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Examples of Previous Work:

• the decision of a teen to commit a criminal

act or to drop out of school; Case and Katz

1991, Glaeser, Sacerdote and Scheinkman

1996, and (Crane 1991);

• out-of-wedlock births; Crane 1991

• smoking habits; Jones 1994;

• neighborhood effects; Topa 2001, Kros-

nick and Judd 1982;

• local technological complementarities; El-

lison and Fudenberg 1993, Durlauf 1993;

• urban agglomeration, segregation; Benabou

1993, Schelling 1972;

• spread of ideas and beliefs in the microstruc-

ture of financial markets; Brock 1993, Horst

2005.



• High variance across space and time and

local spatial correlation is difficult to jus-

tify with changes in the fundamentals (eg.

Crime, High School Achievement,...)

• The importance of social interactions for

policy analysis relies on the fact that when

social interactions are quantitatively impor-

tant, policy interventions on single agents

might have large effects - social multi-

plier.



The theoretical literature:

• economies with additive quadratic prefer-

ences, extreme value distributed shocks,

and symmetric interaction effects, intro-

duced by Blume 1993 and Brock 1993 (see

also Brock and Durlauf 2001);

• economies with a finite number of agents,

studied by Glaeser and Scheinkman 2000.

• Analysis of dynamic economies confined to

the case of backward looking myopic dy-

namics, either as a simple explicit dynamic

process with random sequential choice (Brock

and Durlauf 2001, or as an equilibrium se-

lection procedure (Glaeser and Scheinkman

2000, Blume and Durlauf 1998).



• In this paper, we contribute to this liter-

ature by extending the class of economies

under study in three fundamental dimen-

sions:

– We study different interaction structures

(only in static economies for the mo-

ment!)

– We study the rational expectations equi-

libria of dynamic economies; agents an-

ticipate the future effects of their present

choices.

– We study different information structures;

e.g., agents having complete informa-

tion only regarding agents in their own

social group.

• The focus of Bisin-Horst-Özgür (2005) is

on existence. The focus of the present

work is on characterization and identifia-

bility.



The Microeconomic Setup in a Static Model

• an economy is a vector E = (X,Θ, u, ν, N)

• countably infinite set A := Z of agents

• agent a ∈ A takes an action xa ∈ X ⊂ R

• θa ∈ Θ denotes the random type of a ∈ A; θa (a ∈ A)
are iid with law ν on R

• agent a ∈ A interacts with agents b ∈ N(a) ⊂ A

• agent a ∈ A enjoys the utility u(xa,xN(a), θa) where
u : X |N(a)|+1 × Θ → R is continuous and strictly
concave in its first argument.

• Prior to his choice, each agent a ∈ A observes the
realization of his own type θa as well as the realiza-
tions of the types θb of the agents b ∈ M(a). Here
M(a) ⊂ N∗ ∪ {∞}.

• For simplicity of exposition, consider the special
case in which N(a) = {a + 1} and M(a) = {a +
1, . . . , a + N} agent a ∈ A observes either

N = ∞ (complete information)

or

|N | < ∞ (incomplete information)



• Let S = (X,Θ, u, ν, N) be a static economy with local inter-
actions.

1. If S is an economy with complete information, N = ∞,
then an equilibrium is a family (g∗a)a∈A of measurable
mappings g∗a : Θ0 → X such that

g∗a (T aθN) = argmax
xa∈X

u
(

xa, g∗a+1
(

T a+1θN

)

, θa
)

(1)

for all a ∈ A.

2. If S is an economy with incomplete information, N < ∞,
then an equilibrium is a family (g∗a)a∈A of measurable
mappings g∗a : ΘN+1 → X such that

g∗a (T aθN) = argmax
xa∈X

∫

Θ

u
(

xa, g∗a+1
(

θa+1, . . . , θa+N , θ
)

, θa
)

ν(dθ)

(2)
for all a ∈ A.

An equilibrium (g∗a)a∈A for an economy S is symmetric if

g∗a = g∗ ◦ T a (3)

for some mapping g∗ and each a ∈ A.



One-sided Interactions, Complete Information

• Conformity preferences:

u(xa, xa+1, θa) := −α1(x
a−θa)2−α2(x

a−xa+1)2.

for α1 α2 ≥ 0.

• A generic agent a’s optimal policy, in a

symmetric equilibrium, solves

g(T aθN) = arg max
xa∈X

u(xa, g(T a+1θN), θa)

(4)

• A simple iterative induction argument shows

that we have

g(T aθN) = β1

∞
∑

i=a

βi−a
2 θi



One-sided Interactions, Incomplete Information

- In Social Group

• Suppose agent a ∈ A observes

θa, θa+1, · · · , θa+N

but not

θa+N+1, . . .

• Agent a solves the problem in (4) with

T aθN = {θa, θa+1, · · · , θa+N}

g(T aθN) = argmax
xa∈X

∫

u(xa, g(T a+1θN), θa)ν(dθa+N+1)

(5)

• An induction argument similar to the one
before gives

g(T aθN) = β1

a+N
∑

i=a

βi−a
2 θi + β1

βN+1
2

1 − β2
θ



Two-sided Interactions - Complete/Incomplete

Information

• Suppose agent a ∈ A has conformity preferences:

−α1(x
a − θa)2 −

1

2
α2(x

a − xa−1)2 −
1

2
α2(x

a − xa+1)2

• Suppose that agent a ∈ A observes only

θa−N , · · · , θa−1, θa+1, · · · θa+N

Let θN = {θ−N , · · · , θ0, · · · , θN}. The policy function
of this agent will be of the form

g(T aθN) = A

N
∑

i=1

δi(θa+i + θa−i) + Bθa + Cθ

where

δ =
1 −

√

1 − β2
2

β2

A =
β1β2

δ [2 − β2(δ + β2)]
B = β1 + β2Aδ

C =
β2AδN

1 − β2

βi =
αi

α1 + α2

• The complete information case is the limit for N →

∞.



