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Abstract

A novel approach for the study of games with strategic uncertainty is proposed.

Games are defined such that players’ strategy spaces do not only contain pure and

mixed strategies but also contain “ambiguous act strategies”, in the sense that

players can base their choices on subjective randomization devices. Expected util-

ity representation of preferences over strategy profiles consisting of such “ambiguous

act strategies” is not assumed. The notions of “independent strategies” as well as

“common priors” are relaxed in such a manner that they can be applied to the con-

text of games with strategic uncertainty even though the player’s preferences cannot

necessarily be represented by expected utility functions. The concept of “Ambigu-

ous Act Equilibrium” is defined. I show that the ambiguous act equilibria of a

two player games in which preferences of all players satisfy Schmeidler’s uncertainty

aversion as well as transitivity and monotonicity are observationally equivalent to

the mixed strategy equilibria of that game in the sense that a researcher who can

only observe equilibrium outcomes is not able to determine whether the players are

uncertainty averse or uncertainty neutral.
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1 Introduction

There is ample experimental evidence that people treat risky situations in which they know

the odds of all relevant outcomes differently from ambiguous situations in which they can

only guess these odds. The Ellsberg Paradox is one of the most well-established violations

of expected utility theory. It has inspired a large range of different generalizations of

expected utility theory. This branch of decision theory continues to thrive.1

Uncertainty aversion is deemed particularly relevant in situations that are new to the

decision maker. Once a decision is familiar with a situation he should have learned the

odds of all relevant outcomes. In this vein, we might expect that someone who is new

to gardening would exhibit uncertainty aversion with respect to bets on the growth of

her plants. On the other hand, a seasoned gardener should have learned the odds of her

plants reaching a certain size. The seasoned gardener should not exhibit any ambiguity

aversion when it comes to a bet on the number of leaves on her basil plant by June 15th.

Just as much as this reasoning applies to single person decision problems this reasoning

should apply to strategic decision problems. Palacios-Huerta [21], for instance, argues

that penalty kicks in professional soccer are a good testing ground for the predictions of

mixed strategy equilibrium, as professional soccer players have a large set of experience to

draw from when it comes to that particular “game”. We should expect that professional

goalies view the direction of a penalty kick as the outcome of a lottery with known odds.2

Conversely we should expect that a player who does not know her opponent (or who

just doesn’t not know what to expect from the opponent in the context of a particular

situation) should not be able to describe the opponent’s strategy in terms of a known

probability. Following the experimental evidence cited above we would expect that such

players would exhibit ambiguity aversion when they face a “new” game.

In short, ambiguity aversion should be at least as relevant for strategic decision making

as it is for individual decision making. It is surprising, then, that the literature on games

1Some of the seminal contributions are Schmeidler [23], Gilboa and Schmeidler [11], and Bewley [5],

for some more recent contributions see Maccheroni, Marinacci, and Rusticchini [17], and Ahn [1]
2The same view is expressed in Chiappori, Levitt and Groseclose [7]. These authors argue that penalty

kicks are a good case to test the predictions of mixed strategy equilibrium since ”the participants know

a great deal about the past history of behavior on the part of opponents as this information is routinely

tracked by soccer clubs”. This argument was first brought forward by Walker and Wooders [24] who

initiated the use of data from professional sports to test the predictions of mixed strategy equilibrium
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among players that are ambiguity averse stayed comparatively small.3

The goal of this paper is first of all to provide a novel approach of a game theory

with uncertainty averse players. This novel approach proceeds under the assumption that

players can choose to play ambiguous strategies. The players in the present approach

can not only pick pure or mixed strategies, they can choose to base their decisions on

subjective random devices. Say the gardener of the above example is also a professor that

has to decide whether to test her students on topic A or on topic B. She might either

pick a pure strategy (test topic A), a mixed strategy (she could role a dice and test A if

and only if the dice shows the number 1) or an ambiguous strategy (she could test topic

A if and only if her basil plants grew more than 300 leaves by the last day of classes).

Assuming that not all of her students are experienced gardeners this makes her strategy

ambiguous from the point of view of the students. In terms of the Ellsberg example, the

decision of the professor now resembles a draw of an urn with yellow and blue balls in an

unknown proportion.

All prior definitions of games with ambiguity averse players that are uncertain about

each other’s strategies that I am aware of assume that the players either choose pure or

mixed strategies.4 This assumption prevented the authors of these to define equilibrium

in the context of such games as a straightforward application of Nash equilibrium. Nash

equilibrium would require that all players maximize against a belief and that this belief

is true. Given that players’ strategy spaces only contain pure and mixed strategies the

equilibrium condition that all players beliefs are true eliminates any scope for uncertainty:

players would simply know the mixed or pure strategies of their opponents. Consequently

the equilibrium concepts in the literature all build on different relaxations of the condition

that the equilibrium beliefs are true. These equilibrium concepts all require that players

optimize given some belief about the other players strategies and that this belief is “not

3For a review see Mukerji and Tallon [19]. It is important to mention that in some of applications of

games with uncertainty averse players the players are assumed to be uncertain about the environment

rather than about each other’s strategies, see Bade [3], Levin and Ozdenoren [15], Bose, Ozdenoren and

Pape [20]
4This literature was initiated by Klibanoff [12] and Dow Werlang [8]. Lo [16], Marinacci [18], Eich-

berger and Kelsey [9] proposed variations, extensions and refinements of the equilibrium concepts in-

troduced by Klibanoff and Dow and Werlang. Most recently Lehrer [14] and Eichberger, Kelsey and

Schipper [10] have introduced equilibrium concepts for partially specified probabilities and for decision

makers that might be ambiguity loving or ambiguity averse.
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too far” from the actual strategies of the other players. So the most important question

becomes how should “not too far” be interpreted. The papers in the literature all give

different answers to this question, I will discuss and compare some of the most prominent

approaches in section 7.

With the present approach to games with ambiguity averse players I am able to cir-

cumvent this problem. In games which allow for ambiguous strategies, the presence

of ambiguity about the actions of the others is not mutually exclusive with the Nash

equilibrium requirement that players know the strategies of the others. Before a formal

definition of the concept of ambiguous act equilibria I need to tackle the problem that

the introduction of all kinds of subjective randomization devices goes beyond the goal

of a parsimonious deviation from the theory of games with expected utility maximizing

agents. I need to rule out correlation devices and grave violations of the notion of common

priors. Imagine that the gardening professor of the first example has two friends who play

battle of the sexes (they need to decide whether to vacation in Paris or in Rome). Each

one of them could condition their choice of a destination on the growth of the professors

basil plant. Once it is time to buy the ticket the professor will give each one of them a

leaf-count. Here the subjective randomization device basil plant works as a correlation

device. Similarly the friends could have extremely divergent views of the world in the

sense that one friend would believe that the basil plant always grows more than x leaves

whereas the other believes that the plant never grows so many leaves. In this case we

can construct strategy profiles such one friend is certain that both meet in Paris, whereas

the other friend is certain that both meet in Rome. Sections 2.3 and 2.4 are devoted to

ruling out such correlation devices and extremely divergent views of the world. This is

somewhat harder than one might initially think as I cannot rely on probabilistic beliefs

on the state space to define “independent strategies” and “common priors”. Once these

hurdles are taken I define an Ambiguous Act Equilibrium in section 2.6 as a profile of

ambiguous act strategies such that no player has an incentive to deviate given all other

players’ strategies. This definition, which does not rely on any particular representation

of the players’ preferences is the first main contribution of this paper.

This first contribution can be seen as an answer to the first of three questions that

Mukerji and Tallon [19] identified as the guiding questions in research on game theory with

ambiguity averse players. In their review of applications of David Schmeidler’s concept
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of uncertainty aversion they describe these three questions as follows: “(1)...how should

solution concepts... be defined? (2) questions about the general behavioral implications

of the new solution concepts (3) questions about insights such innovations might bring to

applied contexts”. Above I described this papers’s contribution to question (1). My main

contribution to the remaining two questions is negative. The second main contribution of

this paper is a result of observational equivalence between ambiguous act equilibria and

mixed strategy equilibria. I ask the following questions: are there any action profiles that

can arise in mixed strategy equilibrium but would never arise in ambiguous act equilib-

rium? Conversely, are there any action profiles that are consistent with the assumption

of equilibrium play by ambiguity averse players but are inconsistent with mixed strategy

equilibrium. Can the observation of an action profile tell us whether the players are am-

biguity neutral or averse? For games between two players with transitive and monotonic

preferences the answer is negative. In such games the set of all ambiguous act equilibria is

observationally equivalent to the set of all mixed strategy equilibria, in the sense that any

action profile that is consistent with equilibrium play among uncertainty averse players

is consistent with equilibrium play among uncertainty neutral players. In the present

context the answer to Mukerji and Tallon’s questions numbers (2) and (3) is that the

general behavioral implications of uncertainty aversion are not different from the general

behavioral implications of expected utility maximization and consequently that there is

little hope for new insights in applied contexts.

This negative result stands in sharp contrast with the existing literature on strategic

interactions between uncertainty averse players. The equilibrium predictions following the

existing concepts of equilibrium for uncertainty averse players depend on the ambiguity

attitude of players.5 I will use my result on observational equivalence to shed some light

on the interpretation of and comparison between these competing concepts. Finally I will

turn to games with more than 2 players. After the presentation of an example that shows

that things could turn out differently when there are more than 2 players I will conclude

with a discussion why I leave the study of games with more than two players for further

research.

5This excludes Lo [16]
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2 Ambiguous Games

2.1 General Ambiguous Games

A general ambiguous game G is defined to be any G = (I, Ω, A,%) that has the following

interpretations and properties. The set of players is I = (1, ..., n). There is a finite

state space Ω = Ω1 × .... × Ω2.
6 Player i’s action space is denoted by Ai and I define

A = ×i∈IAi. Action spaces are assumed to be finite, I define |Ai| = ni for all players i.

The set of player i’s strategies is the set of all acts f : Ωi → P(Ai), where P(S) denotes

the set of all lotteries on any (finite) S. The preferences of players are defined over all

acts f : Ω → P(A). The preferences of player i are denoted by %i, the preferences of all

players are summarized by %= ×i∈I %i.

A strategy profile ×i∈Ifi induces an act f : Ω → P(A) with f(s)(a) =
∏

i∈I fi(si)(ai)

for all a ∈ A. So the probability that an action-profile a is being played in state s is

determined as the product of the probabilities that all players play action ai in state s. I

denote the act induced by a strategy profile ×i∈Ifi as well as the strategy profile itself by

f .

