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Abstract
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1 Introduction

Moment restrictions frequently provide the basis for estimation and inference in economic prob-

lems. A general framework for analyzing economic data (Y;X) is to postulate conditional moment

restrictions of the form

E [g (Z;�0) jX] = 0 (1)

where Z � (Y 0; X 0
z)
0; Y is a vector of endogenous variables, X is a vector of conditioning variables

(instruments), Xz is a subset of X; g(�) is a vector of functions known up a parameter �; and

FY jX is assumed unknown. The parameters of interest �0 � (�00; h
0
0)
0 contain a vector of �nite

dimensional unknown parameters �0 and a vector of in�nite dimensional unknown functions h0(�) �

(h01(�); :::; h0q(�))0: The inclusion of h0 renders the condition (1) semiparametric, encompassing many

important economic models. It includes for example the partially linear regression g (Z;�0) =

Y �X 0
1�0�h0(X2) analyzed by Robinson (1988) and the index regression g (Z;�0) = Y �h0(X 0�0)

studied by Powell et al. (1989) and Ichimura (1993).

Recently, Kitamura, Tripathi and Ahn (2004) analyzed the Conditional Empirical Likelihood

(CEL)1 based on a parametric counterpart of (1) (with � only) that was shown to exhibit �nite-

sample properties superior to the Generalized Method of Moments. In this paper we �rst suggest

a new Locally Weighted CEL (LWCEL) that fundamentally changes the form of CEL and further

improves on it in terms of �nite-sample properties. Then we extend the LWCEL to the semipara-

metric environment of model (1) proposing new Sieve-based Locally Weighted Conditional Empirical

Likelihood (SLWCEL) estimator. The SLWCEL can be viewed as a one-step information-theoretic

alternative to the GMM-type sieve minimum distance estimator analyzed by Ai and Chen (2003).

In the remainder of the introduction we will elaborate on the heuristic origins of both estimators,

and further analysis will follow thereafter.

1.1 Conditional Moments Based on �0

Without the unknown functions h0; model (1) becomes the parametric model of conditional moment

restrictions

E [g (Z; �0) jX] = 0 (2)

Typically, faced with the model (2) for estimation of �0; researchers would pick an arbitrary matrix-

valued function a(X) and estimate the unconditional moment model E [a(X)g (Z; �0)] = 0 implied by

(2) with an estimator such as the Generalized Method of Moments (GMM) (see e.g. Kitamura, 2006,

1A note on terminology: CEL is called �smoothed�and �sieve�empirical likelihood in KTA and Zhang and Gijbels
(2003), respectively. Other types of smoothing have been introduced by Otsu (2003a) on moment restrictions in the
quantile regression setting and hence KTA�s original method is referred to as "conditional" empirical likelihood to
avoid confusion. The CEL terminology was also adopted in Kitamura (2006).
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p 26 for a discussion). This procedure is used under the presumption that the chosen instrument a(X)

identi�es �; which may not be true even if � is identi�ed in the conditional model (2) (Domínguez and

Lobato, 2004). Moreover, the conversion to unconditional moments results in a loss of e¢ ciency with

respect to the information contained in (2). Chamberlain (1987) showed that such loss can be avoided

by using the optimal IV estimator a�(X) = D0(X)V �1(X) where D(X) = E [r�g (Z; �0) jX] and

V (X) = E
�
g (Z; �0) g (Z; �0)

0 jX
�
: In practice, a�(X) can be estimated with a two-step procedure

(Robinson, 1987; Newey, 1993). First an ine¢ cient preliminary estimator e� for �0 is obtained and
the unknown functions D(X) and V (X) are estimated via a nonparametric regression of r�g(Z;e�)
and g(Z;e�)g(Z;e�)0 on X: Second, the estimate of a�(X) is constructed with the estimates of D(X)
and V (X) from the �rst step. However, as noted by Domínguez and Lobato (2004), the resulting

moment condition E [a�(X)g (Z; �0)] = 0 may fail to identify � while � is identi�ed under the original

model (2). Moreover, satisfactory implementation of the nonparametric regression may require large

samples thereby a¤ecting the �nite-sample performance of the feasible estimator of a�(X).

The methods typically employed for estimation of the unconditional model E [a(X)g (Z; �0)] = 0

have also been subject to criticism. While the optimally-weighted two-step GMM (Hansen, 1982) is

�rst-order asymptotically e¢ cient, its �nite sample properties have been reported as relatively poor.

For example, a simulation study by Altonji and Segal (1996) documented a substantial small-sample

bias of GMM when used to estimate covariance models. Other Monte Carlo experiments have shown

that tests based on GMM often have true levels that di¤er greatly from their nominal levels when

asymptotic critical values are used (Hall and Horowitz, 1996). Indeed, it has been widely recognized

that the �rst-order asymptotic distribution of the GMM estimator provides a poor approximation

to its �nite-sample distribution (Ramalho, 2005).

A number of alternative estimators have been suggested to overcome this problem: Empirical

Likelihood (EL) (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997), the Continuous Updating

Estimator (CUE) (Hansen et al., 1996) the Exponential Tilting Estimator (ET) (Kitamura and

Stutzer, 1997; Imbens et al., 1998) and variations on these such as the Exponentially Tilted Empirical

Likelihood (ETEL) (Schennach, 2006). The EL, CUE and ET belong to a common class of so-called

Generalized Empirical Likelihood (GEL) estimators (Smith, 1997; Newey and Smith, 2004). These

estimators circumvent the need for estimating a weight matrix in the two-step GMM procedure

by directly minimizing an information-theory-based concept of closeness between the estimated

distribution and the empirical distribution. A growing body of Monte Carlo evidence has revealed

favorable �nite-sample properties of the GEL estimators compared to GMM (see e.g. Ramalho, 2005,

and references therein).

Recently, Newey and Smith (2004) showed analytically that while GMM and GEL share the

same �rst-order asymptotic properties, their higher-order properties are di¤erent. Speci�cally, while

the asymptotic bias of GMM often grows with the number of moment restrictions, the relatively
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smaller bias of EL does not. Moreover, after EL is bias corrected (using probabilities obtained from

EL) it is higher-order e¢ cient relative to other bias-corrected estimators.2

It is worth emphasizing that the GMM and GEL estimators mentioned so far are all based on

unconditional moment restrictions burdened by the potential pitfalls described above. In addressing

this problem, Kitamura, Tripathi and Ahn (2004) (henceforth KTA) recently developed a Conditional

Empirical Likelihood (CEL) estimator that makes e¢ cient use of the information contained in (2).

Their one-step estimator achieves the semiparametric e¢ ciency bound without explicitly estimating

the optimal instruments. Similar analysis has been performed by Antoine et al. (2006) for the case

of Euclidean conditional likelihood3 and Smith (2003, 2005) for the GEL family of estimators.

As the �rst contribution of this paper, we propose a new form of the CEL estimator for models of

conditional moment restrictions (2). Our estimator extends the one proposed by KTA. In particular,

the CEL estimator can be expressed in a Minimum Distance (MD) dual representation which is

informative about the underlying stochastic mechanism behind CEL. In previous forms of CEL the

MD objective function consisted of a simple sum of local discrepancy measures. We propose a

weighted sum that accounts for the overall relative importance of each local discrepancy measure in

the MD objective function. In this way we utilize information about local inhomogeneities in the data

that has not been previously exploited. An additional improvement in construction of each individual

local discrepancy measure is gained by using �exible locally adaptive weights. Consequently, the

new Locally Weighted CEL estimator (LWCEL) takes on a new form that di¤ers from the currently

available CEL format. In a Monte Carlo study we show that the LWCEL estimator exhibits better

�nite-sample properties than found in the previous literature. However, additional complications

arise in the asymptotic analysis due to a newly introduced weighting term. An extension of LWCEL

to the whole GEL family in the spirit of Smith (2003, 2005) is currently subject to our research

and we plan to include it into further updates of this paper. Assessment of analytical higher-order

properties along the lines of Newey and Smith (2004) remains beyond the scope of this paper.

1.2 Conditional Moments Based on (�0; h0)

A semiparametric extension of (2) to model (1) is unquestionably desirable because economic the-

ories seldom produce exact functional forms, and misspeci�cations in functional forms may lead to

inconsistent parameter estimates. By specifying the model partially (i.e. including h0 as part of

the unknown parameters), the inconsistency problem can be alleviated. In general, semiparametric

literature related to the model (1) has been growing rapidly (see e.g. Powell, 1994; Pagan and Ullah,

1999, for reviews). Most of the available results are derived using a plug-in procedure: �rst h0 is

2Accordingly, the initial focus of this paper lies in EL as opposed to any other member of the GEL family of
estimators.

3Antoine et al. (2006) show that the Euclidean empirical likelihood estimator coincides with the continuously
updated GMM (CUE-GMM) as �rst proposed by Hansen et al. (1996).

3



estimated nonparametrically by bh and then �0 is estimated using a parametric method (e.g. GMM
or GEL) with h0 replaced by bh: However, such plug-in estimators are not capable of handling models
where the unknown functions h0 depend on the endogenous variables Y; because in such models �0

a¤ects h0 as well. Thus, in models where h0 depends on an endogenous regressor, h0 and �0 need

to be estimated simultaneously. There are very few results concerning simultaneous estimators.

Earlier applications include a semiparametric censored regression estimator (Duncan, 1986) and a

semi-nonparametric maximum likelihood estimator (Gallant and Nychka, 1987).

However, a general estimation method for the model (1) that permits dependence of h0 on Y

and �0 was not well analyzed until a recent work by Ai and Chen (2003). These authors proposed a

GMM-type Sieve Minimum Distance (SMD) estimator of �0 under (1), based on identi�cation and

consistency conditions derived by Newey and Powell (2003). Subsequent applications of the SMD

estimator include Chen and Ludvigson (2006) in a habit-based asset pricing model (with unknown

functional form of the habit) testing various hypotheses on stock return data, Blundell, Chen and

Kristensen (2006) in a dynamic optimization model describing the allocation of total non-durable

consumption expenditure, and Ai et al. (2006) investigating co-movement of commodity prices.

The �rst analysis that ventured into the realm of GEL-type estimators subject to conditional

moment restrictions containing unknown functions is due to Otsu (2003b).4 His shrinkage-type

estimator is based on a penalized empirical log-likelihood ratio (PELR) which utilizes a penalty

function J(h) con�ning the minimization problem to a parameter space speci�ed by the researcher.

Usually, J(h) is used to control some physical plausibility of h such as roughness of h. Otsu�s (2003b)

penalized likelihood method di¤ers from sieve analysis and hence his treatment of asymptotics di¤ers

from ours.5

Otsu (2003b) suggests (in Remark 2.2) that it is also possible to use a deterministic sieve ap-

proximations, instead of the penalty function approach, resulting in a deterministic sieve empirical

likelihood estimator (DSELE) that would also be, under suitable conditions, [�rst-order] asymptoti-

cally equivalent to the SMD of Ai and Chen (2003). Similar conjecture has been raised in Nishiyama

et al. (2005) who noted the lack of theoretical justi�cation for such procedure. Chen (2005, footnote

39) made the same type of conjecture in relation to the conditional parametric Euclidean empirical

likelihood estimator of Antoine et al. (2006). However, despite calls for a theoretical justi�cation

of such procedures, no previous paper has performed the necessary theoretical analysis. Yet, in

analogy to the parametric literature described above, developing a one-step simultaneous GEL-type

sieve alternative to the two-step simultaneous SMD in the semiparametric case can lead to a similar

type of improvement in terms of bias and higher-order e¢ ciency and is therefore of great theoretical

4Up to date, the author has not been able to obtain a full copy of this paper. Only a cashed html version containing
parts of the paper�s text is publicly available.

5 In the seminal paper by Shen (1997), penalized likelihood and the method of sieves are treated as two separate
concepts. To achieve asymptotic normality, Otsu extends Theorem 2 of Shen (1997), whereas we extend Theorem 1
of Shen (1997) which is a separate result derived under di¤erent conditions from the former.
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and practical interest.

As the second contribution of this paper, we extend the LWCEL estimator to the semiparametric

environment de�ned by (1). We approximate h with a sieve and estimate �0 and h0 simultaneously

with LWCEL. We establish consistency of the resulting one-step estimator and asymptotic normality

for its parametric component of �. Our LWCEL under (1) can be viewed as a direct alternative to

the SMD estimators. A Monte Carlo study comparing small sample properties of LWCEL with SMD

is planned to be included in future updates of this paper. Analytical comparison of higher-order

properties remains beyond the scope of this paper.

All of the simultaneous estimators mentioned above are based on the method of sieves (Grenan-

der, 1981; Chen, 2005) where h0 is estimated over a compact subspace that is dense in the full

parameter space as sample size increases. This feature of sieves conveniently simpli�es the in�nite-

dimensional model h0 to its �nite-dimensional counterpart suitable for estimation. Here we also

adhere to the sieve methodology. However, the currently available relevant general theory papers

dealing with sieve M-estimation (Wong and Severini, 1991; Shen and Wong, 1994; Shen, 1997; Chen

and Shen, 1998) consider only one set of exogenous variables without endogenous regressors and

hence we can not apply these results directly in our case. Therefore, in the asymptotic analysis we

combine them with several results of Ai and Chen (2003) and our own new results necessitated by

the speci�c nature of SLWCEL under (1). In particular, among other issues we derive an extension

of Shen�s (1997) theorem on asymptotic normality of general simultaneous sieve estimators for the

case of endogenous regressors under strong conditions and then apply it to the SLWCEL case under

weak primitive conditions.

The rest of the paper is organized as follows. In Section 2 we develop the new LWCEL estimator

and its dual MD counterpart for conditional moment restrictions (2) containing a �nite dimensional

parameter � 2 � � Rd� and contrast the LWCEL�s �nite sample properties to KTA�s CEL. Section 3

extends the LWCEL to the semiparametric environment of model (1) containing both � and a vector

of in�nite dimensional unknown functions h(�) in � � (�0; h0)0: In Section 4 we derive consistency of

the Sieve-based LWCEL b�n under a general metric. In Section 5 we show that b�n converges to �0
at the rate n�1=4 under the Fisher metric, which is a su¢ cient rate result for asymptotic normality

of SLWCEL�s parametric component b�n derived in Section 6. Section 7 presents the results of a
small-scale pilot Monte Carlo simulation study and shows favorable performance of the LWCEL

estimator b�n compared to KTA�s CEL. Section 8 concludes. All technical proofs are presented in
the Appendices.
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2 The Estimator

In-depth insights into the internal estimating mechanism of EL/CEL can be gained by examining

their dual representation as Minimum Discrepancy (MD) estimators. In this Section, we �rst develop

some intuition behind using discrepancy measures in construction of the MD representation of EL

under unconditional moment restrictions

E [g (Z; �0)] = 0 (3)

Building on this intuition we then review existing methods of localizing discrepancy measures for the

MD representation of KTA�s CEL under conditional moment restrictions (2) and the corresponding

global objective function of CEL. Having established the background, we propose a new weighting

scheme leading to the LWCEL under (2).