Information and Interaction

• What is the effect of information on the

relative weights of the policy function?

• For an economy where agent a has infor-

mation about

θN = {θa−N , · · · , θa−1, θa, θa+1, · · · , θa+N}

his policy function is of the form

g(T aθN) = A
N
∑

i=1

δi(θa+i + θa−i)+ Bθa +Cθ

with N = ∞ in the case of complete infor-

mation.

• We represent the policy function on the

simplex with vertices: C, B,2A
∑N

i=1 δi
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Identifiability

• Are social interaction models identifiable? that is,
Can the structural parameters of the economy be
recovered from observable behavior? and in par-
ticular, Are predictions of the model distinct from
those of models (without social interaction) whose
allocations are instead Pareto efficient.

• It is well known since the work of Manski (1993)
that in fact identifiability is problematic for social
interaction models. Two main problems arise.

The reflection problem:’ regressing xa on xa+1 is
problematic if xa+1 depends directly on xa or if
they both depend on some aggregate measure
of actions (e.g., on the average action E (xa) in
the population).

Identifiability might fail in the presence of unob-
servable heterogeneity when such heterogeneity
is determined by a random factor which is spa-
tially correlated.

• The reflection problem can be successfully dealt

with by studying the stochastic properties of the

equilibrium configuration of action, {x0, . . . , xa, . . .},

e.g., the variance of the average action across dif-

ferent sub-groups of the population, as in Glaeser-

Scheinkman 1999 and Graham-Hahn 2003.



• We then abstract from two-sided interactions and
from the possible dependence of actions on means,
so that the reflection problem per se does not arise.

We concentrate instead on the identifiability prob-
lems which arise if each agent action depends on
some unobservable factor which is spatially corre-
lated.

• Related literature:

Glaeser-Sacerdote-Scheinkman 1996 explicitly as-
sume no spatially correlated unobserved hetero-
geneity in their analysis of crime, as do Glaeser-
Scheinkman 1999 when discussing their approach
to identification of social interactions;

Graham-Hahn 2003 also assume no spatially cor-
related unobserved heterogeneity (implicitly, by
requiring that an instrument exists which is or-
thogonal to correlated group effects; see the
discussion at the end of Section 3.2, page 7.)

Explicit modeling of endogenous selection provide
additional restrictions on equilibrium configura-
tions; see Evans-Oates-Schwab 1992, Ioannides-
Zabel 2002, Zanella 2004.



• Representation of the problems that spatially corre-
lated unobserved heterogeneity generates for iden-
tifiability:

Consider our simple economy with one-sided in-
teraction and complete information. Agent a’s
policy function is

xa = γxa+1 + (1 − γ)θa.

Consider now an equivalent model in which each
agent a’s choice, perhaps because of endoge-
nous selection, only depends on the realization
of an unobservable factor ua

xa = ηua,

which is however spatially correlated,

ua = ρua+1 + ǫa,

for some i.i.d. zero-mean process ǫa.

With

ρ = γ, η = 1 − γ

the economy with unobserved spatial correla-
tion and no social interaction is observationally
equivalent to the economy with social interac-
tion, and identifiability fails.



Two Positive Identifiability Results

• Identifiability due to incomplete information.

– Suppose it is known to the econometrician that,
if social interactions obtain they are character-
ized by incomplete information. In particular
(but this is inessential for the result), suppose
that each agent a can only observe the real-
ization of the preference shocks of the agents
whom he interacts with (that is, of agent a + 1
in our economy).

– In this case, agent a’s policy function is

xa = δ1θ
a+1 + δ0θ

a;

while, with correlated unobserved spatial het-
erogeneity, his equilibrium action is determined
by

xa = ηua, ua = ρua+1 + ǫa.

– Identifiability then obtains from the properties
of the equilibrium configuration: In particular,

E(xaxa+2) = 0

in the economy with social interactions, while

E(xaxa+2) > 0

if equilibrium actions are determined by corre-
lated unobserved spatial heterogeneity.



• Identifiability due to observable heterogeneity.

– Suppose it is known to the econometrician that
the policy function of each agent a depends on
an observable factor y. Suppose information is
complete.

– In this case agent a’s policy function is

xa = γxa+1 + (1 − γ)θa + σya;

while, with correlated unobserved spatial het-
erogeneity, his equilibrium action is determined
by

xa = ηua + σya, ua = ρua+1 + ǫa.

– Once again, identifiability obtains from the prop-
erties of the equilibrium configuration:

E
(

xaya+1 | ya, xa+1
)

= 0

in the economy with social interactions, while

E
(

xaya+1 | ya, xa+1
)

< 0

if equilibrium actions are determined by corre-
lated unobserved spatial heterogeneity.



Dynamic Economies with Local Interactions

• The theoretical literature on dynamic economies

with local interactions has so far concen-

trated on models with ad hoc myopic dy-

namics.

• In this case the resulting equilibrium pro-

cess for {xa
t }t∈N has been intensively in-

vestigated in the mathematical literature

on interacting particle systems. Conditions

for asymptotic stability of these processes

have been established under suitable weak

interaction and average contraction condi-

tions; see e.g., Liggett 1985, Kindermann

and Snell 1980 or Föllmer and Horst 2001.



