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Abstract

We prove that a random choice rule satisfies Luce’s Choice Axiom if and

only if its support is a choice correspondence that satisfies the Weak Axiom of

Revealed Preference, thus it consists of alternatives that are optimal according

to some preference, and random choice then occurs according to a tie breaking

among such alternatives that satisfies Renyi’s Conditioning Axiom.

Our result shows that the Choice Axiom is, in a precise formal sense, a

probabilistic version of the Weak Axiom. It thus supports Luce’s view of his

own axiom as a “canon of probabilistic rationality.”
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1 Introduction

In 1977, twenty years after proposing it, Duncan Luce commented as follows about

his celebrated Choice Axiom:1

“Perhaps the greatest strength of the choice axiom, and one reason it

continues to be used, is as a canon of probabilistic rationality. It is

a natural probabilistic formulation of K. J. Arrow’s famed principle of

the independence of irrelevant alternatives, and as such it is a possible

underpinning for rational, probabilistic theories of social behavior.”

This claim already appears in his 1957 and 1959 works that popularized the

axiom and the resulting stochastic choice model.2 The conceptual proximity of

Arrow’s principle, typically identified with the set-theoretic version of the Weak

Axiom of Revealed Preference (WARP),3 and Luce’s Choice Axiom is indeed often

invoked. As well-known, the former plays a key role in deterministic choice theory,

the latter in stochastic choice theory.

Yet, the formal relation between these two independence of irrelevant alternatives

(IIA) assumptions has remained elusive so far.4 For instance, in analyzing several

different IIA axioms Ray (1973) writes:

“Obviously IIA (Luce) falls in a different category altogether [relative to

IIA (Arrow)], being concerned with probabilistic choices.”

This note provides the missing link by showing that a random choice rule satisfies

Luce’s Choice Axiom if and only if:

1. its support, the set of alternatives that can be chosen, is a rational choice

correspondence à la Arrow (1948, 1959), so it consists of alternatives that are

optimal according to some preference;

1Luce (1977, p. 229), emphasis added.
2See Luce (1957, p. 6) and Luce (1959, p. 9).
3Arrow himself put forth this version of Samuelson’s WARP in his 1948 and 1959 works.
4See the discussion of Peters and Wakker (1991, p. 1789) and Wakker (2010, p. 373).
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2. tie-breaking among the optimal alternatives is consistent in the sense of con-

ditional probability à la Renyi (1955, 1956).

In this way, our analysis formally supports Luce’s “canonical rationality” claim

for his Choice Axiom via a lexicographic composition of deterministic rationality

(WARP) and stochastic consistency (Renyi’s Conditioning Axiom).

2 Preliminaries

2.1 Random choice rules

Let A be the collection of all non-empty finite subsets of a universal set X of possible

alternatives. The elements of A are called choice sets and denoted by A, B and C.

A map Γ : A → A such that Γ (A) ⊆ A for all choice sets A is called choice

correspondence. It is rational when

B ⊆ A and Γ (A) ∩B 6= ∅ =⇒ Γ (B) = Γ (A) ∩B (WARP)

This is the set-theoretic form of WARP considered by Arrow (1948, 1959). Its IIA

nature is best seen when Γ is a function:

B ⊆ A and Γ (A) ∈ B =⇒ Γ (B) = Γ (A)

In words, adding suboptimal alternatives is irrelevant for choice behavior.

We denote by ∆ (X) the set of all finitely supported probability measures on

X and, for each A ⊆ X, by ∆ (A) the subset of ∆ (X) consisting of the measures

assigning mass 1 to A.

Definition 1 A random choice rule is a function

p : A → ∆ (X)

A 7→ pA

such that pA ∈ ∆ (A) for all A ∈ A.

Given any alternative a ∈ A, we interpret pA ({a}), also denoted by p (a,A), as

the probability that an agent chooses a when the set of available alternatives is A.
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More generally, if B is a subset of A, we denote by pA (B) or p (B,A) the probability

that the selected element lies in B.5 This probability can be viewed as the frequency

with which an element in B is chosen. In particular, the set of alternatives that can

be chosen from A is the support of pA, given by

supp pA = {a ∈ X : p (a,A) > 0}

The condition pA (A) = 1 guarantees that it is a non-empty subset of A, so that the

support correspondence

supp p : A → A

A 7→ supp pA

is a choice correspondence.

Finally, the standard way of comparing the probabilities of choices in two differ-

ent sets B and C are the odds in favor of B over C, that is,

rA (B,C) =
pA (B)

pA (C)
=

# of times an element in B is chosen

# of times an element in C is chosen

for all B,C ⊆ A. As usual, given any b and c in X, we set p (b, c) = p (b, {b, c}) and

r (b, c) =
p (b, c)

p (c, b)

2.2 Luce’s model

The classical assumptions of Luce (1959) on p are:

Positivity p (a, b) > 0 for all a, b ∈ X.

Choice Axiom p (a,A) = p (a,B) p (B,A) for all B ⊆ A in A and all a ∈ B.