2.1 Unconditional Moment Restrictions

Empirical Likelihood falls into a class of estimators that admit a convenient representation as Min-

imum Discrepancy (MD) estimators (Corcoran, 1998):

b�MD = arg min
�2��1;:::;�n

I(q : �) (4)

subject to moment and normalization restrictions

Xn

i=1
�ig(zi; �) = 0 (5)Xn

i=1
�i = 1 (6)

where (5) is a �nite-sample counterpart of the model (3). The function I(q : �) is a discrepancy6

measure that quanti�es the goodness-of-�t between two distributions �i and qi with support on the

data.

A rich class of discrepancy measures commonly used in MD estimation are the Cressie-Read (CR)

power-divergence statistics I
(q : �) (Cressie and Read, 1984) indexed by a scalar 
. Let Z1; :::; Zn

be independent random vectors in RdZ with common distribution function FZ : Let q = (q1; :::; qn)

and � = (�1; :::; �n) be two discrete probability distributions de�ned on the (n � 1) dimensional

simplex �n = ! = f(!1; :::; !n) : !i � 0; i = 1; :::; n and
Pn

i=1 !i = 1g: The power divergence for q

and � is de�ned as
6The term "discrepancy" is used instead of "distance" because a discrepancy function in general need not be

symmetric in its arguments (Corcoran, 1998).
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I
(q : �) =
1


(
 + 1)

Xn

i=1
qi

��
qi
�i

�

� 1
�

(7)

In the MD context, � is the expected multinomial distribution of Z1; :::; Zn with support on the

sample, and q is the multinomial distribution of the observed data with the same support (Corcoran,

1998; Imbens et al., 1998). Since each data point has been observed exactly once, qi = 1=n and thus

I
(1=n : �) =
1

n
(
 + 1)

Xn

i=1

h
(n�i)

�
 � 1
i

(8)

The CR discrepancy measure contains the empirical, Kullback-Leibler, Euclidean and Hellinger

discrepancies as special cases corresponding to 
 = 0; �1; �2; and � 1
2 ; respectively (Corcoran,

1998). The cases 
 = 0 and �1 are handled by taking limits. Thus, for EL,

I0(1=n : �) = �n�1
Xn

i=1
log (n�i)

If only the data were observed, without assuming the constraints (3), then the discrepancy

measure (7) would be minimized in (4) by a multinomial � that equals the multinomial q; that is the

empirical distribution placing the mass 1=n at each point. However, in the class of MD estimators

(4) under the constraints (3), the information on FZ is contained not only in the data, but also

in the theoretical constraints (3) that are assumed to hold for FZ . Thus, the MD estimator (4)

subject to (5) and (6) chooses the multinomial � that satis�es the constraints while keeping as close

as possible to the information on FZ conveyed by the data alone as expressed by q; the closeness

being measured by I
(q : �): The multinomial q acts as a data-determined benchmark for the MD

minimization problem.

2.2 Conditional Moment Restrictions

The conditional moment model (2) provides restrictions on FZjX whereby (2) is assumed to hold

at each X: Such restrictions hold far more information than the model (3) which gives only the

mean restriction over X: In constructing an estimator under (2) we can theoretically utilize an

in�nite number of restrictions on FZjX at each X = x as opposed to one restriction on FZ under

(3). While economic theory typically delivers (2), estimation techniques such as two-step e¢ cient

GMM of Hansen (1982) or EL of Qin and Lawless (1994) �rst convert (2) to (3) and then estimate

(3) resulting in loss of information contained in (2) (Antoine et al., 2006, KTA).

Given a �nite sample of data of size n in estimation, the theoretically in�nite number of re-

strictions is typically reduced to n restrictions required to hold at the observed data values only.

However, given each xi only a single observation zi from FZjX is available; almost surely. This prob-

lem has been customarily handled in the econometric estimation literature by localization methods
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(Tibshirani and Hastie, 1987). In the stream of literature most relevant to this paper, localization

schemes have been used in the conditional moment context in LeBlanc and Crowley (1995), Zhang

and Gijbels (2003), KTA for CEL, Antoine et al. (2006) for the CUE, Smith (2003, 2005) for GEL.

The general approach to localizing an MD estimator is to construct a localized version of the

CR discrepancy measure I
i(�) at each xi and then obtain a global MD estimator by summing

I
i(�) over i subject to constraints imposed at each xi: Information on FZjX is inferred from the

nearby observations if we assume that FZjX is continuous with respect to X. In other words, in a

neighborhood around xi we approximate FZjX=x by FZjX=x � FZjX=xi . This implies that all the

zj with xj lying in this neighborhood can be roughly viewed as observations from FZjX=xi : Such

"data augmentation" leads to the localized version of the CR discrepancy measure for each xi

Ii
(qij : �ij) =
1


(
 + 1)

Xn

j=1
qij

��
qij
�ij

�

� 1
�

(9)

where �ij are the implied probabilities to be estimated.

Note that, unlike in the unconditional moment case (3), now the qij are not derived directly

from observed data, since only one realization of the random vector zj was actually observed at xi:

Rather, qij are inferred from neighboring observations. Since the data-determined qijs are used as a

benchmark for minimization in the MD problem, the technique selected constructing these inferred

empirical probabilities qij will inevitably in�uence the performance and outcome of the MD estimator

in general. In the localization process, each qij measures the importance of the observation zj to the

augmented data at xi: More precisely, for each xi; observations with xj that are "closer" to xi are

given more weight in assuming that they come from FZjX=xi : The exact weights are captured by

a weighting function wij calculated as the weight that xj has in estimating EFZjX [g (Z; �) jX = xi]

with
Pn

j=1 wijg (zj ; �) ; for a given �. The wij can thus be regarded as nonparametric regression

weights. The inferred empirical probabilities qij are then computed by normalizing the weights wij

by

�i �
Xn

j=1
wij (10)

so that q can satisfy the condition for a multinomial distribution
Pn

i=1 qij = 1; implying

qij = wij=�i (11)
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2.3 Existing Methods for MD Global Objective Function under Localiza-

tion Schemes

In constructing the global MD objective function, the standard approach in the previous literature

has been summing (9) over i; yielding the global MD objective function

M
(q; �) =
Xn

i=1
Ii
(qij : �ij)

=
1


(
 + 1)

Xn

i=1

Xn

j=1
qij

��
qij
�ij

�

� 1
�

(12)

resulting in the localized MD estimator

b�MDl = arg min
�2�;�

M
(qij : �ij) (13)

subject to moment and normalization restrictions

nX
j=1

�ijg (zj ; �) = 0 (14)

nX
j=1

�ij = 1 (15)

for each i. This form of the MD estimator was considered by Smith (2003) Antoine et al. (2006),

and Smith (2005). In the case of CEL with 
 = 0 analyzed in Zhang and Gijbels (2003) and KTA7 ,

(12) becomes

L(�ij ; qij) = �
nX
i=1

nX
j=1

qij ln

�
�ij
qij

�
In construction of the local discrepancy measures Ii
(qij : �ij); all previous literature, including

KTA and Zhang and Gijbels (2003), use �xed-bandwidth kernel weights

wkij =
K ((xi � xj)=bn)Pn
j=1K ((xi � xj)=bn)

(16)

Note that for (16) �i =
Pn

j=1 w
k
ij = 1 by construction and hence wkij = qij . This, however, is

a characteristic of the particular formulation of the weighting function (16) and does not hold in

general. In the LWCEL proposed below, �i 6= 1 almost surely. This fact complicates the asymptotic

analysis of the resulting estimator but plays crucial role in improving the �nite-sample properties of

LWCEL.
7Note that for �1 < 
 < 0 we need to consider �I
i(qij : �ij) to obtain a convex optimization problem. Also note

that Kitamura et al. (2004) and Zhang and Gijbels (2003) use this form of localized likelihood but without explicitly
stating the inferred empirical probabilities qij : Such omission is inconsequential for the special case of EL as the qijs
cancel out of the �rst order condition of Ii
=�1(qij : �ij) with respect to �ij due to the logarithmic functional form
of Ii
=�1(qij : �ij) for EL. However, this does not hold for the CR class in general.
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2.4 An Alternative Method

We will now propose a new weighting scheme for the construction of the MD objective function (and

by duality CEL) addressing two separate features: (i) the weight �i of each localized discrepancy

measure Ii
(qij : �ij) in the global sum, and (ii) the weights wij used in derivation of any given

individual Ii
(qij : �ij): We will elaborate each feature in turn.

2.4.1 Global Weighting Scheme

In contrast to the simple sum (12), we argue that an appropriately weighted sum of Ii
(qij : �ij)

in constructing the global MD objective function would utilize the information on FZjX contained

in the data more e¢ ciently. Speci�cally, weighting each Ii
(qij : �ij) with �i de�ned in (10), i.e.

the sum of the weights of individual observations, yields a global objective function for the MD

minimization problem of the form

fM
(q; �) =
Xn

i=1
�iIi
(qij : �ij)

=
1


(
 + 1)

Xn

i=1
�i
Xn

j=1
qij

��
qij
�ij

�

� 1
�

(17)

Substituting for qij from (11) into (17) we obtain

fM
(q; �) =
1


(
 + 1)

Xn

i=1
�i
Xn

j=1

wij
�i

��
qij
�ij

�

� 1
�

=
1


(
 + 1)

Xn

i=1

Xn

j=1
wij

��
qij
�ij

�

� 1
�

(18)

resulting in the MD estimator

b�MDw = arg min
�2�;�

fM
(qij : �ij) (19)

subject to moment and normalization restrictions (14) and (15) for each i.

The factor �i re�ects the importance that each individual Ii
(qij : �ij) exerts on the global sum

(17). Take, for example, a data point (xr; zr) with many other observations xj clustered closely

around xr: Under localization of Ir
 (�), each of such xj is assigned a high weight wrj because of

their proximity to xr: Such xjs can be credibly assumed to come from FZjX=xr and thus carry high

informational content on FZjX=xr : Accordingly, �r =
Pn

j=1 wrj will be high and the corresponding

discrepancy measure Ir
 (�) is assigned a high importance in the global MD objective function (17).

Take another data point (xs; zs); this time an outlier with neighboring points xj far away. Here

�s =
Pn

j=1 wsj will be small since each wsj is small. It is doubtful that such xjs arrive from

FZjX=xs : The resulting local discrepancy measure Is
 (�) is given a small importance in the global

10



MD sum (17) due to the relatively high uncertainty about FZjX=xs :

Multiplying each Ii
(qij : �ij) with a constant �i does not change the meaning of any given

individual Ii
(qij : �ij) which remain local discrepancy measures. However, our weighting now

makes the importance of xj for xi comparable across i in the global sense of (18). The expression

(18) can now be viewed as a weighted double sum of individual zjs augmented to xi; for each i and

j; with globally comparable weights. In contrast, under the simple sum of Ii
(qij : �ij) (12), the

importance of each Ii
(qij : �ij) for the global MD function is set to unity, and the weight of xj for

xr is not directly comparable to the weight of xj for xs:

At this point, we do not address optimality of the choice of the weight �i as de�ned in (10)

for the global MD objective function. Showing optimality (in a sense) for this or perhaps other

potential candidate weights is currently subject to our research. Nonetheless, di¤erent �i will not

change the asymptotic analysis that is carried out in this paper for a generic stochastically bounded

nonnegative �i. The current focus of this draft is breaking away from the �i = 1 paradigm of the

previous literature and thus changing the form of the conditional GEL estimator, improving its �nite

sample performance.

2.4.2 Individual Weight Functions

The exact speci�cation of the weighting function wij plays a crucial role for the performance and

outcome of the estimator. The weights wij ; when normalized to qij ; in essence construct the coun-

terpart of the empirical distribution estimate of FZjX at X = xi: For this purpose, given the

information contained in the data and (2), we can use weights that are derived from estimating

EFZjX [g (Z; �) jX = xi] with
Pn

j=1 wijg (zj ; �) : Ideally, the regression estimator should be optimal

in some sense, such as minimizing the Mean-Square Error (MSE) of the estimate.

We note that any wij that captures the information provided by the data about FZjX more

e¢ ciently (in the MSE sense) than the currently used (16) will lead to the benchmark inferred

empirical probabilities qij resulting in an estimate b� that is more representative of the underlying
distribution FZjX for each � in (19), for a given �nite sample x1; :::; xn: This, in turn, will lead to

an estimate b� with a smaller MSE in (19). By virtue of the MD-GEL duality, the same argument
holds for the GEL representations of the MD estimators.

Regression estimators that yield such wij have been analyzed well in the literature. For example,

Müller and Stadtmüller (1987) or Brockmann et al. (1993) showed that a variable-bandwidth kernel

estimator improves on its �xed-bandwidth counterpart in terms of Mean Integrated Square Error

(MISE) by adapting locally to the density of the design points. Various methods of local polynomial

modelling (Fan and Gijbels, 1996) or general series regression, including a host of function bases

such as splines (Silverman, 1984) or wavelets (Donoho and Johnstone, 1995) share this localization

feature and hence outperform (16) in terms of MISE.

11



2.5 Locally Weighted Conditional Empirical Likelihood

Despite their theoretical qualities, MD estimators are not attractive from the computational point

of view. The MD optimization problems (13) and (19) each have dimension n + dim(�) which is

larger than the sample size. For this reason, the GEL dual representation of MD estimators, derived

via the method of Lagrange multipliers, is used in applications. As will be shown below on the

special case of LWCEL, the GEL representation automates the selection of �ijs as functions of �

and thus greatly reduces the dimensionality of the estimation problem. Nonetheless, the theoretical

properties of the internal estimating mechanism are best studied in the MD form, justifying the MD

discussion above.

The global objective MD function (18) with the newly proposed weighting scheme becomes in

the case of LWCEL with 
 = 0

L(�ij ; qij) = �
nX
i=1

nX
j=1

wij ln

�
�ij
qij

�
(20)

subject to (14) and (15)8 holding for each i: The localized discrepancy measures Ii
(qij : �ij) thus

become local empirical conditional log-likelihoods li(�) = ln
�
�ij
qij

�
with the global conditional log-

likelihood L(�) being a weighted sum of li(�) over i: The LWCEL Lagrangian of the MD minimization

problem (19) with the LWCEL objective function (20) becomes

L(�; �; �; �) =
nX
i=1

nX
j=1

wij ln

�
�ij
wij

�
�

nX
i=1

�0i

nX
j=1

�ijg (zj ; �)�
nX
i=1

�i

0@ nX
j=1

�ij � 1

1A (21)

Taking �rst-order conditions yields

wijb�ij = b�0ig (zj ; �) + b�i ; 8i; j (22)

nX
j=1

b�ijg (zj ; �) = 0 ; 8i (23)

nX
j=1

b�ij = 1 (24)

Summing (22) over j and using (23) yields, for each i,

�i = b�0i nX
j=1

b�ijg (zj ; �) + b�i nX
j=1

b�ij
b�i = �i (25)

8Since the objective function depends on �ij only through log(�ij=qij), the constraint pij � 0 does not bind.
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Substituting (25) into (22) gives, for each i and j,

b�ij = wij

�i + �
0
ig (zj ; �)

(26)

Substituting (26) into the Lagrangian (21), and using (23) and (24), yields

L(�; �) =
nX
i=1

nX
j=1

wij ln

�
1

�i + �
0
ig (zj ; �)

�
(27)

Then the Locally Weighted Conditional Empirical Likelihood estimator with the new weighting

scheme is de�ned as b�LWCEL = argmax
�2�

L(�; �i) (28)

where �i solves9
nX
j=1

wijg (zj ; �)

�i + �
0
ig (zj ; �)

= 0

obtained from (23) and (26). As discussed above, in general �i 6= 1: The presence of �i is the

hallmark of LWCEL compared to the previous literature where, invariably, �i = 1. Given the

expression (18), extension of (20) to the whole GEL family as considered in Smith (2005) appears

relatively straightforward. Such generalization is currently subject to our research and we plan to

include it into further updates of this paper.

