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Abstract

We consider an auction environment where the object can be sold with usage re-

strictions that generate direct bene�ts to the seller but lower buyers�valuations. In

this environment, sellers such as the FCC have used �contingent re-auctions,�o¤ering

the restricted object with a reserve price, but re-auctioning it without the restrictions

if the reserve is not met. We show that, in general, contingent re-auctions are neither

e¢ cient nor optimal for the seller. We propose an alternative, the �exclusive-buyer

mechanism,� which implements the e¢ cient outcome in dominant strategies and, in

certain environments, maximizes the seller�s surplus across all feasible selling proce-

dures.
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1 Introduction

Sellers sometimes have the ability to modify objects being o¤ered for sale in ways that

provide bene�ts to themselves or to the general public. For example, in U.S. Spectrum

License Auction 73, which was held in January through March of 2008, the U.S. Federal

Communications Commission (FCC) o¤ered the licenses with substantial usage restrictions

that the FCC viewed as in the public interest. The FCC decided to adopt a �contingent

re-auction� format, where it o¤ered the restricted licenses �rst, with reserve prices, and

committed to re-auction the licenses without many of the restrictions if the reserve prices

were not met.

The recent attempted sale of the Italian airline Alitalia followed a similar pattern, al-

though the procedure was not formalized to the same extent as that of the FCC. Alitalia

was �rst put up for sale with a series of restrictions, such as limitations on the ability of the

new owner to �re employees. These restrictions were perceived as desirable by the Italian

government, but lowered the value of the airline to any bidder. After it became clear that

no bidder was interested given the proposed conditions, the airline was put up for sale again

with fewer restrictions.1

These are examples of auction environments with seller-bene�ting restrictions. The seller

has the ability to �damage�the object for sale by imposing usage restrictions and receives a

bene�t B; in addition to the sale price, if and only if the object is sold in restricted form.

Bidders value the unrestricted version of the object more than the restricted one.

Our paper contributes to the theoretical understanding of contingent re-auctions and

proposes an alternative mechanism that can improve upon contingent re-auctions in terms

of both social e¢ ciency and expected seller surplus. Speci�cally, we characterize equilibrium

behavior in contingent re-auctions. First, we analyze contingent re-auctions involving a pair

of ascending-bid auctions, and second we analyze contingent re-auctions involving a pair of

sealed-bid second-price auctions. We show that in both cases contingent re-auctions entail

signi�cant ine¢ ciencies. We then identify an alternative auction mechanism, the �exclusive-

buyer mechanism,�whose parameters can always be chosen so that the mechanism induces the

e¢ cient outcome in dominant strategies.2 In addition, we show that, in some environments, if

1Alitalia was put on sale on January 2007. A number of bidders initially expressed interest but they
all dropped out by July 2007. The bidders cited �restrictive conditions imposed by the government and a
lack of access to the airline�s books. ... These conditions, when originally expressed ahead of the auction,
included maintaining certain sta¤ levels, continued operation of some routes and tra¢ c rights regardless of
pro�tability, preserving Alitalia�s identity, and not selling certain Alitalia interests for three years.�See Aude
Lagorce, �Alitalia Still Hoping for Rescue,�MarketWatch, September 12, 2007.

2In our model there are no informational or allocative externalities, i.e., bidders have private values and a
buyer not receiving the object has no preference over which competitor receives the object. In environments
with interdependent valuations (and possibly allocative externalities as well), Jehiel and Moldovanu (2001)

1



the parameters of an exclusive-buyer mechanism are chosen with the seller�s surplus in mind,

the exclusive-buyer mechanism improves upon contingent re-auctions in terms of seller�s

expected surplus.

An exclusive-buyer mechanism is an auction (either second price or ascending bid) with

reserve price r for the exclusive right to choose between being awarded the restricted object

at no additional cost and buying the unrestricted object for a �xed incremental payment

p.3 The unique weakly dominant strategy for each bidder is to bid its value for the right to

choose.

When the reserve price is zero and the incremental payment p is set equal to the seller�s

bene�t B, the outcome is e¢ cient; that is, the object is sold in restricted form to a buyer

with the highest value for the restricted object whenever the sum of the seller�s bene�t B

plus the winner�s value exceeds the highest value for the unrestricted object; otherwise the

object is sold in unrestricted form to a buyer with the highest value for the unrestricted

object. The e¢ ciency properties of the exclusive-buyer mechanism extend to the case where

there are multiple possible restrictions on the object, each valued di¤erently by the buyers

and each with a di¤erent bene�t to the seller.

Because we assume that the buyers have private values, the e¢ cient outcome in our model

can also be induced by a Vickrey-Clarke-Groves (VCG) mechanism. However, as pointed

out by Ausubel and Milgrom (2006) and Rothkopf (2007), Vickrey auctions have certain

weaknesses. For example, they require bidders to reveal their true values, which they may

not want to do if it weakens their bargaining position in future transactions.4 In addition,

as stated in Rothkopf (2007, p.195), �In government sales of extremely valuable assets, the

political repercussions of revealing the gap between large o¤ers and small revenue could be a

dominant concern.�An exclusive-buyer mechanism using an ascending-bid auction delivers

e¢ ciency without these weaknesses.

In an exclusive-buyer mechanism, the parameters r and p can also be chosen to maximize

the expected seller surplus within the class of exclusive-buyer mechanisms. We show that

when each buyer�s value for the restricted object is a �xed percentage of its value for the

unrestricted object and the seller�s belief satis�es the usual mild regularity condition, the

show that it is generically impossible to implement e¢ cient outcomes. See also Maskin (1992). Mezzetti
(2004) shows that e¢ ciency can be obtained with two-stage mechanisms in which payments can be condi-
tioned on reports about the agents�allocation payo¤s.

3The exclusive buyer mechanism is reminiscent of a right-to-choose auction, which is de�ned by Burguet
(2007, p.167) as �a sequence of auction rounds where the winner of each chooses among the so far unsold
goods.� See also Gale and Hausch (1994), Burguet (2005), and Eliaz, O¤erman, and Schotter (2008). In
contrast, in the exclusive buyer mechanism, there is only one round and there is only one good for sale, but
that good can be sold subject to restrictions.

4It is di¢ cult for sellers such as the FCC to credibly commit to maintain the secrecy of bids because of
the Freedom of Information Act.
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seller-optimal exclusive-buyer mechanism is also globally optimal� it maximizes the seller�s

expected surplus across all feasible selling mechanisms.

Our results suggest that sellers such as the FCC can improve their auction design in

environments where they view restrictions on the objects being sold as in the public interest.

By switching from a contingent re-auction format to an exclusive-buyer mechanism, the FCC

can always improve the e¢ ciency of its auction and may be able to increase its expected

surplus. In some cases, the e¢ cient exclusive-buyer mechanism generates greater expected

seller surplus than any contingent re-auction. In such cases, the e¢ cient exclusive-buyer

mechanism dominates contingent re-auctions in terms of both e¢ ciency and seller surplus.

In addition, the parameters of the exclusive-buyer mechanism, reserve r and incremental

payment p; can be chosen to maximize any combination of e¢ ciency and seller surplus,

which may be valuable for a seller that is interested in both e¢ ciency and its own surplus.5

We are not aware of any literature that considers contingent re-auctions directly, but

there are several strands of related literature. First, on sequential auctions, Horstmann and

LaCasse (1997) show that in common value environments the seller may choose not to sell

an object, even if it receives bids above the announced reserve price, and then re-auction the

item after some time in order to signal its private information about the value of the object.

In the environment we consider, the seller has no private information. Cassady (1967),

Ashenfelter (1989), and Porter (1995) indicate that goods that are not sold at an initial

auction are often o¤ered for sale again later, but in these cases it is the same items that are

re-o¤ered, not a modi�ed version as in the cases we consider. McAdams and Schwarz (2007)

show that a seller may bene�t from being able to commit to a �nal round of o¤ers. McAfee

and Vincent (1997) consider a model in which a seller cannot commit not to re-auction an

object if the announced reserve price is not met. They show that when the time between

auctions goes to zero, the seller�s expected revenues converge to that of a static auction with

no reserve price, and they characterize the optimal dynamic reserve price policy of the seller.

In our model, we assume that the seller can commit to a reserve price in the second auction,

but we do not exclude the possibility that the reserve at the second auction is zero.

There is also a literature on auctions with resale by the winning buyer; see, e.g., Gupta

and Lebrun (1999), Haile (2000, 2001, 2003), Zheng (2002), Garratt and Tröger (2005),

Hafalir and Krishna (2007), Garratt, Tröger, and Zheng (2006), Lebrun (2007), and Pagnozzi

5The Communications Act of 1934 (as amended by the Telecom Act of 1996) gives the FCC the legal
authority to auction spectrum licenses. The language of the Act suggests that e¢ ciency concerns should
dominate revenue concerns in the FCC�s auction design choices. Section 309(j) of the Act states that one
objective of the auctions is �recovery for the public of a portion of the value of the public spectrum,�but it
also states that �the Commission may not base a �nding of public interest, convenience, and necessity solely
or predominantly on the expectation of Federal revenues.�

3



(2007). In our model, we assume no resale by buyers.

Mares and Swinkels (2008) consider a procurement environment in which the buyer re-

ceives an external bene�t if a particular supplier is chosen to supply the object. They charac-

terize the optimal mechanism and show that in many environments an appropriately chosen

second-price mechanism dominates a �rst-price auction with a handicap. The external ben-

e�t to Mares and Swinkels�buyer is similar in �avor to our bene�t B to the seller. However,

in Mares and Swinkels, whether the bene�t is received depends on the identity of the winner,

and in our paper it does not� it depends on whether the object is allocated in restricted or

unrestricted form. Because of this di¤erence, the underlying analytics in the two papers are

di¤erent. The relevant comparisons in Mares and Swinkels are among the optimal mecha-

nism,6 second-price mechanisms, and �rst-price mechanisms. The relevant comparisons in

our paper are between contingent re-auctions and exclusive-buyer mechanisms.

In our general model, buyers have two-dimensional types. Each buyer has privately

known values for both the unrestricted and restricted versions of the object. As shown

in Wilson (1993), Armstrong (1996), Rochet and Choné (1998) and Manelli and Vincent

(2007), results for mechanism design problems with multidimensional types can be di¢ cult

to obtain. A number of papers have contributed to the development of methods for such

problems, including Rochet (1985), Matthews and Moore (1987), McAfee and McMillan

(1988), Armstrong (1996), Rochet and Choné (1998) and Manelli and Vincent (2007), where

the last three of these papers focus on the case of a multiproduct monopolist.

