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Abstract

It is well known from anecdotal, survey and econometric evidence that the re-
lationship between the exchange rate and macro fundamentals is unstable. The
aim of this paper is both to understand what drives this instability and to inves-
tigate some key implications. We develop a model where large time variation in
the relationship between the exchange rate and macro fundamentals endogenously
develops from a combination of incomplete information and very gradual changes
in structural parameters of the economy. After calibrating the model to exchange
rate and interest rate data for industrialized countries, we investigate the impact
of parameter instability on the statistical properties of exchange rates and interest
rates and on the ability to forecast exchange rates out of sample. We find the im-
pact to be remarkably small, even when the relationship between exchange rates

and fundamentals is highly unstable.



1 Introduction

“The dollar’s resilience in the wake of recent dire US economic data has raised the
prospect that the currency market may be experiencing one of its periodic changes

in focus” (Financial Times, February 11, 2008)

“The dollar’s latest stumble ... came despite optimistic economic data from the
US. But analysts said the movement of the US currency was no longer driven by
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growth fundamentals. All the focus is on the deficit now...” (Financial Times,

February 11, 2003)

As reflected in these quotes, it has been widely reported in the financial press
that foreign exchange traders regularly change the weight they attach to different
macro indicators. Yin-Wong Cheung and Menzie Chinn (2001) further confirm this
through a survey of U.S. foreign exchange traders in 1998. It is also consistent with
widespread evidence of parameter instability in the relationship between exchange
rates and macro fundamentals, as documented for example by Wolff (1987), Schi-
nasi and Swamy (1989), Rossi (2006) and Sarno and Valente (2008). The latter
show that to achieve the best exchange rate forecast, one needs to continuously
change the set of variables used. More generally there are numerous studies that
document structural breaks and regime switching in nominal and real exchange
rates.

The aim of this paper is both to propose an explanation for what drives this
unstable relationship between exchange rates and fundamentals and to investigate
some key implications. We first develop a model where large time-variation in
the relationship between the exchange rate and macro fundamentals endogenously
develops from a combination of incomplete information and very gradual changes
in structural parameters of the economy. After calibrating the model to data on
exchange rates and interest rates for industrialized countries, we investigate the
impact of parameter instability on the statistical properties of exchange rates and
interest rates and on the ability to forecast exchange rates out of sample.

We frame the analysis in a context of a setup common to many nominal ex-
change rate models. Equilibrium exchange rates are determined by two equations:

an interest rate arbitrage equation and a relationship between the interest rate



differential and a set of macro variables. The latter is usually derived from money
market equilibrium or from monetary policy rules. We introduce two key elements
to this setup. First, we allow for unobserved gradual changes in the structural
parameters that characterize the relationship between interest rates and macro
fundamentals. This can for example be the result of gradual changes in money
demand, gradual policy changes or a gradual change in the structural relationship
between variables targeted by policy makers and other macro variables.! Second,
we also allow the interest differential to be affected by unobserved macroeconomic
shocks which makes it harder for agents to learn about structural parameters as-
sociated with observed macro variables.?

We show that even when structural parameters change very slowly, the reduced
form relationship between exchange rates and fundamentals can become highly
unstable in the short to medium run. This is a result of estimation mistakes as
agents continuously update their views of the structural parameters. Particularly
the unobserved variables generate considerable confusion in the short to medium
run. When the exchange rate fluctuates as a result of an unobserved macroeco-
nomic shock, it can be optimal for agents to blame this on an observed macro
fundamental by giving it more weight and therefore making it a “scapegoat”. For
example, when the dollar depreciates it is natural to attribute it to a large cur-
rent account deficit. This happens even when the depreciation is unrelated to the

current account deficit.?

IThat macroeconomic relationships are time varying has been widely documented. An early
paper is Stock and Watson (1996). Recent contributions include Boivin (2006), Canova (2005),
Clarida, Gali and Gertler (2000), Cogley and Sargent (2005), Del Negro and Otrok (2007), Inoue
and Rossi (2007), Primiceri (2005), Sims and Zha (2006) and Fernandez-Villaverde and Rubio-
Ramirez (2007).

2This could reflect unobserved shocks to money demand, to monetary policy or to any other
part of the economy to the extent that it feeds into equilibrium interest rates (e.g. by affecting

variables targeted by the central bank).
3In a previous short paper, Bacchetta and van Wincoop (2004), we developed the idea of such

a scapegoat effect in the context of a simple static noisy rational expectations model in which
some parameters are unknown. We showed that excessive weight could be given to a variable
depending on the correlation between the noise shock and the fundamental shock. However, since
that model is static it could not be used to address the unstable dynamic relationship between
exchange rates and fundamentals and its implications. Apart from the dynamic setup, the model

in this paper also differs in that there is no private information as in Bacchetta and van Wincoop



Having established that in an environment with incomplete information an
unstable relationship between exchange rates and fundamentals naturally develops,
we next investigate its implications. Our main focus is on the ability to forecast out
of sample. It is exactly in this context that the issue of parameter instability has
most frequently been discussed in the exchange rate literature.* Meese and Rogoff
(1983) first showed that models do not outperform the random walk in forecasting
future exchange rates, even when the actual future macro fundamentals are used
to forecast. Their results have largely held up since then, even with a lot more
data available.?

If the parameters that characterize the relationship between exchange rates
and macro variables were known and constant, the model would by construction
outperform the random walk.® Even if parameters were constant, the fact that they
are not known may explain the Meese-Rogoff findings due to parameter estimation
error in small samples. This has received considerable attention in the recent
literature and tests have been developed to correct for small sample bias (e.g.
Clark and West (2006)). It is remarkable though that even with much longer
samples the Meese-Rogoff puzzle has continued to hold up. It is therefore natural
to investigate the role of parameter instability as the alternative explanation for
the Meese-Rogoff puzzle.”

We can use our model to investigate the extent to which parameter instability
is responsible for the weak forecasting performance. Maybe surprisingly, we find
that even when the relationship between exchange rates and fundamentals is highly

unstable, this cannot explain the Meese-Rogoff findings.® The impact of parameter

(2004). Scapegoat effects naturally develop as long as there is incomplete information about

parameters; the information does not need to be private.
4See Wolff (1987), Schinasi and Swamy (1989), Rossi (2005), Sarno and Valente (2008) and

Meese and Rogoff (1988).
5See for example Cheung, Chinn and Pascual (2005) and Rogoff and Stavrakeva (2008).

6This is the case as long as the macro variables have any explanatory power at all.
"More broadly, the only other possible explanation involves changes in the model, which could

involve either the structure of the model or its parameters. If the model remains the same, and
so do its parameters, with a long enough sample we should be able to estimate these parameters

and therefore outperform the random walk.
8Perhaps related to this, the literature on exchange rate parameter instability referred to in

the opening paragraph finds that allowing for time-varying parameters does not systematically

improve forecasting performance. But this may again be due to the difficulty in estimating



instability on forecasting performance is only large when the macro fundamentals
have significant explanatory power to start with. But when that is the case, the
model significantly outperforms the random walk in out of sample forecasts both
with and without parameter instability, in contrast to the evidence. Our analysis
implies that the Meese-Rogoff findings most likely result from a combination of the
well-known weak explanatory power of observed macro fundamentals and small
sample parameter estimation bias.

