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Abstract

With interdependent values, assignments of students to schools may be challenged after the

outcome of the assignment is known, prompting the question: are there assignments that are

posterior stable and (weakly) implementable? When the entire allocation outcome is known to

everyone after an assignment is selected, we show that there is no incentive compatible mecha-

nism that implements posterior stable allocations in general. We then look at situations where

each school knows only its own allocation outcome. In such environments, with one-sided incom-

plete information, we identify necessary and sufficient conditions on communication strategies

available to blocking coalitions under which posterior stable and implementable allocations ex-

ist. We construct a ‘modified serial dictatorship’ direct mechanism that implements them. We

also investigate efficiency and monotonicity properties of modified serial dictatorship.
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1 Introduction

Consider a student assignment problem under incomplete information. Schools privately observe

noisy signals of each student’s quality before offering admission, where a student’s quality may

be common to all schools so that each school’s signal is informationally relevant for the others.

With such interdependent values, an assignment (equivalently termed an allocation, matching or

admission) of students to schools may reveal valuable information to all parties. Consequently,

a subset of schools or students may unanimously prefer an alternative assignment, given their

posterior beliefs about the state of the world, updated after observing the allocation outcome, and

based on their knowledge of the assignment mechanism. In this paper we characterize environments

where the original mechanism is posterior stable, i.e., immune from renegotiation possibilities that

arise at the posterior stage after everyone observes the outcome of the status quo allocation rule.

There are many other examples of matching problems that share important features of this

student assignment problem. For instance, at entry level positions, employees may be assigned to

work for divisions they rank unanimously from more to less prestigious. Each division can interview

the employee and get information on their quality, over and beyond the publicly known prior. As

another example, a decision-maker may have to delegate a decision to one of several experts, with

each expert privately informed about the merits of taking on the case and interdependent values

among the experts. As a final example, an author may have to submit an article to a peer-reviewed

journal, when each journal only obtains a noisy signal of the paper’s true quality and where the

author may withdraw the paper after acceptance and submit it to another journal. Hereafter, we

will stick to the student assignment problem as the baseline story underlying our terminology.

In addition, in our analysis of environments with one-sided incomplete information and inter-

dependent values, we assume that students have no private information on their quality and that

their preferences over schools are common knowledge and independent of the schools’ private in-

formation. Furthermore, we focus on purely informational issues and so assume that schools have

preferences that are separable over students, that they face no capacity constraints and that the

student side of the matching market has homogeneous preferences. Finally, schools and students

have a no-assignment option available, and monetary transfers are excluded.

Even in this simple set-up, a suitable definition of posterior stability has to address two funda-

mental issues. The first is observability, i.e., the extent to which the status quo outcome is publicly

observed at the posterior stage when coalitions may raise objections. The second is communication,

i.e., the restrictions if any that one imposes on information sharing among coalition members at

the time they raise objections.

With respect to the observability issue, we consider two polar notions: strong and weak.

Under strong observability, all schools and students observe the entire allocation outcome including

parts that do not directly concern them. Under weak observability, each school (student) only

observes the students (schools) assigned to it and does not directly observe the students assigned

to other schools. If one thinks of the original mechanism as a centralized direct mechanism, then
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strong observability can be thought of as the case where a mechanism designer publicly announces

the allocation outcome, whereas weak observability corresponds to the case where the designer

privately communicates the relevant parts of the outcome to each party. We say that an allocation

rule is strong (respectively, weak) posterior stable if it is posterior stable under strong (resp., weak)

observability.

With respect to the communication issue, we allow coalitions to object to the decision made by

the status quo mechanism via unanimous voting on an alternative decision. For a block to succeed,

each coalition member must be strictly better off in expectation from accepting the alternative,

conditional not only on the observed status quo outcome, but also on the acceptance of other

coalition members. Such a notion allows communication to a limited degree, since acceptance

strategies may depend on information that is private. However, the coalition cannot design a

general communication mechanism. This last restriction is natural since we focus on situations

where coalition members object to the status quo decision at the posterior stage by proposing an

alternative decision, and do not necessarily object to the entire decision rule. It is also economically

relevant since a general mechanism may be too costly to operate for a blocking coalition at the late

stage when the status quo rule has already proposed an allocation. These costs may be direct or

take the form of constraints in designing complex mechanisms that require precise specification of

randomization schemes and message games (for a similar point see Forges, 1994). However, quite

apart from how reasonable these economic constraints are, we also show that such restrictions on

communication are not arbitrary but actually necessary in order to obtain any general existence

result.

We first establish some preliminary properties of posterior stable allocation rules, in particular

their existence and their relation to other already established interim and ex-post notions of stabil-

ity. Since we have in mind environments where information is private and, in particular, cannot be

verified ex-post (by a court of law, say), it is natural to think of posterior stability in conjunction

with the question of eliciting truthful information revelation. Accordingly, we look next at posterior

stable allocation rules that are also weakly implementable, i.e., incentive compatible when written

as a direct mechanism.

We show that strong posterior stable allocations are generally not incentive compatible. We

provide a nonexistence example, which obtains even under strong affiliation and symmetry condi-

tions on the environment, and does not depend on the restrictions on communication possibilities

that we impose. This result shows that under strong observability, too much information may be

contained in the outcome of any incentive compatible rule for it to be posterior stable.

On the other hand, we show that under weak observability, the set of posterior stable and

incentive compatible allocation rules is always nonempty. We provide a direct mechanism that can

be used to construct such rules as a function of the signal and student distribution, that we call

modified serial dictatorship. With such a mechanism, schools are ordered in a descending sequence

according to the student’s preferences. Each school is then assigned the student based on the

school’s evaluation of the student, conditional on the school’s own private signal and on the signals
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of schools above (but not below) them in the student’s rankings. With such an allocation, and

under weak observability, no subset of schools or students can infer from the observed outcome

enough information that allows it to profit via a blocking coalition.

In contrast to the negative result under strong observability, the positive result on the existence

of weak posterior stable incentive compatible rules does depend on the restrictions on communica-

tion that we impose. Specifically, we assume that the alternative decision voted on by a blocking

coalition (i) must make each coalition member strictly better off relative to the status quo, (ii)

cannot involve lotteries and other randomization schemes and (iii) cannot depend on messages sent

by coalition members. Absent restriction (i), coalition members may sell ‘free’ information to other

coalition members by participating in a block even though they do not directly gain from it, pre-

cluding the existence of stable rules. On the other hand, absent restriction (ii), coalition members

may ‘stochastically reward’ other members for information via the use of lotteries, also precluding

the existence of stable rules. Similarly, absent restriction (iii), coalition members may artificially

create randomization schemes by making allocations depend on payoff-irrelevant messages. In this

precise sense, as we show below, all of the restrictions (i)—(iii) are necessary to obtain the exis-

tence of weak posterior stable and incentive compatible rules, giving our definitions and results a

normative content.

We also consider what happens when ‘renegotiation is anticipated’ by the schools when they

submit their signals. We modify the notion of blocks by allowing schools to object to a given allo-

cation also after lying to the mechanism. Allocations obtained through modified serial dictatorship

are incentive compatible and stable even under this wider notion of blocks.

Modified serial dictatorship is posterior efficient and gives rise to ex-post efficient allocations

when students rank higher the schools with higher opportunity costs of admitting a student. In

such situations, it is also natural to expect that for a stable rule, the average quality of the student

at a better school must be greater than at a worse school. While this is true for strong posterior

stable allocations, we show that weak posterior stable allocations may not have this property, even

in affiliated environments. In this sense the matching pattern may not be monotonic or assortative

in incomplete information settings.

The literature on matching has usually considered private value environments. Roth and So-

tomayor (1990) provide a survey of many earlier results, including those of Roth (1989). In simul-

taneous and independent work, Ostrovsky (2005) considers the question of posterior stability in

a one-to-one matching problem under common values. He provides an impossibility result under

strong observability, similar in spirit to our Example 2. He assumes that schools have identical pref-

erences over students, requires schools to block in a pre-specified order and obtains nonexistence in

the presence of at least three students. Instead, we consider a many-to-one problem, allow general

preferences for schools, use a notion of blocks similar to definitions of the core under incomplete

information, and are able to show nonexistence under strong observability with only one student.

We also provide necessary and sufficient conditions for the existence of incentive compatible and

stable rules under weak observability, a question not addressed by Ostrovsky (2005). Other recent
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papers that include some notion of reallocation proofness, such as Abdulkadiroglu and Sonmez

(1999, 2003) and Papai (2000), study school choice, as opposed to student assignments, and are

not concerned with the common value aspect of the problem.

Our work is closely related to notions of the core under incomplete information considered in

the literature on cooperative games (e.g., Wilson (1978), Vohra (1999), Forges, Mertens and Vohra

(2001); for a survey, see Forges, Minelli and Vohra (2001)). An important issue in this literature

that is shared by the present paper concerns the question of communication, i.e., endogenous

sharing of information and the associated incentive compatibility and self-selection constraints that

arise when coalitions raise objections under incomplete information (Volij (2000), Dutta and Vohra

(2001)). As shown in Example 1, our focus on objections at the posterior stage distinguishes it

from interim notions such as the coarse core, since we use different measurability restrictions on

blocks and different information to let the agents evaluate them. In particular, the information

available to coalitions at the time they may raise objections is endogenous in our set up, since the

allocation outcome itself (an endogenous function of private signals) is used by agents to evaluate

the allocation.

Forges (1994) also considers situations where the allocation outcome is used to evaluate an

allocation –a notion of strong posterior efficiency. As a difference, we insist on asking for more

than just efficiency (i.e., stability to objections by the grand coalition). Our Example 2 shows

that, once stability is taken into account, the positive results of Forges (1994, Properties 1, 4) are

reversed.

In the implementation literature, our work is related to the idea of durable mechanisms in

Holmstrom and Myerson (1983), in the sense of allowing endogenous information sharing via unan-

imous voting on alternatives. As in Maskin and Moore (1999), we look at implementation and

renegotiation, but again we ask for stability of the outcome, and do not require ex-post efficiency.

The rest of the paper proceeds as follows. In Section 2 we set up our environment. In Sec-

tion 3 we define our notions of posterior stability and compare them with interim core notions.

We demonstrate the non-existence of incentive compatible strong posterior stable rules, provide a

constructive proof of existence of weak posterior stable ones via modified serial dictatorship, and

establish the necessity of restricting communication among blocks to obtain existence. In Section

4 we discuss renegotiation and the efficiency and monotonicity properties of modified serial dicta-

torship. Section 5 concludes while the Appendix contains all the proofs and the details of some

examples.

2 The environment

The agents are students and schools. The set of students is denoted by S = {0, 1, ..., S}, with
S ≥ 1 and typical element s, whereas the set of schools is denoted by I = {0, 1, .., I}, with I > 1

and typical element i. We denote by i = 0 a fictitious null school (to capture the possibility that

a student does not go to any school) and let I+ = I \{0} denote the set of real schools. An
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analogous role is played by s = 0, with S+ = S\{0} denoting the set of real students. For some
analysis, to each real student we assign an observed type λ ∈ [0, 1] and let Sλ be the set of students
assigned to type λ, with element sλ. Let Λ be the set of possible types with

P
λ∈Λ#(Sλ) = S.

Students s ∈ S+ also differ in their unobserved quality or ability qs ∈ Q, a finite set. Neither
schools nor students know the quality qs of any student s, but each school i ∈ I+ receives a private
signal xi,s. This can be thought of as the outcome of a privately observed informative test for

student s. We assume that xi,s ∈ X = {x1, ..., xn}. Let xs = (xi,s)i∈I+ be the vector of signals

associated with each student s , and xi = (xi,s)s∈S+ be the vector of signals received by each school

i ∈ I+, so that x = (xs)s∈S+ =(xi)i∈I+ represents the private information available on the quality of
all students s ∈ S+ by all schools i ∈ I+. The null school i = 0 has no private information. We let
Pr be the joint probability distribution over qualities and signals, with full support on XSI ×QS .

The payoff to school i from accepting student s of quality qs when the signal is xs is wi(xs, qs),

whereas the payoff from not getting a student is 0. In general we will put no further restrictions on

wi, except in the context of some examples, as discussed below. Students derive utility from going

to school i, represented by a payoff vs(i, x). Let w = {wi}i∈I and v = {vs}s∈S+ .
An environment is identified by an array (I,S,Λ,Q,X,Pr, w, v). The problem we face in these

environments is to allocate students to schools. Let µi,s(x) ≥ 0 be a real number for i ∈ I,

s ∈ S and x ∈ XSI that specifies the fraction of time student s is going to school i, given the

information x.1 An allocation given x ∈ XSI is µ(x) = {µi(x)}i∈I, where µi(x) = {µi,s(x)}s∈S is
the allocation pertaining to school i, while that pertaining to student s is µs(x) = {µi,s(x)}i∈I, andP

i∈I µi,s(x) = 1 for all s ∈ S and x ∈ XSI . An allocation (rule) is µ = {µ(x)}x∈XSI .

In general, school i does not know the realized vector x and computes its expected payoff from

an allocation given its information. We denote the information of school i by Fi, a partition of XSI .

Let S0 ⊂ S be a subset of students. If Fi ∈ Fi, we assume that the conditional expected payoff to

school i from an allocation µ relative to students S0 and given Fi is additive across students and

linear in probabilities, and write it as

Ui(µ,S
0|Fi) =

X
s∈S0

X
x∈XSI

ui(s|x)µi,s(x) Pr[x|Fi]

whenever this is well—defined, i.e., Pr(Fi) > 0, with the expected payoff being arbitrarily defined

otherwise. Here, ui(s|x) =
P

qs
wi(xs, qs) Pr(xs, qs|x) is the expected payoff to school i from match-

ing with student s when signals are x. For notational simplicity, when S0 is the entire set of students

S we write Ui(µ,S
0|Fi) = Ui(µ|Fi), whereas when S0 = {0, s} and µi,s(x) = 1 for all x ∈ Fi, we

write Ui(µ,S
0|Fi) = ui(s|Fi).