• In this paper, we instead study economies with for-
ward looking agents and consider rational expecta-
tions equilibrium dynamics.

At time t agent a ∈ A takes action xa
t ∈ X

Random type of a ∈ A at time t is θa
t ∈ Θ

Agent a ∈ A interacts with agent a + 1 ∈ A

Period t instantaneous utility of agent a ∈ A:

u(xa
t−1, x

a
t , x

a+1
t , θa

t )

In particular we restrict to quadratic preferences:

−α1

(

xa
t − xa

t−1

)2
− α2 (xa

t − θa
t )

2 − α3

(

xa
t − xa+1

t

)2

Information:

– Complete Information of Present Shocks; Com-
plete Information of Past Actions: At time t,
agent a ∈ A observes

(xb
t−1)b≥a and (θb

t)b≥a

– Incomplete Information of Present Shocks;
Complete Information of Past Actions: At
time t, agent a ∈ A observes

(xb
t−1)b≥a and (θb

t)
a+N
b=a+1

Discount factor is β < 1.



• An economy is a vector E = (X,Θ, u, ν, β) Agent 0
believes that agent a ≥ 1 chooses

xa = ga(xt, θ
a
t ) = g({xb

t}b≥a, θ
a) ∈ X

according to a decision rule g : XN × Θ → X.

• The conditional distribution of xa
t+1 is then

πa
g(xt; ·) := πg(T

axt; ·) =

∫

δg(T axt,θ)(·)ν(dθ).

• The conditional distribution of the configuration
{xa

t+1}a≥1 takes the product form

Kg(xt; ·) =
∏

a≥1

πg(T
axt; ·).

• The maximization problem of agent 0 ∈ A is

max
{x0

t }

∑

t∈N

βt

∫ ∫

u(x0
t−1, x

0
t , y1, θ0)Kt

g(x, dy)ν(dθ0).

• The conditional optimal action g∗(x, θ0) is given by
the solution to a dynamic program:

g∗(x, θ0) = argmax
y0∈X

{∫

u(x0, y0, y1, θ0)πg(x; dy1)

+β
∫ ∫

Vg(y, θ0)Kg(x; dy)ν(dθ)
}

• Any fixed point of the operator

V̂ g(x, θ0) = argmax
y0∈X

{∫

u(x0, y0, x1, θ0)πg(x; dy1)

+β
∫ ∫

Vg(y, θ0)Kg(x; dy)ν(dθ)
}

defines a symmetric equilibrium.



• Lemma Assume that the choice map g is continu-
ous. Under our assumptions on the utility function
u, the functional fixed point equation has a unique
bounded and continuous solution Vg on X0 × Θ.
Moreover, the map Vg(·, Txt−1, θ0

t ) is strictly con-
cave on X and there exists a unique continuous
policy function ĝg : X0 × Θ → X that satisfies

ĝg

(

xt−1, θ
0
t

)

= argmax
x0

t
∈X

{
∫

u
(

x0
t−1, x

0
t , y1

t , θ0
t

)

πg(Txt−1; dy1
t )

+ β

∫

Vg(x
0
t , x̂t, θ

1)Πg(Txt−1; dx̂t)ν(dθ1)

}

.

• Definition For C > 0, let

LC
+ := {c = (ca)a∈N : ca ≥ 0,

∑

a∈A

ca ≤ C}

denote the class of all non-negative sequences whose
sum is bounded from above by C. A sequence
c ∈ LC

+ will be called a correlation pattern with total
impact C.

Each correlation pattern c ∈ LC
+ gives rise to a met-

ric

dc(x, y) :=
∑

a∈N

ca|x
a − ya|

that induces the product topology on X0. Thus,
(dc,X

0) is a compact metric space. In particular,
the class

LipC
c := {f : X

0 → R : |f(x) − f(y)| ≤ dc(x, y)}

of all functions f : X0 → R which are Lipschitz con-
tinuous with constant 1 with respect to the metric
dc is compact in the topology of uniform conver-
gence.



• Theorem Assume that there exists C < ∞ such
that the following holds:

1. For any c ∈ LC
+, for all θ0 ∈ Θ and for each

choice function g(·, θ0) ∈ LipC
c , there exists F (c) ∈

LC
+ such that the unique policy function ĝg(·, θ0)

which solves the dynamic program above, is Lip-
schitz continuous with respect to the metric
dF (c) uniformly in θ0 ∈ Θ.

2. The map F : LC
+ → LC

+ is continuous.

3. We have limn→∞ ‖ĝgn
(·, θ0) − ĝg(·, θ0)‖∞ = 0 if

limn→∞ ‖gn − g‖∞ = 0.

Then the dynamic economy with local interactions
has a symmetric Markov perfect equilibrium g∗ and
the function g∗(·, θ0) is Lipschitz continuous uni-
formly in θ0.

• Our dynamic economy with conformity preferences
satisfies the assumptions of the theorem. Hence
a symmetric Markov Perfect Equilibrium exists and
the optimal policy functions can be fully character-
ized.



Characterization

• An equilibrium is characterized by the following pol-
icy functions.