The next section presents the model. It also discusses the signal extraction
method used to solve the model and the implications for the relationship between
exchange rates and fundamentals. Section 3 calibrates the model based on data
on interest rates and exchange rates for 13 industrialized countries and presents
numerical results for the relationship between exchange rates and fundamentals
based on simulations. Section 4 uses the model to analyze the impact of the
unstable relationship between exchange rates and fundamentals on the statistical
properties of exchange rates and interest rate and the ability to forecast out of

sample. Section 5 concludes.

2 A Model with Unknown Parameters

We assume that agents know the structure of the model, but not the specific
parameter values. The underlying parameters themselves gradually change over
time, so that agents need to keep learning about them. While the underlying
parameters change smoothly, their estimate may vary significantly. This affects
the exchange rate and, more importantly, the relationship between exchange rates
and fundamentals. In this section we first describe the model, then discuss how
expectations about parameters are formed and finally consider the implications for

the relationship between exchange rates and fundamentals.

2.1 Basic Framework

Many models of exchange rate determination can be reduced to two equations: an
interest rate arbitrage equation and an equation for the interest rate differential.

Together these imply a solution for the equilibrium exchange rate as the present

parameters in small samples, particularly when they are time-varying.



value of fundamentals. We write these two equations as

Eisip1—si =1 — i, + Py (1)
iy — iy = —p(Fy + bg) + psq (2)

Equation (1) is the interest rate arbitrage equation. We denote F; as the expecta-
tion of the representative investor, s; as the log nominal exchange rate (domestic
per foreign currency), i; and ¢; as the domestic and foreign nominal one-period
interest rates and ¢; as the risk premium. This equation means that the expected
excess return on the foreign bond is equal to a risk premium ¢;. Equation (2)
gives an expression for the interest rate differential. Here F; depends on a linear
combination of observed macro fundamentals f;;, but is not observed directly, and
b, captures unobserved macro fundamentals.

Equation (2) is a reduced form equation that can be derived from interest
policy rules, from a standard monetary model, or from a DSGE model (e.g., see
Engel and West, 2005, or Nason and Rogers, 2008). It is usually assumed that
all macro fundamentals are observed. We generalize this by allowing for both
observed and unobserved fundamentals. There are many possible justifications for
this. When derived from money market equilibrium, b; could reflect the aggregate
of idiosyncratic money demand components, which is not observed. When derived
as a monetary policy rule, b; could capture the idiosyncrasies of policy makers that
are not easily connected to observed fundamentals. Yet another interpretation is
that policy makers respond to a perfectly observable macro fundamental such as
the unemployment rate, while the latter is driven by both observed and unobserved
macro fundamentals. Under that interpretation F;+b; would be the unemployment
rate.

In the data both s, and F; are non-stationary and typically considered in first
differences. We will therefore focus on the first difference of fundamentals and

assume the following linear relationship®

AF, = AfiB, (3)

9An alternative specification is Fy = f/3,, so that AF; = (Af;)'3, + f/AB,. In that case,
however, the impact of small changes in parameters on F;, and therefore on the exchange rate,
eventually explodes to plus or minus infinity. The reason is that a parameter change is multiplied
with the level of the fundamental, which is unbounded due to non-stationarity.



where f; = (fi, fat, -, fae)' is the vector of N observed macroeconomic fundamen-
tals and B, = (5, Bat, ---, Bne) is the vector of associated parameters. In contrast
to most of the literature, we allow the coefficients associated with the observed
fundamentals to vary over time. Moreover, we assume that investors do not know
B, and need to estimate it. However, the process of 3, is known (and is specified
below).

Since F; is not directly observable, there is uncertainty about the underlying
model. Investors need to estimate current and future 3,. They have two sources of
information regarding 3,. First, they know the process of 3,. Second, by observing
the exchange rate and the interest rate differential, they know F} + b, from (2). We
describe below how investors combine optimally these two sources of information
to form expectations about 3,. The use of F; + b; gives more precise information
on average. But it is also a source of estimation errors.

Consider for example the expectation of the parameter f3,; for fundamental
n. While (3, affects F; + b;, the latter is also affected by b, all current and past
fundamentals and all current and past parameters. Therefore to the extent that
F, + b; is used as a source of information about ,,, its expectation can change
without any change in (3, itself. We will see that it is this rational confusion
that is the key driver behind the unstable relationship between exchange rates and

observed fundamentals.

2.2 Exchange Rates and Fundamentals

After substituting (2) into (1) we obtain the following standard reduced form (e.g.,
see Engel and West, 2005, or Engel, Mark, and West, 2008):

St = (1 — )\)Ft + )\Zt + >‘Et3t+1 (4)

Here A = 1/(1+p) and 2z; = pub; — ¢¢. This can be used to solve for the equilibrium

exchange rate as a familiar present value equation:
st= (1= NF4+ Xz + > NE (1= N)Fpi + Aaig) (5)
i=1

For convenience, in the remainder of this section we consider the special case

without a risk premium and where b; and Af; are iid. More precisely, for the rest



of this section we assume that: i) ¢; = 0, Vt; ii) b; = €2 with 2 ~ N(0, 0?); iii)
Afp =el, withel, ~ N (0, 0]%). A more general specification will be considered in
the numerical analysis in the next section. We maintain the assumption throughout
the paper that shocks to f,;, b; and parameters are uncorrelated with each other.

Under these assumptions, 352, AX'Ey(1—\)Fyy; = AE,F; because F;Fy,; = E,F}.

The first difference of the present value equation (5) then becomes:
Asy = (1 = NAF, 4+ (1 — N)Ab + AN(E Fy — Ey 1 Fy ) (6)
When parameters 3, are known, E,Fy — FE, 1F, 1 = AF}, so that (6) becomes:
As; = Af3, + (1 — N\)Ab, (7)

In this case, the impact of a change in fundamental f,; on the exchange rate is
simply given by S,.:: Asy = Bl frs.

When parameters are time varying, however, the expression F,F; — E; 1 F};_4
is much more complex as it depends on expectations of parameters. In order to
avoid having to compute expectations of parameter innovations going back to the
infinite past, we assume that parameters are known after 1" periods. In practice

we will set T" very large. In that case, we can write (6) as:

T
Asy = Af) (1 = N)By + AEB,) + (1 = NAb + A Af, (BB, — Er18,;) (8)

i=1
From (8) we see that the impact of fundamentals changes on exchange rate changes
depends on the parameter expectation E;3, and on the change in expectations
E:B, ;,—E;_183,_, of past parameters.!® More generally, if changes in fundamentals
are not iid, As; also depends on expectations about future values of the parameters.

The general setup is discussed in the Appendix.

As can be seen from the first term in (8), the change Af; in the vector of current
fundamentals is now multiplied by a weighted average of actual and expected
parameter values. Since A tends to be close to 1 (u is small), most of the weight is

on the expected value of parameters rather than the actual level of parameters. The

10The reason is that the impact of past changes in fundamentals on F; depends on past pa-
rameter values, while agents continuously change expectations not only about current but also
about past parameter values. This contrasts with the case of constant parameters where only

current changes in fundamentals matter when fundamentals follow a random walk.

7



reason is that the exchange rate is forward looking and depends on expectations
of future fundamentals. In this particular example, where fundamentals follow a
random walk, expected future levels of F' are equal to the expected level of F'
today, which depends on the expectation of the current set of parameters 3,.