The latter axiom says that the probability of choosing an alternative a from

the choice set A is the probability of first selecting B from A, then choosing a

from B (provided a belongs to B). As observed by Luce, formally this assumption

corresponds to the fact that {pA : A ∈ A} is a conditional probability system in the

5Formally, x 7→ p (x,A) for all x ∈ X is the discrete density of pA, but with an abuse of notation

pA (·) is identified with p (·, A); we also write pA (a) instead of pA ({a}).
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sense of Renyi (1955, 1956).6 Remarkably, Luce’s Choice Axiom is also equivalent

to:

Odds Independence
p (a, b)

p (b, a)
=
p (a,A)

p (b, A)
(OI)

for all A ∈ A and all a, b ∈ A such that p (a,A) /p (b, A) is well defined.7

This axiom says that the odds for a against b are independent of the other

available alternatives.8

Theorem 1 (Luce) A random choice rule p : A → ∆ (X) satisfies Positivity and

the Choice Axiom if and only if there exists α : X → R such that

p (a,A) =
eα(a)∑
b∈A e

α(b)
(LM)

for all A ∈ A and all a ∈ A.

This fundamental result in random choice theory also shows that, under the

Choice Axiom, Positivity is equivalent to the stronger assumption that pA has full

support for all choice sets A.

Full Support supp pA = A for all A ∈ A.

From a choice-theoretic perspective, this axiom is unduly restrictive and may

permit the choice of “dominated” actions. This note shows what happens when

removing from the Luce analysis this extra baggage.

Finally, when X is a separable metric space we may introduce a continuity axiom.

6See Lemma 2 of Luce (1959) and Lemma 6 in the appendix. For bibliographic accuracy, we

remark that here we consider the Choice Axiom in the form stated by Luce (1957) as Axiom 1.

Under Positivity, this version coincides with Axiom 1 of the 1959 book, and is the version later

analyzed by Luce himself in the retrospective of 1977.
7That is, different from 0/0. See Lemma 3 of Luce (1959) when Positivity holds and Lemma 6

in the appendix for the general case.
8For this reason, also this axiom often goes under the IIA name. To avoid confusion, we use a

less popular label.

5



Continuity Given any x, y ∈ X, if {xn}n∈N converges to x, then

p (xn, y) > 0 for all n ∈ N =⇒ p (x, y) > 0

p (y, xn) > 0 for all n ∈ N =⇒ p (y, x) > 0

This axiom has a natural interpretation: if, eventually, xn may be always chosen

(rejected) over y, and xn converges to x, then x can be chosen (rejected) over

y. Continuity is automatically satisfied under Full Support as well as when X is

countable and endowed with the discrete metric.

3 Main result

The next result generalizes Luce’s Theorem 1 by getting rid of the Full Support

assumption.

Theorem 2 The following conditions are equivalent for a random choice rule p :

A → ∆ (X):

(i) p satisfies the Choice Axiom;

(ii) there exist a function α : X → R and a rational choice correspondence Γ :

A → A such that

p (a,A) =


eα(a)∑

b∈Γ(A) e
α(b)

if a ∈ Γ (A)

0 else

(CA)

for all A ∈ A and all a ∈ A.

In this case, Γ is unique and given by Γ (A) = supp pA for all A ∈ A.

Since Γ is a rational choice correspondence, the relation � defined by

a � b ⇐⇒ a 6= b and Γ ({a, b}) = {a} ⇐⇒ b /∈ Γ ({a, b})

is a strict preference (see Kreps, 1988) and the corresponding weak preference

b % a ⇐⇒ a � b ⇐⇒ b ∈ Γ ({a, b}) ⇐⇒ p (b, a) > 0
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is such that Γ (A) = {a ∈ A : a % b for all b ∈ A}.

When X is countable, % is automatically represented by a utility function u and

so we have

Γ (A) = arg max
a∈A

u (a)

In general, some additional conditions are needed, as next we show.

Proposition 3 If X is a separable metric space, then the random choice rule p in

Theorem 2 satisfies Continuity if and only if there exists a continuous u : X → R

such that Γ (A) = arg maxa∈A u (a) for all A ∈ A.

A two-stage decision process appears in formula (CA): first rational selection

from the choice set A via maximization of preference % (or utility u), then Lucean

tie-breaking to choose among the optimal alternatives.

While the optimization structure of the first stage is clear, more can be said

about the tie-breaking structure of the second stage in that Theorem 2 describes

only its functional form. To this end, recall that a random choice rule p is based on

a Random Preference Model if there is a (measurable) collection

{�ω}ω∈(Ω,F ,Pr)

of strict preferences such that, for all a ∈ A ∈ A,

p (a,A) = Pr (ω ∈ Ω : a �ω b ∀b ∈ A \ {a})

In particular, a Random Preference Model is Lucean if p (·, A) has the Luce form

(LM).

A piece of terminology: the lexicographic composition of two binary relations �

and �′ is the binary relation � ◦ �′ defined by

a � ◦ �′ b ⇐⇒ a � b or a ∼ b and a �′ b

For instance, >1 ◦ >2 is the usual lexicographic preference on the Cartesian plane.9

We can now state the announced characterization.

9Here >i is defined by (a1, a2) >i (b1, b2)⇐⇒ ai > bi.
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Proposition 4 The following conditions are equivalent for a random choice rule

p : A → ∆ (X):

(i) p satisfies the Choice Axiom;

(ii) supp p : A → A is a rational choice correspondence and

pB (a) =
pA (a)

pA (B)
(COND)

for all B ⊆ A ∈ A and all a ∈ B ∩ supp pA.