The problem of maximizing the seller surplus in the one-dimensional version of our model,

which we consider in Section 5.2, is related to the classic paper by Mussa and Rosen (1978),

which studies a model in which a monopolist o¤ers a quality di¤erentiated spectrum of the

same good. Some di¤erences between their model and ours are apparent: in their setup,

higher quality versions of the good cost more to produce and there is no bene�t to the seller

associated with particular quality levels. There is however a way of relabeling variables that

shows that the two models have a similar structure. One signi�cant di¤erence is that we have

a single object for sale and more than one buyer, hence the seller�s problem is not separable

across buyers. In related work, Deneckere and McAfee (1996) shows that it can be optimal

for a seller to o¤er both damaged and undamaged versions of a product. In our model, the

seller can only o¤er one version of the product, either restricted or unrestricted, so there is

no price discrimination motivation for restricting the use of the product.

The paper proceeds as follows. In Section 2, we describe in more detail the contingent

6In Mares and Swinkels, bidders� types are one-dimensional so the optimal mechanism can be derived
using standard techniques. In our model, bidders�types are inherently two-dimensional because there are
two forms of the object, restricted and unrestricted.
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re-auction procedure used by the FCC. In Section 3, we describe our model. In Section 4,

we use a simpli�ed version of the model with one-dimensional buyers� types to illustrate

the main ideas related to contingent re-auctions. In Section 5, we examine exclusive-buyer

mechanisms, including the possibility of implementing the �rst-best or seller-optimal outcome

with an exclusive-buyer mechanism. In Section 6, we provide detailed results for contingent

re-auctions in the general model with two-dimensional types. Section 7 provides numerical

calculations comparing the various mechanisms. Section 8 concludes with a discussion of

implications for mechanism design in environments with seller-bene�tting restrictions.

2 Contingent re-auction of spectrum licenses

FCC Auction 73 began on January 24, 2008, and ended on March 18, 2008. It was a

large auction with 1,099 spectrum licenses in the 698�806 MHz band, which is referred to as

the 700 MHz Band. The auction raised approximately $19 billion for the U.S. government

(the largest auction in FCC history).

As usual for an FCC auction, the licenses were de�ned by their geographic scope and their

location in the electromagnetic spectrum. The band plan for the 700 MHz auction de�ned

�ve blocks of licenses: A, B, C, D, and E.7 The D-block license was subject to conditions

relating to a public/private partnership and provisions for a re-auction of that spectrum in

the event its reserve was not met were not speci�ed, so we focus on the other blocks.

For blocks A, B, C and E, the FCC set block-speci�c aggregate reserve prices and attached

signi�cant performance requirements to the licenses. However, the FCC also ordered that

if the reserve price for a block was not met, the block would be re-auctioned �as soon as

possible�with less stringent requirements at the same reserve price.8

The performance requirements for the A, B, C, and E blocks included aggressive build-

out requirements, asking license holders to provide service to a minimum percent of the

geography covered by the A, B, and E-block licenses, and to a minimum percent of the

7The A-block licenses were 12 MHz licenses de�ned over 176 medium-sized geographic areas referred to as
Economic Areas. The B-block licenses were 12 MHz licenses de�ned over 734 small geographic areas referred
to as Cellular Market Areas. The C-block licenses were 22 MHz licenses de�ned over 12 large geographic
areas referred to as Regional Economic Area Groups. In the C block, bidders were also able to submit
package bids on three packages: the eight licenses covering the 50 U.S. states, the two Atlantic licenses
(covering Puerto Rico, U.S. Virgin Islands, and the Gulf of Mexico), and the two Paci�c licenses (covering
Guam, Northern Mariana Islands, and American Samoa). The D-block was organized as a single 10 MHz
nationwide license. The E-block licenses were 6 MHz licenses de�ned over the 176 Economic Areas.

8See the Second Report and Order (FCC 07-132) at paragraph 307. The reserve prices were: Block A,
$1.81 billion; Block B, $1.38 billion; Block C, $4.64 billion; Block D, $1.33 billion; Block E, $0.90 billion. The
FCC stated that �Because of the value-enhancing propagation characteristics and relatively unencumbered
nature of the 700 MHz Band spectrum, we believe these are conservative estimates.� (FCC Public Notice
(DA 07-3415), paragraph 54)
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population covered by the C-block licenses.9 Through these build-out requirements, the

FCC sought to promote service across as much of the geographic area of the country and to

as much of the population as practicable, something that it viewed as being in the public

interest. If the reserve prices were not met, the build-out requirements were to be relaxed.

In addition, speci�cally for the C�block licenses, the FCC required �licensees to allow

customers, device manufacturers, third-party application developers, and others to use or

develop the devices and applications of their choice, subject to certain conditions.�10 The

FCC viewed this requirement of open platforms for devices and applications as being for the

bene�t of consumers.11 In the event that the reserve price for the C block was not met, those

licenses were to be o¤ered without the open platform conditions.12

In the end, the reserve prices for the A, B, C, and E blocks were all met and so the

re-auction was not invoked, although the FCC was prepared to do so if the reserves had not

been met.

In the remainder of this paper, we analyze a contingent re-auction in the context of a the-

oretical model, and we contrast it with e¢ cient and optimal mechanisms in an environment

with seller-bene�tting restrictions.

3 Model

The owner of a single object that can be sold either in restricted or unrestricted form

faces a set N � f1; :::; ng of potential buyers. Buyer i�s payo¤ is

ui = hi q
H
i + li q

L
i �mi;

where li and hi denote buyer i�s privately known values for the object, in restricted and

unrestricted form, qLi and q
H
i are the probabilities with which buyer i receives the restricted

and unrestricted object, and mi is buyer i�s expected payment to the seller. Buyer i�s type

(li; hi) is obtained as the realization of an independent random variable with cumulative

9The Second Report and Order (FCC 07-132) at paragraph 153 states that for the A, B, and E-block
licenses, �licensees must provide signal coverage and o¤er service to: (1) at least 35 percent of the geographic
area of their license within four years of the end of the DTV transition, and (2) at least 70 percent of the
geographic area of their license at the end of the license term.� For the C-block licenses, �licensees must
provide signal coverage and o¤er service to: (1) at least 40 percent of the population of the license area
within four years, and (2) at least 75 percent of the population of the license area by the end of the license
term.�(paragraph 162)
10Second Report and Order (FCC 07-132), paragraph 195.
11Second Report and Order (FCC 07-132), paragraph 201.
12Second Report and Order (FCC 07-132), paragraph 311. As discussed in paragraph 312, the band plan

for the reauctioned C-block would also be modi�ed.
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distribution function Fi, density fi; and support contained in the set�
(l; h) 2

�
l; �l
�
�
�
h; �h
�
j l � h

	
;

where l; h � 0.
The seller derives an extra bene�t B > 0, in addition to the sale revenue, if and only if

the object is sold in restricted form. The seller�s costs of departing from the object, in either

form, are normalized to zero. Thus, the seller�s expected surplus is

u0 =
X
i2N

�
mi +Bq

L
i

�
:

We model the contingent re-auction procedure as follows. The seller �rst o¤ers the

restricted object for sale in a second-price or ascending-bid auction with reserve price r1. If

any bidder bids r1 or above, the object is sold in restricted form. Otherwise the object is

re-o¤ered, this time in unrestricted form, in a second-price or ascending-bid auction with

reserve price r2. If no bidder bids r2 or above at the second auction, the seller retains the

object.

In referring to an ascending-bid auction, we need to be speci�c about the details of the

auction format. A variety of formats are used in practice and in theory. For example,

Milgrom and Weber (1982) describe a variant that they refer to as a �Japanese English

Auction,�where the price increases continuously until all but one bidder (irrevocably) cease

to be active. Alternatively, one can assume that reentry is always possible, as is the case at

many ascending-bid auctions used in practice.13 Intermediate versions are possible as well.

Our results do not depend on whether a sealed-bid second-price auction or an ascending-

bid auction is used in the second stage to sell the unrestricted object. In the �rst stage,

a sealed-bid second-price auction is equivalent to an ascending-bid auction without reentry

(with the same reserve price); but the outcome is di¤erent if an ascending-bid auction with

reentry is used. Given this, to minimize repetition in what follows, we use the term second-

price auction to mean either a sealed-bid second-price auction or an ascending-bid auction

without reentry, and we use the term ascending-bid auction to mean an ascending-bid auction

with reentry.

The format used by the FCC in Auction 73 had r1 = r2 and limited the ability of bidders

to freely exit and enter the bidding through �activity�requirements.14 However, because of

13See Izmalkov (2002) on ascending-bid auctions with reentry, and Marshall and Marx (2008) on di¤erences
in ascending-bid formats.
14In most of its auctions the FCC uses activity rules, which prevent bidders from waiting until the end of the

auction before becoming active participants. To maintain their eligibility to bid, bidders must bid actively,
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the large number of licenses that were o¤ered and because activity was calculated across all

licenses, bidders did have some ability to enter and exit the bidding on individual licenses.

We restrict attention to weakly undominated strategies. We say that a bidder �bids x�

to mean that: (i) at a second-price auction, the bidder bids x; and (ii) at an ascending-bid

auction with reserve below x; the bidder starts by bidding the reserve price and remains

active in the auction (i.e., continues to attempt to raise the bid if it is not the current high

bidder) until the price reaches x. Whenever li � r1; bidding li at the �rst auction dominates
bidding any other value x � r1. Similarly, whenever hi � r2; bidding hi at the second auction
dominates bidding any other value x � r2. Thus, after ruling out dominated strategies, the
conditional re-auction game becomes strategically equivalent to a game in which the strategy

set of each bidder i consists of only two strategies: �go,�i.e., bid li, and �wait,�i.e., do not

bid at the �rst auction unless some other bidder bids at or above r1; in which case bid li if

allowed (i.e., if the �rst auction is ascending-bid), and bid hi at the second auction.

4 Illustration of ideas for contingent re-auctions

The fundamental issues emerging from our analyses of contingent re-auctions can be il-

lustrated by analyzing a simple version of the model in which the bidders�privately known

types are one-dimensional. Section 6 shows that the insights gained here apply more gener-

ally. Speci�cally, in this section, we assume that buyer i�s value for the restricted object is

given by li = �hi, where � 2 (0; 1); and the values h1; :::; hn are drawn independently from
the same cumulative distribution function F with support [h; �h] 2 R+ and density f .