– Complete Information of Present Shocks; Com-
plete Information of Past Actions:

The policy function of a generic agent a is given
by

g∗(T a xt−1, T a
tθN) =

∞
∑

i=0

ci x
a+i
t−1 +

∞
∑

j=0

dj θ
a+j
t

where tθN = {. . . , θ0
t , . . . , }

– Incomplete Information of Present Shocks; Com-
plete Information of Past Actions:

Optimal policy of agent a in this case is

g∗(T axt−1, T a
tθN) =

∞
∑

i=0

ci x
a+i
t−1 +

N
∑

j=0

dj θ
a+j
t + e θ

where tθN = {θ−N
t , . . . , θ0

t , . . . , θN
t }

– We represent the policy function on the simplex
with vertices: c0, d0,

∑∞
i=1 ci +

∑N
j=1 dj + e
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• We represent equilibrium configuration via their spa-
tial correlation structure:

E
(

xa
t , x

a+b
t

)

var (xa
t )

, for any b ≥ 1
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• or simply by a realization of the spatial configura-
tion:

– Details of the simulation algorithm

– We represent the convergence to the ergodic
distribution via convergence to the mean action
in the configuration:
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Rational vs. Myopic Interactions

We compare equilibrium configurations of economies
with rational agents with those of economies with two
different kind of myopic, backward looking agents:

• Backward Looking: A generic agent a solves

max
xa

t∈X
−α1(x

a
t − xa

t−1)
2 − α2(x

a
t − θa

t )
2 − α3(x

a
t − xa+1

t−1 )2

• Myopic: Agent a solves

max
xa

t∈X
−α1(x

a
t − xa

t−1)
2 − α2(x

a
t − θa

t )
2

−α3

∫

(xa
t − xa+1

t )2πgM(T a+1xt−1; dxa+1
t )

Rational Policy Function:

xa
t =

∞
∑

i=0

cR
i xa+i

t−1 +

N
∑

j=0

dR
j θ

a+j
t + eR θ

Backward Looking Policy Function:

xa
t = β1x

a
t−1 + β2θ

0
t + β3x

1
t−1

Myopic Policy Function:

xa
t =

∞
∑

i=0

cM
i xa+i

t−1 +

N
∑

j=0

dM
j θ

a+j
t + eM θ



Own-Past Own-Shock Neighbor‘s Other Neighbors’ Other Neighbors’ Mean

Past Past Shocks θ

Rational .32 .16 .11 .13 0 .28

Backward Looking .4 .2 .4 0 0 0

Myopic .4 .2 .16 .11 0 .13

Table 1: α1 = .4, α2 = .2 and α3 = .4, N = 0.

Own-Past Own-Shock Neighbor‘s Other Neighbors’ Other Neighbors’ Mean

Past Past Shocks θ

Rational .05 .86 .002 ≃ 0 0 ≃ .08

Backward Looking .05 .95 .05 0 0 0

Myopic .05 .9 .0025 ≃ 0 0 ≃ .05

Table 2: α1 = .05, α2 = .95 and α3 = .05, N = 0

41



Own-Past Own-Shock Neighbor‘s Other Neighbors’ Other Neighbors’ Mean

Past Past Shocks θ

Rational .17 .09 .11 .5643 0 ≃ .07

Backward Looking .2 .1 .7 0 0 0

Myopic .2 .1 .14 .3267 0 ≃ .23

Table 3: α1 = .2, α2 = .1 and α3 = .7, N = 0.

Own-Past Own-Shock Neighbor‘s Other Neighbors’ Other Neighbors’ Mean

Past Past Shocks θ

Rational .32 .16 .11 .13 .20 ≃ .08

Backward Looking .4 .2 .4 0 0 0

Myopic .4 .2 .16 .11 .13 ≃ 0

Table 4: α1 = .4, α2 = .2 and α3 = .4, N = 5

42
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Identifiability

• We study the identifiability of the social interac-
tion model in the dynamic economy. Naturally, the
observation of equilibrium actions over time might
help in identifying social interactions.

• Graham-Hahn 2003 show that spatially correlated
unobserved heterogeneity does not impede identifi-
ability in a dynamic economy as long as the hetero-
geneity is not also temporally correlated - equation
(14) on page 10.

• In Graham-Hahn 2003, the equilibrium configura-
tion at any time t is generated by the policy func-
tions obtained in the static economy (that is, agents’
behavior is myopic), so that the evolution of the
equilibrium configurations of actions over time rep-
resents essentially different independent realizations
of the same stochastic process.



• The identifiability problem:

– Consider the economy with complete informa-
tion of preference shocks and past action. The
policy function of agent a is:

xa
t =

∑

b>a

cbx
b
t + c0x

a
t−1 + γθa

t

– Consider, similarly to the case of the static econ-
omy, an equivalent model in which each agent
a’s choice only depends on the realization of an
unobservable factor ua

xa
t = ηua

t ,

which is however spatially and temporally corre-
lated,

ua
t =

∑

b>a

ρbu
b
t + λua

t−1 + ǫa
t ,

for some i.i.d. zero-mean process ǫt = (ǫa)a∈,t≥0.

– With

ρ = γ, η = 1 − γ

the economy with unobserved spatial correla-
tion and no social interaction is observationally
equivalent to the economy with social interac-
tion, and identifiability fails.



• The identifiability results we obtained for the static
economy can be extended to the dynamic economy,
and hence identifiability obtains with incomplete in-
formation over preference shocks and/or with ob-
servable heterogeneity.

• Two different positive results:

– Identifiability due to the dependence on own
past actions.

∗ Suppose the econometrician knows that agent
a’s action xa

t depends on xa
t−1, for instance

because of a technological link, like e.g., ad-
justment costs.

∗ In this case the policy function of agent a is:

xa
t = ηua

t + λxa
t−1, ua

t =
∑

b>a

ρbu
b
t + ǫa

t

while, with correlated unobserved heterogene-
ity, his equilibrium action is determined by

xa
t =

∑

b>a

(

ρbx
b
t − λρbx

b
t−1

)

+ λxa
t−1 + ηǫa

t .