(iii) there exist a strict preference � on X and a Lucean Random Preference Model

{�ω}ω∈(Ω,F ,Pr) such that p is based on the lexicographic Random Preference

Model

{� ◦ �ω}ω∈(Ω,F ,Pr)

This result presents two “deconstructions” of the Choice Axiom that both shed

light on the second tie-breaking stage in (CA).

Specifically, to interpret (ii) observe that WARP says that, if a can be chosen

from A (i.e., pA (a) > 0) and belongs to B ⊆ A, then it can be chosen also from B.

But, this axiom is silent about the relation between the frequencies of choice in the

two sets A and B. Formula (COND) requires them to be related by the Conditioning

Axiom of Renyi (1955, 1956), a classical probabilistic consistency condition. In

particular, (COND) per se is weaker than Luce’s Choice Axiom, which imposes

pA (a) = pB (a) pA (B) for all a ∈ B ⊆ A, not just for the elements a in B that can

be chosen from A.

To interpret (iii), note that the first-stage preference � determines the support

of p, while the second stage Random Preference Model {�ω}ω∈(Ω,F ,Pr) is the for-

mal description of the Lucean tie-breaking among optimizers that we previously

discussed.

Finally, (iii) also says that, when X is countable, random choice rules that satisfy

the Choice Axiom are random utility models (RUM), something not obvious from

the definition.10 This opens the way to the study of general compositions of strict

10See Section A.1 below for an independent RUM representation.
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preferences and random utility models. The object of current research, a such study

goes beyond the scope of this note.

4 Remarks

1. By considering a random choice rule pA to describe the frequency with which

elements are chosen from A, we make the standard interpretation of the choice

correspondence Γ (A) = supp pA as the the set of alternatives that can be

chosen from A (cf. Sen, 1993) operational and formally meaningful. Here,

“can be chosen” means chosen with positive frequency.

2. The second stage of randomization, disciplined by α, can be interpreted in

the spirit of Salant and Rubinstein (2008) as capturing observable informa-

tion which is irrelevant in the rational assessment of the alternatives, but

nonetheless affects choice and may reveal how previous experiences and men-

tal associations affect the selection from the optimal Γ (A).

3. The distinct roles of u and α become clear once our result is related to the

random utility representation of the Luce model. In fact, u corresponds to

the systematic component of the agent utility, and α to the alternative-specific

bias in the Multinomial Logit Model.11 Specifically, Theorem 2 shows that a

random choice rule p has the form (CA) if and only if, given any A ∈ A and

any a ∈ A,

pA (a) = lim
λ→0

Pr (ω ∈ Ω : u (a) + λεa (ω) > u (b) + λεb (ω) ∀b ∈ A \ {a})

where u is a utility function that rationalizes Γ, {εx}x∈X is a collection of

independent errors with type I extreme value distribution, specific mean α (a),

common variance π2/6, and λ is the noise level. In fact,

lim
λ→0

Pr (ω ∈ Ω : u (a) + λεa (ω) > u (b) + λεb (ω) ∀b ∈ A \ {a})

= lim
λ→0

Pr

(
ω :

u (a)

λ
+ α (a) + [εa (ω)− α (a)] >

u (b)

λ
+ α (b) + [εb (ω)− α (b)] ∀b 6= a

)
= lim

λ→0

e
u(a)
λ +α(a)∑

b∈A e
u(b)
λ +α(b)

=
eα(a)∑

b∈argmaxA u
eα(b)

δa (arg maxA u) = pA (a)

11See the seminal McFadden (1973) as well as Ben Akiva and Lerman (1985) and Train (2009)

for textbook treatments.
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Our analysis thus shows that, when noise vanishes, optimal choice is governed

by u and tie-breaking among optimal alternatives is stochastically driven by

alternative-specific biases captured by α.

4. A similar interpretation arises when adopting the perspective of Matejka and

McKay (2015) on the Multinomial Logit Model as the outcome of an optimal

information acquisition problem. In this case, u is the true (initially unknown)

payoff of alternatives, α captures a prior belief on payoffs held before engaging

in experimentation, and λ is the cost of one unit of information.

Here our analysis shows that, when the cost of information vanishes, optimal

alternatives are selected without error, and prior beliefs only govern the tie-

breaking among such alternatives.

5 Related literature

The study of the relations between axiomatic decision theory and stochastic choice

has been recently an active field of research. Horan (2020) and Ok and Tserenjigmid

(2020) are the most recent works that we are aware of. The former also provides an

insightful review of the state of the art. The latter expands on the main conceptual

topic of this note: the relation between deterministic and probabilistic “rationality.”

Horan (2020) axiomatically unifies Luce (1956, 1959) in a random choice model

of imperfect discrimination of the form

p (a,A) =


eα(a)∑

b∈Γ(A) e
α(b)

if a ∈ Γ (A)

0 else

(GLM)

where Γ is a utility correspondence based on α. Specifically, in Horan, Γ describes

the degree of imperfection in the discrimination of the α-values of alternatives; on

the contrary, in this note α and Γ are independent, with the former tie-breaking the

optimizers identified by the latter.