In this simple setting, any bidder with the highest value for the unrestricted object also

has the highest value for the restricted object, i.e., hi R hj , li R lj. This allows us to refer
to the �buyer with the highest value�unambiguously. Using standard notation, we let h(j)
denote the jth-highest order statistic among h1; :::; hn:

E¢ ciency requires that the object be allocated to a buyer with the highest value h(1); in

restricted form, if

B + �h(1) > h(1) , h(1) <
B

1� �; (1)

and in unrestricted form if the opposite inequality holds.

For simplicity, in this section we assume that the reserve price at the second auction r2
is zero. At the second auction bidder i will bid hi. Therefore, whenever the second auction

is reached, the object is sold (in unrestricted form) to a bidder with the highest value h(1)
who pays the second-highest value h(2) and earns surplus h(1) � h(2).

or have a standing high bid in every round. (FCC Auctions Glossary, http://wireless.fcc.gov/auctions/)
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Now consider the �rst auction. Suppose �rst that an ascending-bid auction is used.

If any bidder uses the �go�strategy, i.e., initiates the bidding at the �rst auction, then a

bidder with value �h(1) will buy the object in restricted form, pay maxfr1; �h(2)g; and earn
�h(1) �maxfr1; �h(2)g.
Thus, bidder i�s payo¤s from the �go�and �wait�strategies respectively, are

�Gi �

8<: 0; if hi < h(1)

�hi �max
�
r1; �h(2)

	
� �

�
hi � h(2)

�
; if hi = h(1)

and

�Wi �

8>>><>>>:
0; if hi < h(1)

�
�
hi � h(2)

�
; if hi = h(1) and another bidder bids b � r1

h(1) � h(2); if hi = h(1) and no bidder bids b � r1:

Comparing these expressions shows that �Gi � �Wi : Thus, not bidding at the �rst auction
is the unique weakly dominant strategy for each bidder. We record this result in our �rst

proposition.

Proposition 1 In the unique equilibrium of the ascending-bid contingent re-auction, no

bidder bids at the �rst auction, implying that the object is always sold in unrestricted form.

Now suppose that a second-price auction is used in the �rst period. For su¢ ciently

high values of the reserve price r1; the equilibrium outcome is as in the the ascending-bid

contingent re-auction� nobody bids at the �rst auction. For lower values of the reserve, the

equilibrium behavior at the �rst auction involves (i) the lowest types not bidding, (ii) an

interval of intermediate types randomizing between the �go�and �wait�strategies, and (iii)

the highest types �going�if r1 is su¢ ciently low and �waiting�otherwise.

Since the point of this section is to illustrate the main ideas, we only provide a formal

characterization of equilibrium strategies for the case with two bidders. When n > 2; closed-

form solutions for the mixing distributions are not generally available and are cumbersome

to describe.

Whenever the reserve price r1 exceeds the threshold r00 de�ned by

r00 � �E
�
hi j hi < F�1 (�)

�
;

nobody bids at the �rst auction. If instead �h < r1 < r00; the equilibrium behavior at the

�rst auction is characterized by a partition of the type interval
�
h; h
�
into three subintervals,
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generically all of positive measure. The types in the bottom interval do not bid, the types in

the middle interval randomize between waiting and bidding, and the types in the top interval

bid or not, depending on whether r1 is below or above the threshold r0; de�ned by

r0 � �E
�
hi j hi < F�1

�
�2
��
:

Figure 1: Equilibrium strategies at the �rst auction of a second-price contingent re-auction

as a function of the reserve price r1 at the �rst auction and a bidder�s type hi
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G o
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r’ r” r1

hi

h

h

WaitMix

G o

F ­1(α2)

F ­1(α)

γΗ(r1)
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To complete the characterization, we de�ne the boundaries of the region in which bidders

mix between the �go�and �wait�strategies using functions 
L; 
H : [�h; r
00]!

�
h; �h
�
de�ned

by
r1
�
= E [hi j hi < 
L (r1)] (2)

and

F (
H (r1)) =

8<: 1 + �� 1
�
F (
L (r1)) ; if r

0 < r1 < r
00

1
�2
F (
L (r1)) ; if �h � r1 < r0:

(3)

Both 
L and 
H are continuous, 
L is always below 
H . The function 
L increases from


L (�h) = �h to 
L (r
00) = F�1 (�). The function 
H �rst increases, from 
H (�h) = �h to


H (r
0) = �h; and then decreases to 
H (r

00) = F�1 (�). Figure 1 shows the graphs of these

functions and indicates the equilibrium behavior for all relevant values of the reserve price

r1.

We are now ready to provide the formal characterization of the equilibrium.

Proposition 2 In a second-price contingent re-auction with two bidders, there is an equi-
librium in which bidder i bids hi at the second auction if it occurs and uses a strategy of �go,�

10



�mix,�or �wait�at the �rst auction as follows:

�go�if r1 � r0 and hi � 
H (r1);
�mix�(�wait�with prob. �

1+�
and �go�with prob. 1

1+�
) if r1 � r00 and hi 2 [
L (r1) ; 
H (r1)];

�wait�otherwise.

Proof. See the Appendix.

The main ideas in the proof are as follows. Suppose �rst that bidder i�s opponent always

waits. Then the type that is �most tempted� to bid at the �rst auction is the one that

would win the second auction with probability �; i.e., type h0 = F�1 (�) 2
�
h; �h
�
. The

threshold r00 makes this type indi¤erent between buying the restricted object at price r00

and competing with the opponent at the second auction. Thus, not bidding at the �rst

auction is an equilibrium if and only if r1 > r00. For r1 slightly below r00; there is a interval

of types around h0 that prefer bidding at the �rst auction if the opponent always waits. If

instead the opponent also bids with positive probability, the incentive to bid decreases. For

an appropriately chosen interval around h0; both waiting and bidding are optimal. As r1
decreases even further, the incentive to bid at the �rst auction becomes stronger for types

with higher values, and when r1 passes the lower threshold r0; types near the top begin to

prefer bidding at the �rst auction rather than waiting. The interval at the top increases as

r1 diminishes and covers the whole type interval when r1 reaches the lowest value �h.

Given the equilibrium behavior in Proposition 2, one can show that the seller maximizes

its revenue by choosing a reserve price of either zero or in�nity.15 That is, the seller maximizes

its revenue by either holding a single auction for the restricted auction or a single auction for

the unrestricted object. This implies that the revenue-maximizing second-price contingent

re-auction is ine¢ cient whenever B is such that both the restricted and unrestricted object

should be sold with positive probability.

Even when a reserve price is chosen that allows for the possible sale of either the restricted

or the unrestricted object, the ine¢ ciencies associated with a second-price contingent re-

auction are signi�cant. To give a particular example, suppose n = 2 and � = 3
4
; and let

F be the uniform distribution on [0; 1]. The e¢ cient outcome requires that the object be

allocated in restricted form whenever both bidders�values for the unrestricted object are

less than B
1�� . For this two-bidder example, we can depict the e¢ cient allocations as shown

in Figure 2. Generally speaking, the object should be allocated in unrestricted whenever

at least one bidder has a su¢ ciently high value for the unrestricted object, and it should

15One can show that the seller�s expected revenue as a function of r1 is convex at any local optimum in
the relevant range.
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be allocated in restricted form whenever both bidders have su¢ ciently low values for the

unrestricted object.

Figure 2: E¢ cient allocations

0 1
0

1

unrestricted 2

unrestricted 1

h1

h2

B/(1­α)

B/(1­α) restricted 2

restricted 1

0 1
0

1

unrestricted 2

unrestricted 1

h1

h2

B/(1­α)

B/(1­α) restricted 2

restricted 1

Continuing with this example, if r1 = 0:15; then one can show that 
L(r1) = 0:40 and


H(r1) = 0:71. Using this and Proposition 2, we can depict the equilibrium allocations as

shown in Figure 3.

Figure 3: Equilibrium allocations in contingent re-auctions

(n = 2; li = 3
4
hi; hi � U [0; 1]; r1 = 0:15)
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Figure 3.A: Ascending bid Figure 3.B: Second price

It is striking how di¤erent the equilibrium allocations in Figure 3 are from the e¢ cient

allocation in Figure 2. In an ascending-bid contingent re-auction, the object is never allocated

in restricted form, so the seller never receives the bene�t B. In a second-price contingent re-

auction with an intermediate reserve price, the object is allocated in restricted form whenever

12



at least one of the bidders has a value for the unrestricted object greater than 
H , and it is

allocated in unrestricted form whenever both bidders have values for the unrestricted object

less than 
L. This is the reverse of what one would want for e¢ ciency. Furthermore, bidders

with values between 
L and 
H randomize over whether to enter the �rst auction or not, so

when both bidders have values between 
L and 
H ; it is possible for the restricted object to

be allocated ine¢ ciently, even conditional on the restriction being imposed (graphically, it

is possible for bidder 1 to win the object �above the diagonal�and bidder 2 to win it �below

the diagonal�).

Regardless of whether an ascending-bid or second-price contingent re-auction is used,

when e¢ ciency requires that the object sometimes be allocated in restricted form and some-

times in unrestricted form, it is not possible to achieve the �rst-best with a contingent re-

auction. Given this assessment of the contingent re-auction, it is worth considering whether

some other mechanism can do better in terms of e¢ ciency.

5 Exclusive-buyer mechanisms

An exclusive-buyer mechanism is an auction, with reserve price r; for the exclusive right

to choose between being awarded the restricted object at no additional cost, and buying

the unrestricted object for a �xed incremental payment p. Given the assumption of private

values, our results are not a¤ected by whether the auction is second-price or ascending-bid.

In either format, the unique weakly dominant strategy for each bidder is to bid its value for

the right to choose.

Because of the simplicity of the optimal strategies in an exclusive-buyer mechanism,

we can analyze the mechanism in a two-dimensional type environment without di¢ culty.

We begin by establishing the equilibrium strategies in the exclusive-buyer mechanism. Our

results apply for exclusive-buyer mechanisms whose �rst-stage auctions use either a second-

price or ascending-bid format.

If bidder i wins the �rst-stage auction, then in the second stage it chooses the restricted

object if li > hi � p and the unrestricted object if li < hi � p. The bidder is indi¤erent
if li = hi � p. Thus, bidder i receives value max fli; hi � pg from winning the �rst-stage

auction. It follows that there is an equilibrium of the �rst-stage auction in non-weakly-

dominated strategies in which each bidder i bids max fli; hi � pg.
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5.1 E¢ ciency

In the e¢ cient allocation, buyer i receives the unrestricted object if

hi > maxfmax
j 6=i

hj;max
j
B + ljg;

and buyer i receives the restricted object if

B + li > maxfmax
j
hj;max

j 6=i
B + ljg:

This outcome can be implemented by an exclusive-buyer mechanism with no reserve price

and an incremental payment for the unrestricted object equal to B.