The b�LWCEL estimator de�ned in (28) is a special case of a corresponding estimator derived

under semiparametric conditional moment restrictions in the next Section. For this reason, we will

perform the asymptotic analysis pertaining to both estimators in the next Section.10

The MD estimator analyzed by Smith (2003, 2005) as well as the CEL estimator elaborated in

KTA achieve the semiparametric e¢ ciency lower bound (see Chamberlain, 1987). The weighting in-

troduced for b�LWCEL in this paper utilizes wij that improve on the �xed-bandwidth kernel weights

(16) in �nite samples in terms of MSE. We conclude that our new forms of the MD and CEL esti-

mators exhibit �rst-order asymptotic equivalence in terms of consistency and asymptotic normality

with the ones formulated in the previous literature, and hence also achieve the �rst-order asymptotic

semiparametric e¢ ciency lower bound. However, our b�LWCEL improves on its previously analyzed

forms in terms of �nite sample performance.

9 In line with KTA we adopt the notation �i as shorthand for �i(xi; �): When necessary, we explicitly write the
full form to ensure that our arguments are unambiguous.
10Nonetheless, the author plans to include the full analysis of the �nite-dimensional case either in future updates

of this paper or in a separate paper dealing with the �nite-dimensional case only.
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3 Semiparametric Conditional Moment Restrictions

In this Section we extend the LWCEL estimator (27) to the semiparametric environment de�ned

by (1). In doing so, we will use series estimation (see e.g. Newey, 1997) as a particular form of

linear sieves in both approximating h and determining the weights wij . Series estimators are known

to contain functional bases that are superior in terms of MSE criteria to �xed-bandwidth kernel

estimators, especially in the presence of spatial inhomogeneities in the data (see e.g. Ramsey, 1999).

Silverman (1984) showed that series estimators with spline basis functions behave approximately

like the variable-bandwidth kernel estimator which improves on (16) in terms of MSE by the virtue

of local adaptation. Another advantage of working with the LWCEL estimator based on series

approximation is that truncation arguments in regions with small data density are not required in

contrast to kernel weights.

3.1 Sieve-based Conditional Empirical Likelihood

The environment setup parallels the one of Newey and Powell (2003) and Ai and Chen (2003).

Suppose that the observations f(Yi; Xi) : i = 1; :::; ng are drawn independently from the distribution

of (Y;X) with support Y�X ; where Y is a subset of RdY and X is a compact subset of RdX . Suppose

that the unknown distribution of (Y;X) satis�es the semiparametric conditional moment restrictions

given by (1), where g : Z �A ! Rdg is a known mapping, up to an unknown vector of parameters,

�0 � (�00; h00)0 2 A � ��H; and Z � (Y 0; X 0
z)
0 2 Y�XZ� Z �RdZ where XZ � X :We assume that

� � Rd� is compact with non-empty interior and that H � H1 � :::�Hdh is a space of continuous

functions. Since H is in�nite-dimensional, in constructing a feasible estimator we follow the sieve

literature (Grenander, 1981; Chen, 2005) by replacing H with a sieve space Hn� H1
n � ::: � Hdh

n

which is a computable and �nite-dimensional compact parameter space that becomes dense in H as

n increases.

Next, we introduce the series estimator used in the analysis (see Newey, 1997; Ai and Chen,

2003). For each l = 1; :::; dg; and for a given �; let fp0j(X); j = 1; 2; :::kng denote a sequence of

known basis functions (power series, splines, wavelets, etc.) and let pkn(X) � (p01(X); :::; p0kn(X))
0
:

Let further pkn(X) be a tensor-product linear sieve basis, which is a product of univariate sieves

over dX (see Ai and Chen, 2003, for details). Let P = (pkn(x1); :::; pkn(xn))0 be an (n� kn) matrix.

Consider the model (1) and denote the conditional mean function

m(X;�) � E [g (Z;�) jX]

=

Z
g (Z;�) dFY jX (29)

Let bm(X;�) � (bm1(X;�); :::; bmd�(X;�))
0: A consistent nonparametric linear sieve estimator of
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ml(X;�) is given by bml(X;�) = pkn(X)0b�l
where h in � = (�0; h0)0 is restricted to the sieve space Hn and b�l is an OLS estimate obtained by
regressing gl (Y;Xz; �) on pkn(X);

b�l = (P 0P )
�1
P 0gl (Z;�)

=
nX
j=1

pkn(xj)
0 (P 0P )

�1
gl (zj ; �) (30)

and hence

bml(xi; �) = bEZjX [gl (Z;�) jX = xi]

= pkn(xi)
0b�l

=

nX
j=1

pkn(xj)
0 (P 0P )

�1
pkn(xi)gl (zj ; �)

=
nX
j=1

wijgl (zj ; �)

after substituting from (30), l = f1; :::; dgg: In the vector form

bm(xi; �) = nX
j=1

wijg (zj ; �)

The weights are given by

wij = pkn(xj)
0 (P 0P )

�1
pkn(xi) (31)

and

�i =
nX
j=1

wij

=
nX
j=1

pkn(xj)
0 (P 0P )

�1
pkn(xi)

= i0P (P 0P )
�1
pkn(xi)

where i is a (n� 1)�vector of ones.

We now turn to the derivation of LWCEL under (1). The Lagrangian11 for the local semipara-

11As discussed above, omission of qij from the denominator of ln (�ij=qij) is inconsequential in the case of LWCEL.
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metric EL estimator is

max
pij

nX
i=1

nX
j=1

wij ln�ij s.t. �ij � 0;
nX
j=1

�ij = 1;
nX
j=1

g (zj ; �n)�ij = 0; for i; j = 1; :::; n

where �n is � restricted to the sieve space An: Then,

b�ij = wij

�i + �
0
ig (zj ; �n)

(32)

and for each �n 2 An; �i solves
nX
j=1

wijg (zj ; �n)

�i + �
0
ig (zj ; �n)

= 0 (33)

The Sieve-based Locally Weighted Conditional Empirical Likelihood (SLWCEL) evaluated at �n is

de�ned as

LSLWCEL(�n) =
nX
i=1

nX
j=1

wij ln

�
wij

�i + �
0
ig (zj ; �n)

�
where �i solves (33). The estimator of �0 is de�ned as

b�n = arg max
�n2An

LSLWCEL(�n) (34)

Solving (34) is equivalent to solving

b�n = arg max
�n2An

Gn(�n) (35)

where

Gn(�n) = �
1

n

nX
i=1

nX
j=1

wij ln
�
�i + �

0
ig (zj ; �n)

	
(36)

Implementing our estimator is straightforward. One advantage of the sieve approach is that

once h 2 H is replaced by hn 2 Hn; the estimation problem e¤ectively becomes a parametric one.

Commonly used statistical and econometric packages can then be used to compute the estimate.

From (33) it follows that

�i = arg max
�2Rdg

nX
j=1

wij ln f�i + �0g (zj ; �n)g (37)

This is a well-behaved optimization problem since the objective function is globally concave and

can be solved by a Newton-Raphson numerical procedure. The outer loop (35) can be carried out

using a numerical optimization procedure. For a relevant discussion of computational issues, see for

example Kitamura (2006, section 8.1).
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4 Consistency

In this section we present some asymptotic results for the smoothed empirical likelihood estimator

as de�ned in (34). The general approach follows closely the one developed in KTA. The following

de�nitions, adopted from Ai and Chen (2003), are introduced:

De�nition 4.1 A real-valued measurable function g(Z;�) is Hölder continuous in � 2 A if there

exist a constant � 2 (0; 1] and a measurable function c2(Z) with E
�
c2(Z)

2jX
�
bounded, such that

jg(Z;�1)� g(Z;�2)j � c2(Z) k�1 � �2k� for all Z 2 Z, �1; �2 2 A:

The Hölder space of smooth functions �
(X ) of order 
 > 0 and the corresponding Hölder ball

�
c (X ) � fg 2 �
(X ) : kgk�
 � c <1g with radius c are de�ned in Ai and Chen (2003), p. 1800.

De�nition 4.2 A real-valued measurable function g(Z;�) satis�es an envelope condition over � 2 A

if there exists a measurable function c1(Z) with E
�
c1(Z)

4
	
<1 such that jg(Z;�)j � c1(Z) for all

Z 2 Z and � 2 A:

The following Assumptions are made to facilitate the analysis:

Assumption 4.1 For each � 6= �0 there exists a set X� such that Pr fx 2 X�g ; and E [g (z; �) jx] 6=

0 for every x 2 X�:

Assumption 4.2 (i) The data f(Yi; Xi)
n
i=1g are i.i.d.; (ii) X is compact with nonempty interior;

(iii) the density of X is bounded and bounded away from zero.

Assumption 4.3 (i) The smallest and the largest eigenvalues of E
�
pkn(X)� pkn(X)0

�
are bounded

and bounded away from zero for all kn; (ii) for any g (�) with E
�
g(X)2

�
<1, there exists pkn(X)0�

such that E
h�
g(X)� pkn(X)0�

	2i
= o(1).

Assumption 4.4 (i) There is a metric k�k such that A � ��H is compact under k�k ; (ii) for any

� 2 A, there exists �n� 2 An � ��Hn such that k�n�� �k = o(1):

Assumption 4.5 (i) E
h
jg (Z;�0)j2 jX

i
is bounded; (ii) g (Z;�) is Hölder continuous in � 2 A:

Let k1n � dim(Hn) denote the number of unknown sieve parameters in hn 2 Hn:

Assumption 4.6 k1n !1; kn !1; kn=n! 0 and dgkn � d� + k1n:

Assumption 4.7 E kxk1+% <1 for some % <1:

Assumption 4.8 E fsup�2A kg (Z;�)k
mg <1 for some m � 8:
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Assumption 4.1 is Assumption 3.1 in KTA that guarantees identi�cation of �0: Assumptions 4.2�

4.6 are essentially the same conditions imposed in Newey and Powell (2003) and Ai and Chen (2003).

Assumption 4.2 rules out time series observations. Assumptions 4.3�4.6 are typical conditions im-

posed for series (or linear sieve) estimation of conditional mean functions. Assumption 4.4(i) restricts

the parameter space as well as the choice of the metric k�k : It is a commonly imposed condition in

the semiparametric econometrics literature, and is satis�ed when the in�nite-dimensional parameter

space H consists of bounded and smooth functions (see Gallant and Nychka, 1987). Assumption

4.4(ii) is the de�nition of a sieve space. Assumption 4.5 is typically imposed on the residual function

in the literature on parametric nonlinear estimation. Assumption 4.6 restricts the growth rate of

the number of basis functions in the series approximation. Assumption 4.7 is Assumption 3.4(ii) in

KTA, used in Lemma A.1. Assumption 4.8 is Assumption 3.2 in KTA used in Lemma A8.

The following Theorem provides a consistency result:

Theorem 4.1 Let the Assumptions 4.1�4.7 hold. Then kb�n � �0k = op(1):

The proof is derived in the Appendix. The proof proceeds along the lines of KTA. However, the

fact that the sieve parameter space Hn grows dense in an in�nite-dimensional space H now needs

to be addressed. The inclusion of �i in the LWCEL objective function compared to KTA�s CEL

also complicates matters. We achieve some simpli�cations arising from not having to make use of

truncation arguments for kernels. Since we are not dealing with kernels, unlike KTA we can not use

Lemma B.1 of Ai (1997) to determine uniform convergence rates. For this purpose, we specialize

Lemma A.1(A) of Ai and Chen (2003), derived for the combined space X �A; to the space X only,

with g (zj ; �) evaluated at a given �xed �: Since we do not have to account for growth restrictions

on the parameter space in this Lemma, we are able to obtain faster convergence rate e�1n than Ai
and Chen (2003).

5 Convergence Rates

Theorem 4.1 established consistency of b�n = (b�n;bhn) under a general metric k�k constrained only
by Assumption 4.4(i). In order to ascertain asymptotic normality of b�n; one typically needs thatb�n converge to �0 at a rate faster than n�1=4 (see e.g. Newey, 1994). As noted by Newey and
Powell (2003), for model (1) where the unknown h0 can depend on endogenous variables Y; it is

generally di¢ cult to obtain fast convergence rate under k�k : Nonetheless, as demonstrated by Ai

and Chen (2003), in simultaneous estimation of (b�n;bhn) it is su¢ cient to show fast convergence rate
of b�n = (b�n;bhn) for only a special case of k�k to derive asymptotic normality of b�n: Naturally, we
will also follow this approach. However, since the objective function of the problem analyzed in

Ai and Chen (2003) is di¤erent from ours, our metric also di¤ers. While Ai and Chen (2003) used
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a quadratic form type metric, we perform the analysis under the Fisher metric k�kF which is the

natural choice for a likelihood-based scenario.

Some additional notation is necessary to introduce the Fisher metric. The properties of A and

the notation for pathwise derivatives established in this paragraph borrows from Ai and Chen (2003).

