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1 Introduction

The main question all countries are facing throughout the world is how to restart the economy

while saving lives once the initial diffusion of Covid-19 has been put under control, thanks

to emergency lock down measures. We present simulations that answer this question based

on data for two emblematic Italian regions: Lombardia and Veneto. These contiguous areas

in the north of the country were the first in Italy to be hit by the Covid-19 outbreak (at

about the same time) but experienced very different evolutions of the infection. While in

Lombardia, with a population of about 10 ml people, 16557 persons died because of Covid-19

between February 24 and June 20, 2020, in Veneto, with a population of 4.9 ml, the same

happened to only 2002 persons.1

A simulation of the effects of different strategies in these two regions is instructive for a

wider audience because Lombardia and Veneto capture well the dichotomy of Covid-19 expe-

riences that is emerging throughout the world, between areas hit very severely and areas hit

more mildly by the pandemic. The main factors determining this dichotomy are differences

in population density, delays in reacting correctly during the early phase of the infection,

and constraints in the number of intensive care places in hospitals (which is shortened to

HC in what follows). The simulations we present are based on a reformulation of the SEIR

model (Allen, 2017) specifically designed to capture these factors. The basic compartmental

model of diseases divides the population in three compartments with homogeneous charac-

teristics: Susceptible, Infectious, and Recovered or Removed, from which the acronym SIR

(Kermack and McKendrick, 1927). The SEIR model extends the standard dynamics as for

many important infections there is a significant incubation period in which individuals are

Exposed, i.e. infected but not yet infectious. Since this is an essential feature of the current

virus infection, using SEIR instead of SIR is important to insure that the estimates are

quantitatively and not only qualitatively correct.

A second substantial innovation is motivated by the observation that the lethality of

Covid-19 increases with age presenting a clear discontinuity at age fifty. As of June 20, 2020,

out of more than 33000 fatalities in Italy, less than 400 were of subjects younger than fifty

and less than 25 of subjects younger than 30. Moreover, the degree of proximity between

workers operating in different sectors has been shown to affect the risk of contagion for

this virus.2 Therefore, our model allows for a differentiation of the population by sectors

(SEC) and ages (AGE), and thus generalizes the concept of basic reproduction number

(R0) to a matrix. Specifically, our SEIR-HC-SEC-AGE model has two sectors characterized

1Official data from the Italian “Protezione Civile”.
2See, for example, Boeri et al. (2020) and Barbieri et al. (2020).
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respectively by a low and a high risk of infection, which are calibrated on the basis of the

information on workers’ proximity contained in Barbieri et al. (2020). As for age, we consider

9 brackets, which are calibrated to match the initial distribution of age in the population

of the two regions, and that are characterized by age specific labor force participation rates

(taken from national statistics) and by age specific lethality, hospitalization and intensive

care (IC) rates due to Covid-19 (taken from Ferguson et al., 2020).3

Our goal is to contrast the economic and public health effects (GDP loss vs. saved lives

over a full year) of possible policies to restart the economy that take into account the dif-

ferences in age specific and sector specific contagion risks. Starting from one extreme with

a policy that sends back to work the entire workforce (which we label as policy ALL), the

other policies that we study progressively inactivate (i.e. allow only a minimum of the labor

force to be active) workers in the high-risk sector, beginning with those belonging to a higher

age bracket, until all age brackets and sectors are inactivated (which is the opposite extreme

policy labelled as LOCK).

The GDP loss induced by the interaction between the pandemic and the different policies

is assumed to be proportional to the number of days in which the policies are in place and to

the corresponding fraction of the workforce that is unproductive. In future research we plan

to improve on this measure in various ways, particularly with the goal of capturing more

long term economic effects of the pandemic. It is likely, however, that the measure of GDP

loss we currently use is a lower bound to the total economic cost of the different policies.

The number of Covid-19 fatalities associated to the different strategies is predicted by the

SEIR-HC-SEC-AGE model.4

The trade-off between saved lives and GDP losses that characterizes “age based” and

“sector based” strategies is not immediately obvious, and its description is our main contri-

bution. The two extreme policies LOCK and ALL provide useful benchmark against which

to evaluate the intermediate ones. We now describe our main results.

Taking the policy LOCK as reference, we see that a sequence of policies of return to

work for a large fraction of the labor force are feasible, that have a moderate cost in terms

of fatalities, as long as they limit the activity of subjects that face a high risk because of

their age or because of the sector in which they operate. While we are well aware that each

single death due to the current epidemic is a tragedy, we are also keenly aware that the

social, mental, and even health implications of a prolonged inactivity are also tragic. Thus,

we consider the exploration of these combinations an intellectual duty.

3In the Online Appendix we present qualitatively similar results based on the analogous parameters
estimated by the US Center for Disease Control (CDC). See Garg (2020).

4The code to replicate our simulations and estimations are available from the authors.
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It is therefore possible, along the efficient frontier, to limit the GDP loss within values

that are about one fifth of the loss incurred locking down the entire economy as done in Italy

between March 8 and May 4, 2020. Further containment is also possible, but it may become

extremely costly in terms of human lives. Depending on the scenario, the cost associated with

an unconstrained return to work may be several orders (approximately four times) larger

that what is needed to bring the GDP loss close to the 5-10 per cent mark. In the absence

of a behavioural response, there is a clear kink in the set of possible efficient outcomes, at

which the health costs become substantially larger, that should be very clear and present in

the current discussion. This kink is due, in final analysis, to the very different dynamic and

health outcomes according to age. Bringing older workers back to work is very costly.

This cost may be in part reduced by the response of individuals who take into account

the risk of infection and adjust their behavior to reduce this risk, independently of the

administrative measures. We frame this hypothesis in a precise model, assuming that the

news on the number of fatalities, which are widely available and frequently communicated in

the media, offer reliable information on the number of infected. We estimate the size of the

effects of these behavioral adjustments using data on mobility for different types of activities

provided by Google. A first evaluation of the effects of such type of adjustments in behavior

has been provided by Brotherhood et al. (2020); we provide a testable model and estimate

the effects in real data, as part of a research strategy aimed at assessing the quantitative

effects of alternative policies.

Our approximation of the effects of the different policies in the presence of a behavioural

response to fatalities hinges on the assumption that such response in the future will follow

the same pattern that we have observed in the past. Under this assumption, the quantitative

effect of behavioral adjustments is substantial, and the effect on the shape of the trade-off,

represented by the Pareto frontier, dramatic: the curve changes from sharply convex to

flat. Whether the assumption of stability in behavioral response is sound is, in our opinion,

far from obvious. Behavioral adjustments occurring at the outbreak of the news might

themselves be prone to reduction when the epidemic becomes the new normal.

The policies that make this relatively safe return to work possible are a combination

of one that has been considered by many government (return to work taking into account

the risk specific to each productive sectors) and another one which instead has been totally

(and surprisingly) disregarded by the authorities in all countries (differentiation depending

on the age of the worker). We think the debate should consider carefully both, and the

public should be aware and able to discuss openly both. Since these conclusions are robust

to parameters specification, the relative merits of the policies are the same when they are

extended to other areas in the world and thus are of immediate interest for an international
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policy audience.

This paper is obviously related to the large amount of inspiring research that is currently

conducted throughout the world on the Covid-19 pandemic5 and specifically to the literature

that has considered the possibility to differentiate containment policies by age.6 We differ,

however, from this literature because we do not aim at suggesting an optimal policy based on

some welfare function. Our goal is to measure as precisely as possible, in a specific geographic

context, the policy trade off between economic and public health costs of the strategies to

deal with the pandemic, so that politicians and the public opinion can make an informed

choice. In this respect, the analysis in Acemoglu et al. (2020) is close to ours, but we make an

effort to base our analysis on real data for two specific and emblematic geographic contexts.