To see this, note that bidder i has value max fli; hi �Bg from winning the �rst-stage

auction. Thus, the winner of that auction will be the buyer with the maximal value of

max fli; hi �Bg. If buyer i is the winning bidder and li > hi � B; then e¢ ciency requires
that buyer i receive the object in restricted form. If buyer i is the winning bidder and

li < hi�B; then e¢ ciency requires that buyer i receive the object in unrestricted form. With
an incremental price of B for the unrestricted object in the second stage of the exclusive-

buyer mechanism, this is the outcome.

Proposition 3 The e¢ cient outcome can be implemented with an exclusive-buyer mech-
anism with no reserve price in the �rst stage and an incremental payment of B for the

unrestricted object in the second stage.

The e¢ cient mechanism described in Proposition 3 is (ex post) outcome equivalent to

a VCG mechanism (see Vickrey, 1961; Clarke, 1971; Groves, 1973; and Green and La¤ont,

1977), but it is an indirect mechanism that can be implemented with a simple auction. Thus,

this mechanism overcomes many of the implementation issues generally associated with VCG

mechanisms (see Rothkopf, 2007). Implementation of the e¢ cient mechanism requires only

that the mechanism designer know B.

In addition, the exclusive-buyer mechanism can accommodate arbitrarily many possible

restrictions. To see this, let q 2 [0; 1] denote the level of restriction, with q = 0 denoting

no restriction and q = 1 the maximum restriction. Let B (q) be the bene�t to the seller

when the version with restriction q is sold, where B is an increasing function of q. If the

incremental price associated with restriction q is p (q) = B(1) � B (q), then the outcome
of the exclusive-buyer mechanism is e¢ cient. The mechanism can accommodate either a

discrete number or a continuum of possible restrictions.

Although VCG mechanisms can have low or zero revenues for the seller (Ausubel and

Milgrom, 2006), as we show in Section 7, the e¢ cient exclusive-buyer mechanism has greater
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expected seller surplus than the optimal contingent re-auction in some environments. In

addition, as shown in Proposition 4, the exclusive-buyer mechanism can be optimal for the

seller in some environments if the reserve price and the price for the unrestricted object are

chosen appropriately.

Ausubel and Milgrom (2006) also raise the issue that seller revenues in a VCG can be

non-monotonic in the set of bidders and amounts bid. This remains a possibility in the

e¢ cient exclusive-buyer mechanism. To see this, note that if the high bidder chooses the

unrestricted object, the seller receives revenue from the �rst-stage auction and from the

bidder�s purchase of the unrestricted object. If a new bidder is added so that the new winner

prefers the restricted object, the price paid at the �rst-stage auction necessarily increases,

but the seller�s overall surplus can decrease.

Finally, an exclusive-buyer mechanism for a single object is not vulnerable to collusion by

a coalition of losing bidders nor is it vulnerable to the use of multiple bidding identities by

a single bidder, issues that can arise in a multi-object VCG (Ausubel and Milgrom, 2006).

5.2 Optimality for the seller

While e¢ ciency may be a key criterion for sellers such as the FCC, other sellers may be

more focused on maximizing their own surplus. We now show that in the environment of

Section 4 under standard regularity conditions, there exists an exclusive-buyer mechanism

that maximizes the seller�s expected surplus among all feasible selling procedures. Recall

that in Section 4 we assume one-dimensional types, with li = �hi for � 2 (0; 1) and hi drawn
from cumulative distribution function F with density f .

Let vH (h) � h� 1�F (h)
f(h)

and vL (h) � B + �vH (h). In the appendix as part of the proof
of Proposition 4, we show that, using standard mechanism design techniques, the seller�s

problem boils down to maximizing

Eh

hXn

i=1
vH (hi) q

H
i (h) + vL (hi) q

L
i (h)

i
(4)

subject to Xn

i=1

�
qHi (h) + q

L
i (h)

�
� 1 8h 2

�
h; �h
�
; (5)

and

hi � h0i ) Ai (hi) � Ai (h0i) ; (6)

where Ai (hi) � Eh�i
�
qHi (hi; h�i)

�
+ �Eh�i

�
qLi (hi; h�i)

�
.

Imposing the usual regularity condition that vH is strictly increasing, we have that vL is

also strictly increasing, and 0 < v0L (hi) = �v
0
H (hi) < v

0
H (hi). Thus, vL crosses vH at most
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once from above, and the horizontal axis at most once from below. This implies that there

exist two thresholds hr and hs such that h � hr � hs � �h; and

w (hi) � max f0; vL (hi) ; vH (hi)g =

8>>><>>>:
vH (hi) ; if hi 2

�
hs; �h

�
;

vL (hi) ; if hi 2 [hr; hs] ;

0; if hi 2 [h; hr] :

Setting

qHi (h) �

8<: 1; if vH (hi) = w (hi) > maxj2N�ifw (hj)g

0; otherwise;
(7)

and

qLi (h) �

8<: 1; if vL (hi) = w (hi) > maxj2N�ifw (hj)g

0; otherwise;
(8)

maximizes the expression in (4) subject to (5). The functions in (7) and (8) automatically

satisfy the monotonicity condition in (6) and thus, together with any n-tuple of payment

functions m1; :::;mn consistent with (A.9) in the appendix and such that the lowest type of

each buyer pays nothing, solve the seller�s problem.

We now show that there is an exclusive-buyer mechanism that maximizes the expected

seller surplus among all feasible selling procedures. Using the intuition from standard mech-

anism design, the object should be allocated to the buyer with the highest virtual valuation,

provided this is positive. The same intuition carries over in our model, with the twist that

the object is allocated in unrestricted form when the �virtual unrestricted valuation�vH is

higher than the �virtual restricted valuation�vL. Thus, surplus maximization requires that

the object is not allocated when vH and vL are both negative, is allocated in restricted form

when vL > max
�
vH ; 0

	
; and is allocated in unrestricted form when vH > max

�
vL; 0

	
.

Given our assumptions, vL < 0 implies vH < �B
�
< 0, so the interval over which both

vL and vH are non-positive is [h; hr]. The interval over which vL � vH is [hr; hs], and the

interval over which vH � vL is
�
hs; �h

�
.

Thus, an optimal mechanism should exclude buyers with h < hr, assign the object in

restricted form when the highest valuation buyer has hi 2 (hr; hs) ; and assign the object in
unrestricted form when the highest valuation buyer has hi > hs. This can be accomplished

by the exclusive-buyer mechanism by appropriately choosing the �rst-stage reserve price and

incremental payment.

Proposition 4 An optimal mechanism for the seller is an exclusive-buyer mechanism with

reserve price r� = �hr and incremental payment for the unrestricted object p� = (1� �)hs.
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Proof. See the Appendix.

In the mechanism of Proposition 4, the optimal reserve price and the incremental price for

the unrestricted object are independent of the number of buyers. Those parameters depend

only on B and the distribution F . If B is zero, then hr = hs and so the object is never

allocated in restricted form. If B is su¢ ciently large, then hs = �h and so the object is never

allocated in unrestricted form.

In the environment of Proposition 4, the optimal mechanism is not necessarily e¢ cient;

however, conditional on allocating the object, and conditional on the form of the object

allocated, it is always allocated to the highest-valuing buyer.

5.3 Implementation

It would be straightforward for a seller such as the FCC to implement an exclusive-

buyer mechanism. The FCC�s existing auction software should be able to accommodate

exclusive-buyer mechanisms being o¤ered simultaneously for multiple licenses using their

simultaneous multiple round auction format, although with multiple licenses and externalities

across licenses, the outcome need not be e¢ cient.

Given the FCC�s familiarity with o¤ering bidding credits (refunds), it could implement

the second stage by o¤ering a bidding credit to a bidder selecting a restricted license in the

second stage, rather than charging an additional amount for the unrestricted license. The

FCC would need to determine the bidding credit for the restricted licenses. The choice of

bidding credit would need to balance the goals of e¢ ciency and the recovery of value for

the taxpayers. In contrast, in the contingent re-auction format, the FCC has to determine

a reserve price to balance those same goals, but in the contingent re-auction format it may

be that no choice of reserve price does a particularly good job on either dimension.

To maximize e¢ ciency in the exclusive-buyer mechanism, the FCC would want to choose

a bidding credit equal to the public value associated with the restriction. To maximize

seller surplus, numerical examples we have examined suggest that one would want a smaller

bidding credit, although the theory allows for the possibility that one might want a larger

bidding credit. In balancing the goals of e¢ ciency and revenue, the bidding credit would

need to be some intermediate value. Since the expected surplus generated is continuous in

the choice of bidding credit, small deviations from the optimal value would not have a large

e¤ect on the outcome.

An exclusive-buyer mechanism allows the FCC the option of specifying multiple possible

restrictions with di¤erent associated bidding credits. For example, the FCC might o¤er a
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larger bidding credit to a bidder accepting a build-out requirement of 75% of the territory

than to a bidder accepting a build-out requirement of only 60%.

6 General environments for contingent re-auctions

We now address contingent re-auctions in the context of two-dimensional types. We

provide a characterization of equilibrium bidding in contingent re-auctions for general envi-

ronments. For the results in this section, we assume that the value distributions F1; :::; Fn
have common support �

(l; h) 2 R2+ j l 2 [l; �l(h)]; h 2 [h; �h]
	
;

where �l(h) � h denotes the upper bound on a bidder�s value for the restricted object when
its value for the unrestricted object is h. We assume that the expectations stated below exist

and that the function �l(h) is di¤erentiable and the derivative is bounded, i.e., d�l
dh
� K for

each h, where K is a real number.

We start by observing that in any equilibrium with undominated strategies all bidders

bid truthfully in the second auction, i.e., bidder i bids (up to) hi. This is true both

for the ascending-bid auction format and the second-price format. Letting ph (h�i; r2) =

max fr2;maxj 6=i hjg denote the price paid by bidder i when it wins the second auction, we
can write bidder i�s payo¤ as

uih (hi; h�i; r2) = max fhi � ph (h�i; r2) ; 0g :

The second round is reached only if all bidders adopt a strategy of �wait� in the �rst

round. In a second-price auction, this means not entering a bid at or above the reserve price.

In an ascending-bid auction, this means not being the �rst to bid at or above the reserve

price.

What is the expected surplus for a bidder of type (li; hi) from adopting the �wait�strategy?