Suppose the parameter space A is connected in the sense that for any two points �1; �2 2 A there

exists a continuous path f�(t) : t 2 [0; 1]g in A such that �(0) = �1 and �(1) = �2: Also, suppose

that A is convex at the true value �0 in the sense that, for any � 2 A; (1 � t)�0 + t� 2 for small

t > 0: Furthermore, suppose that for almost all Z; g(Z; (1� t)�0 + t�) is continuously di¤erentiable

at t = 0: Denote the �rst pathwise derivative at the direction [�� �0] evaluated at �0 by

dg(Z;�0)

d�
[�� �0] �

dg(Z; (1� t)�0 + t�)
dt

����
t=0

a.s. Z

and for any �1; �2 2 A denote

dg(Z;�0)

d�
[�1 � �2] � dg(Z;�0)

d�
[�1 � �0]�

dg(Z;�0)

d�
[�2 � �0]

dm(X;�0)

d�
[�1 � �2] � E

�
dg(Z;�0)

d�
[�1 � �2]

����X� (38)

Furthermore, let

' (X;Z; �) � ln
�
�x + �

0(X;�)g (Z;�)
	

(39)

 (X;�) � E [' (X;Z; �) jX] (40)

where �x stands for �i evaluated at a generic X = x: For any �1; �2 2 A the Fisher norm k�kF (see

e.g. Wong and Severini, 1991, p. 607) is de�ned12 as

k�1 � �2kF =

vuutE

(
E

"�
d' (X;Z; �0)

d�
[�1 � �2]

�0
d' (X;Z; �0)

d�
[�1 � �2]

�����X
#)

(41)

Let V denote the closure of the linear span of A� f�0g under the metric k�kF : Then
�
V; k�kF

�
is

a Hilbert space with the inner product

hv1; v2iF = kv1 � v2k
2
F

We will now show that our metric k�1 � �2kF is equivalent to a conditional version of the metric
12We use the inner product notation for the pathwise derivatives to explicitly account for the special case when

� � � 2 Rd� :
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used in Ai and Chen (2003). Let

s(X;Z; �) � �0(�;X)g (Z;�)

$ (X;Z; �) � d' (X;Z; �0)

ds(X;Z; �)

=
1

�x + s(X;Z; �)

where s(X;Z; �) and $ (X;Z; �) is scalars. Note that from the conditional moment restriction (1),

under the expectation taken over Z conditional on X

�(X;�0) = 0 (42)

which means that the constraints on FY jX imposed by (1) are satis�ed with equality and the Lagrange
multiplier �(X;�0) takes on the value 0: This is also apparent from Lemma A.8. We have

E

��
d' (X;Z; �0)

d�
[�1 � �2]

�0 d' (X;Z; �0)
d�

[�1 � �2]
����X�

= E

�
$ (X;Z; �0)

2

�
ds(X;Z; �0)

d�
[�1 � �2]

�0 ds(X;Z; �0)
d�

[�1 � �2]
����X�

= E

24 $ (X;Z; �0)
2
�
�0(X;�0)

dg(Z;�0)
d�

[�1 � �2] + g(Z;�0) d�
0(X;�0)
d�

�0
�
�
�0(X;�0)

dg(Z;�0)
d�

[�1 � �2] + g(Z;�0) d�
0(X;�0)
d�

�
������X
35

= A1 +A2 +A3 +A4 (43)

where

A1 = E

�
$ (X;Z; �0)

2

�
dg(Z;�0)

d�
[�1 � �2]

�0
�(X;�0)�

0(X;�0)
dg(Z;�0)

d�
[�1 � �2]

����X�
A2 = E

�
$ (X;Z; �0)

2

�
d�(X;�0)

d�
[�1 � �2]

�0
g(Z;�0)�

0(X;�0)
dg(Z;�0)

d�
[�1 � �2]

����X�
A3 = E

�
$ (X;Z; �0)

2

�
dg(Z;�0)

d�
[�1 � �2]

�0
�0(X;�0)g(Z;�0)

d�0(X;�0)

d�
[�1 � �2]

����X�
A4 = E

�
$ (X;Z; �0)

2

�
d�(X;Z; �0)

d�
[�1 � �2]

�0
g(Z;�0)g

0(Z;�0)
d�0(X;Z; �0)

d�
[�1 � �2]

����X� (44)

Using (42) yields A1 = A2 = A3 = 0. By the de�nition of �(X;�) in (37), �(X;�) is a function of

g(Z;�) which is a function of �: Moreover, �(X;�) is a function of � only via g(Z;�): Hence, under

the expectation taken over Z conditional on X

d�(X;�)

d�
[�1 � �2] =

d�(X;�)

dg(Z;�)

dg(Z;�)

d�
[�1 � �2] (45)

In particular, under the expectation over Z conditional on X; �(X;�) is de�ned implicitly as a

function of g(Z;�) by the relation

F (�; g) = E

�
g(Z;�)

�x + �
0(X;�)g(Z;�)

����X� = 0
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By the Implicit Function Theorem

d�(X;�)

dg(Z;�)
=

@F (�; g)=@g(Z;�)

@F (�; g)=@�(X;�)

= E

"
(�x + �

0(X;�)g(Z;�)� �0(X;�)g(Z;�))=
�
�x + �

0(X;�)g(Z;�)
�2

�g(Z;�)g0(Z;�)=
�
�x + �

0(X;�)g(Z;�)
�2

�����X
#

= ��x fE [g(Z;�)g0(Z;�)jX]g�1

= ��x�(X;�)�1 (46)

Substituting (46) into (45) we obtain

d�(�;X;Z)

d�
[�1 � �2] = ��x�(X;�)�1

dg(Z;�)

d�
[�1 � �2] (47)

Substituting (47) into (44) yields

A4 = �2xE

"
$ (X;Z; �0)

2

�
dg(Z;�0)

d�
[�1 � �2]

�0
W0(X;Z)

�1 dg(Z;�0)

d�
[�1 � �2]

�����X
#

where

W0(X;Z)
�1 � �(X;�0)�1g(Z;�0)g0(Z;�0)�(X;�0)�1

Using (42) in $ (X;Z; �0) results in

A4 = E

"�
dg(Z;�0)

d�
[�1 � �2]

�0
W0(X;Z)

�1 dg(Z;�0)

d�
[�1 � �2]

�����X
#

(48)

Substituting (48) into (44) and (41) yields

k�1 � �2kF =

vuutE

(
E

"�
dg(Z;�0)

d�
[�1 � �2]

�0
W0(X;Z)�1

dg(Z;�0)

d�
[�1 � �2]

�����X
#)

(49)

The expression (49) can be viewed as a conditional version of the metric used in Ai and Chen

(2003). In particular, if dg(Z;�0)d� [�1 � �2] and g(Z;�0) are independent conditional on X, then (49)

reduces to

s
E

��
dm(X;�0)

d� [�1 � �2]
�0
�(X;�0)�1

dm(X;�0)
d� [�1 � �2]

�
which is the metric used in Ai

and Chen (2003) with the e¢ cient weighting matrix.
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Note that by (42)

E

�
d' (X;Z; �0)

d�
[�1 � �2]

����X� = �0(X;�0)E

�
dg(Z;�0)

d�
[�1 � �2]

����X�
+
d�0(X;�0)

d�
[�1 � �2]E [g(Z;�0)jX]

= 0

and hence

E

"�
d' (X;Z; �0)

d�
[�1 � �2]

�0
d' (X;Z; �0)

d�
[�1 � �2]

�����X
#
= V ar

�
d' (X;Z; �0)

d�
[�1 � �2]

����X�

implying

k�1 � �2kF =

s
E

�
V ar

�
d' (X;Z; �0)

d�
[�1 � �2]

����X��
hv; viF = E

�
V ar

�
d' (X;Z; �0)

d�
[v]

����X��

We will now introduce the conditions under which the desired convergence rates are derived.

Assumption 5.1 (i) A is convex in �0, and g(Z;�) is pathwise di¤erentiable at �0; (ii) for some

c1; c2 > 0;

c1E
�
m(X;�n)

0W0(X)
�1m(X;�n)

	
� k�n � �0k2F

� c2E
�
m(X;�n)

0W0(X)
�1m(X;�n)

	
holds for all �n 2 An with k�n � �0k = o(1):

Assumption 5.2 For any eg(�) in �
c (X ) with 
 > dx=2; there exists pkn(�)0� 2 �
c (X ) such that

supX2X
��eg(X)� pkn(X)0��� = O(k

�
=dx
n ); and k�
=dxn = o(n�1=4):

Assumption 5.3 (i) Each element of g(Z;�) satis�es an envelope condition in �n 2 An; (ii) each

element of m(X;�) 2 �
c (X ) with 
 > dx=2; for all �n 2 An:

In line with Ai and Chen (2003), let �0n � supX2X


pkn(X)



E
; which is nondecreasing in kn:

Denote N(�;An; k�k) as the minimal number of radius � covering balls of An under the k�k metric.

Assumption 5.4 k1n � lnn� �20n � n�1=2 = o(1):

Assumption 5.5 ln
�
N("1=�;An; k�k)

�
� const:� k1n � ln(k1n="):

Assumption 5.6 �0(X) � V ar [g(Z;�0)jX] is positive de�nite for all X 2 X :
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The following result gives the convergence rate of the SLWCEL estimator under the Fisher metric.

The proof is provided in the Appendix.

Theorem 5.1 Under Assumptions 4.1 - 5.6, we have kb�n � �0kF = op(n
�1=4):

6 Asymptotic Normality

To derive the asymptotic distribution of b�n; it su¢ ces to derive the asymptotic distribution of
f (b�n) � � 0b�n for any �xed non-zero � 2 Rd� : The di¤erence f (b�n) � f (�0) is linked to the

pathwise directional derivatives of the sample criterion function via the inner product involving

a Riesz representor v�: Application of a Central Limit Theorem for triangular arrays of functions

indexed by a �nite-dimensional parameter then shows the desired result. In this Section we introduce

the necessary notation, compute the Riesz representor v� and state the Theorem of
p
n-normality

of b�n:
Since f (�) � � 0� is a linear functional on V, it is bounded (i.e. continuous) if and only if

sup
0 6=���02V

jf (�)� f (�0)j
k�� �0kF

<1

The Riesz Representation Theorem states that there exists a representor v� 2 V satisfying

kv�kF � sup
0 6=���02V

jf (�)� f (�0)j
k�� �0kF

(50)

and

f (�) = f (�0) + hv�; �� �0iF

Hence,

f (b�n)� f (�0) = hv�; b�n � �0iF
Let

dg(Z;�0)

d�
[�� �0] �

dg(Z;�0)

d�0
(� � �0) +

dg(Z;�0)

dh
[h� h0] (51)

For any h 2 H; there exists wj(�) 2 W for j = 1; :::; d� such that

h� h0 = � (w1; :::; wd� ) (� � �0) = �w (� � �0)
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De�ne

dg(Z;�0)

dh
[w] �

�
dg(Z;�0)

dh
[w1] ; :::;

dg(Z;�0)

dh
[wd� ]

�
Dw(Z) � dg(Z;�0)

d�0
� dg(Z;�0)

dh
[w] (52)

where Dw(Z) is a dg � d��matrix valued function. De�nitions (51) and (52) imply

dg(Z;�0)

dh
[h� h0] = �

dg(Z;�0)

dh
[w] (� � �0)

and hence

Dw(Z) (� � �0) =
dg(Z;�0)

d�0
(� � �0)�

dg(Z;�0)

dh
[w] (� � �0)

=
dg(Z;�0)

d�0
(� � �0) +

dg(Z;�0)

dh
[h� h0]

=
dg(Z;�0)

d�
[�� �0] (53)

By de�nition of k�kF this implies

k�� �0k2F = E

(
E

"�
dg(Z;�0)

d�
[�� �0]

�0
W0(Z;X)

�1
�
dg(Z;�0)

d�
[�� �0]

������X
#)

= E
�
E
�
(� � �0)0Dw(Z)

0W0(Z;X)
�1Dw(Z) (� � �0)

��X�	 (54)

Let w� =
�
w�1 ; :::; w

�
d�

�
be the solution to

inf
wj2W;j=1;:::;d�

E
�
E
�
(� � �0)0Dw(Z)

0W0(Z;X)
�1Dw(Z) (� � �0)

��X�	 (55)

where "inf" is in positive semide�nite matrix sense. Using the de�nitions of w�; f (�) ; (50) and (54)

kv�k2F � sup
0 6=���02V

jf (�)� f (�0)j2

k�� �0k2F

=
(� � �0)0 �� 0 (� � �0)

(� � �0)0E fE [Dw(Z)0W0(Z;X)�1Dw(Z)jX]g (� � �0)
= � 0

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (56)

where v� � (v�� ; v�h) 2 V: By the de�nition of w�; v�h = �w� � v�� : From this and (53) we have

dg(Z;�0)

d�
[v�] = Dw�(Z)v

�
� (57)
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Let

v�� =
�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (58)

Substituting (58) into the de�nition of k�k2F in (41) via the expression for (57) yields

kv�k2F = E

(
E

"�
dg(Z;�0)

d�
[v�]

�0
W0(Z;X)

�1
�
dg(Z;�0)

d�
[v�]

������X
#)

= E
�
E
�
(Dw�(Z)v

�
�)
0
W0(Z;X)

�1 (Dw�(Z)v
�
�)
��X�	

= v�0� E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	 v��
= � 0

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1
�E

�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	
�
�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 �
= � 0

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 �
which matches (56) and thus validates (58) shown unique by the Riesz Representation Theorem.

The following additional conditions correspond to Assumptions 4.1-4.3 in Ai and Chen (2003)

and are su¢ cient for the
p
n-normality of b�n:

Assumption 6.1 (i) E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	 is positive de�nite; (ii) �0 2 int(�);

(iii) �0(X) � V ar[g(Z;�0)jX] is positive de�nite for all X 2 X :

Assumption 6.2 There is a v�n = (v
�
� ;��nw� � v��) 2 An � �0 such that kv�n � v�kF = O(n�1=4):

Following Ai and Chen (2003), let N0n � f�n 2 An : k�n � �0k = o(1); k�n � �0kF = o(n�1=4)g

and de�ne N0 the same way with An replaced by A: Also, for any v 2 V; denote

dg(Z;�)

d�
[v] � dg(Z;�+ tv)

dt

����
t=0

a.s. Z

and
dm(Z;�)

d�
[v] � E

�
dg(Z;�)

d�
[v]

����X� a.s. Z

Assumption 6.3 For all � 2 N0; the pathwise �rst derivative (dg(Z;�(t))=d�)[v] exists a.s. Z 2 Z:

Moreover, (i) each element of (dg(Z;�(t))=d�)[v�n] satis�es the envelope condition and is Hölder

continuous in � 2 N0n; (ii) each element of (dm(Z;�(t))=d�)[v�n] is in �
c (X ); 
 > dx=2 for all

� 2 N0:

The following result is proved in the Appendix.
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Theorem 6.1 Under Assumptions 4.1-4.8, 5.1-5.6 and 6.1-6.3,
p
n(b�n � �0) d�! N (0;
) where


 = E

�
V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X��
=

�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 (59)

Note that if Dw(Z) and g(Z;�0) are independent conditional on X then the expression (59)

reduces to the asymptotic variance-covariance formula (22) in Ai and Chen (2003) that is shown

to be asymptotically e¢ cient by these authors. A consistent estimator of 
 can be obtained in the

following way: First estimate W0(xi; zj)
�1 with

wij = pkn(xj)
0 (P 0P )

�1
pkn(xi)

b�(xi; b�n) =
nX
j=1

wijg(zj ; b�n)g0(zj ; b�n)
cW0(xi; zj)

�1 = b�(xi; b�n)�1g(zj ; b�n)g0(zj ; b�n)b�(xi; b�n)�1 (60)

Then for each s = 1; :::; d� estimate w�s with bw�s which is a solution to the minimization problem
min
ws2Hn

1

n

nX
i=1

nX
j=1

wij

�
dg(zj ; b�n)

d�s
� dg(zj ; b�n)

dh
[ws]

�0cW0(zj ; xi)
�1

�
�
dg(zj ; b�n)

d�s
� dg(zj ; b�n)

dh
[ws]

�

and let bw� = ( bw�1 ; :::; bw�d� ) implying
bD bw�(zj) = dg(zj ; b�n)

d�s
� dg(zj ; b�n)

dh
[ bw�] (61)

Finally, use (60) and (61) in a �nite-sample analog of (59) to obtain

b
 =
24 1
n

nX
i=1

nX
j=1

w0ij
bD bw�(zj)0cW0(xi; zj)

�1 bD bw�(zj)
35�1

We note that for linear sieves computing bw�s does not require nonlinear optimization and thus the
covariance estimator is easy to compute.

7 Simulation

To evaluate the �nite sample performance of the estimator b�LWCEL de�ned in (28) against KTA�sb�CEL we have conducted a small scale pilot Monte Carlo (MC) simulation study aimed at maximum
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simplicity of the simulation design. More extensive MC analysis assessing the performance of LWCEL

and SLWCEL is currently being conducted and will be included in further updates of the paper.