Similarly, the information student s has can generally be represented by a partition Fs. The

expected payoff for student s from µ conditional on her information Fs ⊂ XSI is

1We are allowing a student to attend multiple schools simultaneously. This is a convenient analytical representa-

tion, although multiple attendance will not arise at stable allocations. As usual, µi,s(x) can also be interpreted as a

probability that student s is going to school i at x, without altering anything to follow.
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Us(µ|Fs) =
X
i∈I

X
x∈XSI

vs(i;x)µi,s(x) Pr(x|Fs)

Since an allocation may depend on information that is private to the schools, an allocation

µ is informationally feasible if it is incentive compatible for the schools to reveal their private

information. Taking recourse to the revelation principle, we think of an allocation µ(bx) as a
function of direct messages bx from the schools. The definition of incentive compatibility is then the
usual one. An allocation µ is incentive compatible if for each i ∈ I+ and each xi

xi ∈ argmax
xi

X
s∈S

X
x∈XSI

ui(s|xs)µi,s(bxi, x−i) Pr[x|xi] (IC)

We impose the following assumptions on our environments. First, qualities and signals are

independent across students, and for any student sλ, the distribution Prsλ depends only on the

type λ and not on the identity s of the student:

A1 For any s, s0 ∈ S+, s 6= s0, Pr(xs, qs, xs0 , qs0) = Prs(xs, qs) Prs0(xs0 , qs0); and for each sλ∈Sλ,
λ ∈Λ, Prsλ(xsλ , qsλ) = Pr(xsλ , qsλ ;λ).

Assumption A1 helps eliminate informational spillovers across students. Since, aside from λ,

Pr(xsλ , qsλ ;λ) is identical across students, hereafter we refer to it as Pr(xsλ , qsλ) for notational

simplicity, at times omitting altogether reference to type λ if convenient. Next, we suppose that

A2 Schools have no capacity constraints.

Assumption A2 allows us to highlight the purely informational aspects of the assignment prob-

lem that are independent of capacity constraints.2 Moreover, the students’ (common knowledge)

preferences over schools are set by assuming that:

A3 vs(i, x) = vi,s, with vi,s 6= vj,s all i, j ∈ I, i 6= j, and v0,s < vi,s for all i ∈ I+.

The assumption that student preferences are independent of private signals observed by schools,

while natural in the context of the applications we have in mind, is important for our positive results.

Furthermore, we also assume that preferences are homogeneous on the student side of the market,

i.e.,

A30 vi,s = vi for all s ∈ S+ and vi is increasing in i.

Assumption A3
0
is not crucial for our main results, although it simplifies some proofs. As

discussed in Section 3.2.2, for all our results through Section 3, A3
0
can be replaced by assuming

instead that schools’ preferences are homogeneous, i.e.,
2Our negative (non—existence) results do not depend on A2 and the main positive (existence) result extends to

the case with binding capacity constraints, under assumption A30 on student preferences.
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A300 wi(xs, qs) is identical across i up to affine transformations, for all s ∈ S.

Finally, for ease of exposition we will carry out the analysis in the paper for the generic envi-

ronments in which the following condition holds:

A4 Pr and wi(xs, qs) are such that ui(s|Fi) 6= 0 for all partitions Fi, all i ∈ I+, s ∈ S+.

If Q, X are totally ordered and Pr(xsλ , qsλ) is log—supermodular in xsλ , qsλ and λ, then the

signals are affiliated –for any student sλ a higher signal obtained by school i makes it more likely

that the signals obtained by other schools are also likely to be higher. Log—supermodularity together

with the monotonicity of wi(xsλ , qsλ) in its arguments imply that Esλ [wi(xsλ , qsλ)|..., ai ≤ xi,sλ ≤
bi, ...] is increasing in ai, bi ∈ X, all i, and in λ (see, e.g., Milgrom and Weber (1982, Theorems 23,

24)). For brevity, we call such environments affiliated. In what follows, affiliation will be used to

construct some examples. In these examples we frequently use the special case of an environment

where the set of unobserved qualities is Q = {0, 1}, the observed type λ is the prior probability of
qsλ = 1, and wi(xsλ , qsλ) = qsλ − ci, where the preference parameter ci ∈ (0, 1) is identified as an
opportunity cost of admitting a student.

Finally, we introduce the following notation that will be useful later. Given an allocation rule

µ, we let M(µ), Mi(µ) and Ms(µ) be the images of µ(·), µi(·) and µs(·), respectively. With

Ms(µ) ⊂ RI , we let mk
s denote the k-th canonical basis vector of RI . We define ιµ :S×XSI ⇒ I

as the schools student s is assigned to attend at an allocation µ when the information is x. That

is, i ∈ ιµ(s;x) if µi,s(x) > 0; generally ιµ is a correspondence, unless µi,s(x) = 1, some i. When

µi,s(x) ∈ {0, 1} for all i, s and x we say that µ is degenerate while if µ(x) does not depend on x we

say that it is constant. We turn now to our notions of posterior stable allocations.

3 Posterior stable allocations

As mentioned in the Introduction, we consider two notions of posterior stability, strong and weak.

These differ in terms of what is observed by agents at the blocking stage. Strong posterior stability

relates to the case each school and student observes the entire allocation outcome µ(x) at each state

of the world x, whereas weak posterior stability relates to the case where school i only observes

µi(x) and student s only µs(x).

3.1 Definitions

With incomplete information, expected payoffs of schools and students from an alternative alloca-

tion µ0, that is feasible for a coalition of schools and students, depend on the ability of schools and

students to make inferences from the proposed allocations and to communicate whatever informa-

tion is left private at that stage. We model a block as a ‘unanimous voting game’ over an alternative

allocation outcome such that members of the blocking coalition can infer which signals others have

received from their acceptance of µ0. In other words, each member of a coalition evaluates the
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proposal µ0 at a (Bayesian) Nash equilibrium of this game, knowing the equilibrium acceptance

rule of the other members. We first define the notion of feasibility of an alternative allocation for a

coalition C of agents. Then, we define acceptance strategies for members of C, considering strong

posterior stability first.

We consider coalitions C = (I0,S0), with I0 ⊂ I and S0 ⊂ S, such that either I0+ = I
0∩I+ 6= ∅

or S0+ = S
0 ∩ S+ 6= ∅. The allocation µ0 is feasible for C relative to µ (or, simply, feasible for C)

if for every s ∈ S0,
P

i∈I0 µ
0
i,s(x) = 1 and µ0i,s(x) = 0 for each i /∈ I0, and for each i ∈ I0+, each

s /∈ S0+, either µ0i,s(x) = µi,s(x), or µ
0
i,s(x) = 0, all x. Therefore, µ0 is an allocation only for the

students and schools in C. For instance, if a school blocks alone (i.e., S0+ = ∅), it can only drop
some students it was assigned to under µ.

For i ∈ I0+, let αi(x0i,m) ∈ {0, 1} be i’s acceptance (αi = 1) or rejection (αi = 0) of µ0 as a

function of his private signal x0i ∈ XS given that m ∈ M(µ) has been observed.3 Similarly, for

s ∈ S0+ let αs(m) ∈ {0, 1} be the student’s acceptance given the observed outcome m ∈M(µ). Let
αC = {αk}k∈C. Throughout what follows we assume that αk for the fictitious school or student is
equal to 1. Let pivk(αC) = {x0 ∈ XSI | αk0 = 1, k0 6= k} be the event that k ∈ C is pivotal in the

acceptance game for the alternative proposal µ0, i.e., the event that all other members of C have

accepted the alternative µ0. The following is our notion of a strong posterior stable allocation.

Definition 1 An allocation µ is strongly blocked at x ∈ XSI if there exist C = (I0,S0), a constant

and degenerate µ0 that is feasible for C and acceptance strategies αC such that for all i ∈ I0+ and
s ∈ S0+, and for all x0i ∈ XS, m ∈M(µ),

αi(x
0
i,m) = 1 iff Ui(µ

0 − µ|x0i,m, pivi(αC)) > 0, (1)

αs(m) = 1 iff Us(µ
0 − µ|m,pivs(αC)) > 0 (2)

and αi(xi, µ(x)) = αs(µ(x)) = 1 for all i ∈ I0 and s ∈ S0. An allocation µ is strong posterior stable

if there is no x where it is strongly blocked.

Notice from Definition 1 that all members of the coalition must strictly prefer to accept the

blocking allocation µ0, and that µ0 must be degenerate and constant. This is identical to requiring

that each member of a blocking coalition strictly prefers to the status quo a feasible and non-random

alternative allocation, as opposed to an allocation rule. These are restrictions on the ability of

blocking coalitions to “effectively negotiate” (see Myerson, 1991, Ch. 9-10). Especially when µ(x)

does not fully reveal the state of the world, one could imagine that a blocking coalition may be able

to design a communication game and thereby implement a general incentive compatible alternative

allocation rule µ0, neither constant nor degenerate (see, e.g., Definition 3.2 in Forges, 1994). In

contrast, Definition 1 allows communication only to the extent of what can be inferred from the
3 In general µ(x) is nondegenerate since the allocation rule may prescribe assigning a student s to multiple schools,

given x. As an alternative, one could assume that schools observe only which schools got what students, and not the

time they spend in each school (part-time vs. full time, say). With our observability assumption however, posterior

stable allocations turn out to be degenerate.
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equilibrium of the unanimous voting game, i.e., from conditioning on the event pivk(αC). As we

show below however, even with these restrictions on blocks, strong posterior stable allocations that

are also required to be incentive compatible do not exist in general –given any incentive compatible

µ, there may be too much information contained in µ(x) at some x for µ to be strong posterior

stable. This is the sense in which our analysis is free of renegotiation protocol details.

This also motivates our definition of weak posterior stability, a notion under which less than

full information about the status—quo allocation outcome µ(x) is made available to the agents.

Specifically, at each x, school i only observes µi(x) and student s only observes µs(x). Notice that

this is the minimum possible information that will be observed by the schools and students once

the allocation outcome µ(x) is selected. The only ensuing difference for the acceptance game is

that now a strategy αi is a function of school i’s private information x0i ∈ X and its observed part

of the allocation, µi(x
0) ∈Mi(µ), whereas the acceptance strategy αs for student s is a function of

µs(x
0) ∈Ms(µ).

Definition 2 An allocation µ is weakly blocked at x ∈ XSI if there exist C = (I0,S0), a constant

and degenerate µ0 that is feasible for C, and acceptance strategies αC such that for all i ∈ I0+ and
s ∈ S0+, and for all x0i ∈ XS, mi ∈Mi(µ), ms ∈Ms(µ),

αi(x
0
i,mi) = 1 iff Ui(µ

0 − µ|x0i,mi, pivi(αC)) > 0, (3)

αs(ms) = 1 iff Us(µ
0 − µ|ms, pivs(αC)) > 0, (4)

and αi(xi, µi(x)) = αs(µs(x)) = 1 for all i ∈ I0 and s ∈ S0. An allocation µ is weak posterior stable

if there is no x where it is weakly blocked.

Our first result shows that, absent incentive compatibility considerations, both weak and strong

posterior stable allocations always exist since, in particular, ex—post stable allocations are posterior

stable (see the proof for the definition of ex—post stability).

Proposition 1 Posterior stable allocations exist and are degenerate.

Proof. See the Appendix. ¤
In Example 1 below, we characterize the full set of weak and strong posterior stable rules, in

order to gain intuition. We also use the example to compare our notion of posterior stability to the

seminal notion of interim stability provided by Wilson (1978), i.e., the coarse core, and its incentive

compatible version (see Vohra (1999)). In the coarse core, blocks occur at the interim stage, allow

signal-contingent alternatives, and students evaluate allocations in expected terms prior to knowing

the allocation outcome. No inference can be made from acceptance of a block, since each member

of a coalition must be strictly better off from accepting in all states that are consistent with what

is commonly known by the coalition. The example shows that the sets of posterior stable and

(incentive compatible) coarse core allocations may not even intersect.
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Example 1 The sets of posterior stable and (incentive compatible) coarse core allocations do not

intersect.

We take an affiliated environment with I+ = {1, 2}, one student s and binary signals for each
school, i.e., X = {L,H} with L < H. The preferences are summarized by the following:

(i) ui(s|x) > 0 iff x 6= (L,L), i = 1, 2; (ii) u1(s|x1 = L) > 0;

(iii) u2(s|x2 = L) < 0, (iv) v1 > v2 Pr[x 6= (L,L)].
Let µ1, µ2, µ3 be three different degenerate rules defined respectively by4

ιµ1(s;x) =

(
2 2

0 2

)
, ιµ2(s;x) =

(
2 2

0 1

)
, ιµ3(s;x) =

(
1 1

1 1

)
Observe first that the set of weak posterior stable allocations is {µ1, µ2}. For at any candidate
weak stable allocation µ, µ2,s(x) = 1 if x2 = H, or school 2 will block in a coalition with the

student, by condition (i). Next, µ1,s(L,L) = 0, or school 1 will block alone, again by (i); and

µ2,s(L,L) = 0, or school 2 will block alone, by either (i) or (iii). Finally, µ0,s(H,L) = 0, or school

1 blocks with the student, by (i). Then, µ1, µ2 are the only remaining possibilities. Indeed, µ1 is

strong posterior stable but µ2 is not, since under strong stability school 2 can identify the state of

the world x = (H,L) upon observing the allocation corresponding to the the bottom right element

of the matrix ιµ2 , and consequently will block with the student, by (i).

However, neither µ1 nor µ2 is in the coarse core. Using µ3 as a feasible alternative, school 1 and

the student have a coarse objection to them: for school 1 by (i), (ii); for the student, the utility

from µ1 is v2 Pr[x 6= (L,L)], the utility of µ2 is v2 Pr[x2 = H] + v1 Pr[(H,L)], and v1 is the utility

under µ3, which is higher by (iv). Indeed, µ1, µ2 are not even in the incentive compatible coarse

core, since µ3 is an incentive compatible coarse objection. For completeness, observe that µ3 is in

the (incentive compatible) coarse core, as can be readily verified.¥
A consequence of Example 1 is that posterior stable allocations may not be in the fine core

either (see Wilson (1978) for a definition), since this last is contained in the coarse core. A similar

no-inclusion relation holds for the credible core (Dutta and Vohra, 2001), which is contained in the

incentive compatible coarse core. Example 1 then also shows that the requirement of stability at

both the interim and the posterior stages may not be feasible.

