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Abstract

Empirical evidence suggests that prices respond more rapidly to cost in-
creases than to cost decreases. We develop a search theoretic model which
is consistent with this evidence and allows for additional testable predictions.
Our results are based on the assumption that buyers do not observe the sellers’
costs, but know that cost changes are positively correlated across sellers.

We show that buyers have a greater incentive to search when they observe
large price increases or small price decreases; and little incentive to search when
prices increase by a little or decrease by a lot. This implies that small cost
increases or large cost decreases are fully reflected on price; whereas small cost
decreases and large cost increases are less then reflected in price. Specifically,
sellers do not change price when cost decreases by a small amount.
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1 Introduction

Studies of various products and services, including gasoline, agricultural products,
bank deposit rates, all find that prices are more likely to rise in response to input
price increases than they are to decrease in the wake of cost reductions.1 Recent
work by Peltzman (2001) significantly broadens the evidence for this asymmetrical
price behavior. In a study of 77 consumer and 165 producer goods, he finds that on
average the immediate response to a cost increase is at least twice the response to
a cost decrease.

This phenomenon presents more than an interesting empirical regularity to ex-
plain. As Peltzman argues, it poses a real challenge to conventional economic theo-
rizing. According to any conventional microeconomic models — whether monopoly,
perfect or imperfect competition — prices should respond symmetrically to cost
increases and cost reductions.

This paper presents a search theoretic model which is consistent with an asym-
metric price adjustment. The idea is as follows. Suppose a consumer’s regular
vendor increases its price. Should he or she search for a lower price? If competing
vendors’ production costs are positively correlated (because they use the same or
similar inputs in their production processes), then a price increase at one vendor
is bad news to consumers about the entire industry: it is reasonable to suppose
that competitors’ costs — and hence competitors’ prices — have also increased. If
search is costly, it is reasonable for consumers to accept a moderate price increase
rather than search. This suggests that sellers can increase prices moderately with-
out losing customers in response to cost increases. The same reasoning does not
apply to a moderate cost decrease. A price reduction at one firm is “good news”
to consumers about the entire industry because it carries the possibility of even
greater price reductions at other firms. Therefore a moderate price reduction runs
the risk of encouraging customers to search elsewhere in the hope of finding still
greater bargains. Hence, to avoid “rocking the boat” a seller’s optimal response to
moderate cost decreases is to keep prices unchanged.

The same logic implies a reverse asymmetry in the case of large cost changes. If
prices decline by a lot, it is unlikely that further search will reveal even lower prices.
Hence, large cost reductions may lead to commensurately large price reductions. By
contrast, if search costs are not too high, a large price increase might well trigger
consumer search because there is the likelihood that competitors’ prices have risen
by substantially less. Therefore, large cost increases may result in only moderate
price increases.

1Karrenbrock (1991); Neumark and Sharpe (1992); Jackson (1997); Borenstein, Cameron and
Gilbert (1997). There are more references which will be added later.
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The paper is structured as follows. In Section 2, we lay down the basic model
structure. Next we completely solve for a particular numerical example (Section
3). From here we move on to our general results (Section 4). Section 5 derives
empirical testable implications and Section 6 discusses the results, namely in relation
to previous literature. We conclude with Section 7.

2 Model

Our basic model consists of two firms competing over two periods, 0 and 1. At
the beginning of period 0, firm i is endowed with constant marginal cost c0

i ∈ IR+
0 ,

i = 1, 2. The values of c0
i are common knowledge to firms and consumers. The

firms then simultaneously set prices p0
i . Each consumer observes one of the prices

(for free). We assume there is a continuum of consumers of mass 2 who are equally
divided between observing each of the two prices. Upon observing a price, each
consumer must decide whether to pay a search cost s to observe the other price.
Finally, each consumer purchases a quantity q(p), where p is the lowest observed
price.

At the beginning of the second period Nature generates ci, firm i’s cost, according
to a commonly known stochastic process.2 Only firm i observes ci. The firms then
simultaneously set prices pi. Each consumer observes (for free) one of the prices
and decides whether to pay a search cost s to observe the other price. Finally, each
consumer purchases a quantity q(p), where p is the lowest observed price.