We set Z = X and Y = �1X + �2X
2 + �3X

3 + e with heteroskedastic e = 0:5ujXj; u = U(�5; 5):

A random sample N = 100 of X~N(0; 2) was truncated at �1 and 1 and spread over the interval

[�4; 4] to avoid far outliers. The true parameter values were set at �1 = �0:2; �2 = 0:1; �3 = 0:3:

A typical data draw looks as follows:

Figure 1: Sample Simulated Data

­ 2 0

­ 1 0

0

1 0

2 0

3 0

Y

­ 4 ­ 2 0 2 4
X

In order to deal with possible negative arguments in the log function, we followed the approach

suggested by Owen (2001) cited in Kitamura (2006) (p. 51): for a small number � = 0:2 we used

the objective function

log� y =

8<: log(y) if y > �

log(�)� 1:5 + 2y=� � �2=2�2 if y � �

Indeed, the proportion of y � � in the overall sample was 6:6 � 10�3 and 4:7 � 10�3 for b�LWCEL

and b�CEL; respectively. The Nadaraya-Watson kernel estimator (Pagan and Ullah, 1999, p.86) with
the Gaussian kernel, employing the Silverman�s rule of thumb for the bandwidth determination

(Silverman, 1986, p.45), was used to calculate wij the case of b�CEL: Thus each i-th local conditional
empirical likelihood of b�CEL was normalized with its corresponding PN

j=1 wij in the denominator

of the Nadaraya-Watson kernel estimator. In contrast, the denominator of the Nadaraya-Watson

kernel estimator was replaced with n�1
PN

i=1

PN
j=1 wij for the case of b�LWCEL: This is equivalent

(up to a constant of proportionality) to weighting each i-th local conditional empirical likelihood ofb�LWCEL with �i as de�ned in (17). We compared bias, variance and mean-square error over 100

MC iterations on the three estimated coe¢ cients �1; �2 and �3: The results are as follows:
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Table 1: Simulation Results

Criterion Estimate CEL LWCEL

Bias b�1 �9:100� 10�2 �8:619� 10�2b�2 1:436� 10�2 1:471� 10�2b�3 1:050� 10�2 9:416� 10�3

Variance b�1 8:297� 10�3 6:189� 10�3b�2 2:474� 10�3 2:351� 10�3b�3 4:202� 10�4 3:916� 10�4

MSE b�1 1:652� 10�2 1:362� 10�2b�2 2:681� 10�3 2:568� 10�3b�3 5:304� 10�4 4:802� 10�4

Both estimators performed relatively well under the simulation scenario which can be attributed

to the relatively well-behaved nature of the data. Nonetheless, the b�LWCEL improved on the b�CEL
in all cases, barring one bias term. The values of �i were also retained as an interesting byproduct of

the b�LWCEL estimation procedure, weighting individual local conditional empirical log likelihoods.

Naturally, their magnitude follows the density of the data juxtaposed against �i in Figure 2:

Figure 2: Plot of �i against xi

0

. 5

1

1 . 5

­ 4 ­ 2 0 2 4
X

s i g m a k d e n s i t y   X

8 Conclusion

In this paper we propose a new form of the Conditional Empirical Likelihood (CEL), the Locally

Weighted CEL (LWCEL) estimator for models of conditional moment restrictions that contain �nite

dimensional unknown parameters �. This estimator extends the CEL analyzed by Kitamura et al.

(2004). We construct the CEL dual MD global objective function with a weighting scheme con-
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taining two new features: the scheme accounts for the relative importance of each local discrepancy

measure in the overall objective function, and adapts to local inhomogeneities in the data. In a

Monte Carlo study, we show that the resulting estimator exhibits better �nite-sample properties in

the �nite-dimensional case E [g (Z; �0) jX] = 0 than found in the previous literature. We further

extend the LWCEL estimator to the semiparametric environment de�ned by models of conditional

moment restrictions E [g (Z;�0) jX] = 0 containing both � and in�nite dimensional unknown func-

tions h:We establish consistency of the new estimator b�n, convergence rates of b�n under the Fisher
norm, and asymptotic normality of the �nite-dimensional component b�n. The new Sieve-based

LWCEL estimator (SLWCEL) is a direct alternative to the GMM-type sieve minimum distance es-

timators considered by Ai and Chen (2003) and Newey and Powell (2003). As shown by Newey

and Smith (2004), GEL-type estimators, such as EL, outperform the GMM estimator in terms of

higher-order properties in parametric models E [g (Z; �0) jX] = 0. We conjecture that a similar type

of improvements is likely to occur also in the semiparametric context of E [g (Z;�0) jX] = 0.
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Appendix 1: Proofs of Main Results

Discussion of Consistency
In outlining our consistency proof, we follow the discussion as given by KTA and extend it to our case
of in�nite dimensional parameter space. For a standard extremum estimation procedure (for example via
maximization), consistency can be shown by considering the sample objective function and its population
counterpart and arguing in the following manner. Consider an arbitrary neighborhood of the true parameter
value. Check that:

(A) Outside the neighborhood, the sample objective function is bounded away from the maximum of the
population objective function achieved at the true parameter value, w.p.a. 1:

(B) The maximum of the sample objective function is by de�nition not smaller than its value at the true
parameter value. The latter converges to the population objective function evaluated at the true value, due
to the LLN.

By (A) and (B) the maximum of the sample objective function is unlikely to occur outside the (arbitrarily
de�ned) neighborhood for large samples. This shows the consistency.

While Newey and Powell (2003) were able to recast their estimator as an argmin of a quadratic form
delivering (A), in Chen (2005) (Theorem 3.1) (A) is assumed. In our problem, however, such approach cannot
be applied directly. Speci�cally, showing (A) is problematic here, since the objective function Gn de�ned
in (36) contains the Lagrange multiplier �(�n) which is endogenously determined at each �n: Therefore, in
our proof we follow the KTA approach binding Gn with a dominating function and then check (A) for the
latter by comparing the convergence rates of Gn at �0 and outside a ��neighborhood of �0: The convergence
rate of Gn(�0) is a new result which di¤ers from the one of KTA since the de�nition of our Gn contains
an additional term �i arising from the use of a di¤erent weighting scheme and due to our estimator being
based on series rather than kernel weights. In our proof, a Uniform Law of Large Numbers (ULLN) for the
dominating function is used only for �n outside the ��neighborhood of �0:

Regarding the complications incurred by considering an in�nite dimensional parameter space �, we note
that our consistency proof di¤ers from the ones used in Newey and Powell (2003) (Theorem 1) and Chen
(2005) (Theorem 3.1) for M-estimators with �. Using a ULLN over the sieve space, these authors show
that the sample objective function Gn and its expectation are, w.p.a 1; within a ��neighborhood of each
other when evaluated at a parameter e�n in the sieve space that converges to the true parameter value �0.
Existence of such parameter e�n is guaranteed by the de�nition of the sieve space. This approach, however,
would necessitate evaluating the convergence rates of Gn(e�n) to its expectation which is problematic in our
saddle-point case since it is di¢ cult to capture the behavior of the endogenous �i(�) away from �0: Recall
that b�n is de�ned as maximizing Gn(�n) over the sieve space An and thus using Gn(�); � 2 A for estimation
purposes would yield an unfeasible estimator. Nonetheless, the function g(zj ; �) and hence the functions
Gn(�) and �n(xi; �) can theoretically be evaluated at a generic parameter value � 2 A not restricted to the
sieve space. Hence the asymptotic rate of convergence of Gn(�0) at the true parameter value can be derived
to facilitate asymptotic analysis.

Further Notation
Let us introduce some additional notation. Let k�kE denote the Euclidean norm. De�ne

ai � �i � 1

=

nX
j=1

wij � 1

= i0P
�
P 0P

��1
pkn(xi)� 1

For generic n vectors z and a vector x we drop the subscript i and use

ax � i0P
�
P 0P

��1
pkn(x)� 1 (62)

Further de�ne B(�0; �) and Bn(�0; �) as ��neighborhoods around �0 with B(�0; �) � A and Bn(�0; �) � An;
respectively. Consider the function  (X;�) as de�ned in (40). Denote

 n(xi; �) �
nX
j=1

wij' (xi; zj ; �)

=

nX
j=1

wij ln
�
�i + �0ig (zj ; �)

	
(63)
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Gn(�n) � � 1
n

nX
i=1

 n(xi; �)

= � 1
n

nX
i=1

nX
j=1

wij' (xi; zj ; �)

= � 1
n

nX
i=1

nX
j=1

wij ln
�
�i + �0ig (zj ; �n)

	
(64)

�n(xi; �) �
nX
j=1

wijg(zj ; �)g
0(zj ; �) (65)

�(X;�) � EZ [�n(X;�)]

and recall the de�nition of �0(X) � V ar[g(Z;�0)jX] in Assumption 6.1 (iii).

Main Proofs
Proof of Theorem 4.1. Following KTA, in the asymptotic analysis we will replace �i(�) by

u (xi; �) =
E [g (z; �) jxi]

(1 + kE [g (z; �) jxi]k)

For a constant ec 2 (0; 1) de�ne a sequence of truncation sets
Cn =

�
z : sup

�2A

��ax + u0 (x; �n) g (z; �n)
�� � ecn1=m� (66)

and let
sn � n�1=m

�
ax + u0 (x; �n) g (z; �n)

�
I fz 2 Cng (67)

Let

qn (x; z; �n) = � log
�
1 + n�1=m

�
ax + u0 (x; �n) g (z; �n)

�
I fz 2 Cng

�
= � log (1 + sn)

The modi�ed objective function is

Qn(�n) =
1

n

nX
i=1

nX
j=1

wijqn (xi; zj ; �n) (68)

Note that
Gn(�n) � Qn(�n) (69)

for all �n 2 An by the optimality of �i:
Then by the Taylor series expansion for logarithms

qn(x; z; �n) = � log (1 + sn)

= �sn +
es2n
2

= �sn +
s2n

2(1� tsn)

= �n�1=m
�
ax + u0 (x; �n) g (z; �n)

�
I fz 2 Cng+

s2n
2(1� tsn)
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= n�1=m
�
ax + u0 (x; �n) g (z; �n)

�
� n�1=m

�
ax + u0 (x; �n) g (z; �n)

�
�n�1=m

�
ax + u0 (x; �n) g (z; �n)

�
I fz 2 Cng+

s2n
2(1� tsn)

= �n�1=m
�
ax + u0 (x; �n) g (z; �n)

�
+n�1=m

�
ax + u0 (x; �n) g (z; �n)

�
(1� I fz 2 Cng) +

s2n
2(1� tsn)

= �n�1=m
�
ax + u0 (x; �n) g (z; �n)

�
+Rn(t; ax; �n) (70)

where

Rn(t; ax; �n) = n�1=m
�
ax + u0 (x; �n) g (z; �n)

�
(1� I fz 2 Cng)

+
n�2=m [ax + u0 (x; �n) g (z; �n)]

2 I fz 2 Cng
2(1� tn�1=m [ax + u0 (x; �n) g (z; �n)] I fz 2 Cng)2

Note that, by the triangle and Cauchy-Schwarz inequalities

jRn(t; ax; �n)j � n�1=m
�
jaxj+



u0 (x; �n)

 kg (z; �n)k� (1� I fz 2 Cng)
+
n�2=m

h
a2x + 2 kaxk ku0 (x; �n)k kg (z; �n)k+ ku0 (x; �n)k2 kg (z; �n)k2

i
I fz 2 Cng

2(1� tn�1=m [ax + u0 (x; �n) gn (z; �n)])2

and by ku0 (x; �n)k < 1 we obtain

jRn(t; ax; �n)j � n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+
n�2=m

�
a2x + 2ax kg (z; �n)k+ kg (z; �n)k2

�
2(1� tn�1=m [ax + u0 (x; �n) gn (z; �n)])2

From (66) it follows that

ec � n�1=m sup
�2A

��ax + u0 (x; �n) g (z; �n)
��

� n�1=m
��ax + u0 (x; �n) g (z; �n)

��
� tn�1=m

��ax + u0 (x; �n) gn (z; �n)
��

and hence

jRn(t; ax; �n)j � n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+
n�2=m

�
a2x + 2ax kg (z; �n)k+ kg (z; �n)k2

�
2(1� ec)2

= n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+n�2=m
a2x

2(1� ec)2 + n�2=m
�
2ax kg (z; �n)k+ kg (z; �n)k2

�
2(1� ec)2

taking sup over A we obtain

sup
�2A

jRn(t; ax; �n)j � n�1=m
�
jaxj+ sup

�2A
kg (z; �n)k

�
(1� I fz 2 Cng) + n�2=m

a2x
2(1� ec)2

+
n�2=m

�
2ax sup�2A kg (z; �n)k+ sup�2A kg (z; �n)k

2�
2(1� ec)2 (71)

In view of (70) and (71) approximate n1=mQn(�n) by n1=mQn(�n) where

Qn(�n) = �
1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi] (72)
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Lemma A.2 shows that

n1=mQn(�n) = n1=mQn(�n) + op(1) uniformly in �n 2 An (73)

Next, we will apply a uniform law of large numbers to n1=mQn(�) over the whole parameter space A.
Under Assumptions 4.4(i), 4.5, and 4.6 E [g (z; �) jxi] is continuous in � 2 A by Corollary 4.2 of Newey
(1991), and so is

�u0 (xi; �)E [g (z; �) jxi] = �
kE [g (z; �) jxi]k2

1 + kE [g (z; �) jxi]k

Under Assumption 4.5(i) E
�
sup�2A j�u0 (xi; �)E [g (z; �) jxi]j

�
< 1. These, together with Assumption

4.4(i) satisfy the conditions of Lemma A2 of Newey and Powell (2003) implying the following uniform law
of large numbers:

sup
�2A

���n1=mQn(�)� E
�
�u0 (xi; �)E [g (z; �) jxi]

���� = op(1) (74)

where �E [�u0 (xi; �)E [g (z; �) jxi]] is continuous in A: This function is bounded above by

�E
�
u0 (xi; �)E [g (z; �) jxi]

�
� �E

�
I fx 2 XAg kE [g (z; �) jxi]k2 = (1 + kE [g (z; �) jxi]k)

�
(75)

By Assumption 4.1, the right-hand side of this inequality is strictly negative at each � 6= �0: Therefore,
by continuity of �E [u0 (xi; �)E [g (z; �) jxi]] and compactness of A; there exists a strictly positive number
H(�) such that

sup
�2AnB(�0;�)

E
�
�u0 (xi; �)E [g (z; �) jxi]

�
� �H(�) (76)

By (69), (73), and Assumption 4.4(ii) we have

sup
�n2An

n1=mGn(�n) � sup
�n2An

n1=mQn(�n) = sup
�n2An

n1=mQn(�n) + op(1) (77)

Together (77) with (76) and (74) imply that

Pr

(
sup

�n2AnnBn(�0;�)
Gn(�n) > �n�1=mH(�)

)
< �=2 eventually: (78)

Next, we evaluate Gn at the true value �0 and show that Gn(�0) converges to its expectation faster
than Gn(�n) with �n outside a ��neighborhood of �0 whose convergence rate is given in (78). Having
established this fact the conclusion of the proof is then straightforward. This approach was taken by KTA
for the �nite-dimensional parameter � and we extend it to the in�nite-dimensional parameter �: Our way
of deriving the rate of convergence of Gn(�0) di¤ers from KTA, though, because we do not make use of
kernel-based results. Rather, based on the series literature, we derive a new result for the rate of convergence
by specializing Lemma A.1(A) of Ai and Chen (2003) to our case.