∗ Identifiability then obtains from the properties
of the equilibrium configuration:

E
(

xa
t x

a+1
t−1 | xa

t−1

)

= 0

in the economy with social interactions, while

E
(

xa
t x

a+1
t−1 | xa

t−1

)

> 0

if equilibrium actions are determined by cor-
related unobserved heterogeneity.



• Identifiability due to the lack of stationarity of the
policy function.

– Suppose that the economy is truncated at some
time T , 0 < T < ∞.

– In this case each agent’s policy function is not
stationary, while equilibrium actions determined
by correlated unobserved heterogeneity, are nec-
essarily stationary.

– T-Periods with no continuation We look at
the policy functions of truncated economies in
the sense that agent 0 solves in period t, the
following problem

max
x0

t−1
∈X

−α1(x
0
t − x0

t−1)
2 − α2(x

0
t − θ0

t )
2

−α3

∫

(x0
t − x1

t )
2πgT−t+1(Txt−1; dx1

t )

+βV T−t(x0
t , x̂t, θ

N
t+1)ΠgT−t+1(Txt−1, ; dx̂t)Π

N
b=1ν(dθb

t+1)

– where t = 0,1, . . . , T and V 0 is the zero function
and x−1 is given. By backward induction, we
solve for the sequence of policy functions

gT−t+1(xt−1, tθN) =

∞
∑

i=0

ct
i xi

t−1 +

N
∑

j=0

dt
j θ

j
t + et θ

for t = 0, . . . , T .



• We represent the sequence of policy functions in
the simplex with vertices c0, d0,

∑∞
i=1 ci +

∑N
j=1 dj +e
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6 Formal Analysis - incomplete information for simplicity

• Prior to his choice at time t, the agent a ∈ A observes the realization only of his own type θa
t .

Agents to observe the entire action profile xt−1 = (xa
τ )a∈A of previous periods τ = t− 1, t− 2, . . ..

• Definition 6.1 A dynamic economy with local interactions is a tuple S = (X,Θ, u, ν, β).

• We denote by X := {x = (xa)a∈A : xa ∈ X} the space of all configurations of individual actions

and let X0 := {x = (xa)a≥0}.

• We study Markov perfect equilibria, in which the policy function of any agent at t will only depend

on period t − 1 actions. As in the static case, we shall focus on symmetric equilibria. Thus, the

optimal action of an economic agent a ∈ A is determined by a choice function g : X0 × Θ → X

in the sense that

xa
t = g(T axt−1, θ

a
t ) where T axt−1 = {xb

t−1}b≥a.

• In a symmetric situation, it is thus enough to analyze the optimization problem of a single

reference agent, say of the agent 0 ∈ A. Given the action profile xt−1 = (xb
t−1)b≥0 ∈ X0 of the

agents b ≥ 0 in the previous period and a continuous choice function g : X0 × Θ → X, the agent

a ≥ 0 takes as given his neighbor’s current choice g(T axt−1, θ
a
t ). We denote by πg(T

axt−1; ·) the

conditional law of the action xa
t , given the previous configuration xt−1, and so the choice function

g : X0 × Θ → X induces the Feller kernel

Πg(x; ·) :=
∞
∏

a=1

πg(T
ax; ·). (6)

• If the agent 0 ∈ A believes that the agents a > 0 choose their actions according to g, the kernel

Πg describes the stochastic evolution of the process of individual states {(xa
t )a>0}t∈N

. In this

case, for any initial configuration of individual states x ∈ X0 and for each initial type θ0
1, the

optimization problem of the agent 0 is given by

max
{x0

t
}







∫

u(x0
1, x

0, x1
1, θ

0
1)πg(Tx; dx1) +

∑

t≥2

βt−1

∫

u(x0
t , x

0
t−1, x

1
t , θ

0
t )Π

t
g(Tx; dxt)ν(dθ0

t )







. (7)

• The value function associated with this dynamic choice problem is defined by the fixed point of

the functional equation

Vg(xt−1, θ
0
t ) = Vg(x

0
t−1, Txt−1, θ

0
t ) = max

x0
t
∈X

{
∫

u
(

x0
t−1, x

0
t , y

1
t , θ

0
t

)

πg(Txt−1; dy1
t ) (8)

+β

∫

X0×Θ
Vg(x

0
t , x̂t, θ

1)Πg(Txt−1; dx̂t)ν(dθ1)

}

.
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• Lemma 6.2 Assume that the choice map g is continuous. Under our assumptions on the utility

function u, the functional fixed point equation (8) has a unique bounded and continuous solution

Vg on X0 × Θ. Moreover, the map Vg(·, Txt−1, θ
0
t ) is strictly concave on X and there exists a

unique continuous policy function ĝg : X0 × Θ → X that satisfies

ĝg

(

xt−1, θ
0
t

)

= arg max
x0

t
∈X

{
∫

u
(

x0
t−1, x

0
t , y

1
t , θ

0
t

)

πg(Txt−1; dy1
t )

+β

∫

Vg(x
0
t , x̂t, θ

1)Πg(Txt−1; dx̂t)ν(dθ1)

}

. (9)

• Definition 6.3 A symmetric Markov perfect equilibrium of a dynamic economy with forward

looking and locally interacting agents S = (X,Θ, u, ν, β), is a map g∗ : X0 × Θ → X such that

g∗
(

xt−1, θ
0
t

)

= arg max
x0

t
∈X

{
∫

u
(

x0
t−1, x

0
t , y

1
t , θ

0
t

)

πg∗(Txt−1; dy1
t ) (10)

+β

∫

Vg∗(x
0
t , x̂t, θ

1)Πg∗(Txt−1; dx̂t)ν(dθ1)

}

.