Let µ(p) be the consumer’s surplus from buying at price p and π(p, c) a firm’s
profit given price p, cost c, and a mass one of consumers. We assume that π(p, c) is
quasi-concave and denote by pm(c) the monopoly price for a firm with cost c.

3 An example

In order to understand the main intuition, it helps to begin by considering a specific
numerical example. Suppose that, in the first period, both firms have a cost of
c0
i = 1

2 . With a probability 1 − γ, second period cost is the same as in the first
period. With probability γ, either both costs increase or both costs decrease. Given
that costs change, they are independently and uniformly distributed in [0, 1

2 ] (if costs
increase) or [12 , 1] (if costs increase). We will assume that that the value of γ is very
small. For the purpose of deriving the equilibrium, it helps to think of the set of
states when costs change as measure zero (thus, γ = 0), though, by continuity, the

2A more consistent notation would be c1
i . However, since most of the paper focuses on solving

the equilibrium in period 1, we drop the superscript to simplify notation.
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Figure 1: Equilibrium price as a function of cost in numerical example. Costs are
uniformly distributed; demand is linear: q = 2 − p; initial cost is c0 = .5 for both
firms. The equilibrium cost thresholds are given by c1 = .102, c2 = .301, c3 = .619.

results will also hold for small γ. Finally, suppose that demand is given by q = a−p

and the search cost is s = 1/200.
Let us first consider pricing in the first period. The situation is analogous to

the Diamond (1971) pricing game. In equilibrium, both firms set their monopoly
price. Monopoly price is given by pm(c) = (a + c)/2, which in our example yields
p0

i = 1.25. Notice that this is indeed an equilibrium. Since both firms set the same
price, consumers have no incentive to search. Since consumers do not search, no
firm has an incentive to set a different price. In fact, as Diamond (1971) has shown,
this is the unique equilibrium.

Let us now focus on pricing in the second period. We will show that the following
constitutes a Perfect Bayesian Equilibrium (see Figure 1 for a graphical representa-
tion). The sellers’ pricing policy is as follows:

p =



pm(c) if c ≤ c1

pm(c1) if c1 < c ≤ c2

p0 if c2 < c ≤ c0

pm(c) if c0 < c ≤ c3

pm(c3) if c > c3

Regarding buyers, their strategy is as follows:
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if p ≤ pm(c1) then do not search
if pm(c1) < p < p0 then search
if p0 ≤ p ≤ pm(c3) then do not search
if p > pm(c3) then search

We first show that the buyers’ strategy is optimal and their beliefs consistent. If
price is very small, then the potential gains from search are also small, and thus for
a given s search is not optimal.

Specifically, suppose buyers observe a very low price. Given the sellers’ pricing
strategy, buyers infer that costs have decreased, in particular that each seller’s cost is
independently and uniformly distributed in [0, 1

2 ]. So, faced with a price p = pm(c),
the expected surplus in case the buyer searches for the lowest price is given by

1
c0

(∫ c

0
µ
(
pm(x)

)
d x + (c0 − c) µ

(
pm(c)

))
.

In words, if seller j’s cost is x < c, then the buyer receives surplus µ
(
pm(x)

)
. If,

on the other hand, x > c, then the buyer sticks with seller i’s pm(c) and earns a
surplus µ

(
pm(c)

)
.

By not searching, the buyer receives a surplus µ
(
pm(c)

)
. Given our assumption

of linear demand, we have

pm(c) =
1
2

(a + c)

µ(p) =
1
2

(a− p)2.

Substituting in the above expressions and simplifying, we get a net expected benefit
from searching equal to

R(c) =
c0

(
a3 − (a− c)3

)
24 c0

− (a− c)2 c

8 c0
.

The derivative of R(c) with respect to c is given by (a−c) c
4 c0

, which is positive. More-
over, R(0) = 0. It follows that there exists a positive value of c such that the
net benefit from search is equal to the search cost. Let c1 be such value, that is,
R(c1) = s. It follows that, for p ≤ pm(c1), buyers are better off by not searching.