Horan also compares and provides alternative axiomatizations of several “Gen-

eral Luce Models” (the name is of Echenique and Saito, 2019) of the form (GLM),

10



which correspond to different specifications of the properties of Γ: Ahumada and

Ulku (2019), Dogan and Yildiz (2019), Echenique and Saito (2019), and McCausland

(2009).

In particular, Dogan and Yildiz (2019) and Horan (2020) provide alternative

characterizations of (CA): the former based on supermodularity of odds, the latter

on the product rule and a transitivity condition of Fishburn (1978). These results

—together with our characterizations of (CA) through the Choice Axiom alone, or

WARP and conditioning— provide a full perspective on “rational choice” followed

by “rational tie-breaking.”

Like us, Ok and Tserenjigmid (2020) regard the support of a random choice rule

as a deterministic choice correspondence, and they analyze its rationality proper-

ties for several different random choice rules. Following Fishburn (1978), they also

consider the entire family of deterministic choice correspondences that lie between

the support of p and its subset consisting of the alternatives that are chosen with

highest frequency (rather than with positive frequency).

A Proofs and related analysis

A.1 Independent RUM representations

At the end of Section 3, we observed how Proposition 4.(iii) shows that, when X

is countable, random choice rules that satisfy the Choice Axiom are random utility

models. Here we expand on this topic by providing an explicit independent random

utility representation for the random choice rule (CA) of Theorem 2, which holds

whenever Γ is the “arg max” of a utility function u : X → R with discrete range.

Note that, while this requires u (X) to be countable, no assumption is made on the

cardinality of X.

Proposition 5 Let u, α : X → R and consider the random choice rule p : A →
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∆ (X) defined by

p (a,A) =


eα(a)∑

b∈arg maxz∈A u(z) e
α(b)

if a ∈ arg maxz∈A u (z)

0 else

for all A ∈ A and all a ∈ A. If u (X) is a discrete subset of R, then there exists a

collection {Ux}x∈X of independent random variables such that

p (a,A) = Pr (ω ∈ Ω : Ua (ω) > Ub (ω) ∀b ∈ A \ {a})

for all A ∈ A and all a ∈ A.

Proof Let {Vx}x∈X be a collection of independent random variables such that

eα(a)∑
b∈A e

α(b)
= Pr (ω ∈ Ω : Va (ω) > Vb (ω) ∀b ∈ A \ {a})

for all A ∈ A and all a ∈ A, and assume that −1 < Vx (ω) < 1 for all x ∈ X and

all ω ∈ Ω.12 Since u (X) is discrete, for each x ∈ X there exists a constant rx > 0

which only depends on u (x) such that

u (x) > u (y) =⇒ u (x)− rx > u (y) + ry

Define Ux = u (x) + rxVx and note that {Ux}x∈X is a collection of independent

random variables too.

Now arbitrarily choose A ∈ A and set B = arg maxz∈A u (z) and C = A \ B.

Two cases have to be considered.

If a ∈ B, then

p (a,A) =
eα(a)∑
b∈B e

α(b)
= Pr (ω ∈ Ω : Va (ω) > Vb (ω) ∀b ∈ B \ {a})

since u (b) = u (a) for all b ∈ B, then rb = ra for all b ∈ B, thus

p (a,A) = Pr (ω ∈ Ω : u (a) + raVa (ω) > u (b) + rbVb (ω) ∀b ∈ B \ {a})

= Pr (ω ∈ Ω : Ua (ω) > Ub (ω) ∀b ∈ B \ {a})
12This is without loss of generality because one can always take the representation of McFadden

(1973) and apply an arctangent transformation.
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But, for all c ∈ C = A \B and all ω ∈ Ω,

Uc (ω) = u (c) + rcVc (ω) < u (c) + rc

and u (a) > u (c) implies u (a)− ra > u (c) + rc, hence

Ua (ω) = u (a) + raVa (ω) > u (a)− ra > u (c) + rc > Uc (ω)

Thus, Ua (ω) > Uc (ω) for all c ∈ C and all ω ∈ Ω, so

p (a,A) = Pr (ω ∈ Ω : Ua (ω) > Ub (ω) ∀b ∈ B \ {a} and ∀b ∈ C)

= Pr (ω ∈ Ω : Ua (ω) > Ub (ω) ∀b ∈ A \ {a})

If instead c ∈ C, then taking a ∈ B as above, Ua (ω) > Uc (ω) for all ω ∈ Ω, then

0 = Pr (ω ∈ Ω : Uc (ω) > Ua (ω))

≥ Pr (ω ∈ Ω : Uc (ω) > Ub (ω) ∀b ∈ A \ {c})

whence

p (c, A) = 0 = Pr (ω ∈ Ω : Uc (ω) > Ub (ω) ∀b ∈ A \ {c})

as wanted. �

A.2 Proofs

A preference on X can be given in either strict form, �, or weak form, %.

• In the first case, � is required to be asymmetric and negatively transitive, and

% is defined by

a % b if and only if ¬ (b � a) (1)

• In the second case, % is required to be complete and transitive, and � is

defined by

b � a if and only if ¬ (a % b) (2)

These approaches are well known to be interchangeable,13 and for this reason we

call weak order both � and % with the understanding that they are related by the

equivalent (1) or (2).