Moreover, we will show that changes in current fundamentals lead to changes
in the expectation of both current and past parameters. Thus, changes in funda-
mentals also affect the last element of equation (8). The derivative of the exchange
rate with respect to current fundamentals is then:

T
085 _ (1 = \) B+ AEBu + A3 A 2P P ()
=0 8Afnt

aAfnt B

2.3 Expectation of Parameters

In order to determine the impact of fundamentals on the exchange rate, we need
to determine the expectation of current and past parameters. We do this by first
assuming a process for the parameters and then solving a signal extraction problem.

We consider the case where a parameter [3,; depends on a finite number 7" of

past innovations:
T
ﬁnt - Bn + Z 6ni£n,t—i+1 (10)
i=1

where €,;, ~ N (0, O’é). As discussed above, we assume that parameters at dates
t —T and earlier are known at date t. This assumption is for technical convenience
only. It implies that only parameter innovations over the past 71" periods are
unknown, which are the innovations that affect the current 3,;. By assuming that
T is finite, the signal extraction problem becomes tractable as there is only a finite
number of unknowns. However, we will set 1" very large in the numerical analysis
in the next section, so that we allow for uncertainty in parameter innovations going
far back in time.

In terms of vector notation (10) can be written as

/Gt :6+@€t (11)

where 3 =(/1, B2, ..., Bn)’ is a N-vector of constants; &, is a NT vector that stacks
all the vectors &,,, = (€nt, ..., €nt—1+1)’; and © is a N x NT matrix with ©[n, T'(n —
1) +1:Tn] =0, = (0n1,0n2, .., 0ur) and zeros otherwise.



In order to form expectations about current and past values of 3, we need to
compute expectations about the vector &, of current and past parameter innova-
tions. Since the problem is linear and all the shocks are normal, we can use stan-
dard signal extraction techniques. Leaving some of the details to the Appendix,
we sketch how this is done. We start from the knowledge that the unconditional
distribution of &, is normal with mean zero and variance agINT, where Iyr is an
identity matrix of size NT. We combine this with knowledge of d; = F; + b; over
the past T periods. Defining Y; = (djf, N +1), where dj subtracts the known
components from d;, we have

Yt = H;wt (].2)

where w} = (&,¢?,¢V_1,...,e?_,.,) and H; is a matrix that depends on current and
lagged changes in observed fundamentals: Af, ; for 0 < ¢ < T+ 1. The precise
form of H; can be found in the Appendix.

The unconditional distribution of w; is normal with mean zero and variance

~ O'2INT 0
P= ( 50 , (13)
UbIT

Combining this with (12), standard signal extraction'! implies that the conditional

distribution of w; is normal with mean

Etwt = Mth (14)
M,=PH, [HPH, '

and variance
P=P - MHP

Therefore
Etwt = tht (15)

where C; = M H,. Given the definition of w;, we can determine E;§, ;, i =
1,2,..,7 — 1, from (15) and use this to compute E;3,_; from (11).
We then have
EB,_; = Bt—i + Qpiw; (16)

HSee for example Townsend(1983, p.556).



Here Bt_i is equal to B plus (for ¢ > 1) a vector that depends on parameter
innovations more than 7' periods ago that are known time ¢. The matrix €2y; is
equal to @’iiCt, where L is a matrix of zeros and ones that maps w; into the
unknown elements of §,_,.

There are two important features to notice from (16). First, E,3, ; is de-
termined by a combination of shocks contained in w;. Thus, the expectation of
a specific coefficient [3,;_; depends on its own shocks, but also on current and
past shocks to the noise vector b; and to all other coefficients. Second, €2;; de-
pends on current and past Af; so that shocks to fundamentals affect parameter
expectations.'?

As we will see, the expectations of 3,; can change significantly over a relatively
short period of time even when the true parameters change very slowly. What
matters is not the monthly (or even annual) fluctuations in structural parameters
but rather their potential to fluctuate over a very long period of time (decades
or longer). The unconditional standard deviation of the parameters then becomes
large even though changes from period to period are small. A large unconditional
standard deviation of parameters, together with the difficulty in learning about
their level, leaves a lot of room for large and frequent changes in expectations about
these parameters. This allows expectations to become significantly disconnected

from the true value of the parameters.

2.4 The Scapegoat Effect

At times, the weight of a fundamental f,; can increase even if its underlying
parameter [3,; does not change. We refer to this phenomenon as a scapegoat effect.
To see when this can occur, substitute (16) into (9). The derivative of As; with

respect to Af,; becomes

Oy o
' 8Afnt !

0A r
L (1= \) B + AE B+ A AR (17)
=0

aAf nt -
This expression shows that the impact of a change in a fundamental on exchange
rate depreciation depends only partly on the underlying coefficient f3,; (remember

that A is close to 1). The main elements determining this impact are the last

12Current and past Af, enter H,, which affects M, which affects C,, which affects Qy;.

10



two terms, i.e., the expectation of 3, and the change in expectations of 3,_;
caused by the change in Af,;. Both of these factors contribute to instability in
the relationship between exchange rates and fundamentals.

Consider for example a rise in b;. This will increase F; 4+ b;, which is observed.
If at the same time the fundamental f,; has increased (over the last T' periods)
relative to the other fundamentals, one can make this variable the scapegoat for
the observed increase in F; 4+ b; by increasing the expectation of the parameter (,,;.
This would happen even when (3,; has not changed at all.

The scapegoat effect can be seen more explicitly by linearizing equation (17).
Let the last term in (17) be ;. The second order term of its linear approximation

gives (see Appendix):

T—1
24(2) = K’ where K,; = a Z biAfni—;
j=0
i.e., kK, depends positively on current and past Af,. Thus, there is a scapegoat
effect for fundamental n when there is a positive b shock combined with positive
changes in the fundamental. This expression also shows that the scapegoat effect
can be volatile since it depends on a combination of shocks.

The third order term in linearizing the last term in (17) gives

xt(2) =I'§,

where I'; depends positively on current and past fundamental shocks. Thus, shocks
to other parameters combined with large values of fundamentals can create a scape-
goat effect for variable n. The reason is that changes in parameters of other vari-
ables lead to a change in the observed F; + b; that can be attributed to 3,; when
the variable n is a convenient scapegoat.

In order to illustrate these points and show the magnitude of the scapegoat
effect, we now turn to a calibration of the model that is grounded in monthly data

on exchange rates and interest rates.

11



3 Numerical Analysis

3.1 Calibration

In the previous section, we considered a special case with no risk-premium shocks
and where both b; and Af,; are iid. For calibration purposes we now turn to a
somewhat more general form of the model. We will consider one period to be a
month.

First, we assume that b, and Af,; follow AR(1) processes:

Afnt = pfAfn,t—l'i_g{
by = ppbi_1 —l—gi’

Second, in order to match observed exchange rate volatility we allow for a time-

varying risk premium. Let v; be the present discounted value of the risk premium:

Uy = Z )\kEt¢t+k

k=0
To match the observed volatility and autocorrelation of As;, we assume that v,

follows the process

Vi1 — U = lpl (’Ut — Ut—l) — wQ/Ut + 5:3 (18)

where €7 ~ N(0,02).