By the same token, if p(c1) < c < p0, then buyers prefer to search. The fact
p < p0 signals that costs are uniformly distributed in [0, 1

2 ], as in the previous case;
and since R(c) > s, it pays to search.
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Now suppose that p is greater than, but close to, p0. Given the sellers’ pricing
strategy, buyers infer that costs are uniformly distributed in [12 , 1]. By searching, a
buyer receives an expected surplus

1
(1− c0)

(∫ c

c0
µ
(
pm(x)

)
d x + (1− c0) µ

(
pm(c)

))
.

In words, if seller j’s cost is x < c, then the buyer receives surplus µ
(
pm(x)

)
. If, on

the other hand, x > c, then the buyer sticks with firm i’s pm(c).
By not searching, the buyer receives a surplus µ

(
pm(c)

)
. Given our assumption

of linear demand, we get a net expected benefit from searching equal to

R(c) =

(
(a− c0)3 − (a− c)3

)
24 c0

+
(a− c)2 (c0 − c)

8 (1− c0)
.

The derivative of this expression with respect to c is given by (a−c) (c−c0)
4 (1−c0) , which is

positive. Moreover, R(c0) = 0. It follows that there exists a value of c greater than
c0 such that the net benefit from search is equal to the search cost. Let c3 be such
value, that is, R(c3) = s. It follows that, for p0 < p ≤ pm(c3), consumers are better
off by not searching.

By the same token, if p > pm(c3), then consumers prefer to search. The fact
p > p0 signals that costs are uniformly distributed in [12 , 1], as in the previous case;
and since R(c) > s, it pays to search.

This concludes the proof that the buyers’ strategy is a best response to the seller’s
strategy; and that the buyers’ beliefs are consistent with the sellers’ strategy. Next
we show that the sellers’ strategy is optimal given the buyers’ strategy and beliefs.

First notice that, given the other seller’s strategy as well as the buyers’ strategies,
in equilibrium the other seller’s buyers do not search. It follows that a seller should
not take into account the possibility of gaining more buyers, only the danger of losing
buyers. Consequently, if c is such that pm(c) is in a price interval such that buyers
do not search then it is optimal to set p = pm(c). This shows that the strategy for
0 < c ≤ c1 and c0 < c < c3 is indeed optimal.

Consider now the case when c1 < c < c0. Setting any price between pm(c1) and
p0 induces buyers to search. Given the rival seller’s pricing strategy, the deviating
seller keeps its buyers if and only if the rival’s cost is greater than c2, which happens
with probability (c0 − c2)/c0. Of all the price levels between pm(c1) and p0, the
deviating seller prefers pm(c): it maximizes profits given a set of buyers; and the
set of buyers does not depend on price (within that interval). If follows that the
deviation profit is given by

c0 − c2

c0

(
a− pm(c)

) (
pm(c)− c

)
.

5



Since the profit function is quasi-concave, the best alternative price levels are pm(c1)
and p0. We thus has the no-deviation constraints

c0 − c2

c0

(
a− pm(c)

) (
pm(c)− c

)
≤

(
a− pm(c1)

) (
pm(c1)− c

)
c0 − c2

c0

(
a− pm(c)

) (
pm(c)− c

)
≤

(
a− p0

) (
p0 − c

)
.

We are not aware of a general analytical proof that these conditions hold. In the
linear case, a sufficient condition is given by a > 1

2

(
1 +

√
2
)

c0, which holds for the
particular parameters we consider in our example.3

Given that the seller does not want to price in the
(
pm(c1), p0

)
interval, we are

left to determine whether it is best to pool at p = pm(c1) or to pool at p = p0. The
seller prefers p = pm(c1) if and only if(

a− pm(c1)
) (

pm(c1)− c
)

>
(
a− p0

) (
p0 − c

)
.

In the linear case we are considering, it can be shown that(
a− pM (c1)

) (
pM (c1)− c

)
−
(
a− p0

) (
p0 − c

)
=

1
2

(c0 − c1)
(

c0 + c1

2
− c

)
.

Let c2 ≡ c0+c1
2 . Clearly, the above difference is positive if and only if c < c2. This

confirms the seller’s strategy for c ∈ (c1, c0).
Finally, for c > c3, any price greater than pm(c3) induces search and zero demand.

It follows that p = pm(c3) is optimal so long as pm(c3) > c. In our example,
pm(1) > 1, and so the condition is satisfied.