3.2 Incentive compatibility

3.2.1 Strong posterior stability: impossibility

Proposition 1 establishes the existence of posterior stable allocations, strong and weak, absent

incentive compatibility requirements. The next example shows that there exist robust environments

where strong posterior stable allocation rules are bound to fail incentive compatibility.
4 In all examples, we represent ιµ as a matrix, with the columns denoting the signal of school 1, increasing as one

moves right, and the rows denoting the signal of school 2, increasing as one moves up. In later examples with three

schools, the signals of school 3 are denoted by different matrices.
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Example 2 Non—existence of strong posterior stable and incentive compatible allocation rules.

We take a symmetric affiliated environment with I+ = {1, 2}, one student s and three signals
for each school, i.e., X = {L,M,H} with L < M < H. The preference parameters are as follows:

(i) u1(s|x) > 0 iff mini xi ≥M or maxi xi ≥ H; (ii) u1(s|x1 =M,x2 < H) > 0;

(iii) u2(s|x) > 0 iff maxi xi ≥ H; (iv) u2(s|x1 > L, x2 = L) < 0; (v) u2(s|x1 > L, x2 =M) > 0;

(vi) u2(s|x1 6=M,x2 =M) < 0.

Observe first that any strongly stable allocation is degenerate, by Proposition 1. Moreover,

µ2,s(x1,H) = 1, for all x1 or i = 2 and the student would (strongly) block at (x1,H), by (iii).

Second, µi,s(L, x2) = 0 for i ∈ I+ for x2 = L,M , or i would block (using (i) for i = 1 and (iii), (iv),

(vi) for i = 2). Finally, µ2,s(M,L) = 0 or else school 2 will block at (M,L), by (iii) and (iv).

We now consider two cases: (a) µ2,s(M,M) 6= µ2,s(H,M) and (b) µ2,s(M,M) = µ2,s(H,M).

Case (a): µ2,s(M,M) 6= µ2,s(H,M)

Since µ is degenerate, in this case we either have µ2,s(M,M) = 1 or µ2,s(H,M) = 1, but not

both. Since in the former case 2 would block at (M,M) by (iii), we see µ2,s(H,M) = 1 and so

µ2,s(M,M) = 0. Next, µ1,s(M,M) = 1. For if not then school 1 and the student will block at

(M,M), by (i) and (ii). Further, if µ2,s(H,L) = 0, then µ1,s(H,L) = 1 or else 1 and the student

will block at (H,L), by (i). This leaves three possible allocation rules with corresponding ιµ’s given

by ⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 0 2

⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 1 2

⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 1 1

⎫⎪⎬⎪⎭
None of these are incentive compatible as in each, school 1 has an incentive to announce M when

x1 = H.

Case (b): µ2,s(M,M) = µ2,s(H,M)

In this case, µ2,s(M,M) = µ2,s(H,M) = 1. For if µ2,s(M,M) = µ2,s(H,M) = 0, then

µ1,s(x1,M) = 1 for x1 = M,H as otherwise 1 and the student would block at (x1,M) by (i)

and (ii), implying in turn, since 2 observes the entire outcome µ(x), that 2 and the student would

block at (H,M), by (v). It follows that µ1,s(M,L) = 0 as otherwise 1 will block at (M,L) (by

(i)). Further, µ2,s(H,L) = 1. For if µ2,s(H,L) = 0, then we must have µ1,s(H,L) = 1 or else 1 and

the student will block at (H,L) by (i), implying in turn, since 2 observes the entire outcome µ(x),

that 2 and the student would block at (H,L), by (iii). Thus, the only possible µ in this case has

ιµ given by ⎧⎪⎨⎪⎩
2 2 2

0 2 2

0 0 2

⎫⎪⎬⎪⎭
This is not incentive compatible as 2 has an incentive to announce L when x2 =M, by (iii). This

concludes the example.¥
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When private information must be elicited in an incentive compatible manner, strong posterior

stability may be impossible to obtain. Notice in this respect that in the arguments of Example 2, we

only used blocking coalitions of either singleton schools or school—student pairs. In all such blocks,

the privately informed school in a blocking coalition did not infer anything from the acceptance

decisions of other coalition members (if any) that it did not already know from observing the

allocation outcome µ(x). Thus, the nonexistence result of Example 2 does not depend on the

restrictions on communication possibilities between members of a blocking coalition. Since there

is only one student, it does not depend on the homogeneity of the students’ preferences, or on the

absence of capacity constraints.

3.2.2 Weak posterior stability: modified serial dictatorship

Our next result is positive, and establishes the existence of weakly stable incentive compatible

allocations. The proof uses a modified serial dictatorship algorithm to deliver allocations with such

properties. The algorithm works as follows. For each student, the student’s value to each school i is

gauged using information relative to that student only. In particular, this value is measured using

school i’s own signal and the signals possessed by all schools above i in the student’s rankings.

Then, the mechanism assigns the student to school i if this value is positive and the student is

available, i.e., given that the student was not assigned to any of the higher schools in the student’s

rankings. If school i is not assigned the student, then the next school is considered, and so on,

starting from the top school and moving down the student’s rankings. Given A30, each student s is

then allocated to school i ∈ I if and only if ui(s|xi,s, xi+1,s, ..., xI,s) ≥ 0 > uj(s|xj,s, xj+1,s, ..., xI,s)
for all j > i. We denote the resulting allocation as µMSD.

Theorem 1 The allocation rule µMSD obtained via modified serial dictatorship is incentive com-

patible and weak posterior stable in every environment.

Proof. See the Appendix. ¤
By the properties of modified serial dictatorship, each school in a coalition can effectively

condition its decision on the private information held by other schools in the coalition that are

higher in the student’s ranking. In fact, it follows from the way the allocation µMSD is constructed

that µMSD cannot be weak blocked if, in addition to µi(x), each school is also allowed to observe

the actual signals of all schools above it in the student rankings at the blocking stage. Under

A30, this implies that the lowest school in any coalition cannot learn anything from other schools

in the coalition, and so eliminates the need for considering blocks involving multiple schools and

students –any time such a block exists, another one involving only one school (specifically, the

lowest) and one student also does.5 However, a block involving a student and a single school

5Multi—school coalitions can also be ruled out if one replaces A30 by A300, although for a different “no trade”

argument. Since multi-school coalitions can all gain only if they trade students amongst themselves, the preference

homogeneity among schools imposed by A300 eliminates such blocks due to arguments similar to the “no trade

theorem” of Milgrom and Stokey (1982). Details are available upon request.
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cannot obtain, since the acceptance of the block by a student who was not initially allocated to

that school conveys to the school only that the student was admitted to a school below it in the

student’s ranking. By the properties of modified serial dictatorship, the school cannot be better

off from accepting such a student conditional only on this information. Since it is immediate that

µMSD is interim individually rational for each school and student, this establishes weak stability.

Furthermore, µMSD is incentive compatible for each school i, not only in interim terms, but also

conditional on the actual signals received by all schools j > i, given truth-telling by schools j0 < i.

Thus, it is ex-post incentive compatible for school 1 and, given truth-telling by school 1, incentive

compatible for school 2 even given the actual signals of all schools above 2, and so on. We will

utilize these properties of µMSD further in Section 4.1.6

Modified serial dictatorship delivers posterior stability under weak observability because, by

construction, no school is able to infer anything about the information held by schools below it in

the student’s ranking from its own allocation. Instead, under strong observability, by observing

the entire allocation a school may infer valuable information about the signal obtained by schools

below it in the student’s ranking, and so profitably block µMSD. For instance, in the environment

of Example 2 the allocation rule µMSD is given by:

ιµMSD(s;x) =

⎧⎪⎨⎪⎩
2 2 2

0 1 1

0 0 1

⎫⎪⎬⎪⎭
This rule is not strong posterior stable. When x2 =M , upon observing that the student has been

allocated to school 1 (i.e., µ1,s(x) = 1), school 2 will infer that the signal of school 1, x1 ∈ {M,H},
and so it will be willing to admit the student via a blocking coalition, even though the student will

always accept such an offer.7 However, µMSD is posterior stable under weak observability since

when x2 =M school 2 will only observe µ2,s(x1,M) = 0, for each x1 ∈ {L,M,H}. It will therefore
be unable to infer anything about x1 from its own allocation. Neither will it infer anything by

conditioning on the fact that the student accepts a block since the student will always accept a

block that gains him admission to school 2, regardless of which school he has been admitted to

under the status quo allocation. Such a block therefore cannot obtain.

We conclude this section by comparing modified serial dictatorship with a similar algorithm,

simple serial dictatorship. As with modified serial dictatorship, under simple serial dictatorship the

student is allocated to a school in the descending order given by the student’s preferences. However,

a student’s value to school i is not gauged with the actual signals obtained by higher schools,

6 It can be shown that an amended version of MSD also applies when schools have known capacity constraints,

provided students have identical preferences, i.e, A30 applies. In the amended version each school (starting from the

top) is allocated as many students as it is willing to have subject to its capacity, the availability of the student, and

given its own signals and signals of schools above it.
7As shown in Example 2 this ability to deduce the information held by lower schools in the context of strong

observability leads to the nonexistence of any incentive compatible strongly stable allocation rule. Exactly the same

intuition underlies the non—existence of incentive compatible ex—post stable allocation rules.
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but using only school i’s own signal, and the fact that the student is still available. In affiliated

environments (i.e., where Pr displays affiliation and w is a collection of increasing functions), simple

serial dictatorship also delivers allocations that are weak posterior stable and incentive compatible.

This is because affiliation implies that conditional expectations are monotonically increasing, linking

a student’s value across schools. This is enough to exclude blocks among multiple schools (Steps 1

and 2 in the proof of Theorem 1) through a ‘no trade’ argument: acceptance of a student’s move to

a higher school in a block reveals to the lower school that the student is worth keeping.8 Outside

of affiliated environments, simple serial dictatorship may not deliver weak posterior stability, as

Example 3 demonstrates. Instead, with modified serial dictatorship information on the higher

school’s signal is embedded in the construction of the allocation rule, and as a result the mechanism

operates in more general environments, i.e., with arbitrary Pr and w.

Example 3 Simple serial dictatorship may not be weak posterior stable.

We take an environment with I+ = {1, 2}, one student s and binary signals for each school.
The preference parameters are as follows: (i) u1(s|x) > 0 iff x = (H,H); (ii) u1(s|x1 = H) > 0;

(iii) u2(s|x) > 0 iff x = (H,L); (iv) u2(s|x2 = L) < 0.

Consider the allocations µ1 and µ2 below:

ιµ1 =

(
0 1

0 1

)
, ιµ2 =

(
0 1

0 0

)
It is straightforward to verify that µ1 is obtained through simple serial dictatorship and µ2 through

modified serial dictatorship, and that µ1 is not weak posterior stable: at (H,L) the grand coalition

of schools 1 and 2 and the student will block with µ02,s = 1 using the acceptance rules αs = 1 for

all ms, α1 = 1 iff x1 = H and α2 = 1 iff x2 = L, since at (H,L) all parties prefer that the student

goes to school 2 instead of 1. Instead, by Theorem 1, µ2 is weak posterior stable and incentive

compatible.¥

3.2.3 The necessity of restrictions on blocks

Apart from the partial observability that defines weak stability, there are a number of other

restrictions on the ability of blocking coalitions to effectively negotiate that we commented upon

before. These are (i) all members of such a coalition must be strictly better off from accepting the

block, (ii) the blocking rule must be degenerate, and (iii) it must be a constant. In particular, we

do not allow a blocking coalition to construct a general direct mechanism to implement a possibly

non—degenerate and non—constant alternative allocation. This can be justified on the grounds of a

general mechanism being too costly to run at the renegotiation stage when the original mechanism

has already picked an allocation. In view of the positive result of Theorem 1 it is still natural to ask

however if these restrictions are also necessary for existence of posterior stable incentive compatible

8Details available upon request.

14



rules. We answer this question now by considering alternative notions of weak stability, relaxing

each of the restrictions (i)—(iii) individually.

We begin by relaxing (i) above, i.e., we allow participation in blocks even if an agent is only

weakly better off from doing so. One can then imagine a situation where two schools form a

coalition, communicate the state and agree not to admit the student to either school. Such a

possibility is ruled out by condition (3) in Definition 2 since at least one school cannot strictly gain

from such a block vis-a-vis a degenerate status quo µ. But consider a weakening conditions (3) and

(4) in Definition 2 to, respectively,

αi(x
0
i,mi) = 1 only if Ui(µ

0 − µ|x0i,mi, pivi(αC)) ≥ 0,
αs(ms) = 1 only if Us(µ

0 − µ|ms, pivs(αC)) ≥ 0,
(5)

with one strict inequality. We call such a notion of stability weak∗ posterior stability. Our next

example concerns incentive compatible weak∗ stable rules.

Example 4 Non—existence of weak∗ posterior stable and incentive compatible allocation rules.

Consider the same environment as in Example 2, with I+ = {1, 2}, one student s and three
signals for each school, X = {L,M,H} with L < M < H. The preference parameters are as

follows:

(i) u1(s|x) > 0 iff mini xi ≥M or maxi xi ≥ H; (ii) u1(s|x1 =M,x2 < H) < 0;

(iii) u2(s|x) > 0 iff maxi xi ≥ H; (iv) u2(s|x1 > L, x2 = L) < 0; (v) u2(s|x2 =M) > 0.

We show in the Appendix that no weak∗ posterior stable and incentive compatible allocations

exist in this environment. To appreciate the force of weak∗ blocks, we show here instead how the

modified serial dictatorship outcome can be weak∗ blocked. In this example, the allocation µMSD

can be written as

ιµMSD(s;x) =

⎧⎪⎨⎪⎩
2 2 2

2 2 2

0 0 1

⎫⎪⎬⎪⎭ .

By Theorem 1, µMSD is incentive compatible and weak posterior stable. However it can be weak∗

blocked at x = (L,M) by the coalition I0 = {0, 1, 2} and S0 = {0} with the proposal µ0i,s = 0 for
all i ∈ I+ and the acceptance rules α1(x01,m1) = 1 iff x01 = L, all m1 ∈M1(µ), α2(x02,m2) = 1 iff

x02 = M , all m2 ∈ M2(µ). Intuitively, school 1 participates in this block and sells information to

school 2 at price zero, making school 2 strictly better off and school 1 indifferent.¥
Next, we relax (ii) above, i.e., consider the non-degeneracy of the alternative proposal µ0. We

show that if in defining weak stability we allow for proposals µ0 to be non—degenerate, again we get

nonexistence. To see this, consider Definition 2 of weak stability, but now allow µ0 to be a possibly

random feasible allocation for a coalition C (i.e., a lottery), although still constant across X. Call

the resulting stable allocations weak∗∗ posterior stable.