This will depend on how likely it is that other bidders also decide to �wait�since it is only

when all bidders decide to wait that the second stage is reached.

Let Wj � �j be the set of types of bidder j that decide to wait in equilibrium. As long
as r1 > l this set will always be non-empty since, as a minimum, all types (li; hi) with li < r1
prefer to wait. Given a collection of sets fW1; : : : ;Wng, let W�i � �j 6=iWj. The expected

surplus from the second auction for type (li; hi) of bidder i is

V ih (hi j W�i) = El�i;h�i [uh (hi; h�i; r2) j (l�i; h�i) 2 W�i] Pr [(l�i; h�i) 2 W�i] . (9)

18



Note that V ih only depends on hi, not on li, and is non-decreasing in hi.

The expected payo¤obtained in the �rst auction depends on the particular auction format

that is adopted. However it is clear that, conditional on participating in the �rst auction, the

only weakly dominant strategy is to bid li. It follows that the expected payo¤ depends only

on li since the unrestricted object is never sold. Let V il (li j W�i) be the value of bidding in

the �rst auction when the set of types W�i is expected to �wait.� Then it is clear that any

equilibrium in undominated strategies is determined by a collection of subsets fW1; : : : ;Wng
such that types with (li; hi) 2 Wi prefer to �wait,�while types with (li; hi) =2 Wi prefer to

�go�at the �rst auction.

In other words, the strategy of a type (li; hi) can be summarized in the simple decision of

participating or not in the �rst auction. Intuitively, it is clear that the expected surplus from

the �rst auction for type (li; hi) of bidder i, which we denote V il (li j W�i) ; is increasing in li.

Thus, in equilibrium, for each hi > r2 there is a threshold value di (hi) such that types with

li < di (hi) prefer to suppress their bids and wait for the second auction, while types with

li > di (hi) bid at or above the reserve price in the �rst auction. Thus, in every equilibrium

the set Wi of types of agent i that adopt the �wait�strategy must take the form

Wi = f(li; hi) j li � di (hi)g (10)

for some function di, which we refer to as the delay threshold function.

Proposition 5 In a contingent re-auction, any perfect Bayesian equilibrium in undominated
strategies has the following structure: (i) bidder i bids hi at the second auction if it occurs; (ii)

for all i 2 N , there exists a nondecreasing and continuous function dSi :
�
h; �h
�
!
�
r1; �l(�h)

�
or dAi :

�
h; �h
�
!
�
r1; �l(�h)

�
for a second-price or ascending-bid auction, respectively, such that

in the �rst auction bidder i with type (li; hi) uses the strategy of �go�if li > di(hi) and �wait�

if li < di (hi).

Proof. See the Appendix.

In general, the threshold functions dSi and d
A
i for each bidder i are di¤erent because the

functions V il (li j W�i) are di¤erent depending on the auction format (we remind the reader

that the value of V ih (hi j W�i) does not depend on the auction format). In a second-price

auction, once the bids are submitted, no bidder can revise its behavior. Thus, a bidder that

chooses to stay out of the �rst auction cannot react to others bidding above the reservation

price r1 and earns zero surplus. In contrast, an ascending-bid �rst-round auction (with

reentry) allows any bidder to respond to others initiating the bidding in the �rst round.
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To avoid repetition, we focus our analysis mostly on the ascending-bid format and then

comment on the second-price format in Section 6.3.

6.1 Existence

From Proposition 5 we know that every equilibrium is characterized by a collection of

functions fd1; : : : ; dng; however, the proposition does not establish existence of an equilib-
rium. In this subsection, we focus on ascending-bid contingent re-auctions and prove that

an equilibrium exists when bidders are symmetric. Although we do not have a proof for the

case of asymmetric bidders, we have no reason to believe that equilibria would not exist in

that case as well.

We say that the equilibrium is symmetric if there is a function d such that di = d for

each i. The next proposition establishes that a symmetric equilibrium exists when bidders

are symmetric. For the purposes of this proposition, we assume that �l (h) has a bounded

derivative.

Proposition 6 Assuming symmetric bidders, i.e., F1 = ::: = Fn; there exists a symmetric
perfect Bayesian equilibrium of the ascending-bid contingent re-auction characterized by a

nondecreasing and continuous function dA :
�
h; �h
�
!
�
r1; �l

�
�h
��
.

The proof of Proposition 6 is based on an application of Schauder�s Fixed-Point Theo-

rem.16 The proof is technical in nature and so to conserve space we relegate that proof to

the online appendix associated with this paper.

6.2 Strategic delay

We now turn to the characterization of the symmetric equilibria. One important question

for the auction designer is the following. Suppose that a reserve price r1 is imposed in the

�rst auction. It is obvious that all types with li < r1 will not bid in the �rst auction, but will

wait for the second auction. However, it is not true that all types with li > r1 are willing

to bid in the �rst auction. The next proposition establishes that, in fact, in any equilibrium

there are types with li > r1 that prefer to wait for the second auction.

Proposition 7 Assuming symmetric bidders, in every equilibrium there is an open set of

types (li; hi) with li > r1 that do not bid in the �rst auction of an ascending-bid contingent

re-auction unless some other bidder enters a bid of r1 or more.

16See Stokey, Lucas, and Prescott (1989) for a statement of the theorem.
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Proof. See the Appendix.

The intuition for Proposition 7 is straightforward: if li is close to r1, bidder i�s expected

surplus from the �rst auction is small relative to its expected surplus at the second auction.

Thus, if li is close to r1, bidder i prefers not to bid in the �rst auction. Of course, if some

other bidder enters a bid of r1 or more, a bidder�s best reply is then to bid up to its value.

Proposition 7 implies that if the seller wants the object to be sold for values li above a

threshold bl, then the reserve price should be set at a level strictly less than bl. It also implies
that in every equilibrium there is �excessive delay�in the sense that the second auction is

reached with a probability strictly higher than Pr[maxi2N li � r1].
It is worth pointing out that the result of Proposition 7 holds for any reserve price r1 > l.

In fact, there is a kind of �multiplier e¤ect�similar to the one discussed in Brusco and Lopomo

(2007). When the reservation price is r1 > l all types with li 2 [l; r1] prefer not to bid in the
�rst auction, thus making the probability of reaching the second auction strictly positive.

This implies that types with li = r1+ " also prefer to delay if " is su¢ ciently small, since the

expected gain in the �rst auction is small. In turn, this increases the probability that the

second auction is reached, thus potentially convincing other types to delay the bid. What

happens when r1 ! l depends on the distribution of types, but using arguments similar to

the ones in Brusco and Lopomo (2007), it is possible to produce examples in which

lim
r1#l
Pr [second auction is reached j r1] > 0.

Since at r1 = l there is no delay, the implication is that, under some conditions, the imposition

of even a minimal reserve price may produce non-trivial delays.

In some situations delay can be signi�cant. The extreme case is the one in which dAi (hi) =

max
�
r1; �l (hi)

	
for each hi, so that the equilibrium involves delay with probability 1. For

this to be an equilibrium it must be the case that every type (li; hi) prefers to wait for the

second auction rather than participate in the �rst. If all the other bidders �wait,�then the

payo¤ from waiting is simply Eh�i [max fhi � ph (h�i; r2) ; 0g]. Since for each hi, the type
li that receives the highest expected payo¤ from bidding in the �rst auction is �l (hi), the

condition for having an equilibrium involving delay with probability 1 is that for each hi;

El�i
�
max

�
�l (hi)� pl (l�i; r1) ; 0

	�
� Eh�i [max fhi � ph (h�i; r2) ; 0g] : (11)

We record this result in the following proposition.

Proposition 8 Assuming symmetric bidders, if condition (11) holds, then there exists an
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equilibrium of the ascending-bid contingent re-auction in which the bidders do not bid in

the �rst auction, and bid up to their values in the second auction, i.e., delay occurs with

probability one.

In general, condition (11) is easier to satisfy if r1 is large and r2 is low; in fact it is

trivially satis�ed if r1 = �l
�
�h
�
. When condition (11) is not satis�ed, then any equilibrium

must involve some bidding activity in the �rst auction.

We can further characterize the delay threshold function by noting that when dA (hi) <
�l (h), the type

�
dA (hi) ; hi

�
has to be indi¤erent between bidding in the �rst auction and

waiting, so that

El�i
�
max

�
dA (hi)� pl (l�i; r1) ; 0

	
j lj � dA (hj) each j 6= i

�
= Eh�i

�
max fhi � ph (h�i; r2) ; 0g j lj � dA (hj) each j 6= i

�
:

(12)

Using condition (12), we have the following characterization.

Proposition 9 For an ascending-bid contingent re-auction with symmetric bidders, in any
symmetric equilibrium the delay threshold function dA has derivative

dA0 (hi) =

0@ R hi
h
F
�
dA (x) j x

�
z (x) dxR hi

h
F (dA (x) j x) z (x) dx+

R h
hi
F (dA (hi) j x) z (x) dx

1An�1

(13)

whenever dA (hi) < �l (hi).

Proof. See the Appendix.

Notice in particular that condition (13) implies dA0 (hi) < 1 whenever dA (hi) < �l (hi).

This result can be used to fully characterize the delay function in some special cases. For

example, consider the case �l (hi) = hi and suppose �rst that r1 < �l (h). Since any type (l; h)

earns nothing in the second auction, then all types with l > r1 must prefer participation

in the �rst auction, so that dA (h) = r1. For hi > h the delay function grows with slope

strictly less than 1, while �l (hi) grows with slope 1. Thus, dA (hi) never touches �l (hi) ; and

we can characterize the function dA by solving the integral equation (13) over the interval�
h; h
�
with initial condition dA (h) = r1. On the other hand, suppose r1 � �l (h). In this

case it must be that dA (h) = �l (h). We then look for a value h� such that dA (hi) = �l (hi)

for hi � h�; and dA is characterized by the integral equation (13) otherwise. The initial

condition thus requires V �h (h
�) = V �l

�
�l (h�)

�
; and a solution is obtained by solving (13) and

this initial condition jointly in h� and dA, with dA (h) = �l (h) for h � h�.
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As another example, suppose �l (hi) = �l for each hi (i.e., the support is rectangular). The

only interesting case here is r1 < �l. Thus, dA (h) = r1. The function dA must then increase

with strictly positive slope until it reaches the value �l, and remain equal to �l afterwards.

In particular, suppose that we solve the integral equation (13) over the interval
�
h; h
�
with

initial condition dA (h) = r1 and we �nd that dA
�
h
�
< l. Then we have found the solution.