Even if geographically focused, however, our paper offers a more general message which is

valid also for other areas and our code can be applied to other contexts with the appropriate

corresponding parameterization and data.

The rest of the paper is organized as follows. In Section 2 we introduce some basic

epidemiological concepts, while in Section 3 we model the decision process of agents who can

take actions that may affect their probability of getting infected and thus the spread of the

virus in the population. Section 4 brings the model to the data and estimates the mobility

response of subjects to news about infection, using Google mobility data. In Section 5, we

explain how we extend the basic SEIR model to a SEIR-HC-SEC-AGE model. Section 6

describes the calibration of the parameters designed to capture the situation of Lombardia

and Veneto and to characterize the different policies. Section 7 presents the results, which

are discussed in Section 8 together with an analysis of the limits of our simulations.

2 Basic Epidemiological Concepts

Our goal is to model the decision process of agents in an epidemic who have to make choices

(such as shopping or going to work) that may affect the probability of getting infected,

thereby contributing to the spread of the epidemic. We also want to take into account the

incentives provided by the self-interested trade-off analysis of cost and benefits that drives

individual behavior independently of the introduction of administrative restrictions as well

as the reactions to these restrictions. Before presenting this model, however, we first need

5Without aiming for an exhaustive review of the literature, some of the most relevant related papers are:
Atkeson (2020), Berger et al. (2020), Durante et al. (2020), Eichenbaum et al. (2020), Fang et al. (2020),
Garibaldi et al. (2020) Glover et al. (2020), Greenstone and Nigam (2020), Hall et al. (2020) and Piguillem
and Shi (2020)

6For example: Acemoglu et al. (2020), Alvarez et al. (2020), Baqaee et al. (2020), Brotherhood et al.
(2020), Farboodi et al. (2020), Garriga et al., Gollier (2020), Jones et al. (2020), Kudlyak et al., and Rampini
(2020).
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to establish some basic epidemiological concepts and notation.

2.1 SEIR Model

The basic SEIR model (Allen, 2017) is described in Figure 1. Time is measured in days

and is denoted by t. An initial total population of N0 individuals is divided into the first

infectious subject (I0 = 1) and S0 = N0 − 1 susceptible subjects. In each subsequent day

t some susceptibles become exposed. The daily quantity of new exposed that become new

infectious after an incubation period is determined by the net reproduction number of the

infection multiplied by the number of existing infectious. The net reproduction number is

time varying and it depends on three components: the basic reproduction number (BRN) of

the infection, R0 (i.e. the number of secondary infections each infectious individual produces

at the initial stage of the infection in absence of policies or behavioural responses ), the

average number of days in which a subject is infectious, Tinf , and the fraction of susceptibles

to the total population, St−1

Nt−1
, so in each period we have:

NewEt =
Rt

Tinf

It−1 ; Rt = R0
St−1

Nt−1

Figure 1: Flowchart of the SEIR model

Note: Description of the possible dynamic transitions of a subject in the basic SEIR model (Allen, 2017)

The exposed, after an incubation period of Tinc days, become infectious. Therefore the

outflow from the susceptibles is the inflow into the exposed in each period and, similarly, the

outflow from the exposed is the inflow into the infectious, who fall into two categories: those

whose destiny is recovery and those whose destiny is to become a fatality. The allocation

to these two groups is controlled, respectively by the two probabilities: 1 − pfat and pfat.

Those who survive the infection are then removed as recovered, REM RECt, after a period
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of Tsrec days from symptoms to recovery. Those who become instead fatalities are removed

as fatalities, REM FATt, after a period of Tsd days from symptoms to death.

Some comments are necessary to understand the extensions of this basic model that will

be presented later. First, a feature of the model is that the lethality of the virus, as measured

by

λseirt =
REM FATt

Et +REM RECt +REM FATt
,

converges to two possible values only. If R0 ≤ 1 the virus diffusion is inhibited and λseirt

goes to zero. If instead R0 > 1, λseirt converges to pfat, which is fixed exogenously. In this

second case, the total number of victims will be the same independently of the size of R0,

which determines only the speed at which the asymptotic number of victims is reached. In

our extension, the lethalithy of the virus will have instead an endogenous component.

Second, the net reproduction number of the virus varies only as a function of the ratio of

the susceptibles to the total population. It is instead reasonable to expect that this variable

is affected by policies and by the behavioral response of individuals to the spreading of the

virus, two features that will be at the heart of our extension.7

Third, all agents within each compartment of the model are identical, while in reality

Covid-19 risk is heterogenous across different cohorts of the population and across sectors of

activity. This heterogeneity represent another crucial direction in which we extend the basic

model

3 Behavioral Response

Several activities (shopping, traveling to work, work, time to consume) are possible at each

time unit, say an hour if we want to fix ideas. We are going to examine anyone of these

activities, without distinguishing it in the notation.

An appropriate choice of time unit, “short enough”, denoted ∆t, will allow us to model

the matching process in a very simple way, in which a person only meets another person.

When we re-scale the process to a time unit of a day, then the number of matches in that

longer time unit will be a number

M =
1

∆t
. (1)

Each individual’s value of the activity, indicated by V , is distributed according to a contin-

uous cumulative distribution function F , the same for all consumers. We assume that (i)

whether the activity occurs or not does not affect the agent’s utility in the next period; (ii)

7Garibaldi et al. (2020) make this point in the context of matching models and Cochrane (2020) illustrates
it in a widely cited blog’s post. See also Brotherhood et al. (2020) for another attempt to incorporate
behavioural responses in the analysis of the Covid-19 pandemic.
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the value process is independent of the health condition of the agent (i.e. on whether he is S,

E, I or REM); so the distribution F is health state independent. We omit time subscripts

in this section because they are not necessary in this analysis.

People are randomly matched. These are customers who happen to go to the shop at

the same time, friends one meets, co-workers, fellow travelers in the subway and so on. We

are interested in the matches in which one of the two individuals is I and the other is S.

The meeting of an I and an S person result in S-type being infected with probability β(m),

which is influenced by biological factors and preventive measures (m) taken by the agents

(m is mnemonic for masks). We have now to analyze how many individuals an active person

meets. Those with a draw of V higher than a threshold v∗, to be determined endogenously,

decide to be active (for example, to go out of the house in pursuit of some activity).

Proposition 1 Let C be the cost of being infected for a subject. The choice of activity is

determined by a threshold v∗ which solves:

v∗ =
I

N
β(m)Pr(V ≥ v∗)C. (2)

A measure of population density acts as a determinant of the number I of infectious,8

but we ignore it in the notation for simplicity although it will be relevant in explaining

the different effects of the pandemic between the regions that we consider in the empirical

analysis (density is almost 60% higher in Lombardia than in Veneto).

To provide a model for empirical analysis we consider the case in which F is the uniform

distribution on [0, V ], so F (x) = x
V

, for x ∈ [0, V ]. If we denote the probability of being

infected as

p ≡ I

N
β(m) (3)

then

v∗ =
pC

V + pC
V (4)

so that substituting the value of v∗ gives:

Pr(V ≥ v∗) =
V

V + pC
(5)

Similar arguments extend to the period after administrative measures (enforced by fines

or other penalties) are taken to limit movements (as in lockdown). In this case individuals

base their decisions on the expected (taking into account the probability of enforcement) cost

8Garibaldi et al. (2020) note the similarity of this assumption with the one behind the “matching function”
of labor models.
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of penalties associated for instance with the lockdown, which is independent of the action of

others. This is added to the expected cost from becoming infected and therefore also to the

right hand side of equation (2), thus increasing the value of v∗ which enters into equation

(4). If we call K the expected non-negative cost of administrative measures to control the

spread of the virus, then one can easily find that:

v∗ = V min

{
pC +K

pC + V
, 1

}
(6)

and therefore:

P (V ≥ v∗) = max

{
V −K
pC + V

, 0

}
. (7)

4 Mobility Data and Behavioral Response

We now provide the link between the simple model presented in the previous section and

data on mobility to perform activities in the two Italian regions that we consider. Since time

of observation is now crucial we re-introduce the time subscript, but we omit an indicator

for the type of activity, which is not necessary for clarity.