Uniqueness. While we have shown that the above is a Perfect Bayesian Equi-
librium (PBE), we should also note that it is generically not the unique PBE. To see
this, consider a perturbed version of the previous example whereby firm i’s initial
cost is ε higher than firm j’s, where ε is a small number. By continuity, an equilib-
rium like to one we considered before exists, namely one where prices do not change
if costs do not change.

Consider the following alternative PBE. If costs do not change, then seller i

increases price by ε2, whereas seller j keeps the same price as before. If costs are in
the [c2, c0] interval, then each seller sets the same price as when costs do not change.
Otherwise, the equilibrium price strategy is as before.

It can be shown that this pricing strategy is consistent with a PBE. Out-of-
equilibrium beliefs are as before: any price p in the

(
pm(c1), p0 + ε2

)
interval (firm

3The condition a > 1
2

(
1 +

√
2
)

c0 is obtained by making c = c2 and c2 = c0/2. It is necessary
and sufficient if c = c2 and c1 = 0. For c1 > 0 or c 6= c2, it is sufficient.
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i) or
(
pm(c1), p0

)
interval (firm j) leads to the beliefs that prices decreased, which

in turn implies that search is the buyer’s best response. This in turn implies that
seller i is indeed better off by setting p = pm(c) + ε2 even if cost does not change.
In fact, keeping p = p0 would lead to higher profits for a given number of buyers;
but buyers would search and flock to the rival firm. Finally, the fact that the price
increase seller i is asked to follow is one order of magnitude lower than the price
difference with respect to the rival implies that undercutting seller j makes seller
i strictly worse off; in other words, the gap with respect to seller i’s optimal price
would be much greater.

Proposition 1 Consider the set of PBE such that, if costs do not change, then
prices do not change either. If γ is sufficiently small, then the equilibrium derived
above is unique among this set.

Proof: See Appendix.

4 Main results

Our general results depend on some key assumptions regarding the stochastic process
governing costs. In words, the assumptions below imply that (a) there is some
stickiness in costs; (b) cost changes are positively correlated across firms, but not
perfectly correlated. There are different ways of formally expressing these properties
and we could write down a different set of assumptions from the ones below. While
the exact way in which the assumptions are formulated is not critical, the two
features (stickiness and imperfect positive correlation) are crucial. We return to
this in Section 6.

Assumption 1 With probability 1 − γ, second period costs are identical to first
period’s costs.

Assumption 2 If second period costs are different from first period costs, then
either both costs increase or both costs decrease.

Let F+(ci, cj | c0
i , c

0
j ) and F−(ci, cj | c0

i , c
0
j ) be the joint density of costs in

the second period (conditional on costs moving up or down, respectively). Let
F+

i (ci | cj , c
0
i , c

0
j ) and F−

i (ci | cj , c
0
i , c

0
j ) be the corresponding marginal distributions.

Let fx(ci, cj) and fx
i (ci) (x ∈ {+,−}) be the corresponding densities, where for

simplicity we omit the second set of arguments.
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Assumption 3 (a) fx and fx
i are continuous everywhere; (b) there exists a ρ < 1

such that 1− ρ ≤ fx
i fx

j

fx ≤ 1 + ρ for all ci, cj; (c) there exist f, f such that 0 < f ≤
fx

i ≤ f < ∞ for all i, x, ci, cj.

Equilibrium prices in the first period can be analyzed as part of a one-shot game.
This case has previously been analyzed in the literature. We thus have

Proposition 2 (Reinganum, 1979) Suppose, without loss of generality, that c0
i ≤

c0
j . Equilibrium prices in the first period are given by

p0
i = pm(c0

i )

p0
j = min

{
p̂i(c0

i ), p
m(c0

j )
}

,

where p̂(c0
i ) is given by the equation

µ

(
pm
(
c0
i

))
− µ

(
p̂
(
c0
i

))
= s.

In words, Proposition 2 states that, if costs are similar, then both firms set their
monopoly price. If however firm j’s cost is much higher than firm i’s cost, then firm
j is “limit priced” by firm i, that is, firm j sets the highest price such that firm j’s
buyers have no incentive to search.

The main focus of our analysis is on second period prices. As we mentioned in the
previous section, one can easily find multiple equilibria by conveniently manipulating
buyer beliefs. In the example of the previous section and in the results that follow
we restrict our attention to equilibria such that, if costs do not change, prices do
not change either.