Using Lemma A.4 and the fact

1 + ai =

nX
j=1

wij > 0 for each i

we obtain

Gn(�0) = � 1
n

nX
i=1

nX
j=1

wij log
�
1 + ai + �0i (�0) g (zj ; �0)

�
� � 1

n

nX
i=1

nX
j=1

wij
�
ai + �0i (�0) g (zj ; �0)

�
= � 1

n

nX
i=1

�0i (�0)

nX
j=1

wijg (zj ; �0)

� � max
1�i�n

k�i(�0)k max
1�i�n







nX
j=1

wijg (zj ; �0)
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Then by Lemmas A.1 and A8,

Gn(�0) =

�
op(e�1n) + op

�
1

n%�1=m

��2
= op(r

2
n)

where

rn � op(e�1n) + op

�
1

n%�1=m

�
with e�1n de�ned in Lemma A.7 and % de�ned in 4.7. Therefore, we have the following LLN

Pr
�
Gn(�0) < �r2nH(�)

	
< �=2 eventually: (79)

Denote

bQ1(�) � n1=mGn(�)bQ2(�) � r�2n Gn(�)

Q1(�) � �E
�
u0(x; �)E [g(z; �)jx]

�
Q2(�) � E bQ2(�)

where the last expectation is taken with respect to the joint density of (Y;X) : Under Assumptions 4.4(i),
4.5, and 4.6 Q2(�) is continuous in � 2 A by Corollary 4.2 of Newey (1991). Note that since n1=mr2n ! 0

and n1=mGn(�) � 0; by (74) and (77), w.p.a. 1,

r�2n > n1=mbQ2(�) � bQ1(�) (80)

If we retain �i(�) instead of u(x; �) in the de�nition of Qn(�) in (68), using �i(�) = Op(1) which follows
from (37), we can derive an analog of Qn(�) in (72) as

Q2n(�) = �
1

n1+1=m

nX
i=1

�0i(�)E [g (z; �) jxi]

By a corresponding analog of (73) and the moment restriction E [g (z; �0) jxi] = 0 it follows that Q2n(�0) = 0
and Q2(�0) = 0: Also, by (75) Q1(b�n) < 0 for each � 6= �0 and thus

Q1(b�n) � 0 (81)

Then, w.p.a. 1;

Q1(b�n) � bQ1(b�n) +H(�)=2 (82)

� bQ1(�0) +H(�)=2 (83)

� bQ2(�0) +H(�)=2 (84)

> Q2(�0) +H(�) (85)

= H(�) (86)

where (82) holds by (74) and (77), (83) holds by the de�nition of b�n; (84) by (80), (85) by LLN at �0 (79),
and (86) by Q2(�0) = 0. By (81) and � being arbitrary, taking H(�)! 0;

bQ1(b�n) p! 0

Then, using Assumption 4.4(ii), Pr
���� bQ1(b�)�Q2(�0)

��� � H(�)
�
! 0 and by (78) Pr (b�n 2 AnnBn (�0; �))!

0:
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Proof of Theorem 5.1.
In deriving the convergence rates under the Fisher norm k�kF we will proceed in a way that is similar to

the proof of Theorem 3.1 in Ai and Chen (2003). Speci�cally, we will use their Lemma A.1 and Corollary A.1
that hold for a generic function m(X;�) and the Euclidean metric. However, since our objective function
and metric di¤ers from the ones used by these authors, we need to derive the counterparts of their Corollaries
A.2 and B.1 for our case.

Recall the de�nition of Gn(�n) in (64)

Gn(�n) � �
1

n

nX
i=1

nX
j=1

wij ln
�
�i + �0ig (zj ; �n)

	
and de�ne

Gn(�n) � �
1

n

nX
i=1

E
�
ln
�
�i + �0ig (z; �n)

	
jxi
�

(87)

Let �0n = o(n�1=4) and denote �n0 = ��0 (the orthogonal projection of �0 onto the sieve space).

P
�
kb�n � �0kF � �0n

�
= P

0@ sup
fkb�n��0kF��0n;�n2Ang

Gn(�n) � Gn(�n0)

1A
For the sake of brevity, let "AC" stand for "Ai and Chen (2003)" for the remainder of the proof. Note

that Assumptions 3.1-3.2, 3.6-3.8 and 4.1(iii) in AC are equivalent to our Assumptions 4.2, 4.3, 5.2, 4.5, 4.6,
5.3-5.5 and 5.6, respectively. Assumption 3.3 in AC is implied by our Assumption 4.1 and the condition (1).
The analog of AC�s Assumption 3.4 for our �n(xi; �) de�ned in (65) is satis�ed by AC�s Corollary A.1(i).
Thus Assumptions of AC�s Lemma A.1 and Corollary A.1 are satis�ed.

Lemma B.1 states the counterparts of their AC�s Corollaries A.2 and B.1 for our case. We note that
condition (A) of our consistency proof was shown to hold for Gn(�n) in Theorem 4.1. Since eGn(�n) �
Gn(�n); by (77) the condition also holds for eGn(�n): Thus the identi�cation condition is satis�ed. Satisfying
Assumptions of Theorem 1 of Shen and Wong (1994) is also a necessary condition for AC�s Theorem 3.1.
Since the role of the pseudodistance in Theorem 1 of Shen and Wong (1994) is performed by our metric k�k2F
in a way topologically equivalent to the AC�s one, and the remaining AC�s Assumptions hold as described
above, this condition is also satis�ed. Invocation of AC�s Theorem 3.1, with their objective function and
metric replaced with ours, completes the proof.

Proof of Theorem 6.1.
Substituting (58) into (57) yields

dg(Z;�0)

d�
[v�] = Dw�(Z)

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (88)

Note that by the chain rule

d' (X;Z; �0)

d�
[v�] =

d' (X;Z; �0)

dg (Z;�)

dg (Z;�0)

d�
[v�] (89)

Using Lemma C.1 and (88) in (89), we obtain

d' (X;Z; �0)

d�
[v�] =

d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 � (90)

We will now check the conditions for Theorem 7.1 in Appendix 3 that is an extension of Theorem 1
of Shen (1997) to our conditional case. Lemma C.2 shows that under our Assumptions, Conditions A is
satis�ed. Since fg (z; �n) : �n 2 Ang � �
c (X ), Condition B follows directly from Lemma B.1. Since
kb�n � �0kF = op(n

�1=4); then �n = n�1=4 and hence for Condition C we require

sup
f�n2An:k�n��0k��ng

k"nu� � "nu
�
nk = Op(�

�1
n "2n)

= Op(n
�1=4)
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which is satis�ed by Assumption 6.2. Condition D follows from the smoothness of
d'(xi;zj ;�0)

d�
[� � �0] in

N0n: Condition F is satis�ed by the de�nition of f (b�n) � � 0b�n, ! = 1; and Assumption 6.2. Condition G is
satis�ed by Assumption 6.1.

By Theorem 7.1 in Appendix 3, for arbitrarily �xed � 2 Rd� with j� j 6= 0;

p
n� 0(b�n � �0)

d�! N(0;�v�)

where

�v� � E

�
V ar

�
d' (X;Z; �0)

d�

����X��
= � 0
� (91)

and hence p
n(b�n � �0)

d�! N(0;
)

Using (90) in (91) we obtain


 =
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1
�E

�
V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X��
�
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 (92)

Using Lemma C.1 and (92)


 =
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1
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Appendix 2: Auxiliary Results
A. CONSISTENCY

Lemma A.1 (B.3) Let Assumptions 4.5 and 4.7 hold. Then, pointwise for a given � 2 A;

max
1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 = op(e�1n) + op

�
1

n%�1=m

�

where e�1n is de�ned in Lemma A.7 and % in Assumption 4.7.
Proof. Decompose






nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 � max

1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 Ii;n

+ max
1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 max1�i�n

Ici;n

Note that he results of Lemma D.3 and D.5 in KTA hold also for wij as de�ned in this paper. Therefore

max
1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 max1�i�n

Ici;n = op

�
1

n%�1=m

�

Next, pick any � > 0; cn # 0; and observe that

Pr

(
max
1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 Ii;n > �cn

)
� Pr

(
sup
X2X







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 > �cn

)

Using Lemma A.7,

Pr

(
sup
X2X







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 > �cn

)
� �

if
cn = e�1n

where e�1n is de�ned in Lemma A.7. Hence
max
1�i�n







nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]





 Ii;n = op

�e�1n�
and the desired result follows.

Lemma A.2 (B.8) Let Assumptions 4.5 and 4.7 hold. Then

sup
�n2An

��Qn(�n)�Qn(�n)
�� = op(n

�1=m)

Proof. Substituting from (70) for qn (xi; zj ; �n) we obtain

n1=m sup
�n2An

����� 1n
nX
i=1

nX
j=1

wijqn (xi; zj ; �n) +
1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi]
�����

� n1=m sup
�n2An

����� 1n
nX
i=1

nX
j=1

wij
n
�n�1=m

�
ai + u0 (xi; �n) g (zj ; �n)

�o
+

1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi]
�����

+n1=m sup
�n2An

����� 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

�����
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= sup
�n2An

������ 1n
nX
i=1

nX
j=1

wijai +
1

n

nX
i=1

u0 (xi; �)E [g (z; �n) jxi]�
1

n

nX
i=1

nX
j=1

wiju
0 (xi; �n) g (zj ; �n)

�����
+n1=m sup

�n2An

����� 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

�����
� � sup

�n2An

����� 1n
nX
i=1

nX
j=1

wijai

�����+ sup
�n2An

1

n

nX
i=1






E [g (z; �n) jxi]�
nX
j=1

wijg (zj ; �n)







+n1=m sup

�n2An

����� 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

�����
The �rst term drops out by Lemma A.4, the second term is op(1) by Corollary A.1(i) in Ai and Chen

(2003), p. 1824, and the third term is op(1) by Lemma A.3.

Lemma A.3 Let Assumptions 4.5 and 4.7 hold. Then

n1=m sup
�n2An

����� 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

����� = op(1)

Proof. Note that by (71)

n1=m sup
�n2An

����� 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

�����
� 1

n1�1=m

nX
i=1

nX
j=1

wij sup
�n2An

jRn(t; ai; �n)j

� 1

n

nX
i=1

nX
j=1

wij

�
jaij+ sup

�n2An

kg (zj ; �n)k
�
(1� I fzj 2 Cng)

+
1

n1+1=m
1

2(1� ec)2
nX
i=1

a2i

nX
j=1

wij

+
1

n1+1=m

nX
i=1

nX
j=1

wij

�
2ai sup�n2An

kg (zj ; �n)k+ sup�2A kg (zj ; �n)k
2�

2(1� ec)2
= D1 +D2 +D3

By Assumption 4.5(i) and 4.4(ii), sup�n2An
kg (z; �n)k <1: By Lemma A.5 jaij <1 and hence by Lemma

A.6
1

n

nX
i=1

nX
j=1

wij

�
jaij+ sup

�n2An

kg (zj ; �n)k
�
= Op(1):

Since max1�j�n I fzj =2 Cng = op(1); D1 = op(1): By Lemma A.6 D2 = op(1):

D3 =
1

n1+1=m

nX
i=1

nX
j=1

wij

�
2ai sup�n2An

kg (zj ; �n)k+ sup�2A kg (zj ; �n)k
2�

2(1� ec)2
=

1

n1+1=m(1� ec)2
nX
i=1

nX
j=1

wijai +
1

n1+1=m

nX
i=1

nX
j=1

wij
sup�n2An

kg (zj ; �n)k2

2(1� ec)2
where the �rst part drops out by Lemma A.4 and the second part is op(1) by Assumption 4.5(i), 4.4(ii) and
Lemma A.6.

Lemma A.4 Under Assumptions 4.3 and 4.4, for wij de�ned in (31) and ai de�ned in (62), it holds that

1

n

nX
i=1

nX
j=1

wijai = 0
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Proof.

1

n

nX
i=1

nX
j=1

wijai =
1

n

nX
i=1

ai

nX
j=1

wij

=
1

n

nX
i=1

"
nX
j=1

wij � 1
#

nX
j=1

wij

=
1

n

nX
i=1

h
i0P
�
P 0P

��1
pkn(xi)i

0P
�
P 0P

��1
pkn(xi)� i0P

�
P 0P

��1
pkn(xi)

i
=

1

n

nX
i=1

h
i0P
�
P 0P

��1
pkn(xi)p

kn(xi)
0 �P 0P

��1
P 0i� i0P

�
P 0P

��1
pkn(xi)

i
= i0P

�
P 0P

��1 �
P 0P

� �
P 0P

��1
P 0i� 1

n

nX
i=1

i0P
�
P 0P

��1
pkn(xi)

=
1

n
i0P
�
P 0P

��1
P 0i� 1

n
i0P
�
P 0P

��1
P 0i

= 0

Lemma A.5 Under Assumptions 4.3 and 4.4, for wij de�ned in (31),

nX
j=1

wij = O(1)

for each X 2 X :

Proof. By Assumption 4.3, for any E [�l (Z;�) jxi] there exists pkn(xi)0�l =
Pn

j=1 wijgl (zj ; �) such that

E

"
E [gl (Z;�) jxi]�

nX
j=1

wijgl (zj ; �)

#
= O(1)

The result follows by boundedness of gl (zj ; �).

Lemma A.6 Under Assumptions 4.3 and 4.4, for wij de�ned in (31),

1

n

nX
i=1

nX
j=1

wij = Op(1)

Proof. Follows directly from Lemma A.5.

Lemma A.7 Let

�0n � sup
X2X




pkn(X)



E

�1n � sup
X2X





@pkn(X)@x0






E

Let eg : Z ! R denote a generic measurable function of the data Z 2 Z; evaluated at a given �xed parameter
�: De�ne " (Z;�) = eg(Z;�)� E [eg(Z;�)jX] and "(�) = (" (Z1; �) ; :::; " (Zn; �))0 :

Suppose that Assumptions 4.2 and 4.3(i) and the following are satis�ed:
(i) There exists a constant c1n and a measurable function c1(Z) : Z ! [0;1) with E[c1(Z)p] < 1 for

some p � 4 such that jeg(Z;�)j � c1nc1(Z) for all Z 2 Z;
(ii) There exists a positive value e�1n = op(1) such that

ne�21n
ln
h
( �1nc1n

�1n
)dx
i
max

n
�20nc

2
1n; �

2+2=p
0n �

1�2=p
1n c

1+2=p
1n

o !1
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Then
pkn(X)0(P 0P )�1P 0"(�) = op(�1n)

uniformly over X 2 X :

Proof. This result specializes Lemma A.1(A) in Ai and Chen (2003), derived for the combined space
X �A to the space X only, with g (zj ; �) evaluated at a given �xed �: Since we do not have to account for
growth restrictions on the parameter space, we are able to obtain faster convergence rate �1n than Ai and
Chen (2003).