The assumption that player i’s action space consists of all acts fi : Ωi → P(Ai)

contains an assumption on player i’s knowledge. In interpret the assumption that player

i can only base his actions on the i’th component of the state to mean that player i

only knows the i’th component of the state. Player i’s knowledge can be described by

the event algebra Si on Ω such that Ei ∈ Si if s ∈ Ei implies that (si, s
′
−i) ∈ Ei for all

s′−i ∈ Ω−i. Player i’s strategy space could have been defined equivalently as the set of all

Si-measurable acts f : Ω → P(Ai). It is convenient to define the events s∗i := {s|si = s∗i },
and s∗J := {s|sJ = s∗J}.

Another implication of the assumption on the player’s strategy spaces is that every

player is assumed to have access to an objective, but secret randomizing device, that

can generate any lottery on the player’s action space Ai. A player that can choose any

fi : Ωi → P(Ai) is free to generate his strategic choices using roulette wheels, dices,

objective computer generators or similar things. In the games under study players are

equally free to base their choices on their mood of the day, or on any other subjective

6I follow the usual convention and define xJ := (xi)i∈J and x−J := (xi)i/∈J for any subset J ⊂ {1, ..., n}
for any vector x = (x1, ..., xn). So x−i denotes the vector of all but the i-th component of x = (x1, ..., xn).
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random device to which they have access. I believe that this assumption is natural for the

context of game theory, however, the equilibrium concept proposed here is also suitable

for acts f : Ω → A, in which no objective lotteries are assumed.7

2.2 Acts

I use the letters f, g, fi, gi to denote various acts. Lotteries on action profiles and action

spaces are denoted by p, q ∈ P(A) or pi, qi ∈ P(Ai) respectively. As a shorthand I denote

a constant act f with f(s) = p for all s ∈ Ω and some p ∈ P(A) directly by p (and

accordingly for fi). Degenerate lotteries, that is lotteries p ∈ P(A) and pi ∈ P(Ai)

such that p(a) = 1 for some a or pi(ai) = 1 for some ai are denoted a or ai. Finally

constant acts with f(s) = a or fi(si) = ai for all s ∈ Ω or si ∈ Ωi are denoted by a

and ai respectively. Constant acts a correspond to pure strategy profiles, constant acts

ai correspond to pure strategies. Constant acts p and pi correspond to mixed strategy

profiles and mixed strategies respectively. In short, pure and mixed strategies are naturally

embedded in the framework of general ambiguous games.

Often I will want to evaluate an act in which player i plays the constant act that he

would play according to act fi in event si in all possible states when all other players play

acts f−i. I denote this act by (fi(si), f−i), where fi(si) denotes the constant act in which

player i chooses the lottery fi(si) in every state. The mixture αf +(1−α)g of two acts f, g

is defined component wise, meaning that (αf+(1−α)g))(s)(a) = αf(s)(a)+(1−α)g(s)(a)

for all a ∈ A and all s ∈ Ω.

For any two acts f, g and any event E ⊂ Ω define the act fEg by (fEg)(s) = f(s) for

s ∈ E and (fEg)(s) = g(s) if s /∈ E. A state s is considered Savage null by a player i if

the values that an act f assumes on this state are irrelevant to player i’s preference for

this act.

Definition 1 An state s ∈ Ω is i-null if f ∼i g for all acts f, g with f(s′) = g(s′) for

s′ 6= s. If a state s is not i-null then we call this state i-non null. We call a state simply

7This could potentially be very interesting. The empirical evidence on mixed strategies suggests

that “normal” people are not able to mix objectively. Chiappori Levitt and Groseclose [7], Palacios-

Huerrta [21], and Walker and Wooders [24] therefore use “abnormal” people, namely athletes, to test

the predictions of mixed strategy equilibrium. Games played by “normal” people could be studied in a

framework in which strategies are acts f : Ωi → Ai.
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null if it is i-null for all players i. An event E is considered null (i-null) if all states that

make up the event are null (i-null).

I identify the set of i-null states as the set of states that are “never” going to happen

following player i’s belief. If player i prefers an act f to an act g even though these two

acts only differ on a state s player i should better believe that this event could possibly

happen. Conversely if player i is indifferent between all acts that differ only on a state

s this event is irrelevant for player i’s payoff, he might as well think that this event will

“never” happen.

2.3 Independent Strategies

The goal of the present study is to see how the equilibrium predictions for a game change

when the assumption of expected utility maximizing players is replaced by the assumption

of ambiguity averse players. In the following two sections I show that general ambigu-

ous games are to general for this purpose: General ambiguous games do not only allow

for various ambiguity attitudes, they also allow for correlation devices and wildly diverg-

ing beliefs. To see that general ambiguous games allow for correlation devices take the

following example of Battle of the Sexes.

Example 1 To save on notation the row player in every example with two players is

called Ann, the column player is called Bob. The actions of Ann and Bob are denoted

by a1, ...ana and b1, ...bnb
respectively. I use a and b as subscripts to denote Ann and

Bob’s strategies and payoffs. Consider a general ambiguous game between Ann and Bob

G = ({a, b}, Ω, A,%). Let Ω = {ra, sa}×{rb, sb} where ri stands for player i sees rain and

si for player i sees it shine. Also assume that both players consider the states {(ra, sb)}
and {(sa, rb)} null, that is they are convinced that they will never disagree on the weather.

In this case both players can use the weather to coordinate their actions.

In fact the notion of a general ambiguous game corresponds to the definition of a

game that Aumann [2] uses in the article in which he introduces the concept of correlated

equilibrium. Aumann starts out with the same general definition of a game and goes on to

impose expected utility representation. The present project can be seen as complementary

to Aumann’s: How would the set of equilibria change if we dropped the assumption that

players are expected utility maximizers but retained the assumption that players cannot

8



rely on any correlation devices? With the goal of the most parsimonious deviation from

standard theory that allows for the introduction of a new aspect I should proceed by

imposing that the strategies of all players are independent.

This is not as easy as it sounds as the standard notion of independent strategies relies

on the expected utility representation of the preferences of all players. So I need to develop

a behavioral notion of independent strategies. To do so I extend the common notion of

state independent preferences to the context of games. Remember that state independence

requires that an agent that prefers one option to another in some state should prefer the

first option to the second in any other state. For the case of independent strategies I

impose that if one player prefers to play one action over another in some event then that

player should prefer the first to the second action in any other event. More generally, I

impose that the worth of a strategy for a subgroup of players J cannot depend on the

event in which it is played. Let’s reconsider weather events. If a player i prefers to play

the lottery pi to the lottery qi when he observes rain, meaning that he compares two

strategies that differ only when it rains but are equal for all other kinds of weather given

a fixed strategy profile for all other players, then this player should prefer pi to qi for any

weather. If not this player has to believe that the other players can also peg their actions

to the weather, which in turn entails that the weather can be used as a correlation device.

I state a weak version of this definition formally as:

Definition 2 Take a general ambiguous game G = (I, Ω, A,%). Then ΩJ is called i-

independent of Ω−J if the following condition holds for all acts f−J : Ω−J → P(A−J) and

all pJ , qJ ∈ P(AJ)

• (pJ , f−J) �i (qJEpJ , f−J) for some E ⊂ ΩJ implies that (pJ , f−J) �i (qJ , f−J)

• (pJ , f−J) %i (qJ , f−J) implies that (pJEqJ , f−J) %i (qJ , f−J) for any E ⊂ ΩJ .

If player i’s preferences can be represented by an expected utility function then the be-

havioral notion of independence given in Definition 2 coincides with the standard notion

of independence. Observe that the definition of independence is not very restrictive. For

instance, in a two player game Ω1 can be 1-independent of Ω2, whereas Ω2 is not 1-

independent of Ω1. Also following this definition (qJEpJ , f−J) �i (pJ , f−J) does not imply
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(qJ , f−J) �i (pJ , f−J).8 Finally observe that for J = I this definition rules out state

dependent preferences: If any player likes the lottery p better than the lottery q in event

E he has to like the constant act p better than the constant act q. To see Definition 2 at

work let us reconsider example 1.

Example 2 Consider Example 1 and add some information on the players preferences.

Let Ann and Bob’s preferences and payoffs be given by the following matrix

b1 b2

a1 −2,−1 0,0

a2 0,0 −1,−2

Keep the assumption that Ann considers the events {(ra, sb)} and {(sa, rb)} null. To

save on notation I define the events {(ra, rb)} := r and {(sa, sb)} := s. Fix the following

acts f, g, h by f(r) = g(r) = (a1, b1), f(s) = h(s) = (a2, b2), g(s) = (a1, b2) and h(r) =

(a2, b1).
9 These acts can be illustrated by the following table:

f

b1 b2

a1 r -

a2 - s

g

b1 b2

a1 r s

a2 - -

h

b1 b2

a1 - -

a2 r s

Assume that h �a g �a f . I will show that Ωa is not a-independent of Ωb. Fix Bob’s

strategy as fb(rb) = b1, fb(sb) = b2. And Fix E = {sa}. We have that,

g = (a1, fb) �a (a2Ea1, fb) = f

g = (a1, fb) ≺a (a2, fb) = h

8The reason for this asymmetry of the independence requirement is that the goal of this study is to

study games with uncertainty averse players. The action profile (qJEpJ , f−J) can be seen as a (sub-

jective) mixture between the act (qJ , f−J) and the act (pJ , f−J). So there are potentially two reasons

why (qJEpJ , f−J) could be preferred to (pJ , f−J), the first is uncertainty aversion the second is that

(pJ , f−J) �i (qJ , f−J) holds. The notion of uncertainty aversion will be defined and discussed in sec-

tion 4
9I do not specify values of f, g, h on {(ra, sb)} and {(sa, rb)}. These two events are considered null by

Ann and will therefore not matter to her ranking of the 3 acts.
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a contradiction to Ωa being a-independent of Ωb. So while a1 is a better response than

a2 to fb on E = {sa} it is not true that a1 is a better response than a2 on Ωa.

I am aware of two alternative behavioral definitions of independence in the literature

by Branderburger, Blume and Dekel [6] and Klibanoff [13]. Brandenburger, Blume

and Dekel’s definition of independence also builds on the idea that if a constant act

pJ is preferred to a constant act qJ on some event EJ = {sJ} and some fixed at f−J

then the constant act pJ should preferred to a constant act qJ for the fixed at f−J on

any event EJ . Their definition differs from the present one insofar as that they use the

concept of “conditional preference” to define independence, which has not been defined

for the present context. Klibanoff’s [13] definition is less restrictive than the present

definition. His definition builds on the same condition as mine, however Klibanoff applies

this condition is applied to a smaller domain than I do.10

2.4 Basic Agreement

I argued above that general ambiguous games are to general for this purpose of the

present study as they permit for correlation devices. The main argument of the present

section is that even general ambiguous games with the imposition of independent strategies

are too general. Such games allow of wildly diverging beliefs. This stands in sharp contrast

to games in mixed strategies for which we require the common prior assumption to hold.