Definition 1 (status quo) A Perfect Bayesian Equilibrium satisfies the status
quo property if prices do not change when costs do not change.

Our results presume Assumptions 1–3 and are restricted to Perfect Bayesian Equi-
libria as in Definition 1.

Proposition 3 (large cost changes) If s, ρ, γ are sufficiently small, then

(a) If ci is sufficiently lower than c0
i then pi = pm(ci).

(a) If ci is sufficiently greater than c0
i then pi < pm(ci).

8



Proof: See Appendix.

In words, Proposition 3 states that, if cost is close to the lower bound of its
distribution then a firm is better off by setting monopoly price. In fact, no search
will take place as consumers know that they can’t get better than the current price.
If however cost is close to the upper bound then low search cost buyers will search.
In such a situation, a high cost firm will not set its monopoly price but rather a
lower price.

The reason for the asymmetry between large cost decreases and large cost in-
creases is that the latter lead to search, whereas the former do not. We next turn
to the case of small cost changes, and conclude that something different happens:
in equilibrium no search takes place with either small or large cost changes; but in
order for that to happen sellers keep their prices fixed when prices decrease by a
small amount.

Proposition 4 (small cost changes) There exist values of ρ, γ and s sufficiently
close to zero such that

(a) If ci is lower than, but close to, c0
i , then pi = p0

i .

(b) If ci is greater than, but close to, c0
i , then pi = pm(ci) > p0

i .

Proof: See Appendix.

In words, Proposition 4 states that small cost increases are fully reflected in cost.
That is, the seller sets the price he would set if he were a monopolist with captive
customer base; or equivalently, he sets the same price as if consumers could perfectly
observe the sellers’ costs. If costs decrease by a little bit, however, then price does
not change.

The reasons for this asymmetry is that the news that costs have increased leads
consumers not to search for a better price when they observe their seller increase its
price by a little bit. If however consumers observe a small price decrease then they
expect significant potential gains from search. It follows that the seller is better off
by not changing price.

5 Empirical implications

As mentioned in the introduction, Pertzman (2001) observes that prices rise faster
than they decline. Consider an extension of our theoretical model to include a third
period when consumers learn the firm’s costs. The idea is that the second period

9



Table 1: Frequency and size of price change in the Euro area. Source: Dhyne et al
(2004).

Product category
UPF PF EN NEIG SER Total

Frequency (%)
Increase 15 7 42 4 4 8
Decrease 13 6 36 3 1 6

Size (%)
Increase 15 7 3 9 7 8
Decrease 16 8 2 11 9 10

Key: UPF: unprocessed food; PF: processed food; EN: energy;
NEIG: non-energy industrial goods; SER: services

represents the short run, whereas the third period represents the long run. The
assumption that consumers know costs in the long run is a bit extreme—just as
the assumption that consumers cannot observe any signal of costs in the short run.
However, these assumptions seem a good approximation to the idea that it takes
time for consumers to learn about shocks to the sellers’ costs.

In the third period, the game played by sellers and buyers will be similar to
that in the first period (though possibly with different cost levels). Prices are then
determined by Proposition 2. Consistently with Assumption 1, suppose that, with
probability close to 1, costs do not change between the second and third periods.
It then follows that, for small cost changes, the there-period extension of our theo-
retical models is consistent with the Peltzman (2001) prediction: cost increases are
immediately reflected in price, whereas cost decreases take longer to be reflected in
price.

Proposition 4 and in particular the example presented in Section 3 suggest that
price decreases are less frequent than price increases. In a world of zero inflation,
this also implies that the average price decrease is greater (in absolute value) than
the average price increase.

Evidence for the Euro area seems consistent with the above predictions. Table 1
indicates that on a given month prices increase with probability 8% but decrease with
probability of only 6%. The average price increase is 8%, whereas the average price
decrease is 10%. Regarding the size of price changes in the U.S., Bils and Krivstov
(2004) report average values of 13% (price decreases) and 8% (price increases).