Let c denote a generic constant that may have di¤erent values in di¤erent expressions. For any pair
X1 2 X and X2 2 X ���pkn(X1)

0(P 0P )�1P 0"(�)� pkn(X2)
0(P 0P )�1P 0"(�)

���
=

���hpkn(X1)� pkn(X2)
i0
(P 0P )�1P 0"(�)

���
Note that 


pkn(X1)

0 � pkn(X2)
0



2
E
� �21n kX1 �X2k2E

It follows that

���hpkn(X1)� pkn(X2)
i0
(P 0P )�1P 0"(�)

��� � �21n kX1 �X2k2E

vuut 1

n�n

nX
i=1

" (Zi; �)
2

where �n denotes the smallest eigenvalues of P 0P=n: Condition (i) implies

1

n

nX
i=1

" (Zi; �)
2 � c21n

n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])
2

Assumption 4.3(i) implies �n = Op(1): Applying the weak law of large numbers and E
�
(E [c1 (Zi) jXi])

2
	
�

E
�
c1(Z)

2
	
; we obtain

1

n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])
2 = Op(1)

Thus there exists a constant c such that

Pr

0@vuut 1

n�n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])
2 > c

1A < �

for su¢ ciently large n:
For any small � partition X into bn mutually exclusive subsets Xm; m = 1; :::; bn; where X1 2 Xm and

X2 2 Xm imply kX1 �X2k2E � �e�1n=(c1n�1nc): Then with probability approaching one we have���pkn(X1)
0(P 0P )�1P 0"(�)� pkn(X2)

0(P 0P )�1P 0"(�)
��� � �e�1n

Let Xm denote a �xed point in Xm: For any X there exists an m such that kX1 �X2k2E � �e�1n=(c1n�1nc):
Then with probability approaching one

sup
X2X

���pkn(X)0(P 0P )�1P 0"(�)
��� � �e�1n +max

m

���pkn(Xm)
0(P 0P )�1P 0"(�)

���
Hence

Pr

�
sup
X2X

���pkn(X)0(P 0P )�1P 0"(�)
��� > 2�e�1n�

< 2� + Pr
�
max
m

���pkn(Xm)
0(P 0P )�1P 0"(�)

��� > 2�e�1n�
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For some constant c; let

Mn =

�
c�0nc1n
�1n��

�2=p
De�ne din = I fc1(Z) �Mng : De�ne g1(Zi; �) = ding1(Zi; �) and g2(Zi; �) = (1� din) g1(Zi; �): De�ne
"1(Zi; �) and "2(Zi; �) accordingly. It follows that

Pr
�
max
m

���pkn(Xm)
0(P 0P )�1P 0"(�)

��� > 2�e�1n�
� Pr

 
max
m

�����pkn(Xm)
0(P 0P )�1

nX
i=1

"1(Zi; �)

����� > �e�1n!

+Pr

 
max
m

�����pkn(Xm)
0(P 0P )�1

nX
i=1

"2(Zi; �)

����� > �e�1n!
� P1 + P2

Ai and Chen (2003) show that P2 � �, along with

�2m � nE

("
pkn(Xm)

0(P 0P )�1
nX
i=1

pkn(Xi)"1(Zi; �)

#2)
= O(c21n�

2
0n)

and ���pkn(Xm)
0(P 0P=n)�1pkn(Xi)"1(Zi; �)

��� � Mn�
2
0nc1n
�n

Noting that

Pr

 �����pkn(Xm)
0(P 0P )�1

nX
i=1

"1(Zi; �)

����� > �e�1n!

= E

"
Pr

 �����pkn(Xm)
0(P 0P )�1

nX
i=1

"1(Zi; �)

����� > �e�1n j X1; :::; Xn

!#

Ai and Chen (2003) apply the Bernstein inequality for independent processes to obtain

Pr

 �����pkn(Xm)
0(P 0P )�1

nX
i=1

"1(Zi; �)

����� > ��1n

!
� 2E

h
exp

�
�n"2e�21n=�c�2m +Mn�

2
0nc

2
1n�

�1
n "e�1n��i

where E[�] is taken with respect to the joint distribution of (X1; :::; Xn): Hence

P1 < 2bnE
h
exp

�
�n"2e�21n=�c�2m +Mn�

2
0nc

2
1n�

�1
n "e�1n��i

which is arbitrarily small if

ne�21n
max

n
�20nc

2
1n;Mn�

2
0nc1n

e�1no � ln(bn)!1

Since X is a compact subset in Rd, we have

bn = O

0@ e�1n
c1n�1n

!�dx1A
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Substituting for Mn and bn we obtain

ne�21n
ln(bn)max

n
�20nc

2
1n;Mn�

2
0nc1n

e�1no

= O

0BB@ ne�21n
ln

�� e�1n
c1n�1n

��dx�
max

n
�20nc

2
1n; �

2+2=p
0n

e�1�2=p1n c
1+2=p
1n

o
1CCA

Thus, for P1 < � for su¢ ciently large n by condition (ii).

Lemma A.8 (part of B.1) Let Assumptions 4.2-4.6 and 4.8 hold. Let also n1=me�1n # 0 and � > 2=m

where e�1n is de�ned in Lemma A.7 and % in Assumption 4.7. Then
max
1�i�n

k�i(�0)k = op(e�1n) + op

�
1

n%�1=m

�
(93)

This Lemma is analogous to Lemma B.1 of KTA. However, the analysis is somewhat complicated due
to the extra term �i: Moreover, here we do not make use of results related to kernel estimation. Thus, for
example, consistency of the variance-covariance matrix �n(xi; �0) follows from series results of Ai and Chen
(2003).
Proof. In this Lemma, we will use the F.O.C.s (24) and (26) that combine to

nX
j=1

wij
1 + ai + �0ig (xj ; �)

=

nX
j=1

wij
�0ig (xj ; �) + �i

=

nX
j=1

b�ij
= 1 (94)

Let
�i (�0) = �i�i (95)

where �i � 0 and �i 2 Rdg : It holds that

nX
j=1

wij
[ai + �0i (�0) g (zj ; �0)]

2

1 + ai + �0i (�0) g (zj ; �0)
= a2i

nX
j=1

wij
1 + ai + �0i (�0) g (zj ; �0)

+
2ai�i

Pn
j=1 wij�

0
ig (zj ; �0)

1 + ai + �0i (�0) g (zj ; �0)

+
�2i �

0
i�n(xi; �0)�i

1 + ai + �0i (�0) g (zj ; �0)
(96)

For the �rst term of the RHS sum of (96), using (94), it holds that

a2i

nX
j=1

wij
1 + ai + �0i (�0) g (zj ; �0)

= a2i

= (�i � 1)2

= �2i � 2�i + 1 (97)

Substituting (97) into (96) yields

nX
j=1

wij
[ai + �0i (�0) g (zj ; �0)]

2

1 + ai + �0i (�0) g (zj ; �0)
= �2i � 2�i + 1 +

2ai�i
Pn

j=1 wij�
0
ig (zj ; �0)

1 + ai + �0i (�0) g (zj ; �0)

+
�2i �

0
i�n(xi; �0)�i

1 + ai + �0i (�0) g (zj ; �0)
(98)
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Note that for a generic constant c

c2

1 + c
=

c2

1 + c
+ (1� c)� (1� c)

=
c2

1 + c
+
(1� c) (1 + c)

1 + c
� (1� c)

=
c2

1 + c
+
1� c2

1 + c
� (1� c)

=
1

1 + c
� 1 + c

Using this fact, letting c = ai + �0i (�0) g (zj ; �0), we have

nX
j=1

wij
[ai + �0i (�0) g (zj ; �0)]

2

1 + ai + �0i (�0) g (zj ; �0)
=

nX
j=1

wij

�
1

1 + ai + �0i (�0) g (zj ; �0)
� 1 + ai + �0i (�0) g (zj ; �0)

�

=

nX
j=1

wij
1 + ai + �0i (�0) g (zj ; �0)

�
nX
j=1

wij +

nX
j=1

wijai

+

nX
j=1

wij�
0
i (�0) g (zj ; �0)

= 1�
nX
j=1

wij +

nX
j=1

wijai +

nX
j=1

wij�
0
i (�0) g (zj ; �0) (99)

By the de�nition of �i;

1�
nX
j=1

wij + ai

nX
j=1

wij = 1� �i + (�i � 1)�i

= �2i � 2�i + 1 (100)

Substituting (100) into (99) gives us

nX
j=1

wij
[ai + �0i (�0) g (zj ; �0)]

2

1 + ai + �0i (�0) g (zj ; �0)
= �2i � 2�i + 1 + �i

nX
j=1

wij�
0
ig (zj ; �0) (101)

Combining (98) and (101) yields, after canceling �2i � 2�i + 1 from both sides,

2ai�i
Pn

j=1 wij�
0
ig (zj ; �0)

1 + ai + �0i (�0) g (zj ; �0)
+

�2i �
0
i�n(xi; �0)�i

1 + ai + �0i (�0) g (zj ; �0)
= �i

nX
j=1

wij�
0
ig (zj ; �0) (102)

Using Assumption 4.8, by Lemma D.2 in KTA,

max
1�j�n

kg (zj ; �0)k = op(n
1=m) (103)

and this op(n1=m) term does not depend on i; j; or �n 2 An: By (103) it holds that

0 � 1 + ai + �0i (�0) g (zj ; �0) � 1 + ai + �i kg (zj ; �0)k = 1 + ai + �iop(n
1=m) (104)

Using (104) in (102) and canceling �i yields

2ai
Pn

j=1 wij�
0
ig (zj ; �0)

1 + ai + �iop(n
1=m)

+
�i�

0
i�n(xi; �0)�i

1 + ai + �iop(n
1=m)

�
nX
j=1

wij�
0
ig (zj ; �0) (105)

By Corollary D.1 of Ai and Chen (2003), �n(xi; �0) = �(xi; �0) + op(1) uniformly over X 2 X . Using
the fact that �0i�(xi; �0)�i is bounded away from zero on (xi; �i) 2 RdX � Rdg ; we can divide (105) by
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�0i�n(xi;�0)�i
1+ai+�iop(n

1=m)
and rearrange terms to obtain

�i �
h
1 + ai + �iop(n

1=m)
i Pn

j=1 wij�
0
ig (zj ; �0)

�0i�n(xi; �0)�i
� 2ai

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

= (1� ai)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
+ �iop(n

1=m)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

and hence

�i

 
1� op(n

1=m)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

!
� (1� ai)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

�i � (1� ai)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

�
 
1� op(n

1=m)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

!�1
(106)

For the last term of the RHS of (106), using Lemma A.1 and k�0ik <1 for all i; it holds that

op(n
1=m)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
= op(n

1=m)


�0i

 max

1�i�n







nX
j=1

wijg (zj ; �0)







= op(n

1=m)O(1)

�
op(e�1n) + op

�
1

n%�1=m

��
= op(n

1=me�1n) + op

�
1

n%�2=m

�
(107)

while for the �rst term of the RHS of (106), using also Lemma A.5,

(1� ai)

Pn
j=1 wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
= O(1)



�0i

 max
1�i�n







nX
j=1

wijg (zj ; �0)







= O(1)O(1)

�
op(e�1n) + op

�
1

n%�1=m

��
= op(e�1n) + op

�
1

n%�1=m

�
(108)

Under our assumptions, n1=me�1n # 0 and n�%+2=m # 0 in (107). This used in (106) along with (108) and
consistency of �n(xi; �0); implies that

max
1�i�n

k�ik = op(e�1n) + op

�
1

n%�1=m

�
which yields the desired result by the de�nition of �i in (95).
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B: CONVERGENCE RATES

Lemma B.1 Consider the functions Gn(�n) and Gn(�n) de�ned in (64) and (87), respectively. Assump-
tions 4.1-4.3, 4.5, 4.6, 5.1-5.6 imply: (i) Gn(�n) � Gn(�n) = op(n

�1=4) uniformly over �n 2 An; and (ii)
Gn(�n)�Gn(�0)�

�
Gn(�n)�Gn(�0)

	
= op(�nn

�1=4) uniformly over �n 2 An with k�n � �0kF � o(�n);

where �n = n�� with � � 1=4:

Proof.
This Lemma shows the counterpart of AC�s Corollary B.1 for our case. Since �i(�n) solves

nX
j=1

wijg (zj ; �n)

�i + �0ig (zj ; �n)
= 0 (109)

denote by �i0(�n) the solution to

E

�
g (zj ; �n)

�i + �0ig (zj ; �n)

����xi� = 0
For the sake of brevity, let "VW" stand for "Van der Vaart and Wellner (1996)." Lemma A.5 and Assumption
4.5(i) su¢ ce to satisfy the pointwise convergence condition of Lemma 3.3.5 (p. 311) in VW for the objective
function (109). Note that fg (z; �n) : �n 2 Ang � �
c (X ) and �
c (X ) is a Donsker class by Theorem 2.5.6
in VW. Since �i (�n) 2 Rdg , f�i (�n) : �n 2 Ang belongs to the Donsker class. By Example 2.10.8 (p.
192) in VW f�0ig (z; �n) : �n 2 Ang is Donsker. Since 0 < �i < 1 is a data-determined scalar by Lemma
A.5, by Example 2.10.9 (p. 192) in VW (109) is Donsker in �n 2 An. Hence the Assumptions of Lemma
3.3.5 (p. 311) in VW are satis�ed and we can invoke Theorem 3.3.1 (p. 310) in VW to conclude that
k�i(�n)� �i0(�n)kE = Op(n

�1=2); uniformly over �n 2 An; for each i: Lemma A.1(A) of Ai and Chen
(2003) (de�ning �1n) states that

Pn
j=1 wijg (zj ; �n) �m (xi; �n) = op(�1n) uniformly over X � An: These

two rate results for �i(�n) and g (zj ; �n) ; simple law of large numbers for �i and continuity of the log
function satisfy the satisfy the pointwise convergence condition of Lemma 3.3.5 (p. 311) in VW for the
objective function Gn(�n). By Theorem 2.10.6 (p. 192) in VW fln[�i+�0ig (zj ; �n)] : �n 2 Ang is Donsker.
By Lemma A.5, 0 < �i < 1 for each i and thus we can renormalize �i by dividing by sup1�i�n �i that
guarantees

Pn
i=1 �i < 1: By Theorem 2.10.3 (p. 190) in VW

��Gn(�n)�Gn(�n)
�� =

����� 1n
nX
i=1

nX
j=1

wij ln
�
�i + �0ig (zj ; �n)

	
� 1

n

nX
i=1

E
�
ln
�
�i + �0i0g (z; �n)

	
jxi
������

= Op(n
�1=2)

uniformly over �n 2 An; which shows the result (i) in this Lemma.
In order to show part (ii) of the proof, we �rst derive the counterpart of AC�s Corollary A.2 that is a

building block for their Corollary B.1 (ii). Note that since m(X;�0) = 0, k�n � �0kF = op(1) and AC�s
result (i:1) of the proof of their Corollary A.2 holds also for our km(X;�)k2E ; we only need to show the
counterpart of their part (i:2). We replace Assumption 3.9 of AC by our Assumption 5.1 which applies to
our metric k�kF . This Assumption together with Lemma C.1 imply that Efkm(X;�)k

2
Eg and k�� �0k2F

are (topologically) equivalent. Then by Assumptions 4.1, 5.1, and 5.3(i); we have

E
n�
km(X;�)k2E

�2o � E
�
km(X;�)k2E

	
�
�
sup
X;�

�
km(X;�)kE

	�2
� const:� k�n � �0k2F

satisfying part (i:2). Part (ii) of AC�s Corollary A.2 holds for our metric k�kF by replacing their Assumption
3.9 with our Assumption 5.1. This, along with AC�s Corollary A.1 shows (ii):
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C: ASYMPTOTIC NORMALITY

Lemma C.1 Under Assumptions 4.1-5.6,

E

�
V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X��
= E

�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	
= E

�
E

�
Dw(Z)

0 d' (X;Z; �0)

dg(Z;�)

�
d' (X;Z; �0)

dg(Z;�)

�0
Dw(Z)

����X��
Proof. Using (53) and (51)

E
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d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X� = E

�
d' (X;Z; �0)

dg (Z;�)

dg(Z;�0)

d�
[v�]

����X�
= E

�
d' (X;Z; �0)

d�
[v�]

����X�
= E

�
d' (X;Z; �0)

d�0
(u�� � �0) +

d' (X;Z; �0)

dh
[u�h � h0]

����X�
= E

�
d' (X;Z; �0)

d�0

����X� (u�� � �0) + E

�
d' (X;Z; �0)

dh
[u�h � h0]

����X�
= 0

by the de�nition of �0: Hence

V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X� = E

�
Dw�(Z)

0 d' (X;Z; �0)

dg(Z;�)

�
d' (X;Z; �0)

dg(Z;�)

�0
Dw�(Z)

����X�
Taking expectation over X yields the required result.