To see this take the following example:

Example 3 Consider a general ambiguous game defined in example 1. Assume that

Ann considers the event ra null, whereas Bob considers the event sa null. If Ann follows

fa with fa(ra) = a1 and fa(sa) = a2 Ann is certain that she plays a1, whereas Bob is

certain that she plays the other action.

Example 3 flies in the face of the common prior assumption. In keeping with the goal of

a parsimonious deviation from the theory of mixed strategy equilibrium, I need to impose

a condition that would eliminate such games from consideration. The difficulty lies in

10Using the terminology defined here it can be said that in Klibanoff’s definition the relation has to

hold only if (qJ , f−J) = a for some action profile a.
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the fact that the common prior assumption, just like strategic independence, is defined

in terms of the players expected utility representations. Without expected utility players

have no priors on the state space so they cannot be common. I propose the following

(weaker) assumption of basic agreement for the present context.

Definition 3 A general ambiguous game satisfies basic agreement if state s is i-null if

and only if is j-null for all i, j ∈ I.

Clearly if the players preferences are representable by expected utilities the common

prior assumption implies basic agreement. In the case of representable preferences a

state is i-null if and only if i assigns zero probability to this state. The common prior

assumption implies that all players assign the same probability to all states, it implies

in particular that player i assigns zero probability to a state s if and only if any other

player j assigns zero probability to that state. On the other hand the assumption of basic

agreement does not imply common priors.

2.5 Ambiguous Games and Ambiguous Act Extensions

In this section I define the main object of this study: ambiguous games are defined as

general ambiguous games with independent actions and basic agreement. I impose these

two conditions to make sure that any differences between ambiguous act equilibria and

mixed strategy equilibria are not generated by hidden violations of independence and/or

common priors in the formulation of ambiguous games.

Definition 4 A general ambiguous game G = (I, Ω, A,%) is called an ambiguous game

with independent strategies and basic agreement or simply an ambiguous game, if ΩJ is

independent of Ω−J for all i, J and if the game satisfies basic agreement.

It is useful to define ambiguous act extensions in analogy to mixed strategy extensions.

To do so I need a notion of restricted preferences. The preferences %′ on B′ are a restriction

of the preferences % on B ⊇ B′ if a %′ b for a, b ∈ B′ holds if and only if a % b, this is

denoted by %′=% |B′ . Games in mixed strategies are defined as triples (I, A, %) where I

denotes the set of players, A = ×i∈IAi the set of action spaces and %= ×i∈I %i the set of

all players preferences over all lotteries P(A).
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Definition 5 For any game G′ = (I, A, %′) we call the game G = (I, Ω, A,%) an am-

biguous act extension of G′ if G = (I, Ω, A,%) is an ambiguous game and if % |P(A) =%′.

An ambiguous act extension of a game G′ is an ambiguous game G such that G reduces

to G′ when we restrict all players to take only mixed strategies. If G is an ambiguous

act extension of G′ then the preferences in both games agree on the set of constant acts.

It is important to note that for any game G′ = (I, A, %′) there are many ambiguous

act extensions. In contrast, any game in pure strategies has exactly one mixed strategy

extension.

2.6 Ambiguous Act Equilibria

The preparations in the prior sections allow me to use the standard notion of Nash equi-

librium to define an equilibrium concept for games with ambiguity averse players. An

ambiguous act equilibrium of a game G is defined as a Nash equilibrium of an ambiguous

act extension of the game.

Definition 6 Take an ambiguous game G = (I, Ω, A,%). A strategy profile f is called

an ambiguous act equilibrium if there exists no act f ′
i : Ωi → P(Ai) for any player i

such that f ≺i (f ′
i , f−i). We call f an ambiguous act equilibrium (AAE) of a game

G′ = (I, A, %′) if there exists an ambiguous act extension G of G′ such that f is an

ambiguous act equilibrium in G. The sets of all (mixed strategy) Nash equilibria and of

all ambiguous act equilibria of a game G are denoted by NE(G) and AAE(G) respectively.

The definition of AAE proposed here differs sharply from the definitions in the lit-

erature on games with uncertainty averse players (Klibanoff [12], Dow and Werlang [8],

Lo [16], Eichberger and Kelsey [9] and Marinacci [18]). Firstly all definitions mentioned

here rely on particular representations of preferences. Equilibrium in these papers is al-

ways defined in terms of some features of the utility functions of players. The present

definition does not assume any particular representation of preferences. In fact the present

definition can be applied to contexts where uncertainty aversion does not hold. Secondly

the present definition is a straightforward application of Nash equilibrium. The papers I

reference here all assume that players strategy spaces contain only pure or mixed strate-

gies. A direct application of Nash equilibrium to such a game would eliminate any po-

tential for uncertainty. Consequently all the studies referenced here define alternative
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equilibrium concepts that weaken the consistency assumption of Nash equilibrium. This

differs markedly from the present definition. I allow for ambiguous act strategies. Con-

sequently, the use of the Nash equilibrium concept to define AAE does not eliminate

uncertainty. The novelty of the present approach lies in the definition of a game, the

equilibrium concept itself is not new, I use Nash equilibrium. Prior studies followed an

opposite path, they stayed close to the tradition in terms of the formulation of a game

and used innovative equilibrium concepts to allow for uncertainty aversion. 11

2.7 Observational Equivalence

The main claim of this study is that the ambiguous act equilibria and the Nash equilibria of

a two player game G = ({a, b}, A,%) are observationally equivalent when the preferences

of all players satisfy Schmeidler’s uncertainty aversion in addition to monotonicity and

transitivity. Observational equivalence captures the idea that an outsider who only ob-

serves the action profiles that players choose cannot tell whether the players are ambiguity

neutral or ambiguity averse. In short, two strategy profiles are considered observationally

equivalent if their support coincides. To proceed any further I need to define the notion

of the support of an ambiguous act.

Definition 7 We say that an action profile a is in the support of strategy profile f if

there exists a non-null state s such that f(s)(a) > 0. We denote the set of all actions in

the support of f by supp(f).

Note that the support of a constant act strategy profile p equals the support of the

lottery p in the usual sense of the word support.

Definition 8 Take an ambiguous game G = (I, Ω, A,%). Two strategy profiles f, g are

observationally equivalent if they have the same support. Two sets of action profiles

11The current paper is closest to Lo [16]. In section 7 of his paper Lo constructs a a state space and

strategies mapping states to actions for all players to ground his equilibrium concept in an environment

in which player preferences are defined over fundamentals. Lo acknowledges that the properties of agree-

ment and stochastic independence need to be defined for this environment. Lo goes on to define these

properties in terms of the particular representation of preferences he chose. My approach differs in that I

provide axioms to capture the named properties. My equilibrium concept does not rely on any particular

representation of preferences.
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F ,G are called observationally equivalent if for every f ∈ F there is an observationally

equivalent g ∈ G and vice versa.

It is important to note that “basic agreement” holds in ambiguous games. Without this

assumption the notion of “support” would not be well-defined. Without basic agreement

there might be some states that are null for some players but not for others. Consequently

the present notion of observational equivalence cannot be applied to general ambiguous

games.

The question underlying the definition of observational equivalence is: is there any

action profile that is consistent with equilibrium play among players with particular at-

titude towards ambiguity - neutral or averse - without being consistent with equilibrium

play among players with a different attitude towards ambiguity. Said otherwise, is there

any action profile that “proves” that players are ambiguity averse in the sense that this

action profile is in the support of ambiguous act equilibrium but is not contained in the

support of any mixed strategy equilibrium?

So one might ask: can’t an observer use more than just ONE action profile to determine

whether the players are ambiguity neutral or averse? Aren’t the frequencies with which

all action profiles are being played also observable? Yes they are, however, the question

whether some frequencies are consistent with a subjective act is very much open to debate.

To see this take an act f : Ω → P(A) with Ω = {s1, s2}, A = {a1, a2} and f(s1) =

a1, f(s2) = a2 and both s1 and s2 non-null. This act entails no prediction about the

frequency of the occurrence of a1 and a2. I would need to impose further assumptions

on players preferences to relate the observed frequencies to the played acts f . I chose to

avoid this by using the equality of support as my criterion of observational equivalence.

3 Preferences and Best replies

3.1 Transitivity, Monotonicity and Expected Utility Represen-

tation

Until now I have not specified the preferences of the players beyond requiring the

properties of independent strategies and basic agreement. To get any results some further
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requirements will have to be imposed. In this section I define a range of very basic

properties of preferences for the context of ambiguous games.

(TR) Preferences are transitive.

(EU) Preferences over constant acts - that is preferences over lotteries - have an ex-

pected utility representation; for any player i there exists an affine function ui : P(A) → R
that represents the players preferences over constant acts (lotteries) P(A).12

Finally I define a notion of monotonicity which relies on eventwise comparisons of

acts. This notion of monotonicity requires that if an actor i prefers a strategy fJ of a

fixed subgroup of players J for all sJ to a strategy gJ , holding the strategy of all other

players fixed at f−J , then player i should prefer the strategy profile f := fJ × f−J to the

strategy profile g := gJ × f−J .

(MON) Take two acts f, g and a subset of players J ⊂ I, such that f−J = g−J .

• If for all events sJ we have that (fJ(sJ), f−J) %i (gJ(sJ)sJ
fJ(sJ), f−J) and if there

exists an event s′J such that (fJ(s′J), f−J) �i (gJ(s′J)s′J
fJ(s′J), f−J) then f �i g.

• If f �i g then there exists an event s∗J such that (fJ(s∗J), f−J) �i (gJ(s∗J)s∗J
fJ(s∗J), f−J).

To get a better grasp of this concept let me compare (MON) to a more standard

definition of monotonicity as given by Gilboa and Schmeidler [11], Maccheroni, Marinacci

and Rusticchini [17], and Schmeidler [23].

(standard MON) Take two acts f, g if for all non-null states s ∈ Ω we have f(s) %i g(s)

then f %i g.

(MON) and (standard MON) differ with respect to the following four aspects. First

of all, (MON) specifically relates to the context of game theory: (MON) does not only

rank acts that can be compared for every state s it also ranks acts that can be compared

for every event sJ , for every subset of strategies J . (MON) looks a lot more similar to

(standard MON) for the case of a single agent decision problem. In that case (MON)

would only rank acts that can be compared on every state.