We also need to be more precise about the process for the parameters (,,;,
i.e., the values for ¢; in equation (10). For an interesting analysis, the underlying
parameters should have two features. First, they should not be easily predictable.
Otherwise there would be little model uncertainty. Second, they should not be
too variable from period to period. Otherwise their intrinsic variability would
fully explain the time variation in the relationship between exchange rates and
fundamentals. It would appear highly unlikely that structural parameters change
by large amounts from month to month, or from year to year, and on a continuous
basis. In order to get these two features, we set #; = 67 = 1 and then choose
the other parameters 6; (i = 2,..,7 — 1) such that we maximize the ratio of
the unconditional standard deviation of j3,; relative to the standard deviation of
changes in ,;. This process implies that an innovation impacts the parameter (3,

slowly over time, building up to a maximum impact after 7'/2 periods.

12



Table 1 reports the parameters adopted for the benchmark parameterization.
The first five parameters are associated with the process for b; and v;. These are
set to closely match the standard deviation and first-order autocorrelation of the
monthly exchange rate change and monthly interest differential in the data. We
considered monthly data from 1973(1) to 2007(11) for exchange rates and interest
differentials for 13 industrialized countries relative to the United States.'® These
moments can be seen from the first four rows of the first column of Table 2. In
the second column of Table 2, we show the moments produced by the model with
the benchmark parameters. As a by-product the model also generates a significant
negative correlation between the change in the exchange rate and lagged interest
differential. The Fama regression coefficient, reported in the fifth row of Table 2,
is even slightly more negative than in the data.'*

The next three parameters relate to the process for 3,;. We normalize by
setting its mean value at § = 1. We set T' = 1000, so that parameter innovations
over the last 1000 months, or 83 years, are unknown. We set o3 = 0.000165. As
reported in the last row of Table 2, this implies a monthly standard deviation of the
change in 3,; of 0.27% of the mean value of parameters, which is small. But there
is considerable uncertainty about the level of parameters as their unconditional
standard deviation is 1.2, or 120% of their steady state level. We will compare this
both to the case where parameters are constant and where the standard deviation
of parameters is twice that in the benchmark parameterization.

The next three parameters relate to the process of the fundamentals. We
assume that N = 5, so there are five fundamentals. Under the benchmark para-
meterization we assume that fundamentals follow a random walk and the standard
deviation of innovations is 0.2%. As can be seen from Table 2, this implies an R?
of 0.04 of a regression of the monthly exchange rate change on the change in the
five fundamentals (computed for a sample of 1300 months). This captures the
well-known weak explanatory power of observed fundamentals for exchange rate

fluctuations. At an annual level this corresponds to an R? of 0.11. These num-

13The countries are Australia, Austria, Belgium, Canada, Finland, Germany, Italy, Japan,

Netherlands, Norway, Spain, Switzerland, United Kingdom.
14We emphasize that this is not intended as an explanation for the forward discount puzzle

as it is due to entirely exogenous risk-premium shocks. It does imply though that the model is
well grounded in the data as it conforms to the basic statistical properties of exchange rates and

interest rates.
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bers are not unrealistic, as documented for example in Bacchetta, Beutler and van
Wincoop (2008). But we will conduct sensitivity analysis with respect to both the
standard deviation and persistence of changes in fundamentals.

Finally, we have set p relatively small at 0.03, implying a discount rate A in
the present value equation for the exchange rate of 0.97. This is consistent with
evidence by Engel and West (2005) that the discount rate is close to 1.

3.2 Results

We simulate the model over 2300 months. All moments reported drop the first 1000
months in order to generate a prior history of shocks. Unless otherwise indicated,

the moments reported in the Tables are based on the subsequent 1300 months.
Derivative Exchange Rate with Respect to Fundamentals

Figures 1 and 2 show 0As;/0A f,; for each of the five fundamentals. From now
on we simply refer to this as the derivative of the exchange rate with respect to
fundamentals. Figure 1 does so for a 10-year period (observations 1601-1720 in the
simulation), while Figure 2 does so for a 100-year period (observations 1001-2200
in the simulation). Both Figures also show f3,;, which would be the derivative of
the exchange rate with respect to fundamentals if parameters were known.

It is evident from Figure 1 that the derivative of the exchange rate with respect
to fundamentals is far more volatile than the underlying parameters. As reported
in Table 2, the average standard deviation of monthly changes in the derivative
is 25.66%, or 26% of the mean value of the derivative. By contrast, the standard
deviation of monthly changes in the underlying parameters is only 0.27%, i.e., 100
times smaller. While Figure 1 would suggest that the derivative of exchange rates
with respect to fundamentals is entirely disconnected from the true underlying
parameters, Figure 2 shows that this is not the case when we take a much longer
100-year view. There are large changes in parameters over long cycles of several
decades, while the derivative of the exchange rate with respect to the fundamentals
broadly catches up with these long term swings. This implies that when there are
persistent changes in parameters, agents do eventually learn about them.

But, as illustrated in both Figures 1 and 2, short-term fluctuations around

such long-term cycles can be very large and even dominate the trend itself. It

14



is precisely the possibility that parameters can change a lot in the long-run that
creates significant uncertainty about their level and gives rise to scapegoat effects

that lead to large changes in the derivatives over the short to medium run.
Expectation of Parameters
It is useful to recall equation (9), which is displayed here again for convenience:

OAs, d OE,B,_;
—(1- E SOAf T
T LY

(19)

Since A is close to 1, the derivative of the exchange rate with respect to fundamen-
tals is primarily driven by the last two terms. The second term is proportional to
the expectation F;f3,; of parameter n. Focusing on variable 3, Figure 3 compares
the evolution of B3; with F,[33; over the samples of 10 and 100 years used in Figures
1 and 2. The top panels illustrate that F;(3,; can be significantly more volatile than
the underlying parameter 3,;. But a comparison with Figures 1 and 2 also shows
that the overall derivative 0As;/ OA f,; has even much larger fluctuations at high
frequencies. This is illustrated in the bottom panels of Figure 3, which show (,,,
EifBn as well as 0ASs;/OA fr.

It follows that the high frequency volatility in 0As;/OA f,; is caused by the last
term in (19). It is driven not so much by the expectation of parameters, but rather
by the derivative of the expectation of parameters with respect to fundamentals.
However, the weight of a given variable is best measured by FE,[3,;, since this is how
agents would measure the importance of a variable. In this perspective, Figure 3
is consistent with anecdotal evidence that occasionally agents significantly change
the weight they attach to certain macro variables in driving the exchange rate. The
high volatility of the derivative of the exchange rate with respect to fundamentals
at the monthly frequency should therefore not be misinterpreted as implying that

every month agents completely change their view on the importance of parameters.

3.3 Sensitivity Analysis

We now examine the extent to which the results in the benchmark case are sensitive
to changes in parameter values. We consider three types of parameters: the degree
of parameter instability; the variability and persistence of fundamentals; and the

horizon T' after which parameters are known.
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3.3.1 Sensitivity Moments to Parameter Instability

The instability of underlying parameters affects substantially the link between ex-
change rates and fundamentals. However, some basic moments involving exchange
rates and interest rates are remarkably insensitive to the degree of parameter in-
stability. This is illustrated in Table 2, which reports moments under two scenarios
in addition to the benchmark. The third column shows the results with constant
parameters, while the fourth column shows the case where the standard devia-
tion of parameter innovations is twice that under the benchmark (o3 = 0.00033).
In the latter case the standard deviation of the derivative of the exchange rate
with respect to fundamentals is 100%. For monthly changes in this derivative the
standard deviation is 40.9%.