Lemma C.2 Consider the notation for vn(�) and er[�] de�ned in Appendix 3. Then, under Assumptions
4.1-5.6,

n�1=2vn (er[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ]) = op(n
�1=4)

Proof. This Lemma performs a similar function as Lemmas C.1 - C.3 in Ai and Chen (2003). By the
de�nition of vn(�) and er[�];

n�1=2vn (er[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ])

= n�1
nX
i=1

nX
j=1

�
wij fer[�n � �0; xi; yj ]� er[Pn��(an; "n)� �0; xi; yj ]g
�E fer[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ]g

�
= A1 �A2

A1 = n�1
nX
i=1

nX
j=1

wijer[�n � �0; xi; yj ]� Eer[�n � �0; X; Y ]

A2 = n�1
nX
i=1

nX
j=1

wijer[�n + "nu
�
n � �0; xi; yj ]� Eer[�n + "nu

�
n � �0; X; Y ]

A1 = A11 �A12

A11 = n�1
nX
i=1

nX
j=1

wij' (xi; zj ; �)� E' (z; x; �)

A12 = n�1
nX
i=1

nX
j=1

wij
d' (xi; zj ; �0)

d�
[�� �0]� E

�
d' (x; z; �0)

d�
[�� �0]

�
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A2 = A21 �A22

A21 = n�1
nX
i=1

nX
j=1

wij' (x; z; �n + "nu
�
n)� E' (x; z; �n + "nu

�
n)

A22 = n�1
nX
i=1

nX
j=1

wij
d' (xi; zj ; �0)

d�
[�n + "nu

�
n � �0]� E

�
d' (x; z; �0)

d�
[�n + "nu

�
n � �0]

�

The goal is to show A11 � A12 � A21 + A22 = Op("
2
n) = op(n

�1=4): Note that A11 = op(n
�1=4) and

A21 = op(n
�1=4) follows from parts A and B of AC�s Lemma A.1. A12 = op(n

�1=4) and A22 = op(n
�1=4)

follows from the rate results for A11 and A21; respectively, and the continuous mapping theorem.
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Appendix 3
In this Appendix we extend Theorem 1 of Shen (1997) to our conditional case.13 Consider the setup as in
Shen (1997), with the following modi�cations. Suppose that the observations f(Xi; Yj) : i; j = 1; :::; ng are
drawn independently distributed according to density p(�0; Xi; Yj):

De�ne
K(�0; �) = E0l(�0; Xi; Yj)� E0l(�;Xi; Yj)

Let the empirical criterion be

Ln(�) = n�1
nX
i=1

nX
j=1

wij l(�;Xi; Yj)

where l(�; Yj ; Xi) is the criterion based on a single observation. Consider l(�; x; y) for which (analog of
Shen�s (4.1))

er[�� �0; x; y] = l(�; x; y)� l(�0; x; y)� l0�0 [�� �0; x; y] (S 4.1)

where l0�0 [�� �0; x; y] is de�ned as limt!0[l(a+ t[�� �0]; x; y)� l(�0; x; y)]=t: Denote b�n the maximizer of
Ln(�n) over �n 2 An: We estimate a real functional of b�n denoted as f(�): With b�n as de�ned, f(�) is
estimated by a substitution estimate f(b�n): By the de�nition of b�n; we have (analog of Shen�s (2.1))

Ln(b�n) � sup
�2An

Ln(�n)�O("2n) (S 2.1)

where "2n ! 0 as n!1: For any generic function g(X;Y ) let

�n(g) = n�1
nX
i=1

n1=2
(

nX
j=1

wijg(Xi; Yj)� E [g(X;Y )jX = xi]

)
be the empirical process induced by g: Let the convergence rate of the sieve estimate under k�k be op(�n)
and let "2n = op(n

�1=2):
The following conditions are modi�ed versions of Shen�s 1997 (p. 2568) conditions:

Condition A (Stochastic Equicontinuity) For er[�� �0; x; y] de�ned in (S 4.1),

sup
f�n2An:k�n��0k��ng

n�1=2�n (er[�n � �0; X; Y ]� er[�n + "nu
�
n � �0; X; Y ]) = Op("

2
n)

Condition B (Expectation of Criterion Di¤erence)

sup
f�n2An:k�n��0k��ng

[K (�0; �n + "nu
�
n)�K (�0; �n)]�

1

2

h
k�n + "nu

� � �0k2 � k�n � �0k2
i
= Op("

2
n)

Condition C (Approximation Error)

sup
f�n2An:k�n��0k��ng

k"nu� � "nu
�
nk = Op(�

�1
n "2n)

In addition,
sup

f�n2An:k�n��0k��ng
n�1=2�n

�
l0�0 ["nu

� � "nu
�
n; X; Y ]

�
= Op("

2
n)

Condition D (Gradient)

sup
f�n2An:k�n��0k��ng

n�1=2�n
�
l0�0 [�n � �0; X; Y ]

�
= Op("n)

Condition E (Smoothness)
Suppose the functional f has the following smoothness property: for any �n 2 An��f�n � f�0 � f 0�0 [�n � �0]

�� � un k�n � �0k!F (S 4.2)

13Measurability with respect to the underlying probability space is assumed throughout the paper and hence we do
not distiguish outer expectation from the usual one.
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as k�n � �0kF ! 0 where ! is the degree of smoothness of f 0�0 [�n � �0] at �0:

Condition F (Convergence Rates and Smoothness) un�
!
n = Op(n

�1=2):

Condition G (Variance) V ar (l0�0 [v
�; X; Y ]) <1 is positive de�nite for all X 2 X ; y 2 Y:

Theorem 7.1 Let the Conditions A-G hold. Then for the approximate substitution sieve estimate de�ned
in (S 2.1),

n�1=2(f(b�n)� f(�0))
d! N(0; E

�
V ar

�
l0�0 [v

�; Y ]
�
jX
�
)

Proof of Theorem 7.1. Rearrange (S 4.1) as

l(�; x; y) = er[�� �0; x; y] + l(�0; x; y) + l0�0 [�� �0; x; y]

Subtract from (S 4.1) its expectation (under P (�0; Xi; Yj) denoted by E0), for a given (Xi; Yj) to obtain

l(�; xi; yj)� E0l(�; xi; yj) = l(�; xi; yj)� E0l(�; xi; yj)

+l0�0 [�� �0; xi; yj ]� E0l
0
�0 [�� �0; xi; yj ]

+er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ]

rearrange

l(�; xi; yj) = l(�; xi; yj)� [E0l(�; xi; yj)� E0l(�; xi; yj)]

+l0�0 [�� �0; xi; yj ]� E0l
0
�0 [�� �0; xi; yj ]

+er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ]

take a weighted average over i; j with weights wij

n�1
nX
i=1

nX
j=1

wij l(�; xi; yj) = n�1
nX
i=1

nX
j=1

wij l(�0; xi; yj)

�n�1
nX
i=1

nX
j=1

wij [E0l(�0; xi; yj)� E0l(�; xi; yj)]

+n�1
nX
i=1

nX
j=1

wij
�
l0�0 [�� �0; xi; yj ]� E0l

0
�0 [�� �0; xi; yj ]

�
+n�1

nX
i=1

nX
j=1

wij (er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ])

and hence using the notation above, for any Pn�n 2 fPn�n 2 An : kPn�n � �0k � �ng, we have

Ln(Pn�n) = Ln(a0)�K(�0; Pn�n)

+n�1=2�n(l
0
�0 [Pn�n � �0; X; Y ])

+n�1=2�n(r[Pn�n � �0; X; Y ]) (S 9.1)

Substituting Pn�n by b�n here above, we obtain
Ln(b�n) = Ln(a0)�K(�0; b�n)

+n�1=2�n(l
0
�0 [b�n � �0; X; Y ])

+n�1=2�n(r[b�n � �0; X; Y ]) (S 9.2)
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Subtracting (S 9.2) from (S 9.1) and substituting �n by ��(b�n; "n) in (S 9.1), we have
Ln(Pn�

�(b�n; "n))� Ln(b�n)
= Ln(�0)� Ln(�0)

�K(�0; Pn��(b�n; "n) +K(�0; b�n)
+n�1=2�n(l

0
�0 [Pn�

�(b�n; "n)� �0; X; Y ])� n�1=2�n(l
0
�0 [b�n � �0; X; Y ])

+n�1=2�n(r[Pn�
�(b�n; "n)� �0; X; Y ])� n�1=2�n(r[b�n � �0; X; Y ])

which yields

Ln(b�n) = Ln(Pn�
�(b�n; "n))

� [K(�0; b�n)�K(�0; Pn�
�(b�n; "n)]

+n�1=2�n(l
0
�0 [b�n � Pn�

�(b�n; "n); X; Y ])
+n�1=2�n(r[b�n � Pn�

�(b�n; "n); X; Y ])
By Condition A (second line of the following)

n�1=2�n(r[Pn�
�(b�n; "n)� �0; X; Y ])� n�1=2�n(r[b�n � �0; X; Y ])

= n�1=2�n(r[b�n � Pn�
�(b�n; "n); X; Y ])

= Op("
2
n)

Using Condition B on the di¤erence in Ks, we obtain

Ln(b�n) = Ln(Pn�
�(b�n; "n))� 1

2

h
kb�n � �0k2 � kPn��(b�n; "n)� �0k2

i
+n�1=2�n(l

0
�0 [b�n � Pn�

�(b�n; "n); X; Y ])
+Op("

2
n)

By Condition C (applicable to the second line)

kPn��(b�n; "n)� ��(b�n; "n)k = O(��1n "2n)

Hence, using (S 2.1) we have

�O("2n) � �1
2

h
kb�n � �0k2 � kPn��(b�n; "n)� �0k2

i
+n�1=2�n(l

0
�0 [b�n � ��(b�n; "n); X; Y ]) (S 9.3)

+Op("
2
n)

We will use the relation

b�n � ��(b�n; "n) = b�n � b�n + "nb�n � "nu
� � "n�0

= �"n (u� � (b�n � �0))

in �n(l0�0 [b�n � ��(b�n; "n); X; Y ]) to get ��n(l0�0 ["n (u� � (b�n � �0)) ; X; Y ]):
In (S 9.3) we have
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kPna�(ban; "n)� a0k2 = kPn��(ban; "n)� ��(ban; "n) + ��(ban; "n)� �0k2

= kPn��(ban; "n)� ��(ban; "n) + (1� "n)(b�n � �0) + "nu
�k2

� k(1� "n)(b�n � �0)k kPn��(ban; "n)� ��(ban; "n) + "nu
�k

� k(1� "n)(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+ k(1� "n)(b�n � �0)k k"nu�k

= (1� "n) k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+(1� "n) hb�n � �0; "nu

�i

We multiply kban � �0k by the factor

1� (1� "n)
2 = 1� (1� 2"n + "2n)

= 2"n � "2n

which is a positive fraction that preserves the inequality. We also multiply kPn��(ban; "n)� �0k2 by 2 which
also preserves the inequality. Hence we obtain

�O("2n) � �1
2

�
1� (1� "n)

2� kb�n � �0k2

+(1� "n) k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+(1� "n) hb�n � �0; "nu

�i
�n�1=2�n(l0�0 ["n (u

� � (b�n � �0)) ; X; Y ])

+Op("
2
n)

Adding "n k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k still preserves the inequality. For the �rst line, "2n kb�n � �0k2 =
Op("

2
n). Hence

�O("2n) � �"n kb�n � �0k2 + k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+(1� "n) hb�n � �0; "nu

�i � n�1=2�n(l
0
�0 ["n (u

� � (b�n � �0)) ; X; Y ]) +Op("
2
n)

Note that

�"n kb�n � �0k2 = Op("n)op(�
2)

= op(�
2)

By Condition C
kPn��(ban; "n)� ��(ban; "n)k = Op(�

�1"2n)

since
kb�n � �0k = op(�)

then

kb�n � �0k kPn��(ban; "n)� ��(ban; "n)k = op(�)Op(�
�1"2n)

= op("
2
n)

and using Conditions C and D

n�1=2�n(l
0
�0 ["n (u

� � (b�n � �0)) ; X; Y ]) = n�1=2�n(l
0
�0 [u

�; X; Y ]) +Op("
2
n) +Op("

2
n)

Hence
�(1� "n) hb�n � �0; u

�i+ n�1=2�n(l
0
�0 [u

�; X; Y ]) = op(n
�1=2) (S 9.4)

This gives, together with the inequality in (S 9.4) with u� replaced by �u�;���hb�n � �0; u
�i � n�1=2�n(l

0
�0 [u

�; X; Y ])
��� = op(n

�1=2)
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so
hb�n � �0; v

�i = n�1=2�n(l
0
�0 [v

�; X; Y ]) + op(n
�1=2)

Hence, by (S 4.2)

f�n � f�0 = f 0�0 [�n � �0] + op(un k�n � �0k!F )
= hb�n � �0; v

�i+ op(n
�1=2)

= n�1=2�n(l
0
�0 [u

�; X; Y ]) + op(n
�1=2)

= n�1
nX
i=1

n1=2
(

nX
j=1

wij l
0
�0 [u

�; Xi; Yj ]� E
�
l0�0 [u

�; X; Y ]
��X = xi

�)

The result then follows from the Central Limit Theorem (CLT) for triangular arrays (Proposition) in
Andrews (1994, p. 2251). Note that the conditions of the Proposition are satis�ed under our assump-
tions. In particular, � � Rd� is compact, �nite-dimensional convergence of n1=2

Pn
j=1 wij l

0
�0 [u

�; Xi; Yj ] �
E [ l0�0 [u

�; X; Y ]jX = xi] holds for each xi due to the classical Lindeberg-Levy CLT, and Condition A satis�es
the stochastic equicontinuity requirement of the Proposition.
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