Example 5 Non-existence of weak∗∗ posterior stable and incentive compatible allocation rules.
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Suppose that there is one student s, three schools I+ = {1, 2, 3}, each with binary signals,
X = {L,H}, and that the environment is affiliated. Suppose further that the following conditions
on preferences and distributions hold:

(i) u1(s|x) > 0 for all x ∈ XI ; (ii) u1(s|H,H,L)
u1(s|H,L,L)>

Pr(x2=L|x1=H,,x3=L)
Pr(x2=H|x1=H,x3=L)

;

(iii) u2(s|x) < 0 iff x ∈ {(L,L,L) , (H,L,L) , (L,H,L), (L,L,H)}; (iv) u2(s| x2 = H,xi = L) >

0 for i = 1, 3; (v) u2(s|x2 = L) > 0;

(vi) u3(s|x) < 0 iff x ∈ {(L,L,L) , (H,L,L) , (L,H,L), (L,L,H)}; (vii) u3(s| (x1, x2) 6=
(L,L), x3 = L) < 0; (viii) u3(s| x1 = H,x3 = L) < 0; (ix) u3(s|x2 = H,x3 = L) > 0, but (x) u3(s|
(x1, x2) 6= (H,L), x3 = H) < 0, u3(s| (x1, x2) 6= (L,H), x3 = H) < 0; (xi) u3(s| x3 = H) > 0.

Once again, in the Appendix we show how the possibility of sharing the student via lotteries

precludes the existence of any weak∗∗ stable and incentive compatible rule in this environment.

To illustrate the power of weak∗∗ blocks, we show here how the allocation rule obtained via mod-

ified serial dictatorship can be weak∗∗ blocked. In this example, the modified serial dictatorship

allocation µMSD can be written as

ιµMSD(s;x−3, L) =

(
2 2

1 1

)
ιµMSD(s;x−3,H) =

(
3 3

3 3

)

where we use matrices for school 3’s signal x3.

By Theorem 1, µMSD is weak posterior stable and incentive compatible. However, it can be

weak∗∗ blocked at x = (H,H,L) by the coalition C with I0+ = {1, 3} and S0+ = {s} with the
proposal µ01,s = p = 1− µ03,s where p ∈ (0, 1) is such that pv1 + (1− p)v3 > v2. In this block, each

school accepts if and only if it has not already been allocated the student, i.e., αi(xi,mi) = 1 iff

mi 6= 1, and the student accepts if and only if he has not already been assigned to school 3. When
school 3 does not receive the student under µMSD, the acceptance strategy of school 1 effectively

allows it to communicate to school 3 that the student has been assigned to school 2, revealing

school 2’s signal and making the block profitable for school 3. School 1 also gains since it obtains

the student a proportion p of the time, while the student gains since he prefers the lottery µ0 over

schools 1 and 3 to being in school 2 for sure.¥
Examples 4 and 5 together show the necessity of each of the two restrictions (i) and (ii) to obtain

existence, namely that coalition members must be strictly better off and that the alternative µ0

must be degenerate as a function of x. We now turn to restriction (iii), namely that µ0 is constant.

If µ0 is allowed to depend nontrivially on signals and privately known allocation outcomes, we

need to explicitly take into account incentive compatibility and self-selection constraints that apply

to the communication game played by the blocking coalition. However, since Example 5 tells us

that µ0 must be degenerate in order to obtain existence, the revelation principle does not apply

at the blocking stage. This is because in a Bayesian Nash equilibrium of a general mechanism

that applies at the blocking stage agents may play mixed strategies, a possibility that cannot be

captured if one restricts µ0 to be an incentive compatible direct mechanism that is degenerate as a

function of reported types. Accordingly, we turn now to a notion of a block in terms of a general
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communication game.

For a coalition C, let Tk = X
S ×Mk(µ) be the type space of agent k ∈ C, with tk = (xk,mk),

and xk ≡ 0 if k ∈ S0. Thus, tk consists of the privately observed signal xk of agent k (if any) as well
as the privately observed allocation outcome mk. As in Definition 2, we suppose that each agent

k ∈ C can either accept (αk(tk) = 1) or reject (αk(tk) = 0) the block, with the block succeeding

only if all coalition members accept. In contrast to Definition 2 however, we now allow each agent

k ∈ C to also send a message ξk ∈ Ξk ⊃ Tk when he accepts. Let Ξ = ×k∈CΞk. An admissible

alternative allocation rule µ0 : Ξ → RSI for the coalition C chooses a degenerate allocation µ0(ξ)

that is feasible for C, as a function of messages ξ ∈ Ξ, given that all agents have accepted.
For each k ∈ C, let Ak = {tk ∈ Tk|αk(tk) = 1} be the set of types where k accepts the block

and let A = ×k∈CAk and A−k= ×k0∈C,k0 6=k Ak0 . Further, given acceptance, let σk(ξk|tk) be the
probability with which k announces message ξk given his type tk ∈ Ak and let σ−k(ξ−k|t−k) be the
probability of message ξ−k for agents other than k when their type is t−k. Finally, for tk ∈ Ak, let

Ξk(σk, tk) = {ξk| σk(ξk|tk) > 0} be the support of σk given tk ∈ Ak.

Given the alternative rule µ0, for any school i of type ti in the coalitionC , we write the expected

payoff from accepting the block and announcing a message ξi given that other coalition members

have also accepted the block and sent messages according to σ−i, as follows:

Ui(µ
0, ξi, σ−i|ti,A−i) =

X
s∈S0

X
tC∈TC

X
ξ−i

ui(s|tC)µ0i,s(ξi, ξ−i)σ−i(ξ−i|t−i) Pr[tC|ti,A−i]

Similarly, for a student s in the coalition C we write the corresponding expression as

Us(µ
0, ξs, σ−s|ts,A−s) =

X
i∈I

X
tC∈TC

X
ξ−s

vi,sµ
0
i,s(
bξs, ξ−s)σ−s(ξ−s|t−s) Pr[tC|ts,A−s].

We say that the allocation rule µ is weak∗∗∗ posterior blocked at x if there exists a coalition C,

an admissible µ0, acceptance sets {Ak}k∈C and announcement strategies {σk}k∈C such that, for all
k ∈ C,

max
ξk∈Ξk

Uk(µ
0, ξk, σ−k|t0k,A−k) > Uk(µ|t0k,A−k) iff t0k ∈ Ak, (6)

and

Uk(µ
0, ξk, σ−k|tk,A−k) ≥ Uk(µ

0,bξk, σ−k|tk,A−k) for all tk ∈ Ak, ξk ∈ Ξk(σk, tk),bξk ∈ Ξk (7)

and, furthermore (xk, µk(x)) ∈ Ak. The rule µ is weak∗∗∗ posterior stable if it cannot be weak∗∗∗

posterior blocked at any x.

In words, condition (6) represents a self-selection constraint. It states that a coalition member

k strictly prefers the alternative µ0 if and only if his type tk is in his acceptance set Ak, given that

t−k ∈ A−k. Condition (7) states that it is a best response for k to announce according to σk when
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tk ∈ Ak, given that other coalition members have also accepted and sent messages according to

σ−k. Finally, the condition (xk, µk(x)) ∈ Ak states that the acceptance sets are non-empty.

Observe that this definition is similar to known core concepts at the interim stage (for instance,

see Dutta and Vohra (2001)). It boils down to Definition 2 when Ξk = Tk and µ0 is constant

–the acceptance region A−k, when projected onto XSI using µ and truth-telling, corresponds to

the set pivk(αC) for k ∈ C; condition (7) is trivially satisfied if µ0 is constant, and condition (6)
is equivalent to (3) and (4). We show in Example 6 that there exist environments where weak∗∗∗

posterior stable and incentive compatible allocations fail to exist.

Example 6 Non-existence of weak∗∗∗ posterior stable and incentive compatible allocation rules.

Suppose that there are two students, s1 and s2 and three schools I+ = {1, 2, 3}. Students
are ex ante identical and payoffs and probabilities for each student are given by conditions (i) —

(xi) of Example 5. In the Appendix we demonstrate the non-existence of any weak∗∗∗ stable and

incentive compatible rule in this environment. The intuition is as follows. Since the alternative µ0

can depend non-trivially on messages ξ, in a coalition with both students one can effectively make

the allocation of student si to be, from his perspective, a lottery whose outcomes vary with the

(random) messages sent by the other student sj , i 6= j. The logic of Example 5 then applies to rule

out the existence of any weak∗∗∗ stable and incentive compatible rules.¥
This concludes the demonstration of the necessity of restrictions (i)-(iii) in establishing the

existence of stable and incentive compatible rules under weak observability.

4 Further properties of modified serial dictatorship

4.1 Renegotiation

With modified serial dictatorship we have found weak posterior stable allocations that are incentive

compatible. As a result, on the equilibrium path of the direct mechanism students and schools have

no interest to block the allocation suggested by the mechanism. Hence, no renegotiation would

occur on the equilibrium path. In this section we study whether such allocations would still be

implementable if schools and students could always renegotiate, and block also ‘off the equilibrium

path’, i.e., after lying to the mechanism, in the spirit of Maskin and Moore (1999).

We first have to modify condition (IC). In terms of expected payoff comparison, we need to

make sure that ‘truth telling and no blocking’ dominates not only ‘truth telling and blocking’ (as

guaranteed by posterior stability) and ‘lying and no blocking’ (as guaranteed so far by (IC)), but

also ‘lying and blocking’. Informally, this is simply requiring that truth telling and no blocking

must be the outcome on the path of play of a (perfect Bayesian) equilibrium of a two-stage game

of information revelation and blocking.

Formally, let mi(bxi, x−i) ∈ Mi(µ) be the allocation outcome from µ for school i when sub-

mitting announcement bxi ∈ XS and other schools have truthfully announced x−i. Let bβi ≡
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bβi(xi,mi(bxi, x−i)) be a blocking strategy conditional on the information contained in xi,mi(bxi, x−i),
including the possibility of not blocking. That is, bβi captures the possibility that school i may prof-
itably form a blocking coalition in the sense of Definition 2, even when µ is weak posterior stable,

by exploiting the fact that it has lied at the announcement stage. Notice in this respect that we

assume that renegotiation takes place with no other information for school i–the actual messages

sent by all other schools are still not known when blocking. Moreover, a block is described as

before, where communication occurs through a unanimous acceptance game. Finally, members of

a coalition believe that all other agents within and outside the coalition have made truthful reports

at the announcement stage.

Let µi,s(bβi(xi,mi(bxi, x−i))) be the induced allocation outcome for school i, assigning student
s according to bβi(xi,mi(bxi, x−i)) conditional on xi,mi(bxi, x−i). In particular, it equals µ(bxi, x−i)
when i does not block conditional on xi,mi(bxi, x−i). We say that an allocation µ is immune from

renegotiation if, for each i ∈ I+ and each xi, (xi, βi) solves

max
xi,βi

X
s∈S,

X
x∈XSI

ui(s|xs)µi,s(bβi(xi,mi(bxi, x−i))) Pr[x|xi] (IC-R)

where βi is such that µi,s(βi(xi,mi(bxi, x−i))) = µi,s(bxi, x−i) for all xi, bxi. Notice how, if µ is weak
posterior stable, µi,s(βi(xi,mi(xi, x−i)) = µi,s(xi, x−i), since we already know that when everyone

tells the truth µ cannot be blocked successfully. If µ is immune from renegotiation then no school

can profit even after lying to the mechanism and then blocking. If µ is also incentive compatible

in the sense of (IC), it then follows that no school can do better than reporting truthfully to the

mechanism and then not blocking. We have the following result.

Proposition 2 The allocations obtained via modified serial dictatorship are immune from rene-

gotiation.

Proof. See the Appendix. ¤
The intuition for this result is similar to that of Theorem 1. By the properties of µMSD, the

allocation of a student to any given school depends only on that school’s signals, as well as on the

signals of all schools above (but not below) it in the student’s ranking. This together with the

observability restrictions in the definition of weak stability implies that no school can profit from

lying at the announcement stage, in order to obtain more information from the observed outcome,

and subsequently forming a blocking coalition.

4.2 Efficiency

We ask whether modified serial dictatorship gives rise to allocations satisfying efficiency properties

other than weak posterior stability against the grand coalition. As with posterior stability, where

it matters whether acceptance decisions are allowed to be weak or strict, one needs care in defining

dominance when considering posterior efficiency. Along the lines of what Example 4 has shown, if
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dominance can be weak for those agents who share information used in constructing an alternative

allocation, agents can be actively part of a coalition by selling information at zero price to other

coalition members, and allocations obtained through modified serial dictatorship are not guaranteed

to be efficient in this sense. If dominance must be strict for every agent, and the alternative is

still restricted to be constant and degenerate, the grand coalition cannot generally be effective

in blocking any degenerate allocation– for instance, if there is a single student. This motivates

the following definitions of dominance and efficiency. First, we require that an agent who shares

information within the grand coalition has to strictly profit from the alternative allocation. In

addition, no agent can be hurt by the counterproposal, which is still assumed to be constant and

degenerate.

Formally, we say that µ is strong posterior w-dominated at x ∈ XSI if it can be strongly

blocked by some coalition C = (I0,S0) according to Definition 1, without reducing the expected

payoff conditional on xi, µ(x) for any i ∈ I , s ∈ S; µ is strong posterior w-efficient if it cannot be
strong posterior w-dominated at any x ∈ XSI .

We will also measure modified serial dictatorship against ex-post efficiency: µ is ex-post dom-

inated at x ∈ XSI if there exists a degenerate µ0 that is feasible for C = (I,S) such that for all

i ∈ I+ and s ∈ S+, Ui(µ
0 − µ|x) ≥ 0, Us(µ

0 − µ|x) ≥ 0, with one strict inequality; and µ is ex-post

efficient if it cannot be ex-post dominated at any x ∈ XSI . Note that for ex-post efficiency we allow

improvements not to be strict. Also, because of the restrictions on alternative proposals (specifi-

cally, constancy), strong posterior w-efficiency does not automatically imply ex-post efficiency. The

allocations obtained with modified serial dictatorship have the following efficiency properties.

Proposition 3 Let µ be obtained through modified serial dictatorship: (i) if the environment is

affiliated, then µ is strong posterior w-efficient; (ii) if wi(xs, qs) is decreasing in i, then µ is ex-post

efficient.