On the ohter hand exchange rate volatility rises only slightly. The standard
deviation of exchange rate changes rises from 2.94% to 3.20%, from the case of
constant parameters to the extreme case where parameter volatility is twice that
under the benchmark. The standard deviation of the interest rate differential,
as well as the autocorrelation of monthly exchange rate change and the interest
differential, are all virtually unaffected by parameter volatility. The same is the
case for the monthly Fama regression coefficient of As;; on i, — .

The reason for these results is that most exchange rate volatility is unrelated to
changes in fundamentals. For the benchmark parameterization the R? is 0.04 for
monthly data and 0.11 for annual data (based on a long sample of 1300 months).

We examine below what happens when we change the volatility of fundamentals.

3.3.2 Sensitivity to Process Fundamentals

We first examine the impact of the fundamentals process on the link between ex-
change rates and these fundamentals. We consider lower and higher standard de-
viations of the innovations of the fundamentals and positive persistence of changes
in the fundamentals. We find that the volatility of aaAAJf; decreases with oy. When
we set the standard deviation of innovations five times as large as under the bench-

mark (o7 = 0.01), the volatility of monthly changes in the derivative declines from
25.7% to 12.4%. Similarly, when the standard deviation of fundamental innova-
tions is half of that under the benchmark (o; = 0.001), the derivative increases
slightly to 26.4%.$
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The explanation for these results is that when o is larger, the signal F; +
b; becomes more informative as structural parameter innovations are multiplied

by fundamentals that fluctuate more. As a result there is less confusion and

O0Ast
6Afnt

more similar to (3,;, reducing volatility in the monthly and annual changes in the

is then

the expectation of f3,; is closer to its actual value. The derivative

derivative.

O0Asy
OAfnt”

If we set py = 0.2 (0.4) the volatility of monthly changes in the derivative increases
to 28.9% (32.6%).

Changing the volatility of fundamentals also affects their explanatory power

Introducing persistence in A f,,; has little effect on the overall volatility of

and the role of parameter instability. In particular the impact of parameter insta-
bility on exchange rate volatility is larger for a larger o;. For example, if we set the
standard deviation of fundamental innovations at oy = 0.01, five times as large
as under the benchmark, the standard deviation of the exchange rate increases
from 3.6% for o5 = 0 to 4.9% for the benchmark case. But in that case the R? is

excessive: 0.59 for monthly data.!®

3.3.3 Sensitivity to the horizon T

A smaller T implies that parameters 3,; become easier to predict. This reduces
the scapegoat effect. This is illustrated in Figure 4, by comparing the case of
T = 1000 to the case of T" = 300. Figure 4 reports the correlation between the
derivative OAs;/OA f; and S,,:.1% This correlation would be 1 if parameters were
known. A higher T further disconnects the derivative of the exchange rate with
respect to fundamentals from the underlying structural parameters as reflected in

a lower correlation. For example, over a 10-year sample the correlation between
O0As;/OA fry and B is 0.42 for T = 300 and 0.25 for T' = 1000.

15 Another way to increase the volatility of fundamentals is to make changes in f,,; persistent.
This also increases the impact of parameter volatility, although the effect is rather modest. For
example, for py = 0.4, the standard deviation of As; rises from 3.0% to 3.2% when op is raised

from 0 to 0.000165.
16This correlation is computed as a function of the sample length based on the average of this

correlation overall samples of that length. The first sample starts at observation 7" + 1.
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4 Time-Varying Coefficients and Forecasting Per-

formance

The previous section has shown that a significantly unstable relationship between
exchange rates and fundamentals results from gradual changes in structural para-
meters coupled with the unobservability of the structural parameters. In this sec-
tion we investigate the implications of this unstable relationship for out-of-sample
forecasting and the corresponding Meese-Rogoff puzzle. If parameters were known
and constant (and non zero), then by construction the model would outperform a
random walk in predicting exchange rates. Since the empirical evidence shows that
this is not the case, one would therefore have to assume either that parameters are

not constant or that they are not known, or both.

4.1 Out-of-Sample Forecasting in the Data
4.1.1 The Meese-Rogoff experiment

In their seminal paper, Meese and Rogoff (1983a) conduct an out-of-sample fore-
casting exercise. It is not true forecasting as they forecast the future exchange
rate using information about future macro fundamentals. The statistic they con-
struct may be better called a measure of out-of-sample fit of the model. They first
regress the exchange rate on a set of fundamental variables over a sample of L
months, using the first L observations of their data. They use the estimate from
this regression to compute a forecast at L + 1, using the observed fundamentals
at L + 1.17 Using rolling regressions, they repeat this P times, each time starting
the sample one month later. They then compute the ratio of the resulting Mean
Square Error (MSE) with the one obtained assuming that the exchange rate fol-
lows a random walk.!® They assume L = 45 and P = 55, but subsequent studies

have considered larger numbers for L and P as data samples became longer. For

1"Meese and Rogoff (1983a) estimated the exchange rate equation in levels, using several lags
of the exchange rate, but the subsequent literature has regressed the change in the exchange rate

on fundamentals, sometimes including a cointegration term.
18More precisely, Meese and Rogoff (1983a) look at the RMSE which is the square root of

MSE. They also look at the mean error and at the mean absolute error. They also consider the

RMSE for forecasts further than 1 months ahead, in particular 6 and 12-month ahead forecasts.
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example, in Molodstova and Papell (2008) L = 108 and P = 292.

The key result of Meese and Rogoff (1983a) is that the MSE ratio is generally
above 1, so that the average forecast error is larger when using the fundamentals
than adopting a random walk assumption. This result has largely held up to
extensive scrutiny in the more than two decades of research that followed. For
example, Cheung, Chinn and Pascual (2005) consider a longer sample of data, more
currencies, and more fundamental variables. In only 2 out of 216 combinations that
they consider does the model significantly outperform the random walk at a 10%
significance level. Rogoff and Stavrakeva (2008) discuss recent models that have
been somewhat more successful but continue to find that the MSE ratio is generally
above 1 or just slightly below 1.

Figure 5 confirms this evidence. It shows the MSE ratio as we increase L from
40 to 220 and with P = 200. The fundamentals considered are money, industrial
production and CPI inflation. Figure 5 shows the average over 5 exchange rates
to the dollar (Canadian dollar, Japanese Yen, Swiss franc, British pound, and
euro/DM). We see that the ratio is much higher than 1 when L is small, and that
it decreases towards 1. However, it never goes below 1, meaning that the linear

model does not beat the random walk.

4.1.2 Small Sample Bias

When parameters are constant, but their level is not known and has to be esti-
mated, one can face small sample problems. This has been the focus of a lot of
recent literature. Estimating an exchange rate equation over a short data sample
can lead to spurious noise in the estimation of 3 even if it is constant. This can lead
to a noisy forecast, raising the mean squared forecast error of the model compared
to the random walk, which does not suffer from any estimation bias. This bias
is also illustrated in Figure 5, where the MSE ratio is high for small L. This can
indeed be a serious problem and statistics have been developed to correct for such
small sample bias (e.g. Clark and West (2006)). However, even for relatively large
values of L, involving more than two decades of data, it has been hard to outper-
form the random walk (e.g. Rogoff and Stavrakeva (2008)). This suggest that it
is difficult to explain the Meese-Rogoff findings while maintaining the assumption

of constant parameters.
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4.2  Effect of Time-Varying Parameters: Simulation Re-

sults

In order to investigate the relationship between time-varying parameters and the
Meese-Rogoff results we compute the MSE ratio in the benchmark model for dif-
ferent values of L and a large value of P equal to 1000. The first estimation sample
uses observations 7'+ 1 to T'+ L from the simulation to predict the exchange rate
at T'+ L 4+ 1. We then use rolling regressions, as in Meese and Rogoff (1983a),
with the last estimation sample using observations 7'+ P to T'+ P + L — 1 from
the simulation to predict the exchange rate at T4+ P + L.