Each individual i has to decide whether to perform an activity. She draws utility Vi

from a uniform distribution F on [0, V ]. If Vi ≥ v∗d,t, she becomes active. Note that v∗d,t
depends on the day of the week d and on the calendar time t through the policies and the

news. Denote as Gd,t the total number of activity-driven moves of a given type performed by

subjects in a population of size N ; we will estimate this value using Google mobility data,

hence the G label. There are of course a variety of types of moves and we rely on three

emblematic categories for which Google provides data from various areas around the world

and specifically for Lombardia and Veneto during the pandemic:9 (i) moves to a workplace;

(ii) moves to public transport hubs such as subway, bus, and train stations; (iii) moves to

grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and

pharmacies.

Google distinguishes between a reference time t0 corresponding to the five weeks that

go from January 3 to February 6, 2020, in which mobility decisions were taken by agents

with no Covid-19 concern, and the running time t from February 15 onward in which mo-

bility decisions are taken instead in the presences of concerns about the Covid-19 epidemic.

Assuming that the random variables for each individual are independent, the variable un-

derlying the Google measure of mobility, denoted by Gd,t, is the number of individuals with

9These data and the related documentation can be found at this link: https://www.google.com/

covid19/mobility/.
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value Vi larger than v∗d,t, and who are therefore active. Note that Gd,t depends on d and t

through v∗d,t. The measure of mobility provided by Google for each type of move is defined

by:

gd,t =
Gd,t

median(Gd,t0)
− 1 (8)

which is the relative change in the number of moves of a given type between calendar day

t and the same day-of-the-week d during the reference period t0. Descriptive statistics for

these indicators are reported in Table 1.

Table 1: Descriptive statistics for the Google mobility measures

Mean Std. Dev. Min Max

Lombardia

Workplace moves -.47 .24 -.92 .01

Transportation moves -.62 .26 -.92 .08

Grocery moves -.31 .24 -.95 .3

Veneto

Workplace moves -.40 .23 -.91 .02

Transportation moves -.56 .28 -.92 .27

Grocery moves -.27 .28 -.96 .28

Note: the table reports descriptive statistics for the three Google mobility measures that we consider, over the period of 112
days going from February 15, 2020 until the data are available. For each type of move, the measure is the change of the number
of moves on a given day relative to the same day-of-the-week in the reference period defined as January, 6 – February, 3, 2020.

The two panels of Figure 2 display, separately for Lombardia and Veneto, the evolution

of fatalities and of the average gd,t for the three types of moves from February 15, 2020, until

the data are available. Note that mobility first declined substantially before the Lockdown,

on February 23, two days after the first red zone in the city of Codogno was created in Italy

and the outbreak of the pandemic became the central news in all the media. Mobility fell

again immediately after the Lockdown and started to raise back after fatalities levelled off

at the beginning of April. At the end of the observation period mobility has not yet gone

back to the levels of the reference period even if fatalities have declined to almost zero.

Since the median of a binomial random variable is equal to one of the two integers defining

the interval containing the mean, we can take:

median(Gd,t0) ∼
(
(1− F (v∗d,t0)

)
N

where ∼ in this case indicates that the difference between the two terms is less than 1/N ;
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and therefore:

gd,t =
v∗d,t0 − v

∗
d,t

V − v∗d,t0
which gives the Google measure of mobility gd,t as a linear function of v∗d,t, respectively for

each type of move. Remember from Section 3 that

v∗ = V min

{
pC +K

pC + V
, 1

}
= V

pC +K

pC + V
(9)

where the second equality follows if we make the reasonable assumption that K is smaller

than V (and in fact we never observe a complete lack of movement). Therefore gd,t can be

written as:

gd,t =
v∗d,t0

V − v∗j,d,t0 −
V

V−v∗d,t0

pC +Kt

pC + V

Using equation (3), and defining p̃ ≡ β(m)
N

, gd,t is a simple function of the parameters,

non-linear in the number of infectious It:

gd,t =
v∗d,t0

V − v∗d,t0
− V

V − v∗d,t0

It + Kt

Cp̃

It + V
Cp̃

(10)

More precisely, equation (10) defines a convex function of It, with finite derivative at 0,

tending to an asymptotic value of - 1 as the number of infectious becomes large. The curve

is shifted down when the value of Kt is larger.

It is well known that during the pandemic precise information on the number of infectious

was not available in Italy (as well as elsewhere) for two reasons. First, testing was not

conducted massively and randomly. Second, asymptomatic infectious subjects could not

be detected immediately after contagion, even with massive and random testing. Fatalities

due to Covid-19 have instead been measured more precisely during the pandemic and were

announced by the media on a daily basis with great emphasis. To estimate equation (10)

we therefore assume that during the pandemic subjects were taking the daily number of

fatalities as an indirect proxy of the number of infectious It.
10

Table 2 reports non-linear least square estimates of equation (10) for the three mobility

indicators and for their average in the last column. As expected, given how the measures are

constructed, the first row of the Table shows that the term
v∗d,t0

V−v∗d,t0
is estimated to be small

and not distinguishable from 0 in the case of grocery. This finding derives from the fact that

10A drawback of this assumption is that fatalities in a given day reflect the number of infectious 15-20
days before. In the Online Appendix we present results based on the number of new infectious that was
announced daily by health authorities. Results are qualitatively similar.
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Figure 2: Evolution of mobility during the pandemic
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Note: The figure displays the daily average of the Google mobility measure for workplaces, transit
and grocery. For each type of mobility, the measure is the change of the number of moves on as given
day relative to the same day-of-the-week in the reference period defined as January, 6 – February, 3,
2020. Grey dashed vertical bars denote sundays. The two black solid bars denote, respectively, the
beginning of the Lockdown on March 8, 2020 and the beginning of the Phase 2 on May 4.

the probability of moving in a unit of time was on average relatively higher in the reference

period before the pandemic particularly for the case of more necessary moves like those for

grocery. Consistently with these estimates, the term − V
V−v∗d,t0

is found to approach −1 and

becomes indistinguishable from −1 in the case of Grocery (second row).

The third and fourth rows report estimates of Kt

Cp̃
, a quantity that is proportional to the

severity of the restrictions imposed by the government during the Lockdown and the Phase

2 respectively. The estimates suggest that restrictions were lifted by about a half on average

during Phase 2 with respect to the Lockdown (last column). The lifting of restriction was

actually more intense for transport than for grocery, a type of move for which regulations

did not change too much between the two phases.

In the fifth row, in line with the assumptions of our model, V
Cp̃

is estimated to be higher

than Kt

Cp̃
for both the Lockdown and Phase2. The ranking of these three estimates for each

type of move is a central result of this estimation exercise and captures the effect of the

policies with respect to normal times. This result is better shown in Figure 3 which is based

on the estimates in the last column of Table 2 for the average of the three mobility measures.

The figure displays the scatter plot of daily fatalities and average mobility. The different

markers of the scatter plot identify the three periods for which we have data: Pre-lockdown,

Lockdown and Phase 2. The figure also plots predictions from locally weighted regressions
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as well as predictions based on the estimates in column 4 of Table 2.

Within each of the three phases we cannot reject that the relationship between mobility

and daily fatalities is negative and convex as predicted by the model.