12Clearly, I could have stated some more basic properties on the player’s preferences over constant acts

that imply (EU). I chose to summarily state these assumptions as (EU) for the sake of brevity.
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Secondly, (standard MON) amalgamates two very different assumptions. These as-

sumptions are one of state independence that could be stated as p � qEp implies p � q and

one of monotonicity that could be stated as f(s) � g(s){s}f(s) for all s implies f � g. The

first assumption rules out state dependent preferences, whereas only the second assump-

tion should be interpreted as a form of monotonicity. In fact Schmeidler [23] interprets

(standard MON) as an assumption of state independent preferences. Independence plays

a big role in the present study, I not only assume that preferences are state independent,

I assume that all players strategies are independent (which can in turn be interpreted as

a form of state independence as argued above). Since independence plays such a central

role in the present study I chose to disentangle it from the assumption of monotonicity.

However, as long as independence holds (which is, of course, the case for ambiguous games

as defined here) (MON) can be rewritten as:

(MON’) Take two acts f, g and a subset of players J ⊂ I, such that f−J = g−J .

• If for all non-null events sJ we have that (fJ(sJ), f−J) %i (gJ(sJ), f−J) and if there

exists a non-null event s′J such that (fJ(s′J), f−J) �i (gJ(s′J), f−J) then f �i g.

• If f �i g then there exists a non-null event s∗J such that (fJ(s∗J), f−J) �i (gJ(s∗J), f−J).

Thirdly, (standard MON) and (MON) differ insofar as that (standard MON) is de-

fined for the case of complete preferences whereas (MON) applies to preferences that are

potentially incomplete. To fully appreciate the similarity between the two concepts let

me restate (MON) for the case of an ambiguous game with a single player with complete

preferences (or in other words, for the case of a decision problem of an agent with state

independent and complete preferences). In this case we have that f(s) %i g(s) for all

non-null states and f(s′) �i g(s′) for some non-null state s′ implies f �i g.

The fourth difference can clearly be seen from this reformulation of (MON) for the

context of single person decision making. (MON) is stronger than (standard MON) in

the sense that (standard MON) requires one act to be strictly preferred to another for

every state whereas (MON) requires the strict preference only for some non-null state. In

section 6 I will provide an in depth discussion of alternative concepts of monotonicity that

are weaker than (MON) and therefore closer to the definition by authors cited above.
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3.2 Mixed Strategy Equilibria

In this subsection I show that the very weak assumptions of (EU) and (MON’) suffice to

show that a mixed strategy profile p is an NE of G if and only if it is an AAE of G.

Lemma 1 Take a game G′ = (I, A, %′) assume (EU) and (MON’). Let G = (I, Ω, A,%)

be an ambiguous act extension of G′. We have that p is an AAE of G if and only if p is

a NE of G′.

The following Lemma on best responses is useful for the proof of this fact.

Lemma 2 Take an ambiguous game G = (I, Ω, A,%) satisfying (EU) and (MON’). Let

f be an ambiguous act equilibrium in the game G. Fix a non-null state s. There does not

exist a pi ∈ P(Ai) such that (pi, f−i) > (fi(si), f−i).

Proof Suppose such a pi existed. Define the act gi by gi(si) = pi and gi(s
′
i) = fi(s

′
i) for

all s′i 6= si. By (MON’) we have that (gi, f−i) �i f , so f cannot be an equilibrium. �

Lemma 2 implies that no strictly dominated strategies will be played in equilibrium.

The support of any AAE of a game G is a subset of the set of actions that survive

iterated elimination of dominated strategies.13′14 Lemma 2 can now be applied in the

proof of Lemma 1

Proof Let p be an AAE of the ambiguous act extension G = (Ω, A, I, %) of G. Then

we have that there exists no deviation fi for any player i such that (fi, p−i) �i p, in

particular there exists no p′i such that (p′i, p−i) �i p, so p is a NE of G′. Next assume

that p is a NE of G′. Suppose p was no AAE of G, that is suppose that there exists a

deviation fi for player i such that (fi, p−i) �i p. By (MON’) there exists an event si such

that (fi(si), p−i) �i p, a contradiction to the assumption that p is a NE of G′. �

13For a definition of the procedure of iterated elimination of dominated strategies see Bernheim [4] and

Pearce [22], who introduced this notion.
14Other notions of equilibrium for games with ambiguity averse players permit the use of strategies

that are not rationalizable. Dow and Werlang [8] provide an example to illustrate that their equilibrium

notion does not necessarily describe a subset of all rationalizable profiles. Klibanoff [12] refines his notion

of equilibrium using the iterated elimination of dominated strategies as a criterion.
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Lemma 1 should not come as a big surprise. For any player with monotonic preferences

a deviation from p can only be profitable if it is profitable in some event. Independence

then requires that this deviation is profitable in any event. So if p is a Nash equilibrium

there cannot be any such profitable deviation. It should be noted thought that Lemma 1

is strong insofar as that is says that if p is a NE of G then p is an AAE of any ambiguous

act extension of G.

Corollary 1 Take an ambiguous game G = (I, Ω, A,%) assume (EU) and (MON’). An

AAE exists.

Proof Direct consequence of Lemma 1 and the fact that a finite game always has an

NE. �

4 Uncertainty Aversion

4.1 Definition

Schmeidler [23] defined the “ambiguity aversion” as a preference for randomization: if an

agent is indifferent between two uncertain acts then he should like an objective random-

ization over these two acts at least as much as either one of them. This is the dominant

notion of ambiguity aversion in the literature on decision making, I also adopt it here.

For the context of incomplete preferences Schmeidler’s axiom can formally be stated as.

(UA) Take three acts f, f ′, g : Ω → P and let neither g �i f nor g �i f ′ be true. Then

it cannot be true that g �i αf + (1− α)f ′.

I will not attempt to motivate Schmeidler’s axiom here and refer the interested reader

to extensive literature on uncertainty aversion for a discussion of Schmeidler’s axiom.15

4.2 Examples of Preferences

15The interested reader might consult Gilboa and Schmeidler [11] and Maccheroni, Marinacci and

Rustichini [17] as a start.
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To illustrate the notions defined above as well as all of the following results I will make

use of a range of different examples of preference structures which I define in examples 4

- 9. For the sake of clarity I drop the index i in this subsection.

Example 4 The preferences of a player can be represented by an expected utility func-

tion if there exists an affine function u : P(A) → R and a prior q ∈ P(Ω) such that such

that for all f, g

f % g if and only if

∫
u(f)dq ≥

∫
u(g)dq.

Example 5 The preferences can be represented by a minimal expected utility (MEU)

function following Gilboa and Schmeidler [11] if there exists an affine function u : P(A) →
R and convex and compact set Q ⊂ P(Ω) such that such that for all f, g

f % g if and only if min
q∈Q

∫
u(f)dq ≥ min

q∈Q

∫
u(g)dq.

Example 6 The preferences of a player can be represented by a Choquet expected

utility (CEU) function following Schmeidler [23], if there exists a S-measurable capacity

v : Ω → [0, 1] such that v(∅) = 0, v(Ω) = 1, A ⊆ B implies v(A) ≤ v(B) and v(A ∪ B)−
v(A ∩ B) ≥ v(A) + v(B) such that preferences over acts a represented by the following

function:

CEU(f) =
K∑

k=1

uk

(
v

(
k⋃

l=1

El

)
− v

(
k−1⋃
l=1

El

))
where the events Ek are defined such that {E1, ..., EK} = f−1, uk = f(s) for s ∈ Ek

and finally uk > uk+1 for all k = 1, ..., K.

Example 7 The preferences of a player can be represented by an uncertainty loving

utility function using multiple priors if there exists an affine function u : P(A) → R and

convex and compact set Q ⊂ P(Ω) such that such that for all f, g

f % g if and only if max
q∈Q

∫
u(f)dq ≥ max

q∈Q

∫
u(g)dq.

Example 8 The preferences exhibit Knightian uncertainty following Bewley [5] if there

exists an affine function u : P(A) → R and convex and compact set Q ⊂ P(Ω) such that
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such that for all f, g

f � g if and only if

∫
u(f)dq >

∫
u(g)dq for all q ∈ Q and

f ∼ g if and only if

∫
u(f)dq =

∫
u(g)dq for all q ∈ Q

In all other cases the player cannot rank the acts f and g and we write f ./ g.

Example 9 The preferences are called variational following Maccheroni, Marinacci and

Rustichini [17] if there exists an affine function u : P(A) → R and non-negative, convex

and lower-semicontinuous function c : P(Ω) → [0,∞] such that for all f, g

f % g if and only if min
q∈P(Ω)

( ∫
u(f)dq + c(q)

)
≥ min

q∈P(Ω)

( ∫
u(g)dq + c(q)

)
.

Observe that (EU) and (TR) hold for all the given examples. Example 4 satisfies

(MON). Examples 5, 7 and 8 satisfy (MON) if and only if all q ∈ Q have the same

support.16 Schmeidler’s assumption on uncertainty aversion (UA) only holds in exam-

ples 4, 5, 6 and 9.17 Example 4 is a special case of examples 5, 7 and 8 (all these

examples reduce to example 4 when Q is a singleton). In our context preferences can

be represented by a MEU utility function following example 5 if and only if the can be

represented by a CEU-utility function following example 6. Example 5 is a special case

of example 9. The preferences in all examples but example 8 are complete. An event E

is null in examples 4, 5, 7 and 8 if and only if q(E) = 0 for all q ∈ Q. And event E is

null in example 9 if c(q) = 0 for all q with q(E) > 0. An event E is null in example 6 if

v(G ∪ E)− v(G) = 0 for all G ∈ Ω.

5 Observational Equivalence

In this section I will show that for any two player game G we have that the set of Nash

equilibria of that game is observationally equivalent to the set of Ambiguous Act equilibria

in that game if (UA), (MON), (EU) and (TR) are satisfied (Theorem 1). This is the main

16Klibanoff [12] proves this for the case of example 5, his proof can easily be amended to the other two

examples.
17We can define a condition (UL) that replaces (UA) for example 7 replacing �i by ≺i wherever it

appears in the definition of (UA).
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result of this paper. To get there I first show that actions that are in a sense “dominated”

will never be used in an ambiguous act equilibrium (Lemma 3). I will then go on to

show under this condition a player’s belief on the strategy of the other can always be

represented by a probability (Lemma 4). These two Lemmata yield the the proof of the

main result of this paper, Theorem 1. It is convenient to use matrix algebra to state and

prove all these results. Some more notation needs to be introduced.

5.1 Matrices and Vectors

For a fixed Bi × B−i ⊂ Ai × A−i define the matrices U := (ui(a)ai∈Ai,a−i∈B−i
), V :=

(ui(a)ai∈Bi,a−i∈B−i
), W := (ui(a)ai∈Ai\Bi,a−i∈B−i

). So

U =

(
V

W

)

The k’th column of the matrix U is denoted by Uk, so we have that U = (Uk)k=1,...,|A−i|.

