thus:

Mt(2) = ~�PHt(0)
h
H0
t
~PHt

i�1
(0)H0

t
~(1)PHt(1)

h
H0
t
~PHt

i�1
(0) (52)

This implies:

Ct(2) = �'
0@ 0

B�1

1AAt

�
0 B0�1

�
+ '

0BBBBB@
A0
1t

:::

A0
Nt

0

1CCCCCA [B0B]�1 [A1t; :::;ANt;0] (53)

where

At = [A1t; :::;ANt;0]

0BBBBB@
A0
1t

:::

A0
Nt

0

1CCCCCA
Using this expression, we �nd that the second order term of the expectation of

�nt is given by:

Et�nt(2) = � +
TX
i=1

�iEt"n;t�i+1 = � + &nt
TX
i=1

�if̂nt(i) (54)

where &nt =
PN
k=1

PT
j=1

Pj
i=1 bnif̂k;t�i+1(j � i + 1)"kt+1�j and bji is the ij element

of matrix [B0B]�1. The derivative with respect to �fnt gives:

@Et�nt(2)

@�fnt
= &nt

TX
i=1

�2i + bnn

 
TX
i=1

�if̂nt(i)

!
NX
k=1

TX
j=1

�j�fk;t�j+1"k;t�j+1 (55)

We can see that the derivative depends on all current and past parameter shocks

(up to t�T +1) for all variables, i.e. on the whole vector �t. We proceed similarly
for �nt�i, 1 < i < T � 1 and then multiply by �fnt�i: In the end, we get the
expression:

TX
i=0

�f 0t�i
@Et�t�i(2)

@�fnt
= �t�t (56)

where �t is a complex matrix depending on �fnt�i, �i, and bji.
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            Table 1  Benchmark Parameter Assumptions* 

 
  

bσ  2.6 

bρ  0.95 

υσ  2.7 

1φ  0.1 

2φ  0.1 

βσ  
0.0165 

β  1 

T 1000 

fσ  0.2 

fρ  0 

N 5 

μ  0.03 
 
 
 
 
* Standard deviations are given in %. 
 
 
 
 
 
 
 
 
 
 
 
 
 



                   Table 2    Moments: Data and Model* 

 
 

 
Data Benchmark σβ=0  σβ=0.033 

tsDeviation  Standard Δ  3.08 3.08 2.94 3.20 

)s,sCorr( 1-tt ΔΔ  0.06 0.06 0.08 0.05 
*
tt -iiDeviation  Standard  0.25 0.24 0.25 0.24 

)-ii,-iCorr(i *
1-t1-t

*
tt  0.94 0.93 0.93 0.92 

)-iivar(/)-ii,scov( *
1-t1-t

*
1-t1-ttΔ  -0.91 -1.56 -1.47 -1.59 

monthly  R2
 - 0.04 0.02 0.08 

 annual R2
 - 0.11 0.07 0.16 

ntt f/s  s.d. Δ∂Δ∂  - 50.31 0 100.02 

ntt f/s ChangeMonthly  s.d. Δ∂Δ∂ - 25.66 0 40.93 

ntChangeMonthly  s.d. βΔ  - 0.27 0 0.53 
 
 
 
* Standard deviations are given in %. 
 
 
 
 

  
 
 
 
 



Figure 1  Derivative Δst

 

with respect to Δfnt
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Figure 2  Derivative Δst

 

with respect to Δfnt
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Figure 3    Expectations βnt
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Figure 4 Correlation between                     and
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Figure 5  Out-of-Sample Fit and Sample Size
 Empirical Evidence



Figure 6 Out of Sample Forecasting: 
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Figure 7  MSE Model/MSE Random Walk  
Different volatility in fundamentals
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