Table 2: Non-linear least square estimates of behavioural responses

Workplace Transport Grocery Average
v∗
d,t0

V−v∗
d,t0

-0.08*** -0.11*** 0.02 -0.06***

(0.01) (0.02) (0.02) (0.02)

− V
V−v∗

d,t0

-0.74*** -0.76*** -0.95*** -0.70***

(0.05) (0.03) (0.22) (0.04)
Kt

Cp̃ ≈ Lockdown 94.61*** 14.90*** 163.26*** 41.66***

(24.66) (3.99) (57.28) (11.46)
Kt

Cp̃ ≈ Phase2 42.77*** 5.76** 114.47*** 20.24***

(13.42) (2.33) (42.09) (6.74)
V
Cp̃ 163.21*** 22.56*** 540.80** 73.49***

(46.94) (5.31) (267.80) (19.44)

∆V for Lombardia 16.12* 15.81*** 83.01 23.03***

(9.72) (4.19) (53.82) (7.68)

∆ V
Cp̃ for Sundays 60.10*** -1.02 -338.83** -18.70***

(20.52) (2.16) (158.82) (5.40)

∆ V
Cp̃ for Easter -85.00*** -9.60** -68.70* -28.83***

(23.33) (3.96) (39.20) (8.00)

∆ V
Cp̃ for April 25 -45.99** -5.65 -375.47** -40.80***

(23.30) (8.79) (173.61) (11.76)

∆ V
Cp̃ for May 1 -80.48*** -7.01 -384.31** -42.97***

(22.75) (5.21) (182.86) (10.62)

∆ V
Cp̃ for June 2 -121.04*** -6.17 -313.82** -45.91***

(32.48) (6.04) (157.69) (11.58)

Observations 224 224 224 224

Adj R-squared 0.85 0.83 0.73 0.83

Note: the table reports non-linear least square estimates of equation (10), using daily information on Google mobility measures
and official figures on fatalities for Lombardia and Veneto from February 15, 2020 until June 5, 2020. For each type of mobility,
the measure is the change of the number of moves on a given day relative to the same day-of-the-week in the reference period
defined as January, 6 – February, 3, 2020. Lockdown and Phase2 are, respectively, dummies for the period between March 8
and May 3, 2020 and the period between May 4 and June1 5, 2020. April 25, May 1 and June 2 celebrate, respectively, the end
of WW2, the labor day and the beginning of the Italian Republic.

This negative and convex relationship within each phase is the behavioural response of

subjects to the variation of the contagion risk, in the absence of policies.11 The parallel

11Cochrane (2020) states clearly that, as a consequence of the omission of this response, “the SIR model
has been completely and totally wrong”. Durante et al. (2020) also find that after the virus outbreak mobility
declined in Italy, but significantly more in areas with higher civic capital, both before and after a mandatory
national lockdown. Civic capital is however likely to be irrelevant for our analysis since all available measures
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downward shift between the circles and the squares is the effect of the Lockdown, which

has reduced mobility for any level of fatalities. The upward shift from the squares to the

triangles is instead the effect of the softening of restrictions during the Phase 2 with respect

to the Lockdown. While it is evident that policies were effective, this Figure clearly shows

that Cochrane (2020) hypothesis of an endogenous response to the number of infectious

cannot be dismissed and it is quantitatively important. Of course, the short time horizon on

which these estimates are computed does not guarantee that in the long run this behavioural

effect would maintain the same intensity, as individuals may become used to the presence of

Covid-19 and less responsive to news related to the effects of the disease.

Figure 3: Behavioural responses to news and policies
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Note: the figure displays the scatter plot of daily fatalities and the average of the Google mobility measures for workplace,
transportation and grocery. For each type of mobility, the measure is the change of the number of moves on a given day relative
to the same day-of-the-week in the reference period defined as January, 6 – February, 3, 2020. The different markers of the
scatter plot identify the three periods for which we have data: Pre-lockdown, Lockdown and Phase2. The figure also plots
predictions from locally weighted regressions obtained with the “lowess” Stata command (dashed lines; bandwith=0.8) as well
as the predicted values of obtained with the non-linear least square estimates for working days reported in column 4 of Table
2 (dashed-dotted lines).

Coming back to Table 2, the remaining rows of the table show estimates of how V
Cp̃

changes in Lombardia with respect to Veneto and on holidays with respect to working days.

Coeteris paribus, the utility of moving is higher in Lombardia, leading to a slightly smaller

reduction of mobility in this region with respect to the reference period, particularly in the

suggest the absence of significant differences in this variable between Lombardia and Veneto.
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case of transports. As for holidays, as expected given Figure 2, they all tend to reduce

mobility of the kind considered here.

5 SEIR-HC-SEC-AGE Model

Building on the analysis conducted so far, our objective is to provide a realistic empirical

model with two main features. First, the capability of replicating the dynamics of the virus

observed in two emblematic benchmark cases (Lombardia and Veneto) before and during

the lockdown. Second, the ability to simulate outcomes of different policies of containment

of the epidemic in the post-lockdown phase, that are efficient with respect to the number of

fatalities and to the GDP loss. To this end, we extend the basic SEIR model along many

dimensions to the SEIR-HC-SEC-AGE specification described in this section.

First, consistently with the theoretical discussion and the empirical results reported in

Section 4, the virus dynamics will be driven by a matrix of net reproduction numbers that are

functions of the the containment policies adopted by the government and of the behavioural

response of individuals to the development of the virus.

Second, we adopt a multi-risk model that divides the population into 9 age-brackets

(from 0-9 to 80+) of which 5 are in working age. The working cohorts are allocated to two-

production sectors, characterized by different levels of coworkers proximity, or to inactivity

imposed by a containment policy. We have therefore 19 groups with different probabilities of

infection, hospitalization and fatality that vary with age, sector and age-specific labor force

participation.

Third, the lethality of the virus will have an endogenous component and the dynamics

will include explicit modelling of the policy designed to manage the infectious and control the

flows of patients into hospitals. Lethality will be modelled to increase progressively with the

saturation of hospitals and to reach a critical point when the available supply of intensive care

beds is fully saturated. In this case the observed lethality becomes higher than that implied

by the exogenous case fatality ratio (CFR) of COVID-19. In this scenario management of

the hospital flows becomes an important policy to reduce mortality. Extensive testing, early

detection of the infectious, their placement in domestic quarantine paired with administering

medicines can prevent them to reach the stage of symptoms that need hospitalization. Such

policy can therefore avoid the creation of “wartime conditions” in hospitals and the ensuing

collapse in the quality of medical services. The data from the Northern Italy regions of Veneto

and Lombardia reported in Figure 4 hint at the potential importance of this narrative. The

pattern of daily deaths from the end of February 2020 to June 11 2020 led to a very different

outcome with a total count of 16374 fatalities in Lombardia and 1964 in Veneto (population
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in Lombardia is 10 millions while in Veneto is 4.9 millions). The figures also illustrate that

a difference in the intensity of testing adopted in the two regions led to a much more intense

use of domestic quarantine in Veneto paired with a strong control on hospitalization. The

initial intensive use of domestic quarantine by Veneto has not led to a successive increase in

hospitalization. Over time Lombardia has converged to the policy adopted by Veneto which

proved more successful in the containment of the lethality of the disease.

Finally, we complement the epidemiological model with a simple economic structure to

model production in the two regions.

Figure 4: COVID-19 in Lombardia and Veneto
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Note: Daily data from Protezione Civile. The vertical bars indicate the start of the Lockdown (March 8), the start of the Phase

2 (May 4).

5.1 Individual Responses

We first derive the equation describing the number of new exposed (presented as the reduction

of the number of susceptible individuals) in the simple case in which there is a single activity,

and later extend to the case of multiple activities. Recall that M (defined in equation (1)

above) is the number of possible meetings of an individual in a time unit, which we took to

be a day.
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In our empirical model all the infectious do not initially feel symptoms, but unlike the

period in which they were just exposed, they spread the virus for a period that lasts Tinf days.