A generic vector p is assumed to be a column vector, row vectors are obtained by taking

the transpose p′. With this notation we can simply calculate player i’s expected utility of

a mixed strategy profile p with supp(p−i) ∈ B−i as p′iUp−i.

For any two vectors x, y of the same length we define the relations “ > ”, “ ≥ ”, “ � ”

and “ = ” by x ≥ y if and only if xt ≥ yt for all components t, x � y if and only

if xt > yt for all components t, x = y if and only if xt = yt for all components t and

finally x > y if and only if x ≥ y but not x = y. Using this notation we can express the

following relation between two lotteries pi, qi: (pi, a
k
−i) %i (qi, a

k
−i) for all k ∈ {1, ..., K}

and (pi, a
k
−i) �i (qi, a

k
−i) for some k ∈ {1, ..., K} simply as p′iU > q′iU . I denote the vector

(x, x, ..., x)′ by x.

5.2 Ambiguous Act Equilibria and “Dominance”

The next Lemma describes a condition on all actions that might sometimes be played in

a best reply. It is shown that there exists no “dominated” mixture over the set of actions

played in a best reply in the sense that for any such mixture there does not exist a mixture

over all possible actions of the player.
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Lemma 3 Take an ambiguous game G = (I, Ω, A,%) assume (TR), (EU), (MON’) and

(UA). Let f be an ambiguous act equilibrium in G. Define an ni × |supp(f−i)|-matrix U

as above with Bi := Ai, B−i := supp(f−i). There do not exist any pi ∈ P(Ai), qi ∈ P(Bi)

such that and p′iU > q′iV .

Proof Since fi is a best reply to f−i we know by Lemma 2, that there is no p̃i such

that (p̃i, f−i) �i (fi(si), f−i) for any non-null si. An application of (UA) yields that there

does not exist an ri such that (p̃i, f−i) �i (ri, f−i) where ri is a mix over the constant act

strategies fi(si) with supp(ri) = supp(fi).

Suppose there existed lotteries pi, qi such that supp(qi) ⊂ supp(fi) and p′iU > q′iU .

Since supp(ri) = supp(fi) we can represent the lottery ri as a sum (1−λ)r̃i +λqi for some

λ ∈ (0, 1] and some lottery r̃i. Now let us compare the lotteries r∗i := (1− λ)r̃i + λpi and

ri. Observe that

U = r∗
′

i U = ((1− λ)r̃′i + λpi) > ((1− λ)r̃′i + λqi)U = r′iU

So player i weakly prefers (r∗i , a−i) to (ri, a−i) for all a−i ∈ supp(f−i) and does so strictly for

some a′−i ∈ supp(f−i). This implies that player i weakly prefers (r∗i , f−i(s)) to (ri, f−i(s))

for all non-null states s and does so strictly for some non-null states. We can conclude by

(MON’) that (r∗i , f−i) �i (ri, f−i) a contradiction to the non-existence of a p̃i such that

(p̃i, f−i) �i (ri, f−i). �

5.3 Examples of Best Replies and Equilibria

Let me illustrate Lemma 3 at the hand of two examples. The first example demonstrates

the strengths of the Lemma

Example 10 Take the following ambiguous game between Ann and Bob with G =

({a, b}, Ω, A,%). Let the following matrix represent the action spaces and preferences of

Ann and Bob, let (EU), (TR), (MON’) and (UA) be satisfied.

This game does not have an equilibrium with full support (no matter which values we

assign to ub(ai, bj)). This follows from Lemma 3 and the observation that pU � qU for

p = (0, 0, 1) and q = (1
2
, 1

2
, 0).
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b1 b2 b3

a1 1, ub(a1, b1) 0, ub(a1, b2) 4, ub(a1, b3)

a2 4, ub(a2, b1) 0, ub(a2, b2) 1, ub(a2, b3)

a3 3, ub(a3, b1) 1, ub(a3, b2) 3, ub(a3, b3)

To see that (UA) is essential for Lemma 3 to hold consider the following variation of

the preceding example.

Example 11 Assume that Ann and Bob play the game described in example 10, except

for (UA). Assume that Ωa is a singleton whereas Ωb = {s1, s2, s3}. Let Ann’s pref-

erences be representable by multiple priors following Bewley (example 8) with Q =

co((.1, .1, .8), (.8, .1, .1), (1
3
, 1

3
, 1

3
)).18 For simplicity, assume that ub(ai, bj) = 1 for i, j =

1, 2, 3. Then (p, fb) with p = (1
3
, 1

3
, 1

3
) and fb(s1) = b1, fb(s2) = b2, fb(s3) = b3 is an AAE

with full support. To see this observe that for any deviation r from p there is a belief

q ∈ Q such that rUq < pUq where U is defined as the matrix of Ann’s payoffs.

5.4 “Dominance” and Mixed Strategy Equilibria

The next Lemma describes a condition under which we can find a probability p−i on all

the actions of all other players such that the actions in Bi ⊂ Ai yield a constant maximal

utility given p−i. This condition can again be described as a “dominance” condition for

mixtures over the actions that are played in the best reply and mixtures among all other

actions.

Lemma 4 Take a game G′ = (I, A, %′). Define B ⊂ A and the matrices U, V,W as

above. Suppose there do not exist any pi ∈ P(Ai), qi ∈ P(Bi) such that and p′iU > q′iV .

Then there exists a probability p−i ∈ P(A−i) with supp(p−i) = B−i and an x ∈ R such

that V p−i = x and Wp−i ≤ x.

Proof

(⇒) Suppose exists a p−i ∈ P(A−i) with supp(p−i) = B−i and an x ∈ R such that

V p−i = x and Wp−i ≤ x. Suppose we also had pi ∈ P(Ai), qi ∈ P(Bi) such that

18The set co(a, b) denotes the convex hull of a, b.
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p′iU > q′iV . This yields a contradiction as x = r′ix ≥ p′i(Up−i) = (p′iU)p−i > (q′iV )p−i =

q′i(V p−i) = q′ix = x.

(⇐) Suppose there exists no p−i ∈ P(A−i) with supp(p−i) = B−i and x ∈ R such that

V p−i = x and Wp−i ≤ x. This is equivalent to: S ∩ r = ∅ for r := {x|x ∈ R} and

S := {s|sV = V p−i and sW ≥ Wp−i for p−i ∈ P(A−i), supp(p−i) = B−i}.

Since S is a convex set there exists a separating hyperplane H such that r ⊂ H and

H ∩ S = ∅. Let this plane H be described by a vector λ such that λ′x = 0 implies x ∈ H

and λ′x > 0 for all x ∈ S. Since r ⊂ H we have that
∑

λi = 0.

Next define two vectors κ and ρ by κl = λl if λl > 0 and κl = 0 otherwise. Also let

ρl = −λl if λl < 0 and ρl = 0 otherwise. Observe that
∑

κl =
∑

ρl > 019. Define λ̃, κ̃

and ρ̃ by

λ̃l =
λl∑
κl

, κ̃l =
κl∑
κl

, ρ̃l =
ρl∑
κl

Observe that λ̃ and λ as normal vectors describe the same plane. Consequently we have

that λ̃′x > 0 for all x ∈ S. As λ̃ = κ̃− ρ̃ we have that κ̃′x > ρ̃′x for all x ∈ S.

I show next that ρ̃l = 0 for all l > L. Suppose we had ρ̃l > 0 for some l > L. Fix an

x ∈ S, observe that κ̃′x > ρ̃′x has to hold for this x as this has to hold for all x ∈ S. Next

define x̃ by x̃−l = x−l and x̃l >
κ̃′x−ρ̃′−lx−l

ρ̃l
. By our construction of S we can find such an

x̃ that is also an element of S. Observe that

ρ̃′x̃ = ρ̃′−lx̃−l + ρ̃lx̃l > ρ̃′−lx−l + ρ̃l

κ̃′x− ρ̃′−lx−l

ρ̃l

= κ̃′x = κ̃′x̃

Where the very last equality follows from the fact that on the one hand ρ̃l > 0 implies

κ̃l = 0 and on the other hand x−l = x̃−l. But ρ̃′x̃ > κ̃′x̃ stands in contradiction with

κ̃′x > ρ̃′x holding for all x ∈ S. We conclude that ρ̃l = 0 for all l > L. Observe that the

ρ̃, κ̃ are by construction elements of P(Ai). As ρ̃l = 0 for l > L we can define ρ ∈ P(Bi)

by ρl = ρ̃l for l = 1, ..., L.

To conclude this proof observe that κ̃Uk ≥ ρ̃Uk = ρV k for all k = 1, ..., K as any Uk

can be approached by a sequence xn ∈ S. Finally it cannot be true that κ̃Uk = ρ̃Uk

for all columns k as we could then find x ∈ S with κ̃x = ρ̃x. So it must be true that

κ̃Uk′ > ρ̃Uk′ = ρUk for some columns k′. So we found two probabilities κ̃ and ρ such that

κ̃′U > ρ̃′V . �
19The vectors κ and ρ are defined such that

∑
κl =

∑
ρl ≥ 0. If we had that

∑
κl =

∑
ρl = 0 we also

had λ = 0, a contradiction with the assumption that λ describes the hyperplane H
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5.5 Observational Equivalence: The Main Result

Theorem 1 Let G = ({a, b}, A,%) assume (TR), (EU), (MON’) and (UA). The set of

AAE of G is observationally equivalent to the set of NE of G.

Proof

(⇐) Let p be an NE of G, then by Lemma 1 p itself is an AAE of G, so G has an

AAE with the same support.

(⇒) Let f be an AAE of G. Define an L × |supp(f2)|-matrix U as above with B :=

supp(f). Following Lemma 3 there do not exist any p1 ∈ P(Ai), q1 ∈ P(Bi) such that

p1U > q1U . Applying Lemma 4 we conclude that there exists a probability p2 on A2 with

supp(p2) = supp(f2) such that all a1 ∈ supp(f1) are best replies to p2. Construct p1 in

the same fashion. Clearly p is an NE of G with supp(p) = supp(f) as all ai ∈ supp(fi)

are best replies to p−i for i = 1, 2 and supp(fi) = supp(pi) for i = 1, 2 by construction. �

Theorem 1 is the main result of this study. This result establishes that an outside

observer cannot distinguish the behavior of uncertainty averse player from the behavior of

uncertainty neutral players when he observes only the outcomes of their play. Of course

certain conditions have to hold for this result to apply: it is shown that observational

equivalence holds for 2 player games, where both player’s are expected utility maximizers

with respect to lotteries, have monotonic preferences and satisfy Schmeidler’s axiom of

uncertainty aversion.