• In order to state a general existence result for equilibria in dynamic random economies with

forward looking interacting agents we need to introduce the notion of a correlation pattern.

• Definition 6.4 For C > 0, let

LC
+ := {c = (ca)a∈N : ca ≥ 0,

∑

a∈A

ca ≤ C}

denote the class of all non-negative sequences whose sum is bounded from above by C. A sequence

c ∈ LC
+ will be called a correlation pattern with total impact C.

Each correlation pattern c ∈ LC
+ gives rise to a metric

dc(x, y) :=
∑

a∈N

ca|x
a − ya|

that induces the product topology on X0. Thus, (dc,X
0) is a compact metric space. In particular,

the class

LipC
c := {f : X0 → R : |f(x) − f(y)| ≤ dc(x, y)}

of all functions f : X0 → R which are Lipschitz continuous with constant 1 with respect to the

metric dc is compact in the topology of uniform convergence.

Remark 6.5 For a fixed θ0 ∈ Θ, let g(·, θ0) ∈ LipC
c be the policy function of the agent 0 ∈ A.

The constant ca may be viewed as a measure for the total impact the current action xa of the

agent a ≥ 0 has on the optimal action of agent 0 ∈ A. Since C < ∞, we have lima→∞ ca = 0.

Thus, the impact of an agent a ∈ A on the agent 0 ∈ A tends to zero as a → ∞. In this sense

we consider economies with weak social interactions. The quantity C provides an upper bound for

the total impact of the configuration x = (xa)a≥0 on the current choice of the agent 0 ∈ A.
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We are now going to formulate a general existence result for symmetric Markov perfect equilibria

in dynamic economies with local interaction.

Theorem 6.6 Assume that there exists C < ∞ such that the following holds:

i. For any c ∈ LC
+, for all θ0 ∈ Θ and for each choice function g(·, θ0) ∈ LipC

c , there ex-

ists F (c) ∈ LC
+ such that the unique policy function ĝg(·, θ

0) which solves (9), is Lipschitz

continuous with respect to the metric dF (c) uniformly in θ0 ∈ Θ.

ii. The map F : LC
+ → LC

+ is continuous.

iii. We have limn→∞ ‖ĝgn
(·, θ0) − ĝg(·, θ

0)‖∞ = 0 if limn→∞ ‖gn − g‖∞ = 0.

Then the dynamic economy with local interactions has a symmetric Markov perfect equilibrium g∗

and the function g∗(·, θ0) is Lipschitz continuous uniformly in θ0.

Proof: Let us first show that, for any C < ∞, the convex set LC
+ may be viewed as a closed

subset of [0, C]N with respect to the product topology. To this end, let {cn}n∈N be a sequence in

LC
+ that converges to c = (ca)a≥0 ∈ [0, C]N in the product topology. Clearly, ca ≥ 0 for all a ∈ N,

and so the sum ˜C :=
∑

a≥0 ca exists by monotone convergence. If ˜C > C, then there exists b ∈ N

and ǫ > 0 such that

C + ǫ ≤

b
∑

a=0

ca =

b
∑

a=0

lim
n→∞

cn
a ≤ lim

n→∞

∑

a≥0

cn
a

which contradicts cn ∈ LC
+.

Due to (i) and (iii) the operator V̂ defined by (??) maps the compact and convex set LipC
c∗

continuously into itself and therefore does also have a fixed point g∗. 2

• we study the asymptotic behavior of the process {xt}t∈N in equilibrium. To this end, we denote

by

Πg∗(x; ·) =
∏

a∈A

πg∗(T
ax; ·)

the stochastic kernel on X induced by the policy function g∗ and by Πt
g∗ , its t-fold iteration. Given

an initial configuration x ∈ X, the measure Πt(x; ·) describes the distribution of the configuration

of individual states at time t. Let us introduce the vector r∗ = (r∗a)a∈A with components

r∗a := sup{‖πg∗(x; ·) − πg∗(y; ·)‖ : x = y off a}. (11)

Here, ‖πg∗(x; ·) − πg∗(y; ·)‖ denotes the total variation of the signed measure πg∗(x; ·) − πg∗(y; ·),

and x = y off a means that xb = yb for all b 6= a. The next theorem gives sufficient conditions for

convergence of the equilibrium process to a steady state. Its proof follows from a fundamental

convergence theorem by Vaserstein 1969.

20



Theorem 6.7 If
∑

a∈A
ra
g∗ < 1, then there exists a unique probability measure µ∗ on the infi-

nite configuration space X such that, for any initial configuration x ∈ X, the sequence Πt
g∗(x; ·)

converges to µ∗ in the topology of weak convergence for probability measures.

6.1 Existence with Quadratic Utility and Incomplete Information

In this section we analyze an example with quadratic utility functions where the assumption of Theorem

6.6 and of Theorem 6.7 can indeed be verified.

Theorem 6.8 Let X = Θ = [−1, 1], and assume that Eθ0
t = 0, and that an agent a ∈ A only observes

his own type θa. If the instantaneous utility function takes the quadratic form

u
(

xa
t−1, x

a
t , x

a+1
t , θa

t

)

= −α1

(

xa
t−1 − xa

t

)2
− α2 (θa

t − xa
t )

2 − α3

(

xa+1
t − xa

t

)2
(12)

for positive constants α1, α2 and α3, then the economy has a symmetric Markov perfect equilibrium g∗.

The policy function g∗ can be chosen to be of the linear form

g∗(x, θ0) = c∗0x
0 + γθ0 +

∑

b≥1

c∗bx
b

for some positive sequence c∗ = (c∗a)a≥0 and some constant γ > 0.