Otherwise, there must be a value h� such that dA solves the integral equation (13) over the

interval [h; h�] with initial condition dA (h) = r1; and it is equal to l when h � h�.

6.3 Extension to a second-price format

The analysis for the second-price auction is similar to that for the ascending-bid auction,

but the equilibrium bids in the �rst stage are di¤erent. The reason is that the value of

not bidding in the �rst auction is lower because a bidder cannot respond if another bidder

enters a bid at or above the reserve price. Because the waiting strategy has a lower payo¤,

we expect that fewer delays occur under a second-price format than under an ascending-bid

format. However, we cannot conclude that in an ascending-bid auction we surely observe

more delay than in a second-price auction. What complicates things is that an increased

delay by other bidders typically increases both the �wait�strategy and the value of the �go�

strategy for bidder i. The �nal equilibrium has to balance these e¤ects, and it is not clear

what the �nal result is.

There are however a couple of observations that we can make. The �rst relates to the

existence of an equilibrium with total postponement. For the ascending-bid format we have

seen that such an equilibrium is possible when condition (11) holds for each hi. Assuming

that all other bidders wait with probability 1, the expected value of waiting does not change

under a second-price format, but the value of the �rst auction increases. In fact, if all the

other players are expected not to participate in the �rst auction, bidding in the �rst auction

gives the object to the bidder for sure at price r1, for a surplus of li� r1. Thus, the relevant
condition for the existence of an equilibrium with total postponement is that for each hi;

�l (hi)� r1 � E [max fhi � ph (h�i; r2) ; 0g] : (14)

Clearly, condition (14) is more di¢ cult to satisfy than condition (11). Thus, equilibria with

total postponement are less frequent with a second-price format than with an ascending-bid

format.

The second observation is that, with a second-price format, as the number of bidders

increases the equilibrium converges to one with �sincere�bidding, i.e., one in which all bidders

with li > r1 bid in the �rst auction. This is proved in the following proposition.
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Proposition 10 Assume symmetric bidders and a symmetric equilibrium of the second-price
contingent re-auction and let dSn be the delay threshold function when there are n bidders.

Then limn!1 d
S
n (hi) = r1 for each hi.

Proof. See the Appendix.

Proposition 10 shows that strategic delay is not an issue for a second-price contingent

re-auction as the number of bidders grows large. A similar result does not hold for an

ascending-bid contingent re-auction. The easiest way to grasp the intuition is to compare

the conditions for the existence of an equilibrium with full postponement. For the second-

price format, a quick inspection of condition (14) leads to the conclusion that the condition

cannot be satis�ed for large values of n, since the right-hand side goes to zero while the

left-hand side is una¤ected by n. For the ascending-bid auction, the relevant condition is

(11). Looking at that condition it is easy to see that both sides converge to zero as n goes to

in�nity. Thus, whether or not the condition holds as n gets large depends on the probability

distribution; in fact, it is possible to produce examples in which the equilibrium with total

postponement exists for each n.

As a last remark, we observe that, as long as the reserve prices are chosen optimally,

a contingent re-auction must do better than a single auction for the unrestricted or the

restricted object. By choosing r1 = �l
�
�h
�
and r2 = r� the contingent re-auction yields the

same allocation as a single auction for the unrestricted object with reserve price r�. Similarly,

by choosing r1 = r� and r2 = �h the contingent re-auction yields the same allocation as a

single auction for the restricted object with reserve price r�. Thus, single auctions are just

special cases of the contingent re-auction, which implies that it is always possible to do

(weakly) better with a contingent re-auction than with a single auction.17

7 Comparisons

In this section, we provide some comparisons between the contingent re-auction and the

exclusive-buyer mechanism. For comparison purposes, we focus on mechanisms that do not

retain the object, i.e., contingent re-auctions where the reserve price in the second stage is

h and exclusive-buyer mechanisms where the reserve price in the �rst stage is l.

Consider an environment with two symmetric bidders drawing their values (l; h) from the

uniform distribution on [0; 1]� [3; 4]. Given B, one can use numerical techniques to calculate
17It is important to remark that this is true only when the reserve prices are optimally chosen. The choice

of optimal reserve prices in the contingent re-auction is quite complicated, as it requires knowledge not only
of the distribution F (li; hi) ; but also of the equilibrium bidding functions in the �rst auction.
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the seller�s optimal reserve price for the �rst stage of the contingent re-auction. We restrict

attention to reserve prices in the set f0; :05; :::; :95; 1g. The optimal �rst-stage reserve price
is decreasing in B, so that that the object is more likely to be sold in restricted form when

the bene�t B from the restriction is larger.

The seller�s surplus is bounded below by B since the seller could always auction the

restricted object with zero reserve price. Thus, we focus on the incremental expected surplus

above B that is generated by the various mechanisms. Table 1 shows that the exclusive-

buyer mechanism generates more incremental surplus than the contingent re-auction, with

an improvement of approximately 10% for bene�ts B that are in the middle of the range of

the buyers�values for the unrestricted object.

Table 1: Comparisons of mechanisms that never retain the object

for two symmetric buyers with (l; h) uniform on [0; 1]� [3; 4]

B
3 0.55 3.00 7.2% 7.2%

3.1 0.50 3.07 8.3% 8.1%
3.2 0.45 3.13 9.7% 8.9%
3.3 0.40 3.20 10.8% 9.1%
3.4 0.30 3.27 11.3% 8.9%
3.5 0.20 3.33 11.3% 8.2%
3.6 0 3.40 8.5% 5.2%
3.7 0 3.47 5.9% 2.7%
3.8 0 3.53 3.9% 1.4%
3.9 0 3.60 2.6% 1.0%

4 0 3.67 2.2% 1.4%

The optimal r  is chosen from a grid of {0,.05,.1,… ,.95,1}.

Increase in incremental
expected seller surplus

above B  from the
optimal exclusive buyer
mechanism relative to

the optimal contingent re­
auction

Increase in incremental
expected seller surplus

above B  from the
efficient exclusive buyer
mechanism relative to
the optimal contingent

re­auction

Surpluses for the contingent re­auction are calculated using monte carlo simulation based on 20,000 draws done
using the statistical software R.  All standard errors are less than 0.00002.  Surpluses for the exclusive buyer
mechanism are calculated analytically.

The delay threshold is calculated numerically and approximated with a third­degree polynomial.

Optimal first­
stage reserve

for an
ascending­bid
contingent re­

auction

Optimal price for
the unrestricted

object in an
exclusive buyer

mechanism

As shown in Table 1, not only does the optimal exclusive-buyer mechanism provide

the seller with greater expected seller surplus than the optimal contingent re-auction, but

the e¢ cient exclusive-buyer mechanism also provides the seller with greater expected seller

surplus than the optimal contingent re-auction. (To see this in the table, note that the

numbers in the last column are all positive.) Thus, in the environment considered here, the

e¢ cient exclusive-buyer mechanism performs better than the optimal contingent re-auction

in terms of both e¢ ciency and expected seller surplus.
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8 Conclusion

Based on our results, we can o¤er some comments regarding contingent re-auctions that

may improve their implementation, should sellers choose to use that mechanism. Speci�cally,

by using a second-price auction or an ascending-bid auction with strict activity rules (limits

on the ability to exit and enter the bidding), one can avoid the extreme equilibria involving

no bids in the �rst auction that arise in contingent re-auctions using ascending-bid auctions

that allow bidders to �wait and see�before entering the bidding.

Loosely speaking, contingent re-auctions allocate the object in restricted form whenever

at least one bidder has a su¢ ciently high value for the restricted object, whereas e¢ ciency

requires that the object be allocated in restricted form whenever all bidders have su¢ ciently

low values for the unrestricted object. This suggests that in environments with correlation

between bidders values for the restricted and unrestricted object the contingent re-auction

will perform poorly in terms of e¢ ciency. This intuition is borne out in our analysis.

Moving away from the contingent re-auction, we identify an easily implemented e¢ cient

mechanism for our general environment. It is an exclusive-buyer mechanism with no reserve

price and an incremental price for the unrestricted object equal to the seller�s bene�t from

the restriction. Thus, a seller interested in maximizing expected total surplus can do so with

no knowledge of the number of bidders or the underlying type distributions and without

asking winning bidders to reveal their valuations. The mechanism can be adapted easily

to accommodate multiple possible restrictions. Furthermore, in our numerical example,

the seller�s expected surplus generated by the e¢ cient exclusive-buyer mechanism actually

increases slightly relative to the optimal contingent re-auction. Thus, at least in some cases,

the seller can achieve an increase in e¢ ciency and an increase it its own expected surplus

simultaneously by switching from an optimal contingent re-auction to the e¢ cient exclusive-

buyer mechanism. In the example, such a switch also provides bene�ts to buyers, whose

expected surplus increases.

When buyers�types are one-dimensional, the parameters of an exclusive-buyer mechanism

can be chosen so that the mechanism maximizes the seller�s expected surplus among all

feasible selling procedures. With two-dimensional types, the usual technical complications

arise. However, preliminary numerical results in Belloni, Lopomo, and Wang (2008) suggest

that the exclusive-buyer mechanism in which the reserve price and incremental payment

are chosen to maximize the seller�s expected surplus performs well when compared with the

seller�s optimal mechanism.

In future work, we hope to expand and improve upon the results presented here. A

particularly interesting extension would allow allocative externalities, where a buyer that
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does not receive the object might have preferences over which buyer does receive it and

whether the object is allocated in restricted or unrestricted form.18 Also, in our model some of

the results for one-dimensional environments do not extend to the general multi-dimensional

environment, so we hope to explore more generally when it is and is not appropriate to focus

on one-dimensional environments in generally multi-dimensional problems.

To conclude, our primary recommendation is that sellers in environments with seller-

bene�tting restrictions consider using an exclusive-buyer mechanism, either one tailored to

maximize e¢ ciency or seller surplus, depending upon the seller�s objectives.

A Appendix �Proofs

Proof of Proposition 2. We consider three cases based on the value of r1.
Case 1: r1 > r00 �wait�: Suppose �rst that bidder i�s opponent follows the strategy given in
the proposition and so always waits. Then bidder i�s payo¤s from �waiting�and �going�are,

for all hi 2
�
h; h
�
;

�Wi (hi) =

Z hi

h

(hi � x) dF (x) and �Gi (hi) = �hi � r1:

Because the di¤erence �Wi (hi)� �Gi (hi) is convex and its slope is

F (hi)� � =

8<: 1� � > 0; if hi = h

�� < 0; if hi = h;

it follows that �Wi (hi)� �Gi (hi) is minimized at the point h0 determined by the equality

d�Wi (hi)

dhi
=
d�Gi (hi)

dhi
, � = F (h0) :

Thus, type h0 is the �most tempted�to bid at the �rst auction, and no other type is willing

to deviate if type h0 has no incentive to do so; that is,

�Gi (h0) � �Wi (h0) , �h0 � r1 �
Z h0

h

F (x) dx:

18For a simple model in which one of the buyers values the restriction, see Brusco, Lopomo, and Marx
(2008).
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The last equality is equivalent to r1 � r00. Thus, it is a best reply for bidder i also to follow
the strategy given in the proposition.