Proof. See the Appendix. ¤
Notice first that (ii) does not need affiliation. Notice next from Example 3 that, the case

where payoffs wi are decreasing with i is also necessary for (ii) to obtain. This case represents

environments where students rank unanimously as top schools those that have a higher opportunity

cost of admitting them, and therefore where it is more difficult to get in. A leading example is

provided by wi(xs, qs) = qs − ci, with ci increasing in i. In this case, if simple serial dictatorship

also delivers weak stable and incentive compatible allocations, these allocations are not guaranteed

to be ex-post efficient, as the following example shows.

Example 7 Simple serial dictatorship does not guarantee ex-post efficiency.

Consider the same environment as in Example 2, but where (ii) is reversed in sign, and the

allocations µ1, µ2 with ιµ’s given by
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ιµ1 =

⎧⎪⎨⎪⎩
2 2 2

0 0 1

0 0 1

⎫⎪⎬⎪⎭ , ιµ2 =

⎧⎪⎨⎪⎩
2 2 2

0 1 1

0 0 1

⎫⎪⎬⎪⎭
One can easily check that µ1 is weakly stable and it is obtained through simple serial dictatorship.

However, it is not ex-post efficient, as it is dominated by µ2 obtained via modified serial dictatorship.

Not only does modified serial dictatorship work where simple serial dictatorship may not, but when

both work, it has better efficiency properties.¥

4.3 Matching patterns

Little can be said in general about the average quality of students assigned to a school and

the school’s ex-ante position in the students’ rankings. However, in the leading example where

wi(xsλ , qsλ) = qsλ − ci, and ci is increasing in i, it seems natural to expect that the average quality

of admitted students is increasing with the quality of the school, (i.e., with i), especially when the

environment is affiliated. We consider this question now.

Let

Iµ(i) =
©
(λ, xsλ) ∈ Λ×XI | ιµ(sλ;xsλ) = i

ª
be the information extracted from an allocation µ about student quality only given that a student

goes to school i ∈ I (but not given λ). We evaluate the probability of this set based on the

induced measure N (λ) = #Sλ/S, and we denote it as PrN [Iµ(i)]. If λ denotes the generic student
prior quality, a random variable, when PrN [Iµ(i)] > 0, EN [qsλ | Iµ(i)] is the average or expected
quality of the students who go to school i under µ. Strict monotonicity of students’ preferences

and monotonicity of posteriors in λ imply the following immediate result.

Proposition 4 Suppose wi(xsλ , qsλ) = qsλ − ci, with ci is increasing in i. The expected quality of

students at school i is non—decreasing in i, for all i with PrN [Iµ(i)] > 0, for all strongly stable

allocations µ.

Proof. See the Appendix. ¤
Notice that the last result obtains even when the environment is not affiliated. On the other

hand, weak posterior stable allocations do not necessarily display this kind of monotonicity, even

in affiliated environments with ci increasing in i, as the next example demonstrates.

Example 8 The average quality of a student admitted at i+ 1 may be lower than that at i, for
weak posterior stable allocations.

Consider affiliated environments with I+ = {1, 2}, Q = {0, 1}, binary, symmetric signals,
conditionally independent given q, where Pr(xsλ , qsλ ;λ) is continuous in λ, and two types of students

λa and λb For student λa, (i) ui(sλa |x) > 0 iff xsλa 6= (L,L), i = 1, 2, (ii) u2(sλa |x2,sλa = L) < 0,

whereas for student λb, (iii) ui(sλb |x) > 0 iff xsλb = (H,H), i = 1, 2, (iv) u2(sλa |x2,sλb = H) > 0.
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We also assume that Pr(xi,sλ = H|qsλ = 1) = Pr(xi,sλ = L|qsλ = 0) = β, and 1
2 < β < 1. Note that

here E[qsλ ] = λ: students of type λa are of better average quality, ex-ante and ex-post for the same

xs.

For k = 0, 1, 2, j = 1, 2 and i ∈ I+, let Lk
i = min{λ ∈ [0, 1] | E[qsλ − ci)|xi,sλ = H for k

schools] ≥ 0}, and lji = min{λ ∈ [0, 1] | ui(sλ|xi,sλ = xj) ≥ 0} , which are well-defined by continuity
of Pr in λ. Note that λa ∈ (L12, l12), λb ∈ (l22, L11), and L2i < l2i < L1i < l1i < L0i , L

1
1 < L12. Consider

the allocation µMSD :

ιµ(sλa ;xsλa ) =

(
2 2

0 1

)
and ιµ(sλb ;xsλb ) =

(
2 2

0 0

)

and choose λb, λa and N(.) as follows: PrN (λb|Iµ(2))/PrN(λa|Iµ(2))→ 1; λb = l22+ ε < L11, ε > 0

such that E [qsλb | x2,sλb=H] = βλb/[βλb + (1− β)(1− λb)] = c2 + δ, δ > 0, and λa = c2 + 2δ < l12.

This can be done since conditional probabilities are increasing and continuous in λ. Then, school

2’s students are not better than school 1’s: EN [qs
λ
| Iµ(1)] = λa > EN [qs

λ
| Iµ(2)]. ¥

Since both types of students get into school 2 with positive probability, while only type λa may

be assigned to school 1, and since most students are of type λb, expected qualities are decreasing

in i for λb large enough. While the expected quality of a student in school 1 is greater than school

2’s cutoff c2, school 2 cannot block such an assignment without knowing which, if any, student has

been admitted to school 1.

5 Conclusion

We have considered student assignment problems with interdependent values, introducing a no-

tion of stability against renegotiation after all or parts of allocation outcome is observed by the

participants. We have shown that in general posterior stability and incentive compatibility are

mutually inconsistent when the allocation outcome is publicly observed. In contrast, when each

agent privately observes its own parts of the allocation outcome, modified serial dictatorship deliv-

ers posterior stability and incentive compatibility, provided communication in the blocking stage

is restricted. Restrictions on communication among blocking coalitions are necessary to obtain

existence. We also analyze efficiency and monotonicity properties of modified serial dictatorship.

6 Appendix

Proof of Proposition 1. Step 1: µ posterior stable⇒ µ degenerate. We show this for weak stable

allocations; the proof working also for strong stable allocations, they must also be degenerate. The

allocation µ is degenerate iff the set Ps,x = {k ∈ I | µk,s(x) > 0} is a singleton for each x, all s ∈ S.
Suppose not and let i, j ∈ Ps,x with vi,s > vj,s, some s, x. Without loss of generality, assume that

vi,s is increasing in i following the natural order.
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Start with i = I. First, UI(µ, s|xI , µI(x)) ≥ 0, or else the coalition C = {I0,S0} with I0 = {0, I}
and S0 = {0} would block µ at x: here µ0I,s = 0, and all we need to verify is that the strategy

αI(x
0
I ,mI) constructed according to Definition 2 has the property αI(xI , µI(x)) = 1. Now, notice

that at x0I = xI and mI = µI(x), UI(µ, s|x0I ,mI , pivI(αC)) = UI(µ, s|xI , µI(x)) < 0, while of course
UI(µ

0, s|x0I ,mI , pivI(αC)) = 0, verifying our claim that I would block.

By A4, UI(µ, s|xI , µI(x)) = uI(s|xI , µI(x))µI,s(x) > 0. If so, student s and school I would

form a blocking coalition with S0 = {0, s} at x using µ0I,s = 1 (and µ0s = µs, s /∈ S0). By A3 and
µI,s(x) < 1, αs(µs(x)) = 1. At x

0
I = xI and mI = µI(x), UI(µ|x0I ,mI , pivI(αC)) = UI(µ|xI , µI(x))

and UI(µ
0,S0|x0I ,mI , pivI(αC)) = uI(s|xI , µI(x)) > UI(µ,S

0|xI , µI(x)). Hence, if the set Ps,x is

not a singleton, it cannot contain I. Now proceed by induction on i to show that if Ps,x is not a

singleton and cannot contain i0 > i, it cannot contain i. This leads to a contradiction, i.e., Ps,x

is a singleton. As a consequence, to find weakly stable allocations, we can restrict attention to

degenerate µ’s: µi,s(x) > 0 implies µi,s(x) = 1.

Step 2: ex-post stable allocations exist. An allocation µ is ex-post blocked at x ∈ XSI if there

exist C = (I0,S0) ⊂ I ×S, a degenerate µ0 that is feasible for C, and acceptance strategies αC such
that for all i ∈ I0 and s ∈ S0, αi(x) = 1 iff Ui(µ

0 − µ|x) ≥ 0, αs(x) = 1 iff Us(µ
0 − µ|x) ≥ 0, with

one strict inequality. An allocation µ is ex-post stable if there is no x where it is ex-post blocked.

Notice that, given A1, A2, an allocation µ is ex-post blocked at x if and only if it is blocked by

coalitions C with #I0+ ≤ 1: the only role of multiple school blocks is to share information among
schools, but this is useless ex-post. On the other hand, given A1, A2 and separability of schools’

preferences over students if coalitions with #S0+ > 1 can block, then so can coalitions with the

same school and one student at a time. It is then immediate to show that an allocation µ is ex-post

blocked at x ∈ XSI if and only if either µi,s(x) > 0 and ui(s|x) < 0, or µi,s(x) > 0 and there is an
i0 > i with ui0(s|x) ≥ 0. Then, µ is ex-post stable if for all s ∈ S+ and all x ∈ X, µs(x) solves

maxµ∈RI+
P

i∈I µi,s(x)vi,s s.t.
P

i∈I µi,s(x) = 1 and µi,s(x)ui(s|x) ≥ 0 (EP-stable)

Indeed, µ solves (EP-stable) ⇒ µ ex-post stable. For suppose µ is not ex-post stable, but it solves

(EP-stable). Clearly the second constraint in (EP-stable) rules out µi,s(x) > 0 and ui(s|x) < 0. For
the remaining blocking possibility, suppose there is s ∈ S+, x ∈ XSI and i ∈ I with ui(s|x) ≥ 0,
vi > vj and µj,s(x) > 0. Since uj(s|x) ≥ 0, we can find µ”s(x) = µs(x) + ∆µ, where ∆µ ∈ RI

is such that ∆µi = −∆µj > 0, ∆µk = 0 if k 6= i, j and [µj,s(x) + ∆µj ]uj(s|x) ≥ 0. Then, we

have
P

k∈I µ”k,s(x)vk,s >
P

k∈I µk,s(x)vk,s, while µ”i,s(x)ui(s|x) ≥ 0, µ”j,s(x)uj(s|x) ≥ 0, andP
k∈I µ”k,s(x) = 1. Hence, µ does not solve (EP-stable), a contradiction. Since the set of µs(x) ∈

RI
+ with

P
i∈I µi,s(x) = 1 and µi,s(x)ui(s|x) ≥ 0 is nonempty, compact and the objective function

is continuous, a solution to (EP-stable) exists. Existence of ex-post stable allocations now follows.

Step 3: µ ex-post stable ⇒ µ posterior stable. We prove this for strong stable allocations,

again the proof working also for weak stable allocations, they must also include ex-post stable

ones. If µ is not strong stable, then suppose there exists an x ∈ XSI , a C = (I0,S0) and a

constant and degenerate µ0, feasible for C, such that C blocks µ at x with µ0. Suppose that
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S0+ = ∅. Then, it must be that for all i ∈ I0+, Ui(µ
0 − µ|xi, µ(x)) > 0. Since Ui(µ

0 − µ|xi, µ(x)) =P
x−i∈XS(I−1) Ui(µ

0−µ|xi, x−i) Pr(x−i|xi, µ(x)) > 0, there exists bx−i such that Pr(bx−i|xi, µ(x)) > 0
and Ui(µ

0 − µ|xi, bx−i) > 0. Then i will ex-post block alone at bx = (xi, bx−i), with µ0i. Suppose

instead that S0+ 6= ∅. Then, for each i ∈ I0+,

0 < Ui(µ
0 − µ|xi, µ(x), pivi(αC)) =

X
x−i∈XI−1

Ui(µ
0 − µ|xi, x−i) Pr(x−i|xi, µ(x), pivi(αC)).

and there exists an bx−i ∈ XS(I−1) with Pr(bx−i|xi, µ(x), pivi(αC)) > 0 and Ui(µ
0−µ|xi, bx−i) > 0, and

there exists s ∈ S+ with Ui(µ
0 − µ, s|xi, bx−i) > 0. Let Si = {s ∈ S+|Ui(µ

0 − µ, s|xi, bx−i) > 0}, and
consider the set Si(µ0) = {s ∈ Si| µ0i,s = 1}. If Si(µ0) ⊂ Si for at least an i ∈ I0+, then again school i
will ex-post block alone at bx. If Si(µ0) = Si for all i ∈ I0+, then Si ⊂ S0+ and observe that for each i,
µi,s(x) = µi,s(bx) < 1 = µ0i,s for all s ∈ Si. On the other hand, using A3, Us(µ

0−µ|m, pivs(αC)) > 0

implies that
P

j vj,s(µ
0
j,s − mj,s) > 0 where m = µ(x) and µj,s(x) = µj,s(bx) = mj,s. Since µ0 is

degenerate, for each s, (µ0j,s −mj,s) > 0 for at most one j ∈ I0+, and one student s ∈ Si strictly
accepts to block with one school i ∈ I0+ ex-post at bx.¥

Proof of Theorem 1. We break the proof up into a few steps.

Step 0: Construction of modified serial dictatorship (MSD)

For each s ∈ S+, and any i, j ∈ I, we write i >s j if vi,s > vj,s. Let yi,s be the vector of signals

received by all j >s i, while i,sy be the vector of signals received by all j <s i, at x. Notice that

when yi,s is fixed, so are the yj,s for j >s i.

Let a student s ∈ S+ and an xs ∈ XI be given, with Is = argmaxi vi,s. Construct the (unique

and degenerate) MSD allocation µ: starting from school Is and going down to school 0, for each

school i allocate the student entirely to that school if and only if ui(s|xi,s, yi,s) ≥ 0 and if the

student has not yet been allocated to a school j >s i. Then, for s ∈ S+, using A4,

µi,s(xs) = 1 iff ui(s|xi,s, yi,s) > 0 > uj(s|xj,s, yj,s) for all j s.t. j >s i,

Notice also that if xs = (i,sy, xi,s, yi,s) and x0s = (i,sy
0, xi,s, yi,s) with i,sy

0 6= i,sy, then µi,s(xs) =

µi,s(x
0
s).