13See Kreps (1988, p. 11).
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Lemma 6 Let p : A → ∆ (X) be a random choice rule. The following conditions

are equivalent:

(i) p is such that, pA (C) = pB (C) pA (B) for all C ⊆ B ⊆ A in A;

(ii) p satisfies the Choice Axiom;

(iii) p is such that p (b, B) p (a,A) = p (a,B) p (b, A) for all B ⊆ A in A and all

a, b ∈ B;

(iv) p satisfies Odds Independence;

(v) p is such that p (Y ∩B,A) = p (Y,B) p (B,A) for all B ⊆ A in A and all

Y ⊆ X.

Moreover, in this case, p satisfies Positivity if and only if it satisfies Full Support.

Proof (i) implies (ii). Choose as C the singleton a appearing in the statement of

the axiom.

(ii) implies (iii). Given any B ⊆ A in A and any a, b ∈ B, by the Choice Axiom,

p (a,A) = p (a,B) p (B,A), but then p (b, B) p (a,A) = p (a,B) p (b, B) p (B,A) =

p (a,B) p (b, A) where the second equality follows from another application of the

Choice Axiom.

(iii) implies (iv). LetA ∈ A and arbitrarily choose a, b ∈ A such that p (a,A) /p (b, A) 6=

0/0. By (iii),

p (b, a) p (a,A) = p (b, {a, b}) p (a,A) = p (a, {a, b}) p (b, A) = p (a, b) p (b, A)

three cases have to be considered:

• p (b, a) 6= 0 and p (b, A) 6= 0, then p (a,A) /p (b, A) = p (a, b) /p (b, a);

• p (b, a) = 0, then p (a, b) p (b, A) = 0, but p (a, b) 6= 0 (because p (a, b) /p (b, a) 6=

0/0), thus p (b, A) = 0 and p (a,A) 6= 0 (because p (a,A) /p (b, A) 6= 0/0);

therefore
p (a, b)

p (b, a)
=∞ =

p (a,A)

p (b, A)
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• p (b, A) = 0, then p (b, a) p (a,A) = 0, but p (a,A) 6= 0 (because p (a,A) /p (b, A) 6=

0/0), thus p (b, a) = 0 and p (a, b) 6= 0 (because p (a, b) /p (b, a) 6= 0/0); there-

fore
p (a,A)

p (b, A)
=∞ =

p (a, b)

p (b, a)

(iv) implies (iii). Given any B ⊆ A in A and any a, b ∈ B:

• If p (a,A) /p (b, A) 6= 0/0 and p (a,B) /p (b, B) 6= 0/0, then by (OI)

p (a,A)

p (b, A)
=
p (a, b)

p (b, a)
=
p (a,B)

p (b, B)

◦ If p (b, A) 6= 0, then p (b, B) 6= 0 and p (b, B) p (a,A) = p (a,B) p (b, A).

◦ Else p (b, A) = 0, then p (b, B) = 0 and again p (b, B) p (a,A) = p (a,B) p (b, A).

• Else, either p (a,A) /p (b, A) = 0/0 or p (a,B) /p (b, B) = 0/0, and in both

cases

p (b, B) p (a,A) = p (a,B) p (b, A)

(iii) implies (v). Given any B ⊆ A in A and any Y ⊆ X, since p (B,B) = 1, it

follows p (Y,B) = p (Y ∩B,B). Therefore

p (Y ∩B,A) =
∑

y∈Y ∩B

p (y, A) =
∑

y∈Y ∩B

(∑
x∈B

p (x,B)

)
p (y, A) =

∑
y∈Y ∩B

(∑
x∈B

p (x,B) p (y, A)

)

[by (iii)] =
∑

y∈Y ∩B

(∑
x∈B

p (y,B) p (x,A)

)
=
∑

y∈Y ∩B

p (y,B)

(∑
x∈B

p (x,A)

)

=
∑

y∈Y ∩B

p (y,B) p (B,A) = p (Y ∩B,B) p (B,A) = p (Y,B) p (B,A)

(v) implies (i). Take Y = C.

Finally, let p satisfy the Choice Axiom. Assume – per contra – Positivity holds

and p (a,A) = 0 for some A ∈ A and some a ∈ A. Then A 6= {a} and, for all

b ∈ A \ {a}, the Choice Axiom implies 0 = p (a,A) = p (a, {a, b}) p ({a, b} , A) =

p (a, b) (p (a,A) + p (b, A)) = p (a, b) p (b, A) whence p (b, A) = 0 (because p (a, b) 6=

0), contradicting p (A,A) = 1. Therefore Positivity implies Full Support. The

converse is trivial. �

If p : A → ∆ (X) is a random choice rule, denote by σp (A) the support of pA,

for all A ∈ A.
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Lemma 7 If p : A → ∆ (X) is a random choice rule that satisfies the Choice

Axiom, then σp : A → A is a rational choice correspondence.

Proof Clearly, ∅ 6= σp (A) ⊆ A for all A ∈ A, then σp : A → A is a choice

correspondence. Let A,B ∈ A be such that B ⊆ A and assume that σp (A)∩B 6= ∅.