Figure 6 reports the results for L ranging from 40 months to 300 months.
Results are reported both for the benchmark parameterization with time-varying
parameters and the case of constant parameters. It can be seen that the MSE
ratio declines as the sample length L increases, as in the data in Figure 5. This
illustrates the small sample bias.

A puzzling result emerges when we compare the MSE ratio of the time-varying
coefficient model with the one of the constant coefficient model. We see that the
forecasting performance is better with time-varying coefficients. There is, however,
a straighforward explanation to this result. It turns out that in the specific set of
simulation the average parameters [3,; are higher under time-varying coefficients.
Under constant coefficients, the average of 3,; is 1 by assumption. But, with time
varying coefficient the average of f3,; is higher than 1, as can be seen in Figure
2. As shown in Table 2, this implies that the R? is higher under time-varying
coefficients (0.04 vs. 0.02).

To match the expectations of the underlying parameters, we consider the ”ad-
justed” constant parameter case, where we set (3,; equal to the average of each [,
in the benchmark, time-varying, scenario.'® With this adjustment, Figure 6 shows
that the constant coefficient model has a slightly better forecasting performance,

even though the difference is hard to distinguish.

4.3 Effect of Time-Varying Parameters: Explanation

LYWe use Biy = 1.795, Boy = 1.531, Bs; = 1.621, Bar = 1.659, Bs; = 2.005
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The limited explanatory power of the fundamentals is key in understanding the
forecasting performance, both with time-varying and with constant coefficients.
It is obvious that a larger explanatory power will give better predictions. This is
illustrated in Figure 7, which considers two alternative values of o : half that under
the benchmark (o; = 0.001) and twice that under the benchmark (o = 0.004). In
these cases, the R? are 0.7% and 16.1%. The difference in forecasting performance
is substantial.

On the other hand, the difference between time-varying coefficients and con-
stant coefficients still remains very small (and is not shown in the graph). Thus, for
time-varying coefficients to matter, the explanatory power of fundamentals should
be much higher. But this would be inconsistent with the empirical fit of exchange
rate equations. We examine these issues in more details in in Bacchetta, Beutler
and van Wincoop (2008).2°

5 Conclusion

Anecdotal, survey and econometric evidence all suggest that the relationship be-
tween the exchange rate and macro fundamentals is highly unstable. We have
developed a model where this instability naturally results from a combination of
incomplete information and very gradual changes in structural parameters of the
economy. Nonetheless we find that even very large time-variation in the relation-
ship between exchange rates and fundamentals has little impact on the statistical
properties of exchange rates, the in-sample explanatory power of macro fundamen-

tals and the ability to forecast out of sample.

20To facilitate our understanding, instead of the current model we consider a setup with ex-

ogenous time variation in the relationship between exchange rate and fundamentals.
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Appendix

A Solving the General Model

In this Appendix we describe the model’s solution in the more general case, where
the processes for Af,;, b;, and v; are as specified in Section 3. A Technical Appen-
dix provides further details towards the implementation of the simulations with
Gauss. We start from the present value equation (5) of the exchange rate. We
need to express it in way we can easily substitute the expectation terms. This

equation can be rewritten as:

o0

k
L 7 1 Iz 1
S = F + by — v + E,(Fp +b 20
t 1+Mt 1+Ht 1+Nt 1"’#;92::1(14‘#) t (Firk k) (20)

First, consider the term involving the present discounted value of F. Use that

N ok
Fovp = I+ Z Z Bn,t+i (fn,t+1l - fn,t+i71) (21)
n=1i=1
Therefore
k
Yl Fu=
(1 o
1 1+p
—F 4+ — Z Z 1+. ﬁn i (Frpti — frprio1) (22)
H n=11=1 +

The present value of b can be written as EEtbt, where

p— M Pb (23)
L+pl+p—py

Using this, (20) becomes

1 p 1
Sy = Fi + E Fy + by — v
¢ 1+Ht 1+Mt 1+’ut 1+Nt
N o p _
n,g+v\Jn nt— +bEb 24
22 1+u> EiBnssi (fog = fuir) + Dby (24)
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Therefore

1
St — Sg—1 = T+4 + Z Bt (fot — fri—1) + m [EFy — By 1 Fyq) +
N ~ ~
Z Etﬁnt (fn,t - fn,t—l) - Z Et—lﬁn,t—l (fn,t—l - fn7t—2) + (25)
n=1 n=1
by = bey) + B (Byby — Brabyr) — —— (4 — 1)
1+ ; — D1 04 t—10¢—1 1+ 4 i1

where ;
~ e p
=2 (78 e
Finally, we can write

B, — B F = E(F,— Fia) + [B P — B Fyg) = (27)
N N T

Z Etﬁnt (fnt - fn,t—l) + Z Z (fn,t—i - fn,t—i—l) [Etﬁn,t—i - Et—lﬁn,t—i]
n=1 n=11:=1

Using (27) and collecting terms multiplying f.; — fn.:—1, (25) becomes

N u 1 ~
St — Sg—1 = Z ( Bnt + ——Efnt + Etﬁnt) (fat — far—1) +

1+p 1+p
N ~
- Z Et—lﬂn,t—l (fn,t—l - fn,t—?) + (28)
n=1
1 N T
Z Z (fnt 7 fnt i— 1) [Etﬁn,t—i - Et—lﬁn,t—i] +
Lt p 3=
1
by — b +b(Eby — Ey_1bi_q) — Vi — Uy
1+M(t t-1) (Eiby — Et_1by1) 1+’u(t t-1)
Given the processes of B, and b;, the terms including expectations can be
written as:
EiBny — B = @EtEnt
~ p ~
Efpny — ——B =0E&,
B = T = 0Bk

Eb, = [;Etbt + /)bTbth

T
Z (fn,t—i - fn,t—i—l) [Etﬁn,t—i - Et—lﬁn,t—i] =
i=1

T
Z (frt—i — frt—ic1) Or—iv1€ni—r + ht B4 — fn,tflEtflén,tfl

=1
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where 6, é, l;, h and h are 1 by T" vectors with

40) =0, | (20)

-0 (1) (30
Z3(]) = :Ob‘ (31)
) = 3 Feci — Farcs )y (32)
fn,t—l(j) = Xj:(fn,t—i - fn,t—¢—1)9j—i+1 (33)

=1

and hp,(1) = 0.
Substituting these results into (28) gives

N 14+ np 1 1
T - —_— E - _
St — St—1 ;<1+M_p5+1_’_u(ﬁnt B) + [1+uw+9] & >(fnt frt 1)+
N
_Z (Z_pﬁ—i_eEt—lgn,t—l) (fn,t—l_fn,t—2)+ (34)
1 "
1"":“7;1; Fog—i — fag—ic1) Or—iv1€n— T‘FT ( nt &, fn,tflEtflsn,t_l) +
H 1 T
—(by — b)) — — U b (b(Eb; — E,_ib;_ by—p — by_p_
1+M(t 1) 1+M(Vt V1) + ((tt i—1bi1) + pp (b1 tTl))