Step 1: If a coalition C = {I0,S0} weak blocks the allocation of Step 1 at some x, then #S0+ ≤ 1
without loss of generality.

Suppose that a coalition C blocks µ at x. If S0+ = ∅, there is nothing to prove, so suppose that
S0+ 6= ∅. Then I0+ is nonempty, by strict acceptance for the students. Pick i ∈ I0+ and, using A1,
the separability of Ui over the students and the dependence of µs(x) only on xs, observe from (3)

that there exists s ∈ S+ (but not necessarily in S0+) such thatX
x0s∈XI

ui(s|x0s)[µ0i,s − µi,s(xs)] Pr(x
0
s|xi,s, µi,s(xs), pivi(αC)) > 0 (8)

First, note that s ∈ S0+ without loss of generality. For if not, by feasibility, µ0j,s = 0 for all j ∈ I0+
and so, the degeneracy of µ implies that µi,s(xs) = 1. It follows that every other school j 6= i,
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j ∈ I0+ neither gains nor loses from student s at x, implying by (3) that αj(x0j , µj(x)) does not vary
with x0j,s. But then the event {xi,s, µi,s(xs), pivi(αC)} contains no additional information about xs
for i compared to the event {xi,s, µi,s(xs)} allowing us to conclude that the singleton coalition of
school i can also block at such x. Next notice that if i is the only element of I0+ then, by strict

acceptance of s, we must have µ0i,s = 1 and so from (8) it is then immediate that the coalition of i

and s can also block at x. Consequently, we can focus on the case #I0+ ≥ 2 in what follows.

We show now that µ0i,s = 1. Suppose not, i.e., µ0i,s = 0. It follows from (8) that µi,s(xs) = 1

and, by strict acceptance for s, that µ0j,s = 1 for some j >s i, with j ∈ I0+. Moreover, every other
school k ∈ I0+, k 6= i, j, neither gains nor loses from student s at x so that from (3) it follows

that αk(x0k, µk(x)) does not vary with x0k,s. But then the event {xi,s, µi,s(xs), pivi(αC)} contains
no additional information for i about xs compared to the event {xi,s, µi,s(xs), αj = 1}. From (8)

we then obtain

Ui(µ
0 − µ, s|xi,s, µi,s(xs), αj = 1) > 0

which by breaking down the expectations can be written as

X
yi,s

Ui(µ
0 − µ, s|xi,s,yi,s, µi,s(xs), αj = 1)Pr(yi,s|xi,s, µi,s(xs), αj = 1) > 0 (9)

Recall from Step 0 that Pr(µi,s(xs) = 1|x) = Pr(µi,s(xs) = 1|xi,s, yi,s). Further, if bx = (iby, xi, yi)
differs from x = (iy, xi, yi) only in i,sby 6= i,sy, and µi,s(xs) = 1, then αj(bxj , µj(bx)) = 1 whenever

αj(xj , µj(x)) = 1. In other words, Pr(αj = 1|i,sy, xi,s, yi,s, µi,s(xs)) = Pr(αj = 1|xi,s, yi,s, µi,s(xs)).
Using Bayes’ rule and basic properties of conditional expectations, it follows that

Pr(i,sy|xi,s, yi,s, µi,s(xs), αj = 1) = Pr(i,sy|xi,s, yi,s)

implying in turn that we can write (9) asX
yi,s

Ui(µ
0 − µ, s|xi,s,yi,s) Pr(yi,s|xi,s, µi,s(xs), αj = 1) > 0

Now, if Pr(yi,s|xi,s, µi,s(xs), αj = 1) > 0, then Pr(yi,s|xi,s, µi,s(xs)) > 0. But µi,s(xs) = 1 implies

by construction of µ that yi,s is such that Ui(µ
0− µ, s|xi,s,yi,s)|xi,s,yi,s) ≤ 0, a contradiction. Thus,

µ0i,s = 1.

Now invoke A3
0
. Since i ∈ I0+ was arbitrary, we can let i = inf I0+. Further, since µ0i,s = 1, by

strict acceptance for s, we conclude that µi,s(xs) = 0. It follows from (8) that

Ui(µ
0 − µ, s|xi,s, µi,s(xs), pivi(αC)) > 0.

Given the students’ acceptance strategy, µj,s(xs) = 0 for all j > i. It follows that every other school

j ∈ I0+, j > i, neither gains nor loses from student s so that from (3) it follows that αj(x0j , µj(x))

does not vary with x0j,s, i.e., the event pivj does not convey any information known by schools

j ∈ I0+with j > i, to i about xs. Since i = inf I0+, a coalition C
00 = {I00,S00} with I00+ = {i} and

S00+ = {s} can then also block µ at x.
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Given Step 1, we do not need to check stability against blocks of coalitions with #S0+ >

1. By separability of schools’ payoffs over students, construction of µ and A1, if µ is incentive

compatible student by student, then it is incentive compatible overall. Hence, without loss of

generality hereafter we assume that S = {0, s} and we drop the subscript s from the signals.

Step 2: If a coalition weak blocks the allocation of Step 1, then #I0+ ≤ 1 without loss of

generality.

No coalition C with S0+ = ∅ and #I0+ > 1 can weak block µ, by strict acceptance and feasibility

of µ0. So suppose that S0+ 6= ∅.
First, it must be that there is i ∈ I0+ with µi,s(x) = 1. If not, and µi,s(x) = 0 for all i ∈ I0+,

since µ0 must be degenerate and constant, there is j ∈ I0+ which cannot strictly accept the block,
a contradiction. Then, µj,s(x) = 0 for j 6= i, j ∈ I0+. Next, µ0j,s = 1 for some j ∈ I0+, j 6= i. If not,

and µ0j,s = 0, then j cannot strictly accept. In fact, #I0+ = 2. Further, since µ
0
j,s = 1, then j >s i,

or the student will not accept, by A3. Since i accepts strictly, Ui(µ
0 − µ|xi, µi(x), pivi(αC)) > 0.

Now, we apply the same reasoning as in Step 1 to get a contradiction with school i’s payoffs at any

yi with Pr(yi|xi, µi(x), pivi(αC)) > 0, using µi(x) = 1, and the construction of µ.
Step 3: The allocation of Step 0 is weakly stable.

Consider first a block by i alone at x so that µi,s(x) = 1 at x. By Step 0 this depends only on

xi, yi. We can then write Ui(µ
0 − µ|xi, µi(x)) > 0 as

=
X
yi

Ui(µ
0 − µ|xi, yi, µi(x)) Pr(yi|xi, µi(x))

=
X
yi

Ui(µ
0 − µ|xi, yi) Pr(yi|xi, µi(x))

where the second equality holds since once we know yi, we also know whatever is revealed by

µi,s(x) = 1, from Step 0. But each Ui(µ
0− µ|xi, yi) ≤ 0 if Pr(yi|xi, µi(x)) > 0 by construction of µ,

and so is the average, and i does not want to block alone.

As for the remaining blocking possibility of a school i and a student s at x, we must have

µi,s(x) = 0 and µ0i,s = 1 and

Ui(µ
0 − µ, s|xi, µi(x), pivi(αC)) > 0. (10)

As in Step 1, using the properties of µ derived in Step 0 and Bayes’ rule, it follows that

Pr(iy|xi, yi, µi,s(x), pivi(αC)) = Pr(iy|xi, yi) implying in turn that we can write (10) asX
yi

ui(s|xi,yi) Pr(yi|xi, µi,s(x), pivi(αC)) > 0

Now, if Pr(yi|xi, µi,s(x), pivi(αC)) > 0, then Pr(yi|xi, µi,s(x)) > 0. But µi,s(x) = 0 implies by

construction of µ that yi is such that ui(s|xi,yi) < 0, a contradiction.
Step 4: The allocation of Step 0 is incentive compatible.

For any i, let xi be the true signal for i, and bxi 6= xi be i’s false report; (IC) can be written as
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X
yi

{
X
iy

ui(s|x)[µi,s(x)− µi,s(bxi, x−i)] Pr[iy|xi, yi]}Pr[yi|xi] ≥ 0 (D)

Fix yi and consider the corresponding term within the curly braces. Suppose first that xi, yi is such

that ui(s|xi, yi) < 0, so that µi,s(x) = 0. Then lying is going to affect the outcome µ only if at bxi,
ui(s|bxi, yi) ≥ 0 and yi is such that uj(s|xj , yj) < 0 for all j >s i. In this case, µi,s(bxi, x−i) = 1, so
that in (D) the term in the first summation corresponding to yi becomes

−
X
iy

ui(s|x) Pr[iy|xi, yi] = −ui(s|xi, yi) > 0.

Suppose next that xi, yi is such that ui(s|xi, yi) ≥ 0 so that µi,s(x) = 1. Again, lying is going to
affect the outcome µ only if at bxi, ui(s|bxi, yi) < 0. Then, µi,s(bxi, x−i) = 0, and so in (D) the term
in the first summation corresponding to yi becomesX

iy

ui(s|x) Pr[iy|xi, yi] = ui(s|xi, yi) ≥ 0

In every other case, lying is not going to affect the outcome. It follows that (IC) is satisfied for all

i contingent on yi, and so it is satisfied in interim expected terms (i.e., contingent on xi only).¥
Proof of Proposition 2. Let µ be obtained through modified serial dictatorship. We prove

a stronger version of the result, i.e., that (IC-R) must hold for all i conditional not only on xi but

also on yi, where yi = (yi,s)s∈S+ and yi,s is defined in the proof of Theorem 1, Step 0. Furthermore,

we suppose that, apart from i’s signal xi, message bxi and observed outcome mi(bxi, x−i), the best
blocking strategy of i can also depend on yi and we write this as bβi(xi, yi,mi(bxi, x−i)). The stated
result then immediately obtains if bβi cannot be made contingent on yi and when (IC-R) must hold
only in expected terms over yi given xi.

Notice first that for each i ∈ I+, given xi, yi, and any message bxi the observed outcome
mi(bxi, x−i) contains no information for i that is not already contained in xi, yi. This follows from

the properties of modified serial dictatorship (see the proof of Theorem 1, Step 0). In other words,

Pr[iy|xi, yi, bxi,mi(bxi, x−i)] = Pr[iy|xi, yi] where iy = (xj)j<i is the only information about the state

of the world unknown to i given xi, yi.

Suppose now that for some i ∈ I+, and given xi, yi, (IC-R) does not hold, i.e., i is strictly

better off from an alternative message bxi 6= xi and subsequently using the blocking strategybβi(xi, yi,mi(bxi, yi)). Since µ is incentive compatible, from Theorem 1 it follows that bβi(xi, yi,mi(bxi, yi))
must be a non-trivial block. We show now that in fact the blocking coalitionC0 = {I0,S0} associated
with bβi(xi, yi,mi(bxi, yi)) must contain at least one other school j ∈ I+ with j < i.

For suppose not. Consider first the case where I0+ = {i}. With fixed yi, the set of students who
are assigned to schools k > i does not depend on i’s message, by properties of MSD. Hence, by

announcing bxi instead of xi school i can only manage to lose some students s with ui(s|xi, yi) > 0
to schools j < i and also possibly gain some students s0 with ui(s

0|xi, yi) < 0 from schools j0 < i.

Subsequently, a blocking strategy where i is the singleton school in the coalition cannot attract any
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students from schools k > i and can only attract students lost to schools lost to j < i and drop

those gained from j0 < i as a result of the message bxi. Further, it will not convey any information
(via the acceptance strategies of students in the coalition) that i already does not know from xi, yi.

Thus, the best such block cannot make i better off than announcing xi truthfully in the first place.

It follows that if (IC-R) does not hold, the ensuing blocking strategy must involve a school j 6= i

from whom i obtains information at the blocking stage via acceptance strategies. Moreover, since

i can condition on yi it is evident that j < i, since otherwise j does not have any information that

i does not. Thus, there must exist j ∈ I0+ with j < i.

Now consider j = min I0+. Since j participates in the block under the presumption that i tells

the truth, arguments identical to that contained in Theorem 1, Step 1, lead us to conclude that a

coalition C00 = {I00,S00} with I00+ = {j} and S00+ = {s}, some s ∈ S+, can weak block µ at (iy, bxi, yi)
for some iy, a contradiction with Theorem 1. Thus, (IC-R) must hold for all i and xi.¥

Proof of Proposition 3. (i) Suppose µMSD is not strong posterior w-efficient. LetC = (I0,S0)

be the blocking coalition. Necessarily, S0+ 6= ∅, or students will be worse off. First consider the
case where µ0i,s = 0 all s ∈ S0+, for some i ∈ I0+ . Then, the set Si(µ) = {s ∈ S+ | µi,s(xs) = 1}
is nonempty, and Si(µ) ⊂ S0+, or again students would be worse off. Then, for each s ∈ Si(µ),
µ0(j, s) = 1 for some j >s i, or the student would not be better off, and effectively the blocking coali-

tion C = (I0,S0) has #I0+ ≥ 2. Since i’s acceptance is strict, Ui(µ
0−µ,Si(µ)|xi, µ(x), pivi(αC)) > 0,

and using A1, construction of µ (Theorem 1, Step 0), and separability of schools’ payoffs across

students, this can be written as (9) for some s ∈ Si(µ), conditioning on µs(xs) – or equivalently

on µi,s(xs) = 1. As in Theorem 1, Step 1, given xi,s, yi,s, there is nothing else that is revealed

by µs(xs) once xi,s, yi,s is known, while by construction of µ, Pr(i,sy|xi,s, yi,s, µs(xs), pivi(αC)) =
Pr(i,sy|xi,s, yi,s). So Ui(µ

0 − µ, s|xi,s, yi,s, µs(xs), pivi(αC)) = Ui(µ
0 − µ, s|xi,s,yi,s), and µi,s(xs) = 1

implies by construction of µ that yi,s is such that Ui(µ
0 − µ, s|xi,s,yi,s) < 0, a contradiction. If

instead µ0i,s = 1 for some s ∈ S0+, for all i ∈ I0+, then by A3
0
, µ0,s(xs) = 1. Indeed, µk,s(xs) = 0

for k ≥ i = inf I0+, by A3
0
and because the student must be strictly better off; while if µj,s(xs) = 1

some j < i, j /∈ C, then Uj(µ
0 − µ|xj , µ(x)) = Uj(µ

0 − µ|xj , µj(x)) ≥ 0, with strict inequality by
A4, which implies j had students it did not want, a contradiction to weak stability of µ. Let Si be

the set of students whose payoff from µ0−µ is positive for i. Again Si ⊂ S0+ or the students would
be worse off. If s ∈ Si implies µ0i,s = 0, then we get a contradiction as in the previous case. If

s ∈ Si and µ0i,s = 1, observe that by construction of µ (Theorem 1, Step 0) ui(s|xi,s, yi,s) < 0, and
by affiliation this holds iff xi,s < xi,s(yi,s), where xi,s(yi,s) = inf{z ∈ X|ui(s|z, yi,s) ≥ 0} for i < I,

and xI,s = inf{z ∈ X|uI(s|z) ≥ 0}. Hence, the set {x0 ∈ XSI |µj,s(x0) = 0 for all j > 0} is identical
to the set {x0 ∈ XSI |xj,s < xj,s(yj,s) for all j > 0}. Therefore, if Pr(x−i,s|xi,s, µ(x), pivi(αC)) > 0,

then by affiliation Ui(µ
0 − µ, s|xi,s, x−i,s) ≤ Ui(µ

0 − µ, s|xi,s, yi,s), and knowing further the signals
for j < i reduces the expected payoff for school i,

Ui(µ
0 − µ, s|xi, µ(x), pivi(αC))

=
X
x−i,s

Ui(µ
0 − µ, s|xi,s, x−i,s, µ(x), pivi(αC)) Pr(x−i,s|xi, µ(x), pivi(αC)) ≤ Ui(µ

0 − µ, s|xi,s, yi,s)
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Hence school i is made worse off by µ0, and µ cannot be strongly dominated. This completes the

proof of (i).