After this period they suffer symptoms, that can be mild or severe. Severe patients (SEV)

never revert to a state of MILD. MILD patients without proper medical care may turn into

Severe. This process occurs after Tinf days, in which both infected and infectious have very

mild symptoms, and thus do not avoid contacts. Over one day a number P (V ≥ v∗t )It of the

total infectious It is active, and thus meet with susceptible individuals who choose to pursue

the activity. A number Pr(V ≥ v∗t )St of susceptible individuals is active. When a match

occurs, then infection is transmitted with probability β(m), the numbers of contacts that an

individual makes in a day of generic activity is M. We call, to prepare for the heterogeneous

model below,

αt = P (V ≥ v∗t )

for the representative agent, single activity case we are considering now. In the general

model, we will have αt(a, j) for group a and activity j at time t. Consistently, in the general

model, we shall also have M(a, b, j) as the number of people of type b that a group a meets

in activity j.

In conclusion we get:

St+1 − St ≡ ∆St = − It
Nt

Mβ(m)α2
tSt (11)

Note that, while in the standard SEIR model the time variation of the basic reproduction

number depends exclusively on the evolution of the ratio of susceptible to total population,

this extension adds two sources of variation. The first one depends on the evolution over

time of the probability with which a contact leads to infection. This ratio is affected by

precaution, such as wearing masks, and mutation of the virus aggressiveness that might be

related to a number of different factors, such as temperature and humidity. The second one

depends on the evolution over time of the average number of contacts made by individuals,

that we have seen are related to policies but also to individual responses to the news about

the spreading of the virus.

5.2 Endogenous Mortality and Hospital Management

After having included the behavioral responses in the determination of Rt and in the dy-

namics of susceptible and exposed individuals, we extend the model to have an endogenous

component of lethality that becomes larger as hospitals become crowded. This component

explodes when the Intensive Care capacity is fully saturated; in this case all patients in need

of Intensive Care but not able to access it, die. Differently from (Favero, 2020), however, in
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our model hospital saturation increases mortality even before the ICU capacity is reached.

Within this framework, we introduce testing, which leads to domestic quarantine of the in-

fectious with mild symptoms. Domestic quarantine, paired with pharmacological treatment,

can stop them from reaching a stage requiring hospitalization. The ensuing reduction in

hospital saturation has in turn an important impact on reducing the endogenous component

of lethality.

The infected move from the compartment of the infectious to two different compartments:

those with mild symptoms, MILDt, and those with severe symptoms, SEVt. The allocation

to these groups is controlled by two probabilities: pmild and
(
1− pmild

)
. Testing allows to

detect a share δ of those destined to become MILD; they thus become detected, MILDD
t

while (1− δ) become undetected, MILDU
t . Detection and associated medical care reduces

the length of the period in which agents are infectious from Tinf to Tinf0 < Tinf . The same

applies to the infectious who are destined to become Severe. As a consequence of the severity

of symptoms, there are no Severe undetected after Tinf days in which they are virtually

asymptomatic. So the dynamics of the Infectious in daily data is as follows:

∆It =

(
1

Tinc

)
Et−1 − (1− δ)

(
1

Tinf

)
It−1 − δ

(
1

Tinf0

)
It−1

∆MILDU
t = pmild (1− δ)

(
1

Tinf

)
It−1 −

(
1

Tsrec,U

)
MILDU

t−1 − pM2Sev,U

(
1

Tshosp,U

)
MILDU

t−1

∆MILDD
t = pmildδ

(
1

Tinf0

)
It−1 −

(
1

Tsrec,D

)
MILDD

t−1

−pM2Sev,D

(
1

Tshosp,D

)
MILDD

t−1

∆SEVt =
(
1− pmild

)(
(1− δ)

(
1

Tinf

)
+ δ

(
1

Tinf0

))
It−1 −

(
1

Tshosp

)
SEVt−1

The mild infected either recover – after periods of duration respectively of Tsrec,U and

(Tsrec,D) days – or their condition becomes severe and they require hospitalization, after a

period of duration Tshosp,U (Tshosp,D) days. The probability of becoming severe is higher for

the undetected than for the detected: pM2Sev,U > pM2Sev,D.

With testing and early detection, patients are cared at home and hospitals congestion

is reduced. MILD patients who become severe and are hospitalized recover after a period

of (Tshd,U − Tshosp,U) days. All severe patients become hospitalized after Tshosp days. Severe

hospitalized either recover after (Tshd,U − Tshosp,U) days with probability pic or they worsen

with probability (1− pic) and require intensive care after Thosp−ic days. Patients needing ICU

may die or recover. When ICU is available and there is no hospital congestion mortality in
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ICU generates the same fatality rate of a standard SEIR model, pfat. However, mortality

in ICU increases with hospital congestion. This increase is modelled by a logistic function

of total hospitalization. The parameter k in the logistic is calibrated in such a way that

the endogenous mortality probability is zero under normal conditions and it increases with

hospital saturation. When ICU is fully saturated, mortality explodes as all patients in need

of ICU who do not find availability succumb. Those patients in ICU who recover, leave ICU

after (Tshd − Thosp−ic). Those who do not recover die after (Tsd − Tshosp−ic). Those who need

ICU and do not find it available, die immediately.

At the end of each day the population decreases because of fatalities, while the stock of

recovered grows by the amount of those who survive having had mild or severe symptoms,

with or without the need of IC. The cycle starts again in the next day. Finally, it is worth

noting that the specification of the endogenous component of mortality could be enriched to

include the effect of cures, other than the vaccine, that are proved to be effective in reducing

the mortality of the disease.

The model is represented graphically in Figure 5 and a detailed description of all the

equations is given in the Online Appendix.

Figure 5: Flowchart of the SEIR-HC model

Note: Description of the dynamic transitions of a subject in the SEIR-HC model (Favero, 2020).

5.3 Extension to Multi-sector

To build our final SEIR-HC-SEC-AGE model, we extend the structure of the SEIR-HC

model to allow for 9 age brackets of ten-years groups, from 0–9, 10–19 ... to 80+ years of

age, and for two sectors in which subjects between age 20 and 65 have the possibility to

work.12 The two sectors differ because of the risk of becoming infected faced by the workers

12As explained below in Section 6.2, these are the age brackets for which Ferguson et al. (2020) estimate
biological and epidemiologial parameters of Covid-19, and these is why we adopt the same categorization.
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who operate in them. In this extended model the dynamics of transitions of patients that are

exposed to the virus is qualitatively the same as the one of the SEIR-HC model described in

Figure 5. The crucial difference is that in the extended model the reproduction number is

not the same for the entire population and varies instead with the age, employment status

and sector of the infectious subject and of the subjects that become exposed to her/him.

Each age bracket between 20 and 69 years of age is split into three separate groups. The

first two groups include individuals who work respectively in the low-risk or in the high-risk

sectors; the third and last group include individuals in working age that are not part of the

labor force. This amounts to 5 age groups of active in the low-risk sector, 5 age groups of

active in the high-risk sector, and 5 age groups of inactive. In addition to these 15 groups

there are two age groups of inactive under 20 and 2 age groups of inactive over 69. Thus, we

have in total 19 groups, A ≡ {1, 2, . . . , 19}, with generic term a ∈ A. Workers correspond to

the elements {3, . . . , 12} with {3, . . . , 7} in the low-risk sector and {8, . . . , 12} in the high-

risk sector. The set {13, . . . , 17} indicates the inactive groups in the five active age brackets.

The number of age groups of workers is L = 5, and so 3L = 15 is the number of classes of

workers as distinct by age, risk sector and activation. The basic reproduction number will

therefore be replaced by a matrix, which is allowed to differ among these groups and as a

function of the level of activity of the corresponding workers (for example, a worker in the

high-risk sector does not infect many people if he is not active). This is a crucial feature of

the extended model.