6 Weaker concepts of Monotonicity

6.1 Two concepts of Monotonicity

In section 3.1 I showed that the concept of monotonicity used here differs from the

monotonicity axiom standardly used in treatments of uncertainty averse preferences in

4 essential ways. (MON) applies specifically to games, (MON) does not amalgamate

an independence axiom with a monotonicity axiom and (MON) does relate to incom-

plete preferences. However even when one applies (MON) to the case of a single person
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decision problem of a person with state independent and complete preferences a differ-

ence between (MON) and the standard axiom of monotonicity (standard MON) remains:

(MON) is stronger, it says that a decision maker prefers an act that is never worse and

sometimes better. The standard axiom of monotonicity is weaker, it requires it only ranks

two acts if one is always better than the other. How would the results of this paper change

if I was to replace (MON) by a weaker assumption on monotonicity that is more in keeping

with the standard axiom? To answer this question I define the concept of (WMON’)

(WMON’) Take two acts f, g and a subset of players J ⊂ I, such that f−J = g−J .

• If for all non-null events sJ we have that (fJ(sJ), f−J) �i (gJ(sJ), f−J) then f �i g.

• If f �i g then there exists a non-null event s∗J such that (fJ(s∗J), f−J) �i (gJ(s∗J), f−J).

All examples of preferences discussed in section 4.2 satisfy (WMON’). However (WMON’)

is not enough to even prove Lemma 2. To see this consider the following example:

Example 12

Take the following ambiguous game between Ann and Bob with G = ({a, b}, Ω, A,%)

assume that Ωa = {s1, s2} and Ωb a singleton. Assume that Ann’s preferences can be

represented following example 7 with Q = [0, 1]. Assume that Bob assigns a prior of

1/2 to either one of the states. Let the following matrix represent the action spaces and

preferences of Ann and Bob.

b1 b2

a1 10, 1 0, 0

a2 11, 0 0, 1

The preferences of Ann and Bob satisfy (EU), (TR) and (WMON’). The action profile

(fa, pb) with fa(s1) = a1, fa(s2) = a2 and pb(b1) = 1/2 is an ambiguous act equilibrium

in the game G. Ann is best responding to pb even though Ann plays a1 in the non-null

state s1. This can be explained by the Ann’s uncertainty lovingness. While Ann does not

consider s1 null, she does not assign any weight to s1 occurring in this particular situation

since the outcome for s2 is better.
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Fortunately a stronger condition of monotonicity is consistent with all representations

of uncertainty averse preferences mentioned here (examples 5, 6 and 9). Intuitively I want

to define uncertainty averse monotonicity such that an act f is better than an act g if

f is in no event worse than g and if f is strictly better in the “worst case”. So while

under (MON) an act that is never worse is considered better if it is better in at least one

non-null event, uncertainty aversion considers the act better if it is better in a particular

event, the “worst case”. To define uncertainty averse monotonicity I first need to find a

suitable notion of the “worst case”. I do so by singling out a event sJ such that f yields a

“worst payoff” on this event. Formally we define (UA-MON) in the spirit of (MON’) by

(UA-MON) Take two acts f, g and a subset of players J ⊂ I, such that f−J = g−J .

• If for all non-null events sJ we have that (fJ(sJ), f−J) %i (gJ(sJ), f−J) and if there

exists a non-null event s′J such that on the one hand (fJ(s′J), f−J) �i (gJ(s′J), f−J)

and on the other hand (fJ(s′J), f−J) �i (fJ(sJ), f−J) for no non-null sJ then f �i g.

• If f �i g then there exists a non-null event s∗J such that (fJ(s∗J), f−J) �i (gJ(s∗J), f−J).

Two conditions need to be satisfied to establish a strict preference f = fJ × f−J �i

gJ×f−J = g following (UA-MON). The first condition says that g cannot be ranked higher

than f for any event sJ . The second says that f is ranked strictly better in the worst

case, where an event s′J is defined as a worst case if there exists no non-null event sJ such

that (fJ(s′J), f−J) �i (fJ(sJ), f−J). With this the result of Lemma 2 can be recovered.

Lemma 5 Take an ambiguous game G = (I, Ω, A,%) satisfying (EU) and (UA-MON).

Let f be an ambiguous act equilibrium in the game G. Fix a non-null state s. There does

not exist a pi ∈ P(Ai) such that (pi, f−i) > (fi(si), f−i).

Proof Suppose such a pi existed. Define the act gi by

gi(si) =

pi if (pi, f−i) �i (fi(si), f−i)

fi(si) otherwise.

Next observe that by the construction of gi there does not exist any si such that (gi(si), f−i) ≺i

(fi(si), f−i) = (pi, f−i). So we can conclude by (UA-MON) that (gi, f−i) �i (fi, f−i) and

fi cannot have been a best reply in the first place. �
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However (TR), (EU), (UA) and (UA-MON) are not enough to obtain the result of

observational equivalence of Theorem 1. To see this consider the following example:

Example 13

Take the following ambiguous game between Ann and Bob with G = ({a, b}, Ω, A,%)

assume and assume that Ωb = {s1, s2} and Ωa a singleton. Let Bob be an expected

utility maximizer that believes both states are equally likely. Let Ann’s preferences be

representable by a MEU function (example 5) with Q = [0, 1
2
] where q ∈ Q is a probability

of state s1. Let the payoffs be given by the matrix in the prior example 12. Then (pa, fb)

with pa = (1
2
, 1

2
) and fb(s1) = b1, fb(s2) = b2 is an AAE with full support. To see this

observe that according to the most pessimistic belief in Ann’s set of beliefs s1 has zero

probability. Consequently Ann will disregard the payoff difference between a1 and a2 even

though the event s1 is non-null.

The equilibrium constructed in the prior example strikes me as particulary unappeal-

ing. Why would Ann play a1 when playing a2 is never worse for Ann and strictly better

in some non-null event? The preceding example proves that a theory of games with ambi-

guity averse players can yield different predictions than standard game theory: the game

defined above does not have a mixed strategy equilibrium with full support. It has to be

said however, that the differences between these two theories should not depend on such

shaky examples in which some player uses a strategy that is “dominated” in the sense

that this player has another strategy available that is never worse and strictly better in

some non-null event. In the following section I define a refinement that rules out such

peculiar behavior.

6.2 Solid Ambiguous Act Equilibria

This section is devoted to the definition of a refinement of AAE that rules out examples

such as example 13.20

20Klibanoff [12] already discussed this unappealing feature of the theory of uncertainty aversion at the

hand of preferences that can be represented following Gilboa and Schmeidler (example 5). His way to

remedy the problem is to derive a representation of preferences that does not have this feature, these

preferences violate the continuity axiom. My approach can be seen as complementary to Klibanoff’s:
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Definition 9 Take an ambiguous game G = {I, Ω, A,%}. We say that an AAE f

is a solid ambiguous act equilibrium (SAAE) if there does not exist any f ′
i such that

(f ′
i , f−i)(s) %i f(s) for all non-null states s and (f ′

i , f−i)(s
∗) �i f(s∗) for some non-null

state s∗.

Remark 1 For all preferences that satisfy (MON) the set of AAE coincides with the

set of all SAAE. This is important insofar as that the refinement proposed here does

not have any bite for games with expected utility maximizing agents as their preferences

always satisfy (MON). Consequently the present refinement is not equivalent to any other

refinement proposed for the context of mixed strategy equilibria.

The results on the relation between NE’s and AAE’s of section 3.2 transfer to the

case of SAAE’s. To see this I state and prove the folllowing variants of Lemma 1 and

Corollary 1 next.

Lemma 6 Take a game G′ = (I, A, %′) assume (EU). Let G = (I, Ω, A,%) be an am-

biguous act extension of G′ satisfying (WMON’). We have that p is an SAAE of G if and

only if it is a NE of G′.

Proof We know from Lemma 1 that any p is an AAE of G if and only if it is an NE

of G′. So we only need to show that any NE of G′ is a SAAE in G. So suppose that the

AAE p is not solid. That is suppose there exists a player i and a strategy fi such that

(fi, p−i)(s) %i p(s) for all non-null states and (fi, p−i)(s
∗) �i p(s∗) for some non-null s∗.

Observe that (fi, p−i)(s) = (fi(si), p−i) and p−i(s−i) = p−i as p−i is a constant act. So we

conclude that (fi(s
∗
i ), p−i) %i p which stands in contradiction that p being an NE of G′.

�

Corollary 2 Take an ambiguous game G = (Ω, A, I, %) assume (EU) and (WMON’). A

SAAE exists.

Proof The proof follows as a direct consequence of Lemma 6 and the fact that any

finite game has an NE. �

I do keep Gilboa and Schmeidler’s preferences in the set of preferences to be considered, however I do

strengthen the equilibrium concept.)
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An amendment of Lemma 3 to the case of SAAE yields the most important step in

showing the observational equivalence between NE and SAAE for two player games that

satisfy the weaker notion of monotonicity (UA-MON).

Lemma 7 Take an ambiguous game G = (I, Ω, A,%) assume (TR), (EU), (UA) and

(UA-MON). Let f be an SAAE in G. Define an ni × |supp(f−i)|-matrix U as above with

B := supp(f). There do not exist any pi ∈ P(Ai), qi ∈ P(Bi) such that and p′iU > q′iV .21

Proof The proof follows mutatis mutandis, replacing (MON’) in the last conclusion by

the requirement that the equilibrium hast to be solid. �

Lemma 7 together with Lemma 4 yield the proof of the following variation of Theo-

rem 1:

Theorem 2 Let G = ({a, b}, A,%) assume (TR), (EU), (UA) and (UA-MON). The set

of SAAE of G is observationally equivalent to the set of NE of G.

I conclude that a weakening of the monotonicity axiom to stay closer to the preferneces

representations of Gilboa and Schmeidler [11], Schmeidler [23] and Maccheroni, Marinacci

and Rusticchini [17] does not significantly increase the set of ambiguous act equilibria.

In two player games there are some ambiguous act equilibria that are not observationally

equivalent to any mixed strategy equilibrium. However none of these equilibria is solid.

Said otherwise, in any one of these equilibria at least one player plays an action that is

never better and sometimes strictly worst than some other available action.

7 Other Equilibrium Concepts

7.1 Four Different Definitions

Prior definitions of equilibrium for games with uncertainty averse players considered mixed

or pure strategies as the objects of choice of the players. The different equilibrium concepts

vary by their different relaxations of the assumption that players know the strategies of all

21Without the requirement that the AAE be solid the weaker implication p′iU � q′iV holds.
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opponents. I summarize four different equilibrium notions in the next definition.22 I state

all these definitions in the framework of Gilboa and Schmeidler’s (example 5) minimal

expected utility representation with ui : P(A) → R an affine function that represents

player i’s utility of all constant acts (or lotteries). I also restrict attention to two player

games. All four definitions have the assumption that players maximize their utility given

their “belief” on the other player in common. They also share the assumption that players

have convex and compact belief sets on the strategy of the other and that the utility of a

player is the minimal expected utility with respect to all the beliefs in these convex sets.