(ii) Suppose wi is decreasing in i, but µMSD is not ex-post efficient. Then at some x ∈ XSI

there exists a degenerate µ0 that is feasible for C = (I,S) such that for all i ∈ I+ and s ∈
S+, Ui(µ

0 − µ|x) ≥ 0, Us(µ
0 − µ|x) ≥ 0, with one strict inequality. Observe first that there must

exist i ∈ I+ who gets a student si under µ0 and si was assigned to i0 < i under µ, for if not, either

µ0 = µ(x) or one student is worse off, a contradiction with ex-post domination. Next, for at least

one such i ∈ I+ and corresponding si we must have ui(si|xsi) > 0. For suppose not. Let i be

the highest school who is assigned a student under µ0 not assigned to it under µ. If ui(si|xsi) < 0
for every such student si then for i to be better off under µ0, school i must lose some student s0

assigned to i under µ, to some j 6= i. Since s0 is also better off under µ0 we must have j > i. But

then i cannot be the highest school who is assigned a student under µ0 not assigned to it under µ,

a contradiction.

Since there exists i ∈ I+ who gets a student si under µ0 with ui(si|xsi) > 0 and since si is

better off under µ0 we conclude that si was assigned to i0 < i under µ. Since wi < wi0 we see that

ui0(si|xs) > 0. Since i0 is also better off under µ0 this implies that i0 must get some other student si0
under µ0 with ui0(si0 |xsi0 ) > 0 from some i00 < i0 with ui00(si0 |xsi0 ) > 0, and so on. Continuing this
logic, we obtain a school in and a student sin obtained by in under µ0 with uin(sin |xsin ) > 0 where
sin comes from school 0. But since win ≤ w1, uin(sin |xsin ) ≤ u1(sin |xsin ) ≤ 0, a contradiction,
where the last inequality follows from the properties of MSD for all sin assigned to school 0 under

µ.¥
Proof of Proposition 4. Fix N and suppose µ is strong posterior stable. When PrN [Iµ(i)] >

0, we can write (dropping the subscript N),

E[qsλ |Iµ(i)] =
X
λ∈Λ

X
xi∈XS

E[qsλ |λ, xi, Iµ(i)] Pr[λ, xi|Iµ(i)]

Since λ is observed by all schools, using A1, we see that E[qsλ |λ, xi,Iµ(i)] must be equal to the
expected value of student sλ computed by school i when it receives the student and observes the

signal xi for every λ, xi with Pr[λ, xi|Iµ(i)] > 0 (i.e., there exists x−i such that µi,sλ(xi, x−i) = 1).
Since µ is stable, we see that E[qsλ |λ, xi, Iµ(i)] ≥ ci for all such λ, xi as otherwise i would block

µ at x = (xi, x−i) for some x−i with µi,sλ(x) = 1. It follows that E[qsλ |Iµ(i)] ≥ ci. Now if E[qsλ |
Iµ(i− 1)] > E[qsλ | Iµ(i)] for some i ∈ I+, then we see that

E[qsλ |Iµ(i− 1)] =
X
λ∈Λ

X
xi∈XSI

E[qsλ |λ, xi, Iµ(i− 1)] Pr[λ, xi|Iµ(i− 1)] > ci

But then there must exist λ0, x0i with Pr[λ
0, x0i|Iµ(i− 1)] > 0 such that E[qsλ0 |λ

0, x0i, Iµ(i− 1)] > ci,

implying that school i and student sλ0 will block µ at some x
0 = (x0i, x

0
−i) where µi−1,sλ0 (x

0) = 1, a

contradiction with the strong stability of µ.¥
Construction of Example 4. It is easy to see that any weak∗ (posterior) stable allocation
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µ must be degenerate (this follows the logic of the first step in the proof of Proposition 1). At any

weak∗ stable allocation µ2,s(x1,H) = 1 for all x1∈ X. If not, it is easy to see that school 2 will

block with the student at any such x = (x1,H).

Next, µi,s(L,L) = 0 for i ∈I+. For suppose not, and let µ1,s(L,L) = 1. Then, the coalition

I0 = {0, 1, 2} and S0 = {0} will block at x = (L,L) with the proposal µ0i,s = 0 for all i ∈I+, and
α1(x

0
1,m1) = 1 iff x01 = L, all m1 ∈ M1(µ), while α2(x02,m2) = 1 iff x02 = L, all m2 ∈M2(µ), or

x02 = M , m2 = 1. To verify that αC satisfies (5), we only need to consider combinations xi,mi

which are consistent with µ, pivi(αC), since otherwise payoffs are arbitrary and αi is obviously

consistent with (5). First, let i = 1, and m1 = 1 —hence m2 = 0. Given α2, x0 ∈ piv1(αC) and

m1 = 1 imply x02 = L. If x01 = L, then U1(µ
0 − µ|x01,m1, piv1(αC)) = −u1(s;L,L) > 0 by (i), and

α1(x1, µ1(x)) = 1, with strict acceptance. If x
0
1 = H, U1(µ0−µ|x01,m1, piv1(αC)) is either arbitrary

or −u1(s;H,L) < 0, by (i), consistent with α1(H,m1) = 0. Now let m1 = 0. Given α2, x0 ∈
piv1(αC) andm1 = 0 imply x02 < H. If x01 = L, then x02 =M . Now U1(µ

0−µ|x01,m1, piv1(αC)) = 0,

so α1(L,m1) = 1 is consistent with (5). If x01 > L, U1(µ0−µ|x01,m1, piv1(αC)) = 0, or it is arbitrary,

and this is consistent with α1(x
0
1,m1) = 0. For i = 2, given α1, x0 ∈ piv2(αC) implies x01 = L. Let

m2 = 0. Then, when x02 = L, U2(µ
0−µ|x02,m2, piv2(αC)) = 0, and α2(x2, µ2(x)) = 1. When x

0
2 > L,

school 2 is either indifferent between dropping the student (when µ2,s(L, x
0
2) = 0), or strictly

prefers to reject it given µ, such as at x = (L,H), by (iii). Finally, let m2 = 1. Then, when x02 = H,

U2(µ
0 − µ|x02,m2, piv2(αC)) = −u2(s;L,H) < 0 by (iii); if x02 = M , U2(µ0 − µ|x02,m2, piv2(αC)) =

−u2(s;L,M) > 0, and α2(x
0
2,m2) = 1 is consistent with (5). So αC satisfies (5), and µ is weak∗

blocked. A similar block can be successful if µ2,s(L,L) = 1.

Observe now that µi,s(L,M) = 0 for i ∈I+. Otherwise, suppose that µ1,s(L,M) = 1. Then,

i = 1 will block alone by (i). And if µ2,s(L,M) = 1, it can be verified that the coalition I
0 = {0, 1, 2}

and S0 = {0} will block at x = (L,M) with the proposal µ0i,s = 0 for all i ∈I+, and the acceptance
rule: α1(x01,m1) = 1 iff x01 = L, all m1 ∈M1(µ), α2(x02,m2) = 1 iff x02 =M , all m2 ∈M2(µ).

Note next that µ2,s(M,L) = 1 is blocked by i = 2 alone, either by (iii) (if µ2,s(H,L) = 0), or

by (iv) (if µ2,s(H,L) = 1), so that µ0,s(M,L) = 1. Also notice that µ2,s(H,M) = 1, or otherwise

school 2 will block alone, by (iii) if µ2,s(M,M) = 1, and by (v) if µ2,s(M,M) = 0. Furthermore,

we claim that µ0,s(M,M) = 0. If not, one can check that the coalition I0 = {0, 1, 2} and S0 = {0, s}
will block at x = (M,M) with the proposal µ01,s = 1, and α1(x

0
1,m1) = 1 iff x01 > L, α2(x

0
2,m2) = 1

iff x02 =M and m2 = 0, and αs(ms) = 1 iff ms = m0
s.

Finally, suppose that µ2,s(M,M) = 1. Then, it must be that µ2,s(H,M) = 1, or again by (iii)

i = 2 will block with the student. Then, the coalition I0 = {0, 1, 2} and S0 = {0} will block at

x = (M,M) with the proposal µ0i,s = 0 for all i ∈I+, and αC such that αi(x0i,mi) = 1 iff xi = M ,

i ∈ I0+. As earlier, it can be checked that this block will satisfy (5). Then, µ1,s(M,M) = 1 at a

weak∗ stable allocation, and we are left with the allocations whose ιµ are⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 0 0

⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 0 1

⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
2 2 2

0 1 2

0 0 2

⎫⎪⎬⎪⎭ (11)
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However none of these three rules are incentive compatible: in the first and the second, school 2

has an incentive to lie at x2 = L and report x2 =M ; while in the last one, school 1 lies at x1 = H,

reporting instead x1 =M . ¥
Construction of Example 5. Again weak∗∗ stable allocations must be degenerate. We first

establish some preliminary facts.

Fact 0. At any weak∗∗ stable allocation, µ0,s(x) = 0. Otherwise, school 1 and the student will

block.

Fact 1. µ3,s(x1, x2, L) = 1 iff {x2 = H, all x1}, or {(x1, x2) = (H,H)}.
Indeed, it cannot be that: µ3,s(x1, x2, L) = 1 all (x1, x2) ∈ X2, by (vii); µ3,s(x1, x2, L) = 0 for

a unique (x1, x2) ∈ X2, (x1, x2) 6= (H,H), by (vii).

It also cannot be that µ3,s(x1, L, L) = 1 all x1, or µ3,s(L, x2, L) = 1, all x2, by (vi). It

cannot be that µ3,s(H,x2, L) = 1 all x2, by (viii), and any other combination of three’s which is

dominated by affiliation of the environment. Finally, it cannot be that µ3,s(x1, x2, L) = 1 for a

unique (x1, x2) ∈ X2, (x1, x2) 6= (H,H), by (vi). All these allocations will be blocked by 3 alone.

Fact 2. It cannot be that µ1,s(x1,H, L) = 1 all x1, or school 2 will block with the student, by

(iv).

Fact 3. It cannot be that µ2,s(L,H,L) = 1 and µ2,s(H,H,L) = µ2,s(x1,H,H) = 0 all x1, or 2

blocks alone at (L,H,L), by (iii).

Fact 4. It cannot be that µ2,s(x
0
1, L, L) = 1 any x01, and µ2,s(x1, L,H) = 0 all x1, or 2 blocks

alone at (x01, L, L), by (iii).

Fact 5. If µ3,s(H,L,H) = 0 , then µ2,s(H,L,H) = 1. For if not, either µ2,s(x1, L, x3) = 0 for

all x1, x3, but using Fact 1 this will be blocked by 2 with the student, by (v); or µ2,s(x1, L, x3) = 1

for some x1, x3, but this µ will be blocked by 2 alone, from (iii).

We distinguish several cases, depending on the assignment of the student to school 3 when

x3 = H. To highlight the role played by lotteries, and for future use, we also first eliminate

assignments based on incentive compatibility and blocks which do not use lotteries. In a second

step, we use lottery blocks to eliminate the remaining possible configurations.

Step 1

Case (a): µ3,s(x1, x2,H) = 1, all (x1, x2) ∈ X2 –notice how this is possible given (xi). Then,
µ1,s(x1, L, L) = 1 for all x1. Suppose not, then µ3,s(x1, L, L) = 0 by Fact 1. It cannot be that

µ2,s(x1, L, L) = 1, by Fact 4. It cannot be that µ1,s(x1,H, L) = 1 for all x1, by Fact 2. Invoking

Fact 3, the remaining possibilities for x3 = L aside for µ2,s(x1,H, L) = 1 for all x1 –which will be

treated in Step 2– are (
1 2

1 1

)
,

(
1 3

1 1

)
,

(
3 3

1 1

)
. (12)

But the first two are not incentive compatible for i = 1 at x1 = H, and the third for i = 3 at

x3 = H, by (x) and affiliation of the environment.

Case (b): µ3,s(x1, x2,H) = 0 for a unique (x1, x2) ∈ X2. Using (x) and affiliation of the

environment, it must be that µ3,s(L,L,H) = 0. Suppose µ2,s(L,L,H) = 1. Then school 2 will
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block by (iii). Suppose µ1,s(L,L,H) = 1. It cannot be that µ2,s(x1, L, L) = 1 for any x1, by Fact 4.

Hence, by Fact 1, µ1,s(x1, L, L) = 1 for all x1. Fact 2 excludes µ1,s(x1,H, L) = 1 for all x1. Aside

for the allocation where µ2,s(x1,H, L) = 1 for all x1 –which again will be treated in Step 2– and

invoking Facts 1 and 3, the remaining possibilities for x3 = L are the same as (12).