5.4 Dynamic Model

Moving from the model for the single agent to the model for heterogenous groups, we intro-

duce Xt, a time-varying components, shared by all groups, that reflects (i) the initial value

and the change in the probability that a contact with an infectious leads to an infection,

and (ii) the average change in the number of contacts in the population determined by the

average behavioural response to the virus. The equation for the exposed is then a system of

equations for each age group a ∈ A of the form:

∆Et(a) = Et−1(a)− 1

TInc
Et−1(a) +

1

TInf
Xt−1

∑
b∈A

It−1(b)

Nt−1

R(b, a)St−1(a) (12)

Similarly, the equation for the infectious becomes the system:

∆It(a) = It−1(a) +
1

TInc
Et−1(a)− 1

TInf
It−1(a) (13)

Labor participation rates are allowed to change in these age brackets in line with available statistics for the
two regions as explained in Section 6.1.
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and that for the susceptible individuals is:

∆Et(a) = − 1

TInf
Xt−1

∑
b∈A

It−1(b)

Nt−1

R(b, a)St−1(a) (14)

The same generalization applies to modelling all the compartments considered in the

model with endogenous mortality.

5.5 Activity Levels per Sector

To model the effects of policies that restrict the access to work of specified categories of

workers we need to model how the basic reproduction matrix depends on the level of activity.

We will focus in the following on the sub-matrix defining the reproduction rates within the

workforce, that is the sub-matrix that describes how many infected workers of class a are

generated by workers of type b; here a and b are generic elements of the set of workers,

indexed in the set {1, 2, , . . . , 3L}.
We denote α : {1, 2, · · · , 3L} × {0, 1} → [0, 1] the level of activity, with α(a, 1) the level

of activity of class a (for example, a = 9 indicates individuals of age 30 to 39 in the high-risk

sector); the fraction of workers allowed to work and not add to 1: α(a, 0) = 1 − α(a, 1).

We also denote R(a, b; i, j) with a, b,∈ {3, . . . , 12} and i, j ∈ {0, 1} the number of workers of

type b that a worker of type a infects when a is i-active (that is, active if i = 1 and not active

if i = 0) and b is j-active. Finally we denote s(a) the (high, low or inactive) risk sector of

the class a; for instance s(3) = Low, s(10) = High. Thus we define the basic reproduction

matrix at level α of activity as:

R(a, b;α) =
∑

(i,j)∈{0,1}2
R(a, b; i, j)α(a, i)α(b, j) (15)

We assume:

1. R(a, b; i, j) = Risk(s(a)) if s(a) = s(b) and (i, j) = (1, 1)

2. R(a, b; i, j) = Tr if s(a) 6= s(b) and (i, j) = (1, 1)

3. R(a, b; i, j) = Iso if (i, j) 6= (1, 1)

The first condition requires that the BRM of a on b when both are active and in the

same sector only depends on the sector (and not on the age of a and b): so Risk(L) for the

low-risk sector and Risk(H) for the high-risk sector. The second condition requires the value

to be the same for two active workers, but working in different sectors (Tr is suggestive of

the means of transportation that they share when going to work even if the do not affect
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each other during work). The third condition requires that if one of the two workers is not

active (no matter who that is among the two) then the BRM value is equal to a common

value Iso which is suggestive of isolation.

Under these conditions the matrix R(a, b;α) is a very simple combination of the 3L× 3L

activation matrix A(·;α):

A(a, b;α) ≡ α(a, 1)α(b, 1) (16)

and the five-values parameter ρ ≡ (Risk(L), Risk(H), Risk(In), T r, Iso). For example

R(a, b;α) is equal to Risk(H)A(a, b;α) when s(a) = s(b) = High.

The value of α for inactive individuals is constrained to reflect the inactivity condition:

for all a ∈ {13, . . . , 17} : α(a, 0) = 1. (17)

In view of the constraint (17), in the description of the calibration of parameters and policies

we focus on the 2L levels of activity of the workforce. We denote αmin the minimum level

of activity of each active class, and with 1 the vector of activity corresponding to normal

conditions.

In the calibration of the parameter ρ, we set the level of activity corresponding to normal

and minimum activity as:

Rnormal = R(a, b; 1);Rlock = R(a, b;αmin) (18)

We assume that the values of the reproduction matrix for the inactive is the same as the one

between workers in different sectors:

Risk(In) = Tr (19)

Given the parameter restriction and the model, we calibrate parameters to match the number

of fatalities in a given region (for instance, Lombardia or Veneto).

5.6 Adding Economics to the Model

For given demographic and epidemiological parameters, the SEIR-HC-SEC-AGE model de-

scribed in the previuos section produces a set of public health effects of Covid-19 that depend

on the behavioral response and on the age brackets and sectors that are allowed to go back

to work according to the post Lockdown policy that the authority will decide to implement.

Our goal is to compare public health effects and economic effects of different possible policies.

A policy π is formally defined as a vector with ten elements, each one corresponding to

one of the five potentially active age brackets in each of the two sectors. Each element of
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this vector specifies the fraction of the workforce that is allowed to go back to work in the

corresponding age bracket/sector. Table 3 describes five of these policies in which we are

specifically interested.

Table 3: A set of possible post lock down policies

Low-risk sector High-risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

π = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

π = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

π = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

π = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

π = ALL 1 1 1 1 1 1 1 1 1 1

Note: In this table, an entry equal to 1 (0.6) means that the entire (60% of the) labor force of the correspondent age bracket
and sector is activated.

Defining with t∗ the day in which the authority intends to start Phase III (e.g., September

1 for Italy in our simulation), Policy “LOCK” is defined as going back after t∗ to a Lockdown

with the minimum set of workers that were employed during the March 2020 Lockdown,

which is on average equal to about 60% of the labor force according to Barbieri et al. (2020).

Policy “SEC” is based on sending back to work after t∗ all the labor force of the low-risk

sector, and only the strictly needed minimum in the high risk sector, which incidentally

includes health and education workers according to Barbieri et al. (2020). Policy “AGE”

uses only age as the criterion to decide who is allowed to resume activities after t∗: under

this policy all workers between 20 and 49 years of age go back to work independently of the

sector, while only 60% of the older workers is allowed to be productive in both sectors. Policy

“SEC AGE” is representative of what a mixed policy could look like, using both the age and

the sector criteria: all workers under 50 in the low-risk sector and under 30 in the high-risk

sector resume activities, while 40% of the older workers in all sectors has to stay home.

Finally, Policy “ALL” sends back to work all those who were working before the Covid-19

outbreak. Note that schools, even if they are part of the risky sector, are assumed to reopen

with at least the minimum set of workers allowed by each policy. Of course, many more

policies can be defined in a similar way, but these are the emblemeatic ones in which we are

interested. Our framework could be easily adjusted to consider also policies differentiated

by geographic area.

Using the SEIR-HC-SEC-AGE model described in previous sections we can associate to

every policy π and region r its public health effects that we summarize with the total number

22



of fatalities in the first year after t∗:

TOT FATr, π =
t∗+365∑
t=t∗

REM FATt,π (20)

As for the economic effects, we summarize them as a function of the fraction of the la-

bor force that is not allowed to work under a given policy π. We are fully aware that a

complete characterization of the economic costs of the Covid-19 pandemic would require a

more sophisticated and detailed dynamic macroeconomic model, which we leave for future

extensions of this project. For the time being, given the urgency of comparing the economic

effects of different post lockdown strategies, we believe that estimating these consequences

as a function of the fraction of the labor force that cannot work is sufficiently informative

at least about the orders of magnitude. Specifically we assume that the GDP of region r,

denoted as Yr, is a Cobb Douglas function of labor Lr and capital Kr,

Yr = AK1−η
r Lηr ,

so that the percent GDP change induced, ceteris paribus, by a variation dLr of the employed

labor force is

∆Yr ≈
dYr

Yr

= η
dLr
Lr

(21)

which is a negative number if dLr < 0. Each post lockdown policy π will produce a decline

dLr,π of the employed labor force and thus a corresponding percent GDP loss ∆Yr,p according

to equation (21). This GDP loss is the measure of the economic effects of the interaction

between policy π and Covid-19 that we consider.