We want to show that σp (A) ∩B = σp (B). Since p satisfies the Choice Axiom,

if a ∈ σp (A) ∩ B, then 0 < p (a,A) = p (a,B) p (B,A). It follows that p (a,B) > 0,

that is, a ∈ σp (B). Thus, σp (A) ∩ B ⊆ σp (B). As to the converse inclusion, let

a ∈ σp (B), that is, p (a,B) > 0. By contradiction, assume that a /∈ σp (A)∩B. Since

a ∈ B, it must be the case that a /∈ σp (A), that is, p (a,A) = 0. Since p satisfies

the Choice Axiom, we then have 0 = p (a,A) = p (a,B) p (B,A). Since p (a,B) > 0,

it must be the case that p (B,A) = 0, that is, σp (A) ∩ B = ∅. This contradicts

σp (A) ∩B 6= ∅; therefore, a belongs to σp (A) ∩B. Thus, σp (B) ⊆ σp (A) ∩B. �

Lemma 8 The following conditions are equivalent for a function p : A → ∆ (X):

(i) p is a random choice rule that satisfies the Choice Axiom;

(ii) p is a random choice rule such that σp is a rational choice correspondence, and

pB (a) =
pH (a)

pH (B)
(3)

for all B ⊆ H ∈ A and all a ∈ σp (H) ∩B;

(iii) there exist a function v : X → (0,∞) and a rational choice correspondence

Γ : A → A such that, for all x ∈ X and A ∈ A

p (x,A) =


v (x)∑

b∈Γ(A) v (b)
if x ∈ Γ (A)

0 else

(4)

In this case, Γ is unique and coincides with σp.

Proof (iii) implies (i). Let p be given by (4) with Γ a rational choice correspondence

and v : X → (0,∞). It is easy to check that p is a well defined random choice rule,

that the support correspondence supp p coincides with Γ, and that

p (Y,A) =
∑

y∈Y ∩Γ(A)

v (y)∑
d∈Γ(A) v (d)
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for all Y ⊆ X and all A ∈ A.

Let A,B ∈ A be such that B ⊆ A and a ∈ B. We have two cases:

• If Γ (A) ∩B 6= ∅, since Γ satisfies WARP, Γ (A) ∩B = Γ (B).

◦ If a ∈ Γ (B), then a ∈ Γ (A) and p (a,B) = v (a) /
∑

b∈Γ(B) v (b), it follows

that

p (a,A) =
v (a)∑

d∈Γ(A) v (d)
=

v (a)∑
b∈Γ(B) v (b)

∑
b∈Γ(A)∩B v (b)∑
d∈Γ(A) v (d)

= p (a,B) p (B,A)

◦ Else a /∈ Γ (B), and since a ∈ B, it must be the case that a /∈ Γ (A), so

p (a,A) = 0 = p (a,B) = p (a,B) p (B,A).

• Else Γ (A) ∩ B = ∅. It follows that a /∈ Γ (A) and p (B,A) = 0 = p (a,A);

again, we have p (a,A) = p (a,B) p (B,A).

These cases prove that p satisfies the Choice Axiom.

(i) implies (ii). Let p : A → ∆ (X) be a random choice rule that satisfies the

Choice Axiom. Then, by Lemma 7, σp : A → A is a rational choice correspondence.

Moreover, if B ⊆ H and all a ∈ σp (H) ∩B, then

p (a,H) = p (a,B) p (B,H)

but p (B,H) ≥ p (a,H) > 0 because a ∈ B and a ∈ σp (H), and (3) follows.

(ii) implies (iii). Let p : A → ∆ (X) be a random choice rule such that σp is a

rational choice correspondence, and that satisfies (3). Since, σp is a rational choice

correspondence, then the relation

a % b ⇐⇒ a ∈ σp ({a, b}) ⇐⇒ p (a, b) > 0

is a weak order on X; and its symmetric part ∼ is an equivalence relation such that

a ∼ b ⇐⇒ p (a, b) > 0 and p (b, a) > 0 ⇐⇒ r (a, b) ∈ (0,∞)

Moreover, by Theorem 3 of Arrow (1959), it follows that

σp (A) = {a ∈ A : a % b ∀b ∈ A} ∀A ∈ A (5)
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in particular, all elements of σp (A) are equivalent with respect to ∼, and

σp (S) = S (6)

for all S ∈ A consisting of equivalent elements.

Let {Xi : i ∈ I} be the family of all equivalence classes of ∼ in X. Choose ai ∈ Xi

for all i ∈ I. For each x ∈ X, there exists one and only one i = ix such that x ∈ Xi,

set

v (x) = r (x, ai) (7)

Since x ∼ ai, then r (x, ai) ∈ (0,∞); and so v : X → (0,∞) is well defined. Consider

any x ∼ y in X and any S ∈ A consisting of equivalent elements and containing x

and y. Notice that, by (6), σp (S) = S, hence x ∈ σp (S) ∩ {x, y}, then by (3) with

H = S and B = {x, y},

p (x, y) =
pS (x)

pS ({x, y})
therefore

0 < p (x, S) = p (x, y) p ({x, y} , S)

and analogously

0 < p (y, S) = p (y, x) p ({x, y} , S)

yielding that

p (x, y) p (y, x) p (x, S) p (y, S) > 0 and
p (x, S)

p (y, S)
=
p (x, y)

p (y, x)
= r (x, y) (8)

We are ready to conclude our proof, that is, to show that (4) holds with Γ = σp.