It is also interesting to notice the variation across classes of products. Again
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for the Euro area, Dhyne et al (2004) report that “price changes are very frequent
for energy products (oil products) and unprocessed food, while they are relatively
infrequent for non-energy industrial goods and particularly services” (p 16). The
authors claim that the same result is obtained for the U.S. B.L.S. data used by Bils
and Klenow (2004). While we don’t have a complete explanation for this variation,
it seems reasonable to assume that, for unprocessed foods and oil products buyers
are better aware of cost variations. In our model, this would imply the absence of
stickiness due to search costs.

Our theoretical model considers a zero-inflation environment. It is not clear
how it should be adapted to take into account the fact there is a positive expected
change in cost (and price). Dhyne et al (2003) regress the size of price increases
and decreases on a variety of controls, including inflation, product dummies and
country dummies. The constant for price increases is 0.043, and that for price
decreases 0.057. Both are significant at the 5% confidence level. This seems broadly
consistent with our theoretical prediction. Moreover, empirical evidence suggests
that, in Europe and in the U.S., price volatility is fairly significant with respect to
overall inflation. In this sense the situation may not be very far from the no-inflation
reference point.

6 Discussion

In this section, we reexamine some of the assumptions of our theory, namely our
assumptions regarding the stochastic cost process. We also relate our theory to
other theories of asymmetric price adjustment.

Cost assumptions. It is first important to note that we do not need to make
any assumption of asymmetric cost dynamics in order to obtain asymmetric pricing
dynamics. Specifically, the example we considered in Section 3 features a symmetric
cost process. The example — and the general results — regarding small cost changes
are based on assumptions that require a discontinuity in the the distribution of costs.
In fact, as Assumption 2 states, if firm i’s cost increases then firm j’s cost increases
as well; and if firm i’s cost decreases then firm j’s cost decreases as well. Given
Assumption 3, namely the assumption that the density of the cost distribution is
bounded away from zero, Assumption 2 implies a discontinuity at c0

i .
However, while our set of assumptions is sufficient to obtain the desired results,

it is not necessary. Consider the following variation on the example presented in
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Section 3. As before, suppose that c0
i = c0

j = 1
2 , but now consider the case when

f(cj | ci) =


max

{
0, 1

2 − ci

}
(1− 2 ci) if 0 ≤ cj < 1

2

max
{
0, ci − 1

2

}
(2 ci − 1) if 1

2 < cj ≤ 1

and there is a mass point 1− 1
4

∣∣∣12 − ci

∣∣∣ at cj = 1
2 . This distribution is continuous at

ci = 1
2 . We conjecture that the main feature of the results in Section 3 also apply

in this case.

Related literature. There are various possible explanations for price rigidity
and the asymmetry of price responses to cost changes. Borenstein, Cameron and
Gilbert (1997) provide an informal discussion based on oligopoly market power. We
are only aware of two formal models that relate asymmetric price adjustment to
buyer search costs: Lewis (2005) and Tappata (2006).

Lewis (2005) develops a reference price search model with homogenous firms and
consumers that form adaptive expectations about the current price distribution. In
his model consumers search sequentially and optimally with respect to past prices
but not necessarily with respect to actual prices.

Tappata (2005) develops a non-sequential search model with homogenous firms
a la Varian and rational consumers. When consumers expect costs to be high, they
expect less price dispersion and search less, giving firms more market power. When
consumers expect costs to be low, they expect greater price dispersion, search more
intensively and firms price more competitively. When costs were low in the past
consumers expect current cost to be high as well, hence pricing is more competitive
and cost increases are more fully passed to prices. When past costs were high,
consumers expect current costs to be high as well, hence they search less and firms
have less of an incentive to lower prices.

To be completed.

7 Conclusion

We propose a consumer search theory of asymmetric price adjustment. The basic
intuition for our theory is that consumers have a greater propensity to search when
they observe a large cost increase or a small cost decrease; and have no incentive to
search when costs increase by a little or decrease by a lot. This implies that firms
are reluctant to change prices when costs decrease by a little bit; and don’t fully
reflect on price large costs changes.

To be completed.
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Appendix

Proof of Proposition 1: Let c′ be defined by

µ
(
pm(c′)

)
−
(
pm(0)

)
= s.