Within this framework we aim at making two contributions. First, we want to character-

ize an efficient set of policies. Second, we want to compare between themselves and against

the efficient frontier the five stereotypical post lockdown policies described in Table 3.

6 Calibration of the Model

The calibration of the SEIR-HC-SEC-AGE model requires giving values to different sets

of parameters that are described in this section. The relevant dates for the simulation are

described in Table 4.

We assume that in both region the virus SARS-Cov-2 arrived at the beginning of 2020 so

that the first infectious subjects is observed on January 1, 2020. The available data on the

diffusion of Covid-19 in Italy, published by the Protezione Civile, are available from February
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Table 4: Relevant dates for the simulation

Observed Past Simulated Future
Appearance Beginning Beginning Start Start of End of

of the of observed of the of Phase III simulation
virus data lock down Phase II policies = t∗ = t∗ + 364

Date January 1 February 24 March 8 May 4 September 1 August 31

2020 2020 2020 2020 2020 2021

24, 2020 and are continuously updated.13 The first lock down has been introduced by the

Italian government on March 8, 2020.

The government has modified the Lockdown policy starting with a partial release of the

measures, the so-called Phase II, on May 4, 2020. We simulate the effects of the hypothetical

Phase III policies starting from September 1, 2020. We end the simulation after one year,

on August 31, 2021.

Table 5: Fraction of the population and labor force participation in each age bracket

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

Lombardia

Population 0.088 0.094 0.098 0.118 0.158 0.156 0.118 0.099 0.071

Participation 0.494 0.771 0.832 0.804 0.235

Veneto

Population 0.085 0.096 0.098 0.112 0.156 0.161 0.121 0.100 0.071

Participation 0.497 0.751 0.826 0.794 0.236

Note: The table reports the fraction of the population in each age bracket and the labor force participation rates for the brackets
between age 20 and age 69 in Lombardia and Veneto. The SEIR-HC-SEC-AGE assumes, in line with the available evidence,
no significant labor force participation in the other age brackets. The total population is 10 ml. in Lombardia and 4.9 ml. in
Veneto (Source: ISTAT).

6.1 Demographic Parameters and Labor Share

The distribution of the population and of the labor force participation rate in the nine age

brackets14 that we consider for the two regions is taken from ISTAT and is reported in Table

5. As expected Lombardia and Veneto have a similar distributions, with a slightly higher

fraction of over-50 in Veneto (45.3%) than in Lombardia (44.4%). The total population of

the two regions is instead significantly different: 10 ml. in Lombardia and 4.9 ml. in Veneto.

13The data can be downloaded from https://github.com/pcm-dpc/COVID-19.
14See Footnote 12.
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In order to compute the GDP loss we need to calibrate the parameter representing the

labor share, and thus the coefficient that maps the loss of employment due to Covid-19 into

a GDP loss. For the value of this parameter we follow Torrini (2016), who estimates it to

be 0.65 for the Italian economy. In the absence of specific information about this parameter

for the two regions that we consider, we use this estimate for both Lombardia and Veneto.

6.2 Covid-19 Parameters

There are two sets of relevant parameters describing the health consequences of Covid-19 for

an exposed subject. We take both these sets from Ferguson et al. (2020). An obvious caveat

in considering these parameters is that they are estimated on the basis of data from China

adjusted to predict US and Great Britain targets. We cannot exclude that the corresponding

values for Lombardia and Veneto are different. However, the estimates of Ferguson et al.

(2020) have been confirmed by follow up research for different regions in the world.15 We

hope to be able to improve this parameter estimates if and when reliable data based on

random testing for these two regions will become available. In any case, we do not expect

that the comparison of the effects of the different policies should be particularly sensitive to

reasonable changes of these parameters, at least in terms of first order consequences.

Table 6: Health effects of Covid-19 by age bracket

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

psev 0.001 0.003 0.012 0.032 0.049 0.102 0.166 0.243 0.273

pic 0.05 0.05 0.05 0.05 0.063 0.122 0.274 0.432 0.709

pfat 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Note: the table reports for each age bracket the probability of hospitalization, psev , the probability of needing intensive care if
hospitalized, pic and the probability of death pfat for a subject exposed to Covid-19 infection. Source: Ferguson et al. (2020).

The first set of Covid-19 parameters defines the probability of hospitalization, psev, the

probability of needing intensive care if hospitalized, pic, and the probability of death pfat by

age bracket and is described in Table 6. The values of all these probabilities clearly indicates

that Covid-19 is considerably more dangerous for the old, with a pronounced increase of

risks for subjects with an age greater than 50.

The second set of Covid-19 parameters that we need describes the lags of the transitions

between states of the disease in the basic SEIR model; they are described in Table 7. As by

15We have also evaluated the robustness of our results using the Covid-19 parameters calculated by the
Center of Deseases Control (CDC) for the U.S. (Garg, 2020) and results are reported in the Online Appendix.
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now well known, a characteristics that makes SARS-Cov-2 particularly nasty is the number

of days in which a subject may be infectious without showing symptoms, which is on average

Tinf = 2.9. Tinc = 5.2 is instead the average number of days of incubation before showing

symptoms. The period going from the day in which the first symptoms appear to the day

of recovery is usually of Tsrec = 11.1 days for a Covid-19 patient, while in case of death,

this event occurs Tsd = 17.8 days after the appearance of symptoms. Hospitalization, if it is

needed, occurs typically Tshosp = 5 days after symptoms, while the period from symptoms

to hospital discharge in case of hospitalization is of Tshd = 22.6 days.

Table 7: Transition lags in the evolution between illness states of Covid-19

Infectious Incubation Symptoms Symptoms Symptoms Symptoms
without without to to to entry to discharge

symptoms symptoms recovery death in hospital from hospital
Tinf Tinc Tsrec Tsd Tshosp Tshd

Days 2.9 5.2 11.1 17.8 5 22.6

Note: the table reports the number of days for each transition between illness states of Covid-19. Source: Ferguson et al. (2020).

We also calibrate, to match the evolution of daily fatalities, TshospU = TshospD = Tshosp = 5

as well as TsrecU = TsrecD = Tsrec = 11.1, i.e. the number of days before hospitalization and

the recovery time is common across types of people. A fraction of hospitalized patients

requires an IC bed after Thosp−ic = 3 days and if they survive they stay other Tic−rec = 7

days before they completely recover. Finally, Tsd−hosp = 12.8 and Tshd−inf = 17.6.

6.3 Availability of Beds in Intensive Care

The SEIR-HC-SEC-AGE model makes the constraint in the availability of IC beds endoge-

nous. When this constraint is binding, all subjects who need intensive care and do not find

it become fatalities. Figure 6 illustrates how the constraint has operated in the two regions

during the period for which data are available.

In Lombardia (left panel), given the initial very fast diffusion of the virus and the number

of available IC beds, the constraint started to bite very quickly. These facts are responsible

for the explosion of fatalities in this region which is displayed in the left panel of Figure 8.

Even if Lombardia made a major effort to increase the supply of IC beds, the constraint

continued to bite for a long time. In Veneto instead, the demand of IC is simulated to be

higher than the supply in only one relatively short period.
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Figure 6: The IC availability constraint in Lombardia and Veneto

Note: The figure reports, respectively for the two regions, the simulated demand for IC beds due
to Covid-19, the observed number Covid-19 patients in IC and the observed number of patients
that were effectively hospitalized in IC. The vertical bars indicate the start of the Lockdown (March
8), the start of the Phase 2 (May 4) and the end of data availability (June 20). The observed
series were downloaded from https://github.com/pcm-dpc/COVID-19 for the used IC and from https:

//www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%20statistics.xlsx?dl=0 for the supply of IC.