Let a ∈ X and A ∈ A. If a /∈ σp (A), then p (a,A) = 0 because σp (A) is the support

of pA. Else, a ∈ σp (A), and, by (5), all the elements in σp (A) are equivalent

with respect to ∼ and therefore they are equivalent to some ai with i ∈ I. It

follows that σp (A) ∪ {ai} ∈ A and it is such that σp (A) ∪ {ai} ⊆ Xi. By (6), we

have that σp (σp (A) ∪ {ai}) = σp (A) ∪ {ai}, that is, p (x, σp (A) ∪ {ai}) > 0 for

all x ∈ σp (A) ∪ {ai} and p (σp (A) , σp (A) ∪ {ai}) > 0. By (3) with H = A and

B = σp (A), since a ∈ σp (A) ∩B, it follows

p (a, σp (A)) =
p (a,A)

p (σp (A) , A)
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Since p (σp (A) , A) = 1, then

p (a,A) = p (a, σp (A))

By (3) again, with H = σp (A)∪{ai} and B = σp (A), since a ∈ σp (σp (A) ∪ {ai})∩

σp (A), then

p (a, σp (A)) =
p (a, σp (A) ∪ {ai})

p (σp (A) , σp (A) ∪ {ai})
=

p(a,σp(A)∪{ai})
p(ai,σp(A)∪{ai})

p(σp(A),σp(A)∪{ai})
p(ai,σp(A)∪{ai})

applying (8) to the pairs (x, y) = (a, ai) and (x, y) = (b, ai), with b ∈ σp (A), in

S = σp (A) ∪ {ai} ⊆ Xi, we can conclude that

p(a,σp(A)∪{ai})
p(ai,σp(A)∪{ai})

p(σp(A),σp(A)∪{ai})
p(ai,σp(A)∪{ai})

=

p(a,σp(A)∪{ai})
p(ai,σp(A)∪{ai})∑

b∈σp(A)
p(b,σp(A)∪{ai})
p(ai,σp(A)∪{ai})

=
r (a, ai)∑

b∈σp(A) r (b, ai)
=

v (a)∑
b∈σp(A) v (b)

as wanted.

As for the uniqueness part, we already observed that (iii) implies Γ = σp. �

Theorem 2 immediately follows.

Proof of Proposition 3 In Theorem 2, Γ is a rational choice correspondence and

the corresponding weak order is

a % b ⇐⇒ a ∈ Γ ({a, b}) ⇐⇒ p (a, b) > 0

thus Continuity can be rewritten as: Given any x, y ∈ X, if {xn}n∈N converges to x,

then

xn % y for all n ∈ N =⇒ x % y

y % xn for all n ∈ N =⇒ y % x

This concludes the proof, because on a separable metric space, a weak order admits

a continuous utility if and only if its upper and lower level sets are closed (see, e.g.,

Kreps, 1988, p. 27). �

The set W of all weak orders on X is endowed with the σ-algebra W generated

by the sets of the form

Wab = {� : a � b} ∀a, b ∈ X
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Given � and �′ in W , the lexicographic composition � ◦ �′ of � and �′ is

routinely seen to be a weak order too (see, e.g., Fishburn, 1974).

Lemma 9 For each � in W, the map

f = f� : W → W

�′ 7→ � ◦ �′

is measurable with respect to W.

Proof Arbitrarily choose a, b ∈ X, and study

f−1 (Wab) = f−1 ({�′′ : a �′′ b}) = {�′ : f (�′) ∈ {�′′ : a �′′ b}}

= {�′ : a f (�′) b} = {�′ : a � ◦ �′ b}

• if a ≺ b, then there is no �′ in W such that a � ◦ �′ b, that is,

{�′ : a � ◦ �′ b} = ∅

which is measurable (because ∅ ∈W),

• else if a � b, then a � ◦ �′ b for all �′ in W , that is,

{�′ : a � ◦ �′ b} =W

which is measurable (because W ∈W),

• else, it must be the case that a ∼ b and a � ◦ �′ b if and only if a �′ b, that

is,

{�′ : a � ◦ �′ b} = {�′ : a �′ b} = Wab

which is measurable (because Wab ∈W).

Therefore f is measurable since the counterimage of a class of generators of W

is contained in W. �

A Random Preference Model is a measurable function

P : (Ω,F ,Pr) → W

ω 7→ P (ω)
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It is common practice to write �ω instead of P (ω). The Random Selector p based

on the RPM P is given by

p (a,A) = Pr (ω ∈ Ω : a �ω b ∀b ∈ A \ {a}) ∀a ∈ A ∈ A

The latter is well defined because

{ω ∈ Ω : a �ω b ∀b ∈ A \ {a}} = {ω ∈ Ω : P (ω) ∈ Wab ∀b ∈ A \ {a}}

=

{
ω ∈ Ω : P (ω) ∈

⋂
b∈A\{a}

Wab

}
= P−1

(⋂
b∈A\{a}

Wab

)
∈ F

since P is measurable. Moreover, depending on P , the RS p might not define a

random choice rule. For instance, if P is constantly equal to the trivial weak order

according to which all alternatives are indifferent, then p (a,A) = 0 for all a ∈ A ∈ A

such that |A| ≥ 2.

The proof of Proposition 4 hinges on the study of the composition of the functions

f� and P .