The proof of Theorem 6.8 will be carried out in several steps. In a first step, we are now going to

establish the existence of an interior solution to an agent’s optimization problem in an economy with

quadratic utility functions.

Lemma 6.9 Let g : X0 × Θ → X be a continuous choice function for the agents a > 0. Under the

assumptions of Theorem 6.8, the induced policy ĝg function of the agent 0 ∈ A is uniquely determined

and

P
(

ĝg(xt−1, θ
0
t ) ∈ {−1, 1} for some t ∈ N

)

= 0. (13)

Thus, we have almost surely an interior solution.

Proof: The existence of a unique policy function follows from continuity of g along with the quadratic

form of the utility functions using standard arguments from the theory of discounted dynamic program-

ming. In order to prove (13), we put

τ := inf
{

t > 0 : ĝg(xt−1, θ
0
t ) = 1

}

and yt := ĝg(xt−1, θ
0
t ).

It suffices to show that P[τ < ∞] = 0. Let us assume to the contrary that P[τ < ∞] > 0. In such a

situation yτ = 1 is optimal and this means that

−α1(1 − yτ−1)
2 − β

(

α1(1 − yτ+1)
2 + α2(1 − x1

τ )
2 + α3(1 − θ0

τ )
2
)

≥ −α1(y − yτ−1)
2 − β

(

α1(y − yτ+1)
2 + α2(y − x1

τ )
2 + α3(y − θ0

τ )
2
)
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for all y ∈ X. Otherwise yτ < 1 would lead to a higher payoff. This, however, requires θ0
τ = yτ−1 =

yτ+1 = 1. This shows that yt = 1 = θ0
t for all t ∈ N. This, of course, contradicts Eθ0

t = 0. Thus,

P[τ < ∞] = 0. 2

Let us now establish a first representation of the agents’ policy function. To this end, we denote by

M(X0) the class of all probability measures on X0 equipped with the topology of weak convergence.

The utility of the agent 0 ∈ A at time t ∈ N depends on the actions xa
t taken by the agents a > 0 only

through his neighbor’s expected action

zt :=

∫

y1Πg(Txt; dy).

We may thus view the agent’s dynamic problem as an optimization problem depending only on the

stochastic sequence {θ0
t }t∈N and on the deterministic sequence

{

Πt
g(Tx; ·)

}

t∈N
. In fact, in our present

setting we can, for any initial configuration x ∈ X0, put µ(·) := Πg(Tx; ·) and rewrite his optimization

(7) as

max
{x0

t
}t∈N







U(x0
1, x

0
0, θ

0
1, µ) +

∑

t≥2

βt−1

∫

U(x0
t , x

0
t−1, θ

0
t , µΠt

g)ν(dθ0
t )







(14)

where

U(x0
1, x

0
0, θ

0, µ) := −α1(x
0
1 − x0

0)
2 − α1(x

0
1 − θ0)2 − α3

∫

(x0
1 − y1)2µ(dy).

This allows us to show that the agent’s optimal action is given as a weighted sum of his present type,

of his action taken in the previous period and of the expected future actions of his neighbor.

Lemma 6.10 Assume that the assumptions of Theorem 6.8 are satisfied. Given an action profile

x ∈ X0 and a choice function g : X0 ×Θ → X for the agents a > 0, the policy function of agent 0 ∈ A

is of the linear form

ĝg(x, θ) = γ1x
0 + γ2θ

0 +
∑

t≥1

δt−1

∫

y1Πt
g(Tx; dy). (15)

With λ := α1 + α2 + α3 + α1β the constants γ1, γ2, δ0, δ1, . . . are given by

γ1 :=
λ −

√

λ2 − 4α2
1β

2α1β
, and γ2 :=

α2

λ − γ1α1β
, (16)

and by

δ0 :=
α3

λ − γ1α1β
and δt+1 =

α1β

λ − γ1α1β
δt for t ≥ 1. (17)

The constants in (16) and (17) do not depend on g and satisfy γ1 + γ2 +
∑

t≥0 δt ≤ 1.

Proof: Let us fix an initial configuration x = (xa)a≥0 and put µ := Πg(Tx; ·). The value function

associated with the optimization problem (14) solves the functional fixed point equation

Vg(x
0
0, θ

0
1, µ) = max

x0
1
∈X

{

−α1(x
0
0 − x0

1)
2 − α2(θ

0
1 − x0

1)
2 − α3

∫

(y1 − x0
1)

2µ(dy)

+β

∫

Vg(x
0
1, θ

0
2, µΠg)ν(dθ0

2)

}

. (18)
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In view of Lemma 6.9 the fixed point equation (18) has a unique solution V ∗
g : X × Θ ×M(X0) → R

and the agent’s policy function ĝg : X × Θ × M(X0) → X is uniquely determined and the optimal

solution is almost surely interior. Thus, the first order condition takes the form

−2α1(x
0
0 − x0

1) − 2α(θ0
1 − x0

1)
2 − 2α3

∫

(y1 − x0
1)µ(dy) + β

∫

∂

∂x0
1

V ∗
g (x0

1, θ
0
2, µΠg)ν(dθ0

2) = 0,

and the envelope theorem gives us

∂

∂x0
1

V (x0
1, θ

0
2, µΠg) = −2α1(x

0
1 − x0

2) = −2α1

(

x0
1 − ĝg

(

x0
1, θ

0
2, µΠg

))

. (19)

This yields

x0
1 =

1

α1 + α2 + α3 + β1α1

(

α1x
0
0 + α2θ

0
1 + α3

∫

y1µ(dy) + α1β ĝg

(

x0
1, θ

0
2, µΠg

)