Case (c): µ3,s(x1, x2,H) = 1 for only a pair of (x1, x2) , (x1, x2)
0 ∈ X2.

Then, either: c.1) µ3,s(x1,H,H) = 1 all x1; or c.2) µ3,s(H,x2,H) = 1 all x2. If c.1),

µ3,s(x1, L, L) = 0 all x1, from Fact 1. Then, it cannot be that µ2,s(L,L,H) = 1while µ2,s(H,L,H) =

0, by (iii). If µ1,s(x1, L,H) = 1 all x1, then µ1,s(x1, L, L) = 1 all x1, by Facts 1 and 4. It must that

µ(2, s;H,L,H) = 1, by Fact 5. Then, the remaining possibilities are of the form(
(1, 2, 3) (1, 2, 3)

(1, 2) (1, 2)

) (
3 3

(1, 2) 2

)
(13)

where we list ιµ as pairs of matrices {ιµ(s;x−3, L)}, {ιµ(s;x−3,H)}, and multiple entries in paren-
thesis (·) mean that at this stage µ can be constructed using any of those entries in that cell,

independently of those in others. Now, µ3,s(H,H,L) = 1, or µ is not incentive compatible for 3

at x3 = L, by (ix). Then, µ2,s(L,H,L) = 0 , or 2 will block alone (see Fact 3). But then µ is not

incentive compatible for 2 at x2 = H.

If c.2), since again by Fact 1 µ(3, s;x1, L, x3) = 0 all (x1, x3) 6= (H,H), then µ1,s(x1, L, x3) = 1

all (x1, x3) 6= (H,H), by Fact 4. Suppose that µ2,s(L,H,L) = µ2,s(L,H,H) = 1, and µ1,s(H,H,L) =

1. Then, 2 will block with the student at x = (H,H,L), by (iii). Therefore the remaining possibil-

ities are of the form (
(1, 2, 3) (1, 2, 3)

1 1

) (
(1, 2) 3

1 3

)
(14)

and these are not incentive compatible for 1 at x1 = H.

Case (d): µ3,s(x1, x2,H) = 1 for a unique (x1, x2) ∈ X2. Then, it must be µ3,s(L,L,H) = 0, by
(i). Three are the possibilities: d.1) µ3,s(H,H,H) = 1; d.2) µ3,s(H,L,H) = 1; d.3) µ3,s(L,H,H) =

1.

d.1) Again, it must that µ2,s(H,L,H) = 1, by Fact 5, and µ3,s(x1, L, L) = 0 all x1, from Fact 1.

Also, µ2,s(L,H,H) = 1, or 2 will block with the student, by (iv). Now, µ3,s(H,H,L) = 1, or µ is

not incentive compatible for 3. Then, µ3,s(L,H,L) = 0, or again µ is not incentive compatible for

3. Assuming that µ2,s(L,L,H) = 1 –which will be proved in Step 2– what is left is of the form(
(1, 2) 3

(1, 2) (1, 2)

) (
2 3

2 2

)
(15)

These are not incentive compatible for 2 at x2 = H, because they violate (iv) and affiliation of

the environment in the least favorable case for lying, when µ2,s(L,L,L) = 1, and µ2,s(L,H,L) =

µ2,s(H,L,L) = 0.

d.2) Using Fact 1, and (iii), it must be that µ1,s(x1, L, x3) = 1 all (x1, x3) 6= (H,H), or 2 will

block alone. Then again, µ2,s(x1,H,H) = 1 all x1, or 2 will block with the student, by (iv) and
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affiliation of the environment. The remaining possibilities are of the form(
(1, 2, 3) (1, 2, 3)

1 1

) (
2 2

1 3

)
(16)

which are not incentive compatible for 2 at x2 = L.

d.3) From Fact 5, µ2,s(H,L,H) = 1, and µ2,s(H,H,H) = 1, or 2 will block with the student

by (iv) and affiliation of the environment. Next, µ3,s(x1,H, L) = 0 for some x1, or µ will not be

incentive compatible for 3 at x3 = H. By Fact 1, µ3,s(x1, x2, L) = 1 implies (x1, x2) = (H,H).

Then, assuming µ2,s(L,L,H) = 1 –which will be proved in Step 2– we look at µ when x3 = L,

whether µ3,s(H,H,L) = 0 or not.

Suppose that µ3,s(H,H,L) = 0. Then, µ2,s(H,H,L) = 1. For if µ1,s(H,H,L) = 1, then 2

will block with the student at x = (H,H,L). Now, it must be that #{x2|µ1,s(H,x2, L) = 1} =
#{x2|µ1,s(L, x2, L) = 1}. If not, by the previous step we know that #{x2|µ1,s(H,x2, L) = 1} <

#{x2|µ1,s(L, x2, L) = 1}, but then school 1 will lie, using (i). As a result, if µ1,s(H,L,L) = 1, then

µ1,s(L,L,L) = 1 and µ2,s(L,H,L) = 1, by (ii) –which cannot occur, as shown below in Step 2.

Otherwise, µ2,s(H,L,L) = 1, and then µ2,s(x1, x2, L) = 1 for all x1, x2, and ιµ is(
2 2

2 2

) (
3 2

2 2

)
(17)

which is not incentive compatible since school 2 will lie at x2 = H, by (iii).

Suppose finally that µ3,s(H,H,L) = 1. Still, #{x2|µ1,s(H,x2, L) = 1} = #{x2|µ1,s(L, x2, L) =
1}. If µ1,s(H,L,L) = 1, then µ1,s(L,L,L) = 1 and µ2,s(L,H,L) = 1, by (ii), and ιµ is(

2 3

1 1

) (
3 2

2 2

)
(18)

which is not incentive compatible since school 2 will lie at x2 = H, by (iii). While if µ2,s(H,L,L) =

1, then µ2,s(x1, x2, L) = 1 for all (x1, x2) 6= (H,H), so that ιµ is(
2 3

2 2

) (
3 2

2 2

)
(19)

which is also not incentive compatible since school 2 will lie by (iii).

Step 2

When µ3,s(x1, x2,H) = 1, all (x1, x2) ∈ X2, and when µ3,s(x1, x2,H) = 0 for a unique (x1, x2) ∈
X2 –and then µ1,s(L,L,H) = 1– we need to rule out the allocation which has µ2,s(x1,H, L) = 1

for all x1. The coalition with I0 = {0, 1, 3} and S0 = {0, s} will block this µ at x = (x1,H,L) with

µ01,s = p = 1− µ03,s where p is such that pv1+ (1− p)v3 > v2, and αs(ms) = 1 all ms ∈Ms(µ) with

ms 6= m3
s, α1(x

0
1,m1) = 1 iff m1 = 0, and α3(x

0
3,m3) = 1 iff x03 = L, m3 = 0. To verify (3) for

i = 1, observe that x0 ∈ piv1(αC) implies x03 = L, m3 = 0. At any x01, U1(µ
0−µ|x01,m1, piv1(αC)) =

u1(s|x03 = L)(p −m1) > 0 iff m1 = 0, therefore α1 satisfies (3), and α1(x1, µ1(x)) = 1. For i = 3,
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x0 ∈ piv3(αC), m3 = 0 and x03 = L is equivalent to (x02, x
0
3) = (H,L). So at x03 = L, m3 = 0,

U3(µ
0 − µ|x03,m3, piv3(αC)) = u3(s|x02 = H,x03 = L)(1 − p) > 0 by (ix), and α3 verifies (3), and

α3(x3, µ3(x)) = 1. By choice of p, αs immediately verifies (4).

Next, suppose that µ3,s(H,H,H) = 1 is the unique (x1, x2) where school 3 gets the student when

x3 = H –and then, as argued in Step 1, µ3,s(L,L,H) = 0, and µ2,s(H,L,H) = µ2,s(L,H,H) = 1–

but that µ2,s(L,L,H) = 0. Then the coalition with I0 = {0, 1, 3} and the student will block at
x = (H,L,H) with µ01,s = p = 1− µ03,s where p is as above, and αs(ms) = 1 all ms ∈Ms(µ) with

ms 6= m3
s, α1(x

0
1,m1) = 1 iff m1 = 0, and α3(x

0
3,m3) = 1 iff x03 = H, m3 = 0. It can be readily

verified that such an αC satisfies (3) and (4).

If instead µ3,s(L,H,H) = 1 is the unique (x1, x2) where school 3 gets the student when x3 = H,

and as we know µ3,s(L,L,H) = 0, while µ2,s(H,L,H) = µ2,s(H,H,H) = 1, we need to show

first that µ2,s(L,L,H) = 1. Suppose not; then again the coalition C with I0 = {0, 1, 3} will block
at x = (H,L,H) with µ01,s = p = 1 − µ03,s where p has already been defined, and αs(ms) = 1

all ms ∈ Ms(µ) with ms 6= m3
s, α1(x

0
1,m1) = 1 iff m1 = 0, and α3(x

0
3,m3) = 1 iff x03 = H,

m3 = 0 (if µ3,s(H,H,L) = 1) or x03 = L, m3 = 0 (if µ3,s(H,H,L) = 0), as can be verified.

Finally, we need to show that if µ2,s(H,H,L) = 1, we cannot have µ1,s(H,L,L) = 1, and then

µ1,s(L,L,L) = µ2,s(L,H,L) = 1. Indeed, this is not stable, as again the same coalition with

I0 = {0, 1, 3} and the student will block at x = (H,L,H) with µ01,s = p = 1 − µ03,s where p is as

above, and appropriate strategies αC.¥
Construction of Example 6. For each student sh, h = 1, 2 we can apply Step 1 in the

construction of Example 5 to rule out the corresponding allocations as being weak∗∗∗ posterior

stable and incentive compatible.

For the remaining allocations excluded in Step 2, consider all possible pairs
¡
µs1 , µs2

¢
resulting

from combinations of such allocations for students s1, s2. Observe that there exist signals xs1 and

xs2 such that, at x = (xs1 , xs2) the coalition of I
0 = {0, 1, 3} and S0 = {0, s1, s2} can block each pair

of allocations as follows. Let
¡
µs1 , µs2

¢
be the candidate pair of allocations for weak∗∗∗ stability

and incentive compatibility. Let Ξi = Ti for i = 1, 3, and Ξsh = {ξ1sh , ξ
2
sh
}∪Tsk where ξ

1
sh
, ξ2sh are

arbitrary messages.

The alternative allocation µ0sh is set as follows: when student sh, h = 1, 2, announces message

ξ1sh , the other student sh0 , h
0 6= h, is allocated to school 1 whereas when student sh announces

message ξ2sh the other student sh0 is allocated to school 3, regardless of the message of other

coalition members; for any other message sent by student sh, student sh0 is allocated to school 0.

Notice that µ0 does not depend on the messages sent by the schools and that the allocation for any

student does not depend on the messages sent by that student but only on the messages sent by

the other student.

For student sh, h = 1, 2, let Ash correspond to states when sh has not been allocated by µ

to school 3. For tsh ∈ Ash , let student sh choose a mixed announcement strategy σsh(ξ
1
sh
|tsh) =

p = 1− σsh(ξ
2
sh
|tsh) where pv1 + (1− p)v3 > v2 and otherwise let the announcement strategies for

all parties be arbitrary. For i = 1, 3, let Ai correspond to the set of types for school i for which

34



αi = 1, in each of the cases considered in Step 2, Example 5. Observe that with such a choice of

µ0, {Ak}k∈C and {σk}k∈C, from the perspective of each student sh we have recreated the lotteries

used Step 2, Example 5 by using the random messages sent by the other student. It then follows

that conditions (6) and (7) are satisfied, due to arguments identical to those used in that example.

We conclude that no allocation µ =
¡
µs1 , µs2

¢
is both weak∗∗∗ stable and incentive compatible.¥

References

[1] Abdulkadiroglu, A., and Sonmez, T., (1999) House Allocation with Existing Tenants, Journal

of Economic Theory, v. 88, 233-60.

[2] Abdulkadiroglu, A., and Sonmez, T., (2003) School Choice: A Mechanism Design Approach,

American Economic Review, v. 93, 729-47.

[3] Dutta, B., and Vohra, R., (2001) Incomplete Information, Credibility and the Core, W.P.

2001-02, Brown University. Forthcoming, Mathematical Social Sciences.

[4] Forges, F., (1994) Posterior Efficiency, Games and Economic Behavior, v. 6, 238-61.

[5] Forges, F., Mertens, J.F., and Vohra, R., (2001) The Ex Ante Incentive Compatible Core in

the Absence of Wealth Effects, Econometrica, v. 70, 1865-92.

[6] Forges, F., Minelli, E., and Vohra, R., (2001) Incentives and the Core of an Exchange Economy:

A Survey, Journal of Mathematical Economics, v. 38, 1-41.

[7] Holmstrom, B., and Myerson, R., (1983) Efficient and Durable Decision Rules with Incomplete

Information, Econometrica, v.51, 1799-1820.

[8] Maskin, E., and Moore, J., (1999) Implementation and Renegotiation, Review of Economic

Studies, v. 66, 39-56.

[9] Milgrom, P., and Stokey, N., (1982) Information, Trade and Common Knowledge, Journal of

Economic Theory, v. 26, 17-27.

[10] Milgrom, P., and Weber, R., (1982) A Theory of Auctions and Competitive Bidding, Econo-

metrica, v. 50, 1089-1122.

[11] Myerson, R., (1991) Game Theory, Harvard University Press, Cambridge, MA.

[12] Ostrovsky, M., (2005) Two-sided matching with common values, mimeo, Stanford University.

[13] Papai, S., (2000) Strategy-Proof Assignment by Hierarchical Exchange, Econometrica, v. 68,

1403-22.

[14] Roth, A., (1989), Two-Sided Matching with Incomplete Information about Others’ Preferences,

Games and Economic Behavior, v. 1, 191-209.

35



[15] Roth, A., and Sotomayor, M., (1990) Two-Sided Matching, Cambridge University Press,

Cambridge, MA.

[16] Vohra, R., (1999) Incomplete Information, Incentive Compatibility, and the Core, Journal of

Economic Theory, v. 86, 123-47.

[17] Volij, O., (2000) Communication, Credible Improvements, and the Core of an Economy With

Asymmetric Information, International Journal of Game Theory, v. 29, 63-79.

[18] Wilson, R., (1978) Information, Efficiency, and the Core of an Economy, Econometrica, v. 46,

807-16.

36