6.4 BRN of Covid-19 by Age and Sector

It is well known that every variant of the SEIR model is very sensitive to the basic repro-

duction number. In the case of the SEIR-HC-SEC-AGE extension that we have designed,

the calibration of BRN is further complicated by the need to set different values for different

combinations of age, sector and working status of an infectious subject and of the suscepti-

ble subjects that enter in contact with him/her, which requires to calibrate a 19× 19 Basic

Reproduction Matrix (BRM).

Moreover, given the presence of a behavioural response, we have to calibrate how this

initial matrix evolves over time to generate a time varying Rt matrix for the periods for which

we have data: the period before the Lockdown, the period of the Lockdown and the period

of the Phase 2. Finally, we will do out-of-sample simulations of the alternative policies for

the Phase 3.

6.4.1 Calibration of BRN by Age and Sector

The 19 × 19 BRM is driven by the parameters in the vector ρ. As R0 = β0M0 and β0

is common to all the elements of the BRM, then the parameters in the vector ρ are not

independent, as their ratio reflects the relative number of contacts between subjects at work,

on transports, doing grocery and at home. The calibration of these four parameters is

however simplified by the fact that, with the auxiliary information described below, they

can be all set as a linear function of a single parameter, Risk(work), which captures the

number of contacts in an average working site. So, by calibrating Risk(work) in a way such

that the model matches the fatalities observed respectively in the two regions, we calibrate

also the other parameters that are linearly related to Risk(work).
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The first type of auxiliary information that is needed to implement this strategy concerns

the estimated number of contacts for the Italian population which we obtained from the

official documentation released by the government to justify the rules for the Phase 2.16

This information suggests that the average number of contacts on transportation is 65%

of the number of contacts in an average working place, while the correspondent number

when not at work or not on transports is 60%. Therefore we set Tr = 0.65 ∗ R(work) and

Iso = 0.60 ∗R(work)).

We then discipline the remaining parameters of the vector ρ, Risk(L) and Risk(H), using

the evidence in Barbieri et al. (2020) who report an index of proximity for workers operating

in different sectors of the Italian economy. Sectors with higher proximity indices are those

in which spreading of the virus is likely to be higher. Based on the evidence in their Table

3, we compute the proximity index for the sectors above and below the mean proximity

index. We then assume that the percent difference between Risk(H) and R(work) is equal

to the percent difference between the proximity index for sectors above the mean index and

the mean index itself. This difference is equal to 18%. Similarly for the percent difference

between Risk(work) and Risk(L), which is equal to 12%.

6.4.2 Evolution within Sample of BRN

Given R0, Rt will evolve as a function of the number of infectious It−1 and of the cost of

containment policies Kt according to:

Rt =
St−1

Nt−1

βt−1

β0

(
V
Cp̃
− Kt

Cp̃

It−1 + V
Cp̃

)2

R0

To determine the parameters in the term

(
V
Cp̃
−Kt

Cp̃

It−1+ V
Cp̃

)
we use the estimates of the behavioural

response of Grocery moves in the third column of Table 2 of Section 3. We pick the param-

eter estimates for Grocery because they refer to an activity that can be chosen more freely

by an individual, differently than workplace and transportation activities that may be con-

strained by the legal possibility to work or by interruptions of transportation services during

Lockdown or the Phase 2. Indeed Grocery was never prohibited, provided that a minimum

distance could be maintained between individuals inside the shops or in their vicinity.

16Specifically, we use the numbers in Table 1 of the document provided at this link https://www.

ilmessaggero.it/uploads/ckfile/202004/Riaperture_report_27222237.pdf?, that is based on origi-
nal data from the “Istituto nazionale Assicurazione Infortuni sul Lavoro (INAIL)” and from Mossong et al.
(2008).
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We therefore have, respectively for Lombardia and Veneto,(
V
Cp̃
− Kt

Cp̃

It−1 + V
Cp̃

)
=

623.80− (163.26Lock + 114.47Phase2)

It−1 + 623.80

(
V
Cp̃
− Kt

Cp̃

It−1 + V
Cp̃

)
=

540.79− (163.26Lock + 114.47Phase2)

It−1 + 540.79

For the reasons explained in Section 3, the empirical counterpart of It−1 in the simulation

model is a seven-day backward looking moving average of observed daily mortality and Lock

and Phase2 are two dummies for the Lockdown and the Phase 2, respectively.

To later understand the role of containment policies it is useful to define the value of Rt

within each regime in an hypothetical situation in which the policy is implemented in the

absence of fatalities associated to the virus, and thus shutting down the behavioural response

factor. We define this value as

R0,eq =
β(m)t−1

β(m)0

(
V
Cp̃
− Kt

Cp̃

V
Cp̃

)2

R0

Its determination requires to calibrate the ratio β(m)t−1

β(m)0
which is set to 1 in the pre-Lockdown

period, reduced to 0.97 from March 8 until June 30 and to 0.8 after this date. This reduction

is a consequence of the precaution measures (compulsory masks and social distancing during

contacts) introduced with the Lockdown and maintained during Phase 2.

6.4.3 Endogenous Mortality and Hospital Flows

Testing policies are calibrated to be initially different for Lombardia and Veneto, but they are

forced to converge after the Lockdown, in line with the evidence from the data. Therefore,

δ is calibrated permanently to 0.3 for Veneto while it is set initially to 0 in Lombardia and

successively increased to 0.25 during Lockdown.

To capture a testing policy designed to control hospitalization flows we set Tinf 0 = Tinf .

To match the evidence on the stability of the ratio of quarantined at home to total infected in

Veneto, we set the probability with which a detected MILD requires hospitalization to zero.

To match hospital flows, the probability pfatγ with which the MILD Undetected become

Severe and need hospitalization is set to 0.9.
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6.5 Calibration of Risk at Work

Figures 7 and 8 show that our calibration of Risk(work) and of the other related parameters

produces a very good match between simulated and observed fatalities. What is crucial for

the model to successfully match the two very different patterns of mortality in Lombardia

and Veneto is the difference in the endogenous fatality rates of Covid-19 for the two regions.

As argued in Section 5.2, this heterogeneity is generated by the different management policies

of the hospital flows, and by the associated unequal degrees of hospital and ICU saturation.

Figure 7: Simulated and observed total fatalities

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of
total fatalities due to Covid-19. The vertical bars indicate the start of the Lockdown (March 8), the
start of the Phase 2 (May 4) and the end of data availability (June 20). The observed series were
downloaded from https://github.com/pcm-dpc/COVID-19.

The BRMs for the pre-Lockdown period that result from the calibration for Lombardia

and Veneto are respectively displayed in the left and right panels of the Appendix Figure

A–1. As expected, in each region the reproduction number for interactions among workers in

the low-risk sector is smaller than for the interactions involving non-active subjects and even

smaller than in the high-risk sector. More interestingly, to match the observed mortality

in the two regions, in each pair of corresponding blocks of the two matrices the relevant

R0 must be set to a considerably higher value for Lombardia. This difference reflects local

factors such as the density in the population which is higher in Lombardia (422 inhabitants

per Km2) than in Veneto (267 per Km2).

In the Lockdown regime the equivalent concept of R0 is R0,eq (see section 6.4.2), which is a

summary statistic for the Rt that would prevail in that regime in the counterfactual situation

of no fatalities associated to the virus. In this situation there would be no behavioural

response and Rt would be constant over time. The equivalent BRMs during the Lockdown

for the two regions are reported in the two panels of the Appendix Figure A–2. The entries

in these matrices are remarkably lower across the entire population with respect to the pre-

Lockdown values in Figure A–1. Relatively high values are observed only for the working

population because, as already mentioned, during Lockdown a minimum fraction of workers