Case 2: �h < r1 < r0 �wait-mix-go�: Suppose bidder i�s opponent behaves according to the
�wait-mix-go�strategy. Letting h0 � 
L (r1) and h00 � 
L (r1) ; we can write bidder i�s payo¤
functions, and their slopes, corresponding to the two strategies of �wait�and �go�as

�Wi (hi)
d�Wi (hi)

dhi

hi 2 [h; h0]
Z hi

h

(hi � x)dF (x) F (hi)

hi 2 (h0; h00)
Z h0

h

(hi � x)dF (x) + �
1+�

Z hi

h0
(hi � x)dF (x) F (h0)+�F (hi)

1+�

hi 2
�
h00; h

� Z h0

h

(hi � x)dF (x) + �
1+�

Z h00

h0
(hi � x)dF (x) F (h0)+�F (h00)

1+�

and

�Gi (hi)
d�Gi (hi)

dhi

hi 2 [h; h0] (�hi � r1)
�
F (h0) + �

1+�
(F (h00)� F (h0))

�
�2F (h00)+�F (h0)

1+�

hi 2 (h0; h00) (�hi � r1) F (h
0)+�F (h00)
1+�

+ 1
1+�

Z hi

h0
(�hi � �x)dF (x) �F (hi)+�

2F (h00)
1+�

hi 2
�
h00; h

� (�hi � r1) F (h
0)+�F (h00)
1+�

+ 1
1+�

Z h00

h0
(�hi � �x)dF (x)

+

Z hi

h00
(�hi � �x)dF (x)

�F (hi)

Note that (2) and (3) together imply

�Gi (h
0) = �Wi (h

0) ; (A.1)

and (3) implies that 8hi 2 (h0; h00),

d�Gi (hi)

dhi
=
d�Wi (hi)

dhi
: (A.2)

Equations (A.1) and (A.2) imply that �Gi (hi) = �
W
i (hi) for all hi 2 [h0; h00], hence mixing

is optimal for all types in this interval. Moreover, the two payo¤ functions have the same

slope at both cuto¤ types:

d�Wi (h
0)

dhi
=
d�Gi (h

0)

dhi
= F (h0) and

d�Wi (h
00)

dhi
=
d�Gi (h

00)

dhi
= �F (h00) :

For hi 2 [h; h0], �Gi is linear, while �Wi is strictly convex. Thus, 8hi 2 [h; h0), �Wi (hi) >
�Gi (hi). Similarly, for hi 2

�
h00; h

�
, �Gi is strictly convex, while �

W
i is linear, hence 8hi 2
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�
h00; h

�
, �Wi (hi) < �

G
i (hi). Thus, the strategy described in the proposition is a best reply

to itself.

Case 3: r1 2 (r0; r00) �wait-mix-wait�: The proof for this case is similar to that for Case 2.
Assuming bidder i�s opponent behaves according to the �wait-mix-wait�strategy, bidder i�s

payo¤ functions and their slopes corresponding to the strategies of �wait�and �go�are:

�Wi (hi)
d�Wi (hi)

dhi

hi 2 [h; h0]
Z hi

h

(hi � x)dF (x) F (hi)

hi 2 (h0; h00)
Z h0

h

(hi � x)dF (x) + �
1+�

Z hi

h0
(hi � x)dF (x) F (h0)+�F (hi)

1+�

hi 2
�
h00; h

� Z h0

h

(hi � x)dF (x) + �
1+�

Z h00

h0
(hi � x)dF (x) +

Z hi

h00
(hi � x)dF (x) F (hi)� F (h00)�F (h0)

1+�

and

�Gi (hi)
d�Gi (hi)

dhi

hi 2 [h; h0]
(�hi � r1)

�
F (h0) + 1� F (h00) + �

1+�
(F (h00)� F (h0))

�
= (�hi � r1) �+F (h

0)+1�F (h00)
�+1

�� �
1+�

(F (h00)� F (h0))

hi 2 (h0; h00) (�hi � r1) �+F (h
0)+1�F (h00)
�+1

+ 1
1+�

Z hi

h0
(�hi � �x)dF (x); �� �

1+�
(F (h00)� F (hi))

hi 2
�
h00; h

�
(�hi � r1) �+F (h

0)+1�F (h00)
�+1

+ 1
1+�

Z h00

h0
(�hi � �x)dF (x) �

It is routine to check that �Gi (hi) = �
W
i (hi) for all hi 2 [h0; h00]. Since

d�Wi (h
0)

dhi
=
d�Gi (h

0)

dhi
= F (h0) and

d�Wi (h
00)

dhi
=
d�Gi (h

00)

dhi
= �;

and �Gi is linear while �
W
i is strictly convex on the both (h; h0) and

�
h00; h

�
; it follows

that 8hi 2 [h; h0) [
�
h00; h

�
, �Wi (hi) > �

G
i (hi). Thus, the �wait-mix-wait�strategy is a best

reply to itself.

Proof of Proposition 4. When li = �hi; the type space is � �
�
h; h
�n
. By the rev-

elation principle (see Myerson, 1979), we restrict attention to the set of all direct mecha-

nisms in which the buyers simply report their types and in which reporting truthfully is a

Bayesian-Nash equilibrium. Formally, a direct mechanism consists of an assignment rule

q =
�
qHi ; q

L
i

�n
i=1

: � ! �2n; where �2n denotes the simplex in R2n; and a payment rule
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m = (m1; :::mn) : �! Rn; specifying, for any pro�le of reported types h = (h1; :::; hn) 2 �;
(i) the probabilities qHi (h) and q

L
i (h) that buyer i is awarded the object in unrestricted

and restricted form, respectively, and (ii) its payment mi (h) to the seller. A mechanism

(q;m) satis�es incentive compatibility if truth-telling is a Bayesian-Nash equilibrium, i.e.,

8h0i; hi 2 V; 8i 2 N , bUi (hi; hi) � bUi (h0i; hi) ; (IC)

and individual rationality if each buyer has no incentive to decline participation, i.e., 8hi 2
V; 8i 2 N; bUi (hi; hi) � 0; (IC)

where bUi denotes buyer i�s interim expected payo¤ function given by

bUi (h0i; hi) � Eh�i �hiqHi (h0i; h�i) + �hiqLi (h0i; h�i)�mi (h
0
i; h�i)

�
:

Standard arguments in mechanism design imply that (q;m) satis�es (IC) and (IR) if and

only if for all i 2 N;
Ui (h) � 0; (A.3)

and 8hi 2
�
h; h
�
,

Ui(hi) = Ui (h) +

Z hi

h

�
QHi (x) + � Q

L
i (x)

�
dx; (A.4)

and

x � x0 ) QHi (x) + �Q
L
i (x) � QHi (x0) + �QLi (x0) ;

where Qxi (hi) � Eh�i [qxi (hi; h�i)] for x 2 fL;Hg; Mi (hi) � Eh�i [mi (hi; h�i)] ; and

Ui(hi) � hiQHi (hi) + �hiQLi (hi)�Mi (hi) : (A.5)

Thus, buyer i�s ex ante expected surplus can be written asZ �h

h

Ui(hi)dFi (hi) = Ui (h) +

Z �h

h

�Z hi

h

�
QHi (x) + �Q

L
i (x)

�
dx

�
dF (hi)

= Ui (h) +

Z �h

h

�
1� FHi (hi)

� �
QHi (hi) + �Q

L
i (hi)

�
dhi;

(A.6)

where the �rst equality uses (A.4) and the second uses integration by parts.

Setting Ui (h) = 0 and using (A.5) and (A.6), we can write the seller�s expected bene�t
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generated ex ante by buyer i as follows:Z �h

h

�
Mi (hi) +BQ

L
i (hi)

�
dFHi (hi) =

Z �h

h

�
hiQ

H
i (hi) + (�hi +B)Q

L
i (hi)

�
dF (hi)

�
Z �h

h

�
1� FHi (hi)

� �
QHi (hi) + �Q

L
i (hi)

�
dhi

=

Z �h

h

�
vHi (hi)Q

H
i (hi) + v

L
i (hi)Q

L
i (hi)

�
dF (hi) :

Finally, summing over all buyers, and �unpacking�the interim Q�s, we can write the seller�s

objective function as Z
�

Xn

i=1

�
vHi (hi) q

H
i (h) + v

L
i (hi) q

L
i (h)

�
dF (h) :

Maximizing pointwise, we �nd that the object should be given to the buyer with the highest

virtual valuation:

qHi (h) = �
H
i (h) �

(
1; if vHi (hi) > maxf0; vLi (hi) ; vHj (hj) ; vLj (hj) ; j 6= ig
0; otherwise;

(A.7)

qLi (h) = �
L
i (h) �

(
1; if vLi (hi) > maxf0;maxj 6=i vLj (hj) ;maxj vHj (hj)g
0; otherwise.

(A.8)

The functions
�
�Hi ; �

L
i

�
; together with any payment functions mi that satisfy the envelope

condition in (A.4), i.e.,

Mi (hi) = hiQ
H
i (hi) + �hiQ

L
i (hi)�

Z hi

hi

�
QHi (x) + �Q

L
i (x)

�
dx; (A.9)

constitute a solution if and only if the function

A�i (hi) �
Z
��i

�
�Hi (h) + ��

L
i (h)

�
dF�i (h�i)

is nondecreasing for all i 2 N . Given the assumption that F is regular, it follows that Ai is
nondecreasing. In fact, these assumptions guarantee that the ex post assignment functions

�Hi and �
L
i de�ned in (A.7) and (A.8) are such that, for all i 2 N; the function

ai (hi; h�i) � �Hi (hi; h�i) + ��Li (hi; h�i)

is nondecreasing in hi for all h�i, guaranteeing that Ai (hi) is nondecreasing. Thus, the
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mechanism (�;m�) ; where

m�
i (hi; h�i) � hi�Hi (hi; h�i) + �hi�Li (hi; h�i)�

Z hi

hi

�
�Hi (z; h�i) + ��

L
i (z; h�i)

�
dz;

satis�es ex-post incentive compatibility and ex-post individually rationality and maximizes

the seller�s surplus among all interim incentive compatible and interim individually rational

mechanisms.