The concepts differ in their assumption on the relation between a players’ set of beliefs

on the strategy of the other and the actual strategy played by that player.

Definition 10 Take a game G = ({a, b}, A,%). Consider a profile of mixed strategies p∗

and two convex and compact belief sets Qa ⊂ P(Aa), Qb ⊂ P(Ab), such that p∗i maximizes

minq−i∈Q−i
ui(pi × q−i) for i = a, b. Then p∗ is called

• a Klibanoff equilibrium (KE) if p∗i ∈ Qi for i = a, b;

• a Dow-Werlang equilibrium (DWE) if p∗i ∈ Qi and there does not exist a qi ∈ Qi

such that supp(qi) ( supp(p∗i ) for i = a, b;

• a Marinacci equilibrium (ME) if p∗i ∈ Qi and supp(p∗i ) ⊂ supp(qi) for all qi ∈ Qi

for i = a, b;

• a Lo equilibrium (LE) if p∗i ∈ Qi and ai ∈ supp(qi) for any qi ∈ Qi implies that ai

maximizes EUi(pi, q−i) for i = a, b.

Let me state without proof that the following subset relation between the different

concepts holds: (NE)⊂(LE)⊂(ME)⊂(DWE)⊂(KE). It is easy to see that the last three

inclusions hold as the first three equilibrium concepts only differ in their increasingly strict

requirements on the relation between beliefs and strategies. The difference between the

set of NE and the set of LE, (the first two sets in this chain) arises since players might

22The equilibrium notions do not only differ with respect to their different requirements for consistency

between a players strategy and all other player’s beliefs about this strategy. I chose to abstract from

all other differences to make the comparison as easy as possible. Consequently the following definition

would appear as an oversimplification for any other purpose
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use strategies that are never better and sometimes worse in LE. If one where to apply a

refinement similar to solidity of section 6.2 the difference would disappear. Let me use

the following example of Klibanoff [12] to show that the difference between NE and the

three other concepts is more substantial.

Example 14 Take the following normal form game between Ann and Bob G = {{a, b}, A,%

} with

b1 b2

a1 3,0 1,2

a2 0,4 0,-100

Klibanoff shows that (a1, b1) is a KE of this game but not an NE. To see that (a1, b1)

is a KE let Qa = [.1, 1] and Qb = {1}. Bob’s utility of his strategy pb can be written as

ub(pb) = minqa∈[.1,1] 2(1−pb)qa+4p(1−qa)−100(1−pb)(1−qa). Bob’s utility is maximized

for pb = 1. On the other hand a1 is Ann’s best reply to the pure strategy b1. Next observe

that (a1, b1) and Q satisfy the consistency requirement for KE, DWE and ME. So (a1, b1)

is an an equilibrium following any of the three concepts.

This example raises an important question: The preferences used to define the KE,

DWE and ME satisfy (TR), (EU), (UA) and (UA-MON). So how can there the KE, DWE

and ME differ so starkly from the NE of a game? Do these concepts violate independence

and/or basic agreement? I will argue in the sequel that the difference between these

equilibrium notions and NE lies not so much in their allowance for ambiguity averse

players but rather in a violation of “basic agreement”. To do so I need some more

definitions.

7.2 Standard Games without Agreement

I first define a class of games that differs from games in mixed strategies only insofar as

that “basic agreement” might be violated in these games.

Definition 11 A general ambiguous game G = (I, Ω, A,%) is called a standard game

without agreement if ΩJ is independent of Ω−J for all i, J and if all players preferences

can be represented by expected utilities, so that
∫

ui(f)dqi with some qi ∈ P(Ω) and

ui : P(A) → R an affine function represents player i’s utility of f .
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Observe that ambiguous games and standard games without agreement are two dif-

ferent generalizations of standard games G = (I, A, %) and two different specializations

of general ambiguous games. Ambiguous games adopt “all” features of standard games

except for the expected utility representation, standard games without agreement adopt

“all” features of standard games except for basic agreement. Next I define the notion

of a standard extension without agreement and the notion of an equilibrium without

agreement paralleling the definitions ambiguous act extensions and of AAE.

Definition 12 For any game G′ = (I, A, %′) I call the game G = (I, Ω, A,%) a stan-

dard extension without agreement of G′ if G = (I, Ω, A,%) is an standard game without

agreement and if % |P(A) =%′. Take a standard game without agreement G = (I, Ω, A,%).

A strategy profile f is called an equilibrium without agreement (Ew/oA) if there exists

no act f ′
i : Ωi → P(Ai) for any player i such that f ≺i (f ′

i , f−i). A strategy profile

f : Ω → P(A) is called a Ew/oA of G′ = (I, Ω, A) if there exists a standard extension

without agreement G = (I, Ω, A,%) of G′ such that f is an an Ew/oA in G.

The goal of this section is to compare the set of Ew/oA of a game G = (I, A, %)

to the set of KE, DWE and ME of this game. In section 2.7 I developed the notion of

observational equivalence to relate ambiguous act profiles to mixed strategy profiles: two

profiles are called “observationally equivalent” if they have the same support. Unfortu-

nately, this notion of observational equivalence cannot be applied here, since without the

assumption of “basic agreement” the notion of the support of an ambiguous act profile is

not well-defined. An alternate notion of “equivalence” needs to be developed. To do so I

use the fact that every player has a prior on the state space in a standard game without

agreement. I say that player j considers strategies fi and pi equivalent if every action ai

is played with the same probability under pi and fi given j’s prior on the state space.

Definition 13 A mixed strategy pi is called j-equivalent to a strategy fi if pi(ai) =∫
fi(s)(ai)dqj for all ai. An ambiguous act profile f is called ∗-equivalent to a mixed

strategy profile p if fi is i-equivalent to pi for all i.

Clearly no two players need to agree on the equivalence between two strategies. If

two players hold different priors on the state space, they might disagree on equivalence

statements. Lacking a neutral or view-point free notion of equivalence I chose to call to

profiles f and p ∗-equivalent if fi is i-equivalent to pi for all i. Two strategies of player i
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are considered ∗-equivalent if they are considered equivalent in the eyes of player i. Next

I’ll relate the equilibrium constructed in example 14 to an Ew/oA in the same game.

Example 15 Take the normal form game defined in example 14. Construct a standard

extension without agreement G = (I, Ω, A,%) of G such that Ωa = {s1, s2} and Ωb a

singleton. Let qb(s1) = .1, qa(s1) = 1. The strategy profile f with fa(s1) = a1, fa(s2) =

a2, fb = b1 is an Ew/oA. Ann’s best reply to b1 is a1, according to her belief qa(s1) = 1

she is always playing a1. Bob on the other hand believes that Ann is playing a1 only in a

tenth of all cases qb(s1) = .1, so his playing b1 is a best reply to this belief. Observe that

in this strategy profile Ann believes that she always plays a1, and Bob always plays b1,

therefore (a1, b1) and f are ∗-equivalent.

7.3 Ambiguity Neutrality versus Basic Agreement

In the next theorem I show that the relationship between the equilibrium constructed in

example 14 and the Ew/oA in example 15 is not accidental.

Theorem 3 Take a game G′ = ({a, b}, A,%′) with two players. Let p be a KE of G′.

Then p is ∗-equivalent to an Ew/oA of G′.

Proof Let p∗ be a KE. So p∗a maximizes minqb∈Qb
p′aUqb. Fan’s theorem implies that

the order of minimization and maximization can be exchanged. So p∗a is a solution to

minqb∈Qb
maxpa∈[0,1] p

′
aUqb = minqb∈Qb

p′a(qb)Uqb where pa(qb) denotes argmaxpa∈[0,1]p
′
aUqb

for any qb. Let q∗b be the minimizer (in Qb) of the function p′a(qb)Uqb. So p∗a maximizes

p′aUq∗b . This implies that pa is a best reply for Ann if Bob plays q∗b ∈ Qb. Analogously

derive q∗a such that pb is a best reply to q∗a for Bob.

Now let G = ({a, b}, Ω, A,%) be a standard extension without agreement such that

Ωi = {si
1, s

i
2} for i = a, b. Let sa

1 and sb
1 be null for Ann and let sa

2 and sb
2 be null for Bob.

Define f by fa(s
a
1) = q∗a, fa(s

a
2) = p∗a, fb(s

b
1) = p∗b and fb(s

b
2) = q∗b . Observe that in f Ann

believes she always plays p∗a and Bob believes that he always plays p∗b , so f is ∗-equivalent

to p∗. Next observe that both players are best replying: Ann believes that Bob always

plays q∗b which was picked such that p∗a is a best reply to q∗b and conversely for Bob. So f

is an Ew/oA in G and is ∗-equivalent to p. �
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The converse does not hold true: not every Ew/oA in a game G = (I, A, %) is ∗-
equivalent to a KE. A simple variation of Example 14 illustrates this.

Example 16 Take the following normal form game between Ann and Bob G = {{a, b}, A,%

} with

b1 b2

a1 3,0 1,2

a2 0,4 0,1

The strategy profile (a1, b1) is not a KE. To see this suppose to the contrary that it

would be a KE. This implies that there exists a set Qa with 1 ∈ Qa such that playing b1

is a best reply for Bob. Since 1 ∈ Qa we have that Bob’s utility of playing b1 is 0. On the

other hand Bob’s utility of playing b2 is not smaller than 1 since Bob receives a utility of

at least 1 whether Ann plays a1 or a2.

However, it is easy to find a standard extension without agreement such that (a1, b1)

is ∗-equivalent to an equilibrium in that standard extension: To see this observe that the

strategy profile constructed in example 15 is also an Ew/oA in this game.

Corollary 3 Take a game G′ = ({a, b}, A,%′) with two players. Let p be a ME or a

DWE of G′. Then p is ∗-equivalent to an Ew/oA of G′. The converse does not hold

true.23

Proof The proof follows from the observation that the set of all ME is a subset of the

set of all DWE which in turn is a subset of the set of all KE. �

Theorems 1 and 3 imply that the difference between mixed strategy equilibria and the

existing equilibrium concepts for games with ambiguity averse players is not so much owed

to the relaxation of the assumption of ambiguity neutrality as it is owed to a relaxation of

“basic agreement” (or common knowledge of rationality). However such disagreement on

the events which might possibly happen is not sufficient to describe the set of all KE, DWE

or ME. These equilibria are strict subsets of the equilibria of Ew/oA. Ambiguity aversion

enters only insofar as that a player i would only take deviations from the opponent’s actual

23The same applies to partially specified equilibria following Lehrer [14], every such equilibrium is

a KE. The route to show that every Equilibrium under Ambiguity following Eichberger, Kelsey and

Schipper [10] is also ∗-equivalent to an Ew/oA is similar but slightly different.
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strategy p∗−i into account if this deviation lowers the payoff of i. Optimistic deviations

are not considered.