If p < pm(c′), then the buyers’ best response is not to search. If fact, even if the
rival seller were to set the lowest price, pm(0), with probability 1, it wouldn’t pay to
search. It follows that, if 0 < c < c′, then it is optimal for sellers to set p = pm(c);
and for c > c′, optimal price is greater or equal to pm(c′). In particular, given that
the profit function is quasiconcave, it does not pay to set a price lower than pm(c′).

Given the sellers’ strategy, an upper bound to the utility a buyer can expect
from switching sellers is

1
c0

(∫ c′

0
µ
(
pm(x)

)
dx + (c0 − c′) µ

(
pm(c′)

))
.

Let c′′ be defined by

µ
(
pm(c′′)

)
− 1

c0

(∫ c′

0
µ
(
pm(x)

)
dx + (c0 − c′) µ

(
pm(c′)

))
= s.

It follows that, if 0 < c < c′′, then it is optimal for sellers to set p = pm(c); and
for c > c′′, optimal price is greater or equal to pm(c′′). In particular, given that the
profit function is quasiconcave, it does not pay to set a price lower than pm(c′′).

Notice that c′′ > c′. This process can be repeated, obtaining a strictly increasing,
bounded sequence c′, c′′, c′′′, . . . which converges to a value c` given by:

µ
(
pm(c`)

)
− 1

c0

(∫ c`

0
µ
(
pm(x)

)
dx + (c0 − c`) µ

(
pm(c`)

))
= s.

But this is exactly the value c1 derived above.
Since we are computing lower bounds to the value of search, it follows that, if

pm(c1) < p < p0, then buyers search. This uniquely leads to the equilibrium price
strategy for c1 < c < c0. For increases in cost, an analogous, if simpler, argument
follows.

Proof of Proposition 3: Suppose that ci = 0 and firm i sets pi = pm(0). The
potential gain from search is zero, since seller j’s price is greater or equal to pm(0).
If follows that there is no search by seller i’s buyers. This in turn implies that seller
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i is doing its best by setting pi = pm(0). In fact, seller i does not lose any of its
buyers. Moreover, the only case when firm j’s buyers would search is when pj is
strictly greater than pm(0), in which case seller i would capture those buyers by
setting pi = pm(0). Since the above inequalities are strict, the result follows by
continuity for ci sufficiently close to zero.

Consider now the case of a large cost increase. If ci > p0
i , then it must be that

pi(ci) > p0
i (no seller would set a price below cost). If search costs are sufficiently

small, then the buyer’s net expected payoff from search is positive. But if buyers
search, then pi(ci) < pm(ci). To see why, consider the highest possible cost. Given
a monotonic pricing function, the probability that such a seller will have positive
sales is zero. Since pm(ci) > ci, it pays to reduce price.

Proof of proposition 4: Suppose that cj = c0
j − ε. A lower price by firm j is

interpreted by consumers as a lower cost by firm i. Assumption 3 and the first part
of Proposition 3 imply that the expected benefit from search is strictly positive. If
s is sufficiently small, then consumers would prefer to search. If that is the case,
then firm j prefers not to change its price: even if no consumers were to move away
from firm j, the gain in adjusting price would be of second order; but the potential
loss of consumers is a first-order effect. In fact, by keeping price constant no search
will take place: if γ is sufficiently close to zero (for given values of ρ and s) then by
Assumption 1 buyers rightly believe that most likely no change in cost has taken
place and so the expected net gain from search is negative.

Consider now the case when ci = c0
i + ε and suppose that firm i sets its new

monopoly price: pi = pm(c0
i + ε). In the initial period, the net expected gain from

search was (weakly) negative (cf Proposition 2). The news that firm i’s cost in-
creased is bad news regarding firm j’s price. It follows that, if ε is small enough,
then the net expected game from search is now strictly negative. This implies that
firm i is doing its best. In fact, firm i’s customer base is independent of price (in
the relevant range). The only case in which firm i might increase its customer base
is when firm j’s customers search. But this only happens when firm j prices at
a higher level than firm i’s current price, in which case firm i’s price increase has
no impact on the number of consumers, only on sales per consumer. Finally, no-
tice that a higher pi is correctly interpreted by consumers as meaning a higher ci

(and thus a higher cj). If firm i’s cost had not changed or had decreased then firm i

would be better off by not changing price rather than by increasing it to pm(c0
i +ε).
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