The expectation terms can be derived from the signal extraction problem, where

Etwt = tht' This gives:

N
St — St—1 = Z ( L+ B+ a (Bt — B) + llwn + 5”1 tht> (fat = fap—1) +
n=1

1+p—p 1+ p 1+p
N
p —

— —— B+ 0"Cy_wy i1 — fnit_2)+ 35
;(1‘1‘#—06 t—1 t1>(f,t1 fni—2) (35)
1 NT 1 N _

m 712::1 ; (fn,t—i - fn,t—i—l) 9T—z’+1€n,t—T + m — (h?tht - ftn—lct—lwt—l) +
Iz 1 ~ /- T

m(bt —bi1) — m (ny— 1)+ 0 (b(ctwt — Ciywi1) + pp (b — bthfl))

Here 6" is a 1 by (N + 1)T vector with @ in elements T'(n — 1) + 1 through T'n and
zeros otherwise. The vectors @", h? and fI* | are defined analogously. b is a 1 by
(N 4 1)T vector with b in elements NT + 1 through NT 4 T and zeros otherwise.
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Collecting terms in C,w; and C;_jw;_1, we can rewrite this as
N < 1+p

St — St—1 = Z
n=1

N
[m T e‘n] (fot = Fag-1) + 1M >R+ 55) Creor - (36)

I
1 +M—pﬂ+ 1 +u(ﬁnt —6>> (fat = fap-1) +

]‘+ n=1

N
- Z %5 (faji—1 — foi—2) + o Z Z Jojg—i = frt—ic1) Or—iz1€n—7 +

n=1 +:u’_p n=1 =1
a ——(by — bi—1) + bpb (by—p — by__1) — ! (vy — V1)
14+ up 1+p

The derivative with respect to the current fundamental is:

1
8 (ZN [mw + en:| (fnt - fn,tfl) + ﬁ ZnNzl B? + 66) tht
aAfnt

B Signal Extraction

The signal extraction problem is described in Section 2.3. The matrix H; is defined

as:
H, =[Ay, ..., Ans, B] (38)
with . . .
D) Ful@ e (D)
A, — 0 for1(1) o foaa(T—1)
0 0 o furera(1)
and
Lopy o opp
B_ 0 1 .. pi?2
0 0 1
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C Linearization

We linearize the last element of (17). This basically requires the linearization of
Ct = MtH;

C.1 First order linearization

We have:
Cy(1) = M(0)H;(1) + M, (1)H'(0) (39)
with:
H'(0) =0, ...,0,B] (40)
Hi(1) = [Au; -.; Ang, 0] (41)
Using (14) we find that:
Mmz(;l) (42
We also have:
M,(1) = PH,(1) [H;PH,] ' (0) + PH,(0) [H/PH,] ' (1) (43)

We first show that the second element of the RHS of (43) is equal to zero. Define
Q= [H;PHt] . Since QQ'=1, we can write (from first order linearization):

Q(0)Q (1) +Q(1)Q ' (0)=0 (44)

We note that Q(1) = H,(1)H,(0) + ¢H,(0)H,(1) = 0, where ¢ = 02/c}.
Consequently, from (44) and the fact that Q(0) is full rank, Q*(1) = 0. This
~ L1
implies that PH,(0) [H;PHt] (1) = 0. It is then easy to see that:

M, (1) = ¢H, (1) [B'B] (45)

Finally, using the above equations:

_ 0 -1\ — Onr @Dy
qm_(B4mm)+¢“)mmB )‘(D;0T> (40

26



where

flt(l) o . 0

F1e(2) = pofreaa (1) A fnt(l)A 0

D= . o f1e-1(2) = pofre—2(1) 0

"A@)= pofra(T - 1) 0
Fni(T) = pofne (T =1) fye (T —1) = pofneo(T —2) ... Fnve—ra(1)

Using the above and the expectation of 8, from (16), we can write the deriva-

tive:
aEtﬁnt
7@ Af ( Z 92) (47)

Similarly the derivative of the past parameter is:

aEt nt
;Afnlt (Z 6, 92+1> b (48)

On the other hand, FE,f,; is not affected by other fundamentals. Hence, we can

compute the last term of equation (17) as:
4 / aEtﬁt 7 b
Z Aft % 8Af = Z Afnt —J Z 0; 97,—‘,—] Et = Rnt&y¢

C.2 Second order linearization

The second order term of C; is:
Cy(2) = M(0)H;(2) + My(1)H'(1) + M,(2)H'(0) (49)

It is to see that M(0)H,(2), so that the first term is equal to zero. The second
term can be derived from the results of the previous subsection. To derive the
third term, notice that:

. - -1 - L -1 - ~ -1
M,(2) = PH,(0) [H/PH,| (2)+PH,(2) [H;PH,| (0)+PH,(1) [H;PH,| (1)

(50)
The last two terms are equal to zero given the results in the above subsection.

Again using QQ '=1I, and taking a second order linearization, we find:

Q7'(2) =-Q 1 (0)Q(2)Q (0) (51)




Thus:
M,(2) = —PH,(0) [H/PH,| ' (0)H,()PH,(1) [H/PH,]  (0)  (52)

This implies:

Ay
0 _
Ci(2) = —¢ ( Bt )At( 0 B )+¢ s | BBl "[Ay, ..., Ani, 0] (53)
Nt
0
where
Aj,
At - [A1t7 "'aANt7O]
Alyy
0

Using this expression, we find that the second order term of the expectation of

B is given by:

T T

Etﬁnt(2) = 5 + Z eiEtSn,t—iH = 5 + Gt Z eifnt(w (54)
=1 =1

where ¢,y = Zk 1 Z - ZZ 1 bmfkt i+1(j — 7+ 1)ep1-; and bj; is the ij element

of matrix [B’ B] . The derivative with respect to A f,,; gives:

O, B (2 ) -y
OB S (S 04u0) 3 S0 s 69

k=1j=1

We can see that the derivative depends on all current and past parameter shocks
(up to t —T'+1) for all variables, i.e. on the whole vector &,. We proceed similarly
for B—i, 1 < i < T — 1 and then multiply by Af,;—;. In the end, we get the

expression:

d ! aEt/Bt z( )
ZAft A [ =TI¢, (56)

where I'; is a complex matrix depending on Af,;_;, 0;, and bj;.

28



References

1]

2]

[10]

Bacchetta, Philippe, and Eric van Wincoop (2004), “A Scapegoat Model of

Exchange Rate Determination,” American Economic Review 94, 114-118.

Bacchetta, Philippe and Eric van Wincoop (2006), “Can Information Hetero-
geneity Explain the Exchange Rate Determination Puzzle?,” American Eco-
nomic Review 96, 552-576.

Boivin, Jean (2006), “Has U.S. Monetary Policy Changed? Evidence from
Drifting Coefficient and Real Time Data, ” Journal of Money, Credit and
Banking 38(5).

Canova, Fabio (2005), “Monetary Policy and the Evolution of the U.S. Econ-

Y

omy, 7 working paper, CREIL

Cheung, Yin-Wong and Chinn, Menzie David (2001), “Currency Traders and
Exchange Rate Dynamics: A Survey of the US Market,” Journal of Interna-
tional Money and Finance 20(4), 439-71.