In the exclusive-buyer mechanism described in the proposition, each buyer i bidsmaxf�hi;
hi � p�g. Thus, buyer i bids �hi if hi < h� and hi � p� if hi > h�.
The winner is a buyer with value hi = h(1), as long as its bid is greater than r�. If the

winner has h(1) < h�; it chooses the restricted object, and if it has h(1) > h�, it chooses the

unrestricted object. Given the de�nitions of hr and h�, one can show that the exclusive-buyer

mechanism implements the allocation required of an optimal mechanism.

If buyer i submits the high bid in the �rst stage, and that bid is �hi < �h�, then buyer i

pays max fr�;maxj 6=i �hjg and chooses the restricted object. If buyer i submits the high bid
in the �rst stage and that bid is hi� p� > �h�; then buyer i pays maxfr�; maxj 6=imaxf�hj;
hj�p�gg and chooses the unrestricted object for an incremental payment of p�. Thus, letting
yi � maxj 6=i hj and letting G be the distribution of yi, buyer i�s expected payment is

MEB (hi) =

8><>:
0; if hi < hr

Eyi [maxfr�; �yig1yi<hi ] ; if hr < hi < h�

Eyi [maxfr�;max f�yi; yi � p�gg1yi<hi ] + p�; if h� < hi

=

8><>:
0; if hi < hr

�hiG(hi)�
R hi
hr
�G(x)dx; if hr < hi < h�

hiG(hi)�
R h�
hr
�G(x)dx�

R hi
h� G(x)dx; if h

� < hi;

which is the expected payment required in an optimal mechanism.

Proof of Proposition 5. Let V ih (hi j W�i) be as de�ned in (9) and observe that it is a

nondecreasing function of hi. Consider the ascending-bid format. If a type (li; hi) bids r1 in

the �rst auction then it will trigger participation by all other players. Thus, the price paid

in case of victory is pl (l�i; r1) = max fr1;maxj 6=i ljg, which in turn implies that the expected
payo¤ from being the �rst to bid at r1 in the �rst auction is

V il (li) = El�i [max fli � pl (l�i; r1) ; 0g] :

Notice that the payo¤ is independent of the set W that decides to delay.
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The expected payo¤ from delaying is

Di (li; hi j W�i)

= El�i;h�i [max fli � pl (l�i; r1) ; 0g j (l�i; h�i) =2 W�i] Pr [(l�i; h�i) =2 W�i] + V
i
h (hi j W�i) :

Thus, in equilibrium, the types that choose to delay must have V il (li) � Di (li; hi j W�i).

Let

dAi (hi) � sup
�
li 2

�
0; �l(hi)

�
j V il (li) � Di (li; hi j W�i)

	
:

After manipulations, V il (li) � Di (li; hi j W�i) can be written as

El�i;h�i [max fli � p (l�i; r1) ; 0g j (l�i; h�i) 2 W�i]

� El�i;h�i [max fhi � pi (h�i; r2) ; 0g j (l�i; h�i) 2 W�i] ;
(A.10)

so that the left-hand side depends on li only and the right-hand side depends on hi only.

Since the left-hand side of (A.10) is nondecreasing in li, it follows that for each hi the types

(l0i; hi) with l
0
i 2

�
0; dAi (hi)

�
prefer to delay, while types (l0i; hi) with l

0
i > dAi (hi) prefer to

participate in the �rst auction. The function dAi (hi) is nondecreasing because the right-hand

side of inequality (A.10) is nondecreasing, and it is continuous because the left-hand side of

(A.10) is continuous in li and the right-hand side of (A.10) is continuous in hi.

The proof for the second-price auction follows similar steps, so we will just sketch it. Let

bj (lj; hj) be the bidding function used by bidder j in the �rst auction. Thus,

Wj = f(lj; hj) j bj (lj; hj) < r1g :

Bidding li � r1 in the �rst auction yields

V il (li j W�i) = El�i;h�i [si (li; h�i; l�i; b�i)] ;

where

si (li; h�i; l�i; b�i) �
(
li �max fr1;maxj 6=i bj (lj; hj)g ; if maxj 6=i bj (lj; hj) < li
0; otherwise.

In equilibrium, the types that decide to delay must be such that V il (li j W�i) � V ih (hi j W�i) ;

and at this point we can apply the same reasoning used for the ascending-bid format.

Proof of Proposition 7. Suppose not. By Proposition 5 the equilibrium bidding functions
in the �rst auction must be such that dAi (hi) = r1 for each i and hi 2

�
h; h
�
. Suppose that
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all bidders other than i use this strategy and consider the best response of type (r1 + "; hi)

of bidder i, with hi > r2. The expected payo¤ from bidding zero in the �rst auction is

Vh (hi) =

Z hi

h

� � �
Z hi

h

Z r1

l

� � �
Z r1

l

�
hi �max

�
r2;max

j 6=i
hj

��
�j 6=if (lj; hj) dl�idh�i;

and the expected payo¤ from bidding li � r1 in the �rst auction is

V il (r1 + ") �
Z h

h

� � �
Z h

h

Z r+"

l

� � �
Z r+"

l

(r1 + "� r1)�j 6=if (lj; hj) dl�idh�i < ":

For hi > r2; V
i
h (hi) > 0, which implies that there is some value �"(hi) > 0 such that

Vl (r1 + ") < V
i
h (hi) for each " < �"(hi). This implies that it is not a best response for types

(li; hi) with li 2 (r1; r1 + �"(hi)) to bid their value in the �rst auction.

Proof of Proposition 9. In this proof we assume an ascending-bid auction, so to improve
readability, we use the notation d instead of dA for the delay threshold. If we de�ne

V �h (hi) =

Z hi

h

� � �
Z hi

h

Z d(h1)

l

� � �
Z d(hn)

l

�
hi �max

�
r2;max

j 6=i
hj

��
�j 6=if (lj; hj) dl�idh�i

and

V �l (li) =

Z h

h

� � �
Z h

h

Z minfli;d(h1)g

l

� � �
Z minfli;d(hn)g

l

�
li �max

�
r1;max

j 6=i
lj

��
��j 6=if (lj; hj) dl�idh�i;

the condition (12) can be written as V �l (d (hi)) = V
�
h (hi). If the delay threshold function d

is di¤erentiable at hi and d (hi) < l (hi) ; then

dV �h (hi)

dhi
=
dV �l (d (hi) ; d)

dli
d0 (hi) ;

which implies

d0 (h) =

dV �h (hi)

dhi
dV �l (d(hi);d)

dli

: (A.11)
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Since types are independent across bidders we have

dV �h (hi)

dhi
=

Z hi

h

� � �
Z hi

h

Z d(h1)

l

� � �
Z d(hn)

l

�j 6=if (lj; hj) dl�idh�i

=

�Z hi

h

F (d (x) j x) z (x) dx
�n�1

and

dV �l (li; d)

dli
=

Z h

h

� � �
Z h

h

Z minfli;d(h1)g

l

� � �
Z minfli;d(h1)g

l

�j 6=if (lj; hj) dl�idh�i

=

 Z h

h

F (min fli; d (x)g j x) z (x) dx
!n�1

:

Thus, condition (A.11) can be written as

d0 (hi) =

0@ R hi
h
F (d (x) j x) z (x) dxR h

h
F (min fd (hi) ; d (x)g j x) z (x) dx

1An�1

;

and since the function d is nondecreasing this is equivalent to the expression in (13).

Proof of Proposition 10. In this proof we assume a second-price auction, so to improve
readability, we use the notation d instead of dS for the delay threshold. When n is su¢ ciently

large, condition (14) cannot hold. Thus, in every equilibrium we have d (hi) < �l (hi) for some

hi. Equation (13), which is obtained for the case of the ascending-bid format, shows that

whenever d (hi) < �l (hi) then d0 (hi) is less than 1 and d0 (hi) converges to zero as n goes to

in�nity. A similar argument can be made for the second price format. In that case we can

show that the slope is given by

d0n (hi) =

0@ R hi
h
F (d (x) j x) z (x) dxR h

h
F (max fd (h) ; d (x)g j x) z (x) dx

1An�1

so limn!+1 d0n (hi) = 0. This in turn implies

lim
n!+1

Z hi

h

d0n (x) dx = 0:
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If r1 � �l (h) then lim n!+1 dn (h) = r1 and

lim
n!+1

d (hi) = lim
n!+1

�
dn (h) +

Z hi

h

d0n (x) dx

�
= r1

for each hi. If r1 > �l (h) then for each " let n" be such that for every n � n" the slope of

d0n < ", and let h
�
n" be the point at which the function d (hi) departs from

�l (h) and the slope

of the function dn becomes lower than ". Notice further that, for each n, type
�
�l (h�n) ; h

�
n

�
must be indi¤erent between bidding and not bidding in the �rst auction. The solution must

therefore satisfy
V �h (h

�
n; d

�
n)

V �l
�
�l (h�n) ; d

�
n

� = 1
for each n, which in turn implies that the limit as n grows to in�nity must also be 1.

Let h�1 = limn!1 h
�
n. We want to show that limn!1 �l (h

�
n) = r1. Notice that we must

have limn!1 d
�
n (h) =

�l (h�1) for each h, we have

1 = limn!1
V �h (h

�
n;d

�
n)

V �l (�l(h�n);d�n)

= limn!1
(h�n�En[maxfr2;maxj 6=i hjgjhj<h�n;lj<�l(h�n) each j 6=i])

(�l(h�n)�r1)

� limn!1

�
Pr[hj<h�n;lj<�l(h�n)]

Pr[lj<�l(h�n)]

�n�1
;

(A.12)

where En denotes the expectation taken when there are n bidders. Here we have exploited

the fact that, since the slope of dn becomes arbitrarily close to zero after h�n, types �l (h
�
n)

wins only when all other types do not participate, i.e. Pr
�
lj < �l (h

�
n)
�
. Thus V �l

�
�l (h�n) ; d

�
n

�
converges to

�
�l (h�n)� r1

� �
Pr
�
lj < �l (h

�
n)
��n�1

.

Since the second limit is zero, the only way in which (A.12) can be satis�ed is if

lim
n!1

�
h�n � En

�
max fr2;maxj 6=i hjg j hj < h�n; lj < �l (h�n) each j 6= i

���
�l (h�n)� r1

� =1;

but for this to be the case the denominator must converge to zero, thus establishing

limn!1 �l(h
�
n) = r1.
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