I do find it problematic that the KE and DWE concepts do not restrict the weight

that an ambiguity averse player assigns to these actions which are “never” chosen by the

opponent. In these concepts beliefs equilibrate freely. Some strategy profiles might only

be supported by very different beliefs: in some cases Ann might need to believe that

s1 happens with probability close to 1 while Bob needs to believe that s1 happens with

probability close to 0 to support a strategy profile p as an equilibrium.

I suppressed one major aspects of ME in my definition of the 4 equilibrium concepts

to make ME more comparable to the other notions of equilibrium. To be fair this aspect

needs to be discussed here: Marinacci’s definition of ME contains a parameter that de-

scribes the ambiguity level in a game. Beliefs are not freely equilibrating, to the contrary

the gap between Ann’s belief and Bob’s actual strategy is determined by the parame-

ter that describes the ambiguity level of the game. This parametrization imposes the

necessary discipline to structure a limited deviation from “basic agreement”.

Secondly it is unclear what the empirical predictions of KE (and DWE and ME) should

be. In Theorem 3 as well as in Corollary 3 I argue that these concepts implicitly assume

that players might disagree on the set of null events. To generate different equilibria there

need to be some event E that is considered null by one player, say player 1, and non-null

by the other player. Reconsider examples 14 and 15. In the equilibrium constructed there

Ann plays a2 in s2 which she considers to be null. On the other hand Bob believes that s2

might occur. What is an empiricist to do if he observes the action a2 being played? If he

uses KE, DWE and ME he can use the observation of a2 being played to prove that the

players are not playing the equilibrium under consideration, Ann herself believes that she

never plays a2. But why should the empiricist side with Ann on this matter. Bob considers

it very much possible that a2 is being played in equilibrium. Shouldn’t the empiricist also

take Bob’s opinion into account? If he does take Bob seriously observing Ann play a2 is

consistent with the conjectured equilibrium. The absence of “basic agreement” makes this

situation hard to interpret. It is unclear how an empiricist should approach a situation in

which some players believe that s happens sometimes whereas others belief that s never

happens.
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Finally let me say that Theorem 1 can be used to justify Lo’s concept - for the two

player case. Lo’s equilibrium concept is closest to the concept proposed here. The two

main differences between Lo’s concept and the concept proposed here are that Lo uses

Gilboa and Schmeidler’s representation of preferences to define equilibrium and that Lo

does not allow for ambiguous act strategies. However, while Lo works with a particular

representation of preferences over acts, he also provides some intuition that applies to

the preferences over acts. Lo’s justifies his equilibrium requirement that ai ∈ supp(qi)

for any qi ∈ Qi implies that ai maximizes EUi(pi, q−i) for i = a, b with an intuition

that is similar to my “basic agreement”. Lo’s requirement could be restated as: any

action that Bob plays in a state that is considered non-null by Ann has to be an optimal

action for Bob. So Ann and Bob might as well agree on the set of null states. On the

other hand there is no equivalent concept for “strategic independence” for two player

games in Lo’s work: such a requirement is rendered obsolete by the assumption that

players cannot use subjective random devices to generate strategies. Theorem 1 can be

interpreted as a generalization of Lo’s work. I derive observational equivalence from a

small and straightforward set of axioms that encompasses a wide set of preferences, Lo

already derived a similar equivalence result in a more restrictive setup.

8 Games with More than Two Players

The definitions in this paper all apply to n-player games. The main result of this paper,

Theorem 1, only pertains to 2 player games. Does this result extend to n-player games? In

this section I will first provide an example that the answer is negative. A theory of games

with more than two ambiguity averse players carries the potential to yield substantially

different predictions from standard theory of mixed strategy equilibrium. I will then

provide some reasons why a detailed study of this question lies beyond the scope of this

paper. I will claim that the basic understanding of “common priors” and “independent

strategies” in an environment without priors developed here does not suffice to tackle the

case of n-players. A better grasp of these concepts is needed to fully understand the case

of games with more than two players. The following example builds on Example 2.3 in

Aumann [2].

Example 17 Take the following ambiguous game G = ({1, 2, 3}, Ω, A,%). Let Ω3 =
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{s, r} and Ω1 and Ω2 be singletons. Player 3 is an expected utility maximizer that assigns

probability 1
2

to either state. The first two players’ preferences can be represented by

MEU functions following example 5 with Q = [1
4
, 3

4
] for both. Let the following matrix

represent the action spaces and the payoffs of all pure strategy profiles.

l
L R

T 0, 8, 0 3, 3, 3

B 1, 1, 1 0, 0, 0

r
L R

T 0, 0, 0 3, 3, 3

B 1, 1, 1 8, 0, 0

The strategy profile f with f1 = T, f2 = R and f3(r) = l, f3(s) = r is a AAE of this

game24. To see this observe that player 3 does not have an incentive to deviate as his

utility is 3 no matter which of the two boxes he picks. Secondly player 1 and 2’ utilities

from playing all their possible actions (keeping the strategies of all other players fixed)

can be calculated as:

u1(T, f−1) = min
q∈[ 1

4
, 3
4
]
q × 3 + (1− q)× 3 = 3

u1(B, f−1) = min
q∈[ 1

4
, 3
4
]
q × 0 + (1− q)× 8 =

3

4
× 0 +

1

4
× 8 = 2 < 3

u2(R, f−2) = min
q∈[ 1

4
, 3
4
]
q × 3 + (1− q)× 3 = 3

u2(L, f−1) = min
q∈[ 1

4
, 3
4
]
q × 8 + (1− q)× 0 =

1

4
× 8 +

3

4
× 0 = 2 < 3

Aumann [2] shows that the game in example 17 has no NE with (TRr) or (TRl) in

its support. At the same time he shows that the game has a “correlated equilibrium”25

in which the first two players play T, L. A necessary condition for the existence of such a

“correlated equilibrium” is that player 1 assigns a higher probability to player 3 picking l

than player r does. Aumann shows in particular that there is such an equilibrium if player

1 believes that player 3 chooses the left matrix with a probability of 3
4

whereas player 2

believes that this probability is 1
4
. The set Q = [1

4
, 3

4
] used in the example, implies that the

24The preferences given here satisfy (MON), consequently the given profile is also an SAAE
25Aumann [2] uses the term “correltated equilibrium” to designate two different deviations from

standard theory: 1. players can use correlation devices, 2. Players do not need to have common priors.

The present correlated equilibrium only deviates with respect to the second criterion from standard

theory.
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two first players will use exactly these priors when calculating their respective minimal

expected utility of strategy profile f in the above example.

So is a game theory with ambiguity averse players going to herald a revival of game

theory without common priors? Is any NE without common priors observationally equiv-

alent to an AAE with ambiguity averse players? Yes it is - in a very unsatisfactory way.

To see this observe that the assumption of “basic agreement” only imposes that play-

ers agree on the set of non-null states. This assumption does not preclude a scenario in

which all players are expected utility maximizers but do not have common priors. Such an

equivalence result would not be driven by the players ambiguity aversion (in fact players

would be assumed to be expected utility maximizers) but would instead be driven by the

fact that the assumption of “basic agreement” is a very weak one. This assumption was

strong enough for the purpose of the present paper: the observational equivalence result

could be derived using only this weak assumption on the players agreement of beliefs. The

condition of “basic agreement” would have to be strengthened considerably for a study

of games with more than 2 players.

In a similar vein the a deeper understanding of the independence assumption is needed

to understand n-player games. The above example assumes that no players are uncertain

about the strategies of players 1 and 2. Consequently it is easy to see that ΩJ is inde-

pendent of Ω−J for all J ⊂ {1, 2, 3}. Matters look a little differently when players are

uncertain about the strategies of multiple other players. These questions on “common

priors” and “independent strategies” merit careful attention, they have to be solved before

the study of games with more than two players can be continued.26

26Lo [16] covers games with more than 2 players. He assumes that preferences can be represented

following Gilboa and Schmeider [11] (example 5). He solves the two questions by assuming Gilboa and

Schmeidler’s representation of independent strategies and replacing the common priors assumption by

the assumption that the belief sets of all players have to be equal. This is unsatisfactory as neither of

these answers is axiomatically founded. Eichberger and Kelsey [9] acknowledge that independence and

common priors matter for the context of games with more than 2 players. They do not attempt to tackle

these questions in their article.
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9 Conclusion

The first contribution of this paper is to provide a novel framework (or rather to revive

Aumann’s framework of 1974) to analyze strategic interactions between ambiguity averse

agents. This framework allows me define an equilibrium notion for this context using the

standard notion of Nash equilibrium.

The second main contribution is my proof that an outside observer cannot distinguish

whether a game is played by two uncertainty averse players or two uncertainty neutral

ones. The third main contribution concerns the the different predictions of alternative

equilibrium concepts for uncertainty averse players. I show that they are not so much

a result of the assumption of uncertainty aversion but rather a result on the players

disagreements on the possible occurrence of all events in the state-space. Is there any hope

for a manageable theory of games with uncertainty averse players that yields predictions

that differ from standard theory?

For me, the answer is a clear yes. I see the following three avenues for future research.

First we might want to give up on basic agreement. If this is the case then we should do

so in a controlled manner. As already discussed in section 7 Marinacci [18] does exactly

that. The advantage of his concept is that he parameterizes the uncertainty of players in

a game. In the light of the present study such a parametrization seems very important as

it allows us to gradually relax the condition of “basic agreement”. Marinacci’s approach

allows us to find equilibrium predictions for ambiguity averse players that differ from

the equilibrium predictions of mixed strategy equilibrium while retaining control over the

gap between the player’s actual strategies and other players beliefs on these strategies.27

Marinacci’s main contribution is a proof of existence of ME for any level of uncertainty.

The concept has yet to prove its merits in applied studies.

Even if we insist on basic agreement a game theory with uncertainty averse players

might yield observationally different results. Theorem 1 crucially depends on the assump-

tion of Schmeidler’s [23] uncertainty aversion (UA). I showed in example 11 that a game

theory with ambiguity averse players who are modelled following Bewley [5] (example 11)

can yield observationally different predictions from the standard theory of mixed strategy

equilibrium.

27Eichberger and Kelsey [9] provide an alternative parametrization of the degree of uncertainty in a

game.
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Finally, I showed with example 17 that a game theory with more than 3 ambiguity

averse players carries the potential to yield observationally different results from the theory

of mixed strategy equilibrium. The development of such a theory has to be preceded by a

deeper investigation of “independent strategies” and “common priors” in a context where

there are no priors.
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