Clarida, Richard, Jordi Gali and Mark Gertler(2000), “Monetary Policy Rules
and Macroeconomic Stability: Evidence and Some Theory,” Quarterly Journal
of Economics 115(1), 147-180.

Clark, Todd E. and Kenneth D. West (2006), ”Using Out-of-sample Mean
Square Prediction Errors to Test the Martingale Difference Hypothesis,” Jour-
nal of Econometrics 135, 155-186.

Cogley, Timothy (2005), “Changing Beliefs and the Term Structure of Inter-
est Rates: Cross-Equation Restrictions with Drifting Parameters,” Review of

Economic Dynamics 8, 420-451.

Cogley, Timothy and Thomas J. Sargent (2005), “Drifts and Volatilities: Mon-
etary Policies and Outcomes in the Post WWII U.S. |” Review of Economic
Dynamics 82(2), 262-302.

Del Negro, Marco and Christopher Otrok (2007), ”Dynamic Factor Models

Y

with Time-Varying Parameters,” mimeo.

29



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Engel, Charles and Kenneth D. West (2005), “Exchange Rates and Funda-
mentals,” Journal of Political Economy 113, 485-517.

Engel, Charles, Nelson C. Mark and Kenneth D. West (2007), “Exchange
Rate Models are Not as Bad as You Think,” NBER Macroeconomics Annual
2007.

Fernandez-Villaverde, Jesus and Juan F. Rubio-Ramirez (2007), “How Struc-

tural are Structural Parameters? 7 working paper, Duke University.

Hansen, L. and T. Sargent (2008), Robustness, Princeton University Press,

forthcoming.

Inoue, A. and B. Rossi (2007), “Which Structural Parameters Are “Struc-

tural”? Identifying the Sources of Instabilities in Structural Models,” mimeo.

Levin, A.; A. Onatski, J. Williams, and N. Williams (2006), ”Monetary Pol-
icy under Uncertainty in Micro-Founded Macroeconometric Models” in M.
Gertler and K. Rogoff, eds., NBER Macroeconomics Annual 2005. Cambridge,
MA: MIT Press.

Meese, Richard A. and Kenneth Rogoff (1983a), “Empirical Exchange Rate
Models of the Seventies: Do They Fit Out of Sample?” Journal of Interna-
tional Economics 14, 345-373.

Meese, Richard A. and Kenneth Rogoff (1983b), “The Out-of-Sample Failure
of Empirical Exchange Rate Models: Sampling Error or Misspecification?” in
J. Frenkel (ed.), Ezchange Rates and International Macroeconomics, 67-105,

Chicago: University of Chicago Press.

Meese, Richard A. and Kenneth Rogoff (1988), “Was it Real? The Exchange
Rate-Interest Differential Relation Over the Modern Floating-Rate Period,”
Journal of Finance 43, 933-948.

Molodstova, Tanya and David Papell (2008), ” Out-of-Sample Exchange Rate

Predictability with Taylor Rule Fundamentals,” mimeo.

Nason, James N. and John N. Rogers (2008), ”Exchange Rates and Funda-

mentals: A Generalization,” International Finance Discussion Paper No. 948.

30



[22]

[23]

28]

[29]

[30]

[31]

[32]

Onatski, A. and N. Williams (2003), ”Modeling Model Uncertainty,” Journal
of the European FEconomic Assocation 1, 1087-1022.

Piazzesi, Monika and Martin Schneider (2007), “Equilibrium Yield Curves,”
in Daron Acemoglu, Kenneth Rogoff, and Michael Woodford (eds.), NBER
Macroeconomics Annual 2006, MIT Press.

Primiceri, Giorgio E. (2005), "Time Varying Structural Vector Autoregres-
sions and Monetary Policy,” Review of Economic Studies 72, 821-852.

Rossi, Barbara (2006), “Are Exchange Rates Really Random Walks? Some
Evidence Robust to Parameter Instability,” Macroeconomic Dynamics 10, 20-
38.

Rogoff, Rogoff and Vania Stavrakeva (2008), " The Continuing Puzzle of Short

Horizon Exchange Rate Forecasting,” mimeo.

Sarno, Lucio and Giorgio Valente (2008), “Exchange Rates and Fundamentals:
Footloose or Evolving Relationship?, 7 forthcoming Journal of the Furopean

Economic Association.

Schinasi, Garry, J. and P.A.V.B Swamy (1989), ”The Out-of-Sample Fore-
casting Performance of Exchange Rate Models when Coefficients Are Allowed

to Change, Journal of International Money and Finance 8, 375-390.

Sims, Christopher A. and Tao Zha (2006), “Were There Regime Switches in
U.S. Monetary Policy?, ” American Economic Review 96(54-81).

Stock, James, H. and Mark W. Watson (1996), ”Evidence on Structural In-
stability in Macroeconomic Time Series Relations,” Journal of Business and
Economic Statistics 14, 11-30.

Townsend, Robert M. (1983), “Forecasting the Forecasts of Others,” Journal
of Political Economy 91, 546-588.

Wolff, Christian C.P. (1987), “Time-Varying Parameters and the Out-of-
Sample Forecasting Performance of Structural Exchange Rate Models,” Jour-

nal of Business and FEconomic Statistics 5, 87-97.

31



Table 1 Benchmark Parameter Assumptions”

o, 2.6
o 0.95
o, 2.7
& 0.1
o, 0.1
Oy 0.0165
o 1
T 1000
O 0.2
P 0
N 5
H 0.03

* Standard deviations are given in %.



Table2 Moments: Data and Model”

Data | Benchmark | 65=0 04=0.033
Standard Deviation As, 3.08 3.08 2.94 3.20
Corr(As,, As,,) 0.06 0.06 0.08 0.05
Standard Deviationi-i; 0.25 0.24 0.25 0.24
Corr(i,-i i 4-i,,) 0.94 0.93 0.93 0.92
COV(AS, i ,-i,,) / var(i ,-i;,) -0.91 -1.56 -1.47 -1.59
R? monthly - 0.04 0.02 0.08
R? annual - 0.11 0.07 0.16
s.d. 0OAs, /0AT, - 50.31 0 100.02
s.d. Monthly Change 0As, /0AT,, - 25.66 0 40.93
s.d. Monthly Change AS,, - 0.27 0 0.53

* Standard deviations are given in %.




Figure 1 Derivative As, with respect to Af , (10 years)*
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* The smooth line is B, While the volatile line represents the derivative of As, with respect to Af,.



Figure 2
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Figure 3 Expectations g , (variable 3)
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Figure 4 Correlation between OAs, / OAf,, and f,,
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Figure 5 Out-of-Sample Fit and Sample Size
Empirical Evidence

— MSE Model / MSE Random Walk —
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Note: Mean-Square Error (MSE) of one month ahead exchange rate forecasts from model
including money, output and inflation estimated by rolling regressions relative to MSE of
random walk forecast. The reported line is an average for bilateral US Dollar exchange
rate with Canadian Dollar, Japanese Yen, Swiss Franc and British Pound. Forecasting
sample is 200 periods. Sample : 1973M3 - 2007M10. Data sources: IFS (exchange rates,
industrial production index, CPI and money supply for Japan), OECD and Bank of England

(money supply).



Figure 6 Out of Sample Forecasting:
MSE Model/MSE Random Walk
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Figure 7 MSE Model/MSE Random Walk
Different volatility in fundamentals
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