First, such a composition defines a random preference model, because

f� ◦ P : (Ω,F ,Pr) → W

ω 7→ f� (P (ω)) = � ◦ �ω

—being a composition of measurable functions, it is measurable.

Second, the random selector based on the random preference model f� ◦ P is a

lexicographic version of P , that first selects the maximizers of �, then breaks the

ties according to P .

In order to state these results formally, we denote by Γ = Γ� the rational choice

correspondence induced by �.14

Lemma 10 Let � be a weak order, P = {�ω}ω∈Ω be a RPM, and p be the RS based

on P . Then f� ◦ P = {� ◦ �ω}ω∈Ω is a RPM and the RS based on it is given by

p� (a,A) =


p (a,Γ (A)) if a ∈ Γ (A)

0 else

(9)

for all a ∈ A ∈ A.

14Γ� (A) = {a ∈ A : a % b for all b ∈ A} also recall that a % b if and only if a ⊀ b.
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Proof We already observed that f� ◦P = {� ◦ �ω}ω∈Ω is a RPM. By definition of

random selector based on a RPM

p� (a,A) = Pr (ω ∈ Ω : a � ◦ �ω b ∀b ∈ A \ {a})

We have to verify that this formula coincides with (9) for all a ∈ A ∈ A.

For each A ∈ A and each a ∈ Γ (A), set

JA (a) = {ω ∈ Ω : a �ω c for all c ∈ Γ (A) \ {a}} = J

KA (a) = {ω ∈ Ω : a � ◦ �ω b for all b ∈ A \ {a}} = K

Next we check that J = K.

If ω ∈ J , then a �ω c for all c ∈ Γ (A) \ {a}; take any b ∈ A \ {a},

• if b is such that b /∈ Γ (A), then, a � b and hence a � ◦ �ω b,

• else b ∈ Γ (A), then a ∼ b and a �ω b, again a � ◦ �ω b,

then a � ◦ �ω b for all b ∈ A \ {a}, thus ω ∈ K.

Conversely, if ω ∈ K, then a � ◦ �ω b for all b ∈ A \ {a}. Thus, for all

b ∈ Γ (A) \ {a}, since relation a ∼ b, it must be the case that a �ω b. Therefore ω

is such that a �ω b for all b ∈ Γ (A) \ {a}, and ω ∈ J .

Summing up, for all A ∈ A and a ∈ Γ (A),

p (a,Γ (A)) = Pr JA (a) = PrKA (a) = p� (a,A)

and the first line of (9) is true.

Let A ∈ A and a /∈ Γ (A), then there exists b̄ ∈ A \ {a} such that a ≺ b̄, and for

no ω it holds a � ◦ �ω b̄, that is,

KA (a) = {ω ∈ Ω : a � ◦ �ω b for all b ∈ A \ {a}} = ∅

therefore p� (a,A) = PrKA (a) = 0, and the second line of (9) is true too. �

Proof of Proposition 4 The equivalence between points (i) and (ii) corresponds

with the equivalence between the points with the same name of Lemma 8.
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(i) implies (iii). By Theorem 2, there exist a function α : X → R and a rational

choice correspondence Γ : A → A such that

p (a,A) =


eα(a)∑

b∈Γ(A) e
α(b)

if a ∈ Γ (A)

0 else

for all a ∈ A ∈ A. Denote by � the weak order that corresponds to Γ.

As shown by McFadden (1973), the Lucean random choice rule

q (a,A) =
eα(a)∑
b∈A e

α(b)
∀a ∈ A ∈ A

is based on a (Lucean) RPM P = {�ω}ω∈Ω. By Lemma 10, it follows that f� ◦P =

{� ◦ �ω}ω∈Ω is a RPM and the RS based on it is given by

q� (a,A) =


q (a,Γ (A)) if a ∈ Γ (A)

0 else

= p (a,A) ∀a ∈ A ∈ A

Therefore, there exist a Lucean Random Preference Model {�ω}ω∈(Ω,F ,Pr) and a

weak order � on X such that p is based on {� ◦ �ω}ω∈(Ω,F ,Pr).

(iii) implies (i). If there exist a Lucean Random Preference Model {�ω}ω∈(Ω,F ,Pr)

and a weak order � on X such that p is based on {� ◦ �ω}ω∈(Ω,F ,Pr); in particular,

there exists α : X → R such that

Pr (ω ∈ Ω : a �ω b ∀b ∈ A \ {a}) =
eα(a)∑
b∈A e

α(b)
∀a ∈ A ∈ A

Denoting

q (a,A) =
eα(a)∑
b∈A e

α(b)
∀a ∈ A ∈ A

the RS based on {�ω}ω∈(Ω,F ,Pr), by Lemma 10, the RS is based on {� ◦ �ω}ω∈(Ω,F ,Pr)

is

q� (a,A) =


q (a,Γ (A)) if a ∈ Γ (A)

0 else

=


eα(a)∑

b∈Γ(A) e
α(b)

if a ∈ Γ (A)

0 else
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But, by assumption (iii), q� coincides with p (p is based on {� ◦ �ω}ω∈(Ω,F ,Pr)), and

Γ is a rational choice correspondence because � is a weak order. Then Theorem 2

guarantees that p satisfies the Choice Axiom. �
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