)

. (20)

Let us now assume that we have the following alternative representation for the optimal path {x0
t }t∈N:

x0
t = γ1x

0
t−1 + γ2θ

0
t +

∞
∑

i=0

δizt+i ∈ (0, 1) (21)

where zt denotes the expected action of the agent a = 1 at time t. Using Eθ0
t = 0, it does then follow

from the first order condition, from (19) and from (20) that

x0
1 =

1

α1 + α2 + α3 + β1α1

(

α1x
0
0 + α2θ

0
1 + α3

∫

y1Πg(x; dy) + α1βγ1x
0
1 + α1β

∞
∑

i=0

z2+i

)

. (22)

Now we need to find coefficients γ1, γ2, δ0, δ1, . . . such that the representations in (21) and in (22)

coincide. This can be accomplished recursively and yields the constants in (16) and (17).1

Notice, however, that we have not yet shown that the sum of the coefficients is bounded from above

by 1. In order to prove this, we consider the situation in which the agents maximize the discounted

sum of their expected utilities over the periods t ∈ {0, 1, . . . , τ} and denote by gτ (x, θ0) the optimal

action of the agent 0 ∈ A. Using a cumbersome, but rather straightforward induction argument along

with an argument similar to the one given in the proof of Lemma 6.9 one can easily show that

gτ (x, θ0) = γτ
1x0 + γτ

2θ0 +

τ
∑

i=1

δτ
i−1zi.

Here, the coefficients satisfy the recursive relations

γτ
i =

αi

λτ
(i = 1, 2), δτ

0 =
α3

λτ+1
, δτ

i =
α1β

λτ
δτ−1
i−1 (i = 1, 2, . . .) and λτ+1 = λ −

α2
1β

λτ

1The solution method for linear rational expectations models in [7] cannot be applied in a context, as ours, with an

infinite dimensional state space.
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with λ0 = α1 + α2 + α3. This shows that γτ
i → γi and δτ

i → δi for all i = 0, 1, 2, . . . as τ → ∞. Thus,

γ1 + γ2 +
∑

i≥0

δi ≤ 1 because γτ
1 + γτ

2 +
∑

i≥0

δτ
i ≤ 1 for all τ.

2

Our representation (15) of the policy function does not yet allow us to apply Theorem 6.6. For this

we need a representation of ĝg in terms of the sequence (xa)a≥0. This, however, can be accomplished

as follows: Let us fix a correlation pattern c = (ca)a≥1 ∈ L1−γ2

+ and assume for the moment that the

choice function of the agents a > 0 takes the linear form

g̃(T ax, θa) = c0x
a + γ2θ

a +
∑

b≥1

cbx
a+b. (23)

In view of (15), we have c0 = γ1 and that continuous choice function g̃ induces a Feller kernel Πg̃ on

X0. Thus, it follows from (23) and from Eθ0
t = 0 that

∫

y1Πg̃(x; dy) =
∑

a≥0

cax
a+1.

Thus, the expected action of the agent a = 1 in the second period is given by
∫

y1Π2
g̃(x; dy) =

∑

a1≥0

ca1

∫

ya+1Πg̃(x; dy) =
∑

a1≥0

ca1

∑

a2≥0

ca2
xa1+a2+1,

and a simple induction argument shows that

∫

y1Πt
g̃(x; dy) =

∑

a1≥0



ca1

∑

a2≥0



ca2
· · · cat−1

∑

at≥0

cat
xa1+···+at+1



 · · ·



 (24)

for all t ∈ N. This yields the following alternative representation for our policy function:

ĝg̃(x, θ) = γ1x
0 + γ2θ +

∑

b≥1

lbx
b

where the strictly positive sequence (lb)b≥1 is given by

lb = Fb(c0, c1, . . . , cb−1) :=
∑

t≥1

δt−1

(

b−1
∑

a1=0

(

ca1

b−1
∑

a2=0

ca2
· · ·

)

b−1
∑

at=0

cat

)

1{
P

t

i=1 ai=b−1}. (25)

We are now ready to prove Theorem 6.8.

Proof of Theorem 6.8: Since ĝg̃(x, θ0) ∈ X, we have
∑

b≥1 lb ≤ 1 − γ1 − γ2. Thus, the map F

defined by

F (c) := (Fb(γ1, c1, . . . cb−1))b≥1 (26)
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maps the set L1−γ1−γ2

+ into itself. Since F is continuous in the product topology, it has a fixed point

c∗ = (c∗a)a≥1 and

lb = Fb(γ1, c
∗
1, . . . , c

∗
b−1) = c∗b for all b ≥ 1.

Thus, the assumptions of Theorem 6.6 are satisfied and this proves the assertion. 2

We turn now to study the convergence to a unique steady state for the example economy with

quadratic preferences. Consider the representation

g∗(x; θ0) = c∗0x
0 + γ2θ

0 +
∑

a≥1

c∗ax
a.

of the policy function g∗. For any two configurations x, y ∈ X0 which differ only at site a ∈ A we have

|g∗(x, θ0) − g∗(y, θ0)| ≤ c∗a|x
a − ya|,

Thus, assuming that the taste shocks are uniformly distributed on [−1, 1] we obtain

|πg∗(x;A) − πg∗(y;A)| ≤ 2c∗a

for all A ∈ B([−1, 1]), and so
∑

a≥0 ra
g∗ < 1 if

∑

a≥0 c∗a < 1
2 . Hence in our quadratic case study, we

obtain convergence to a steady state whenever α1 is big enough and if α3 is small enough, i.e., if the

interaction between different agents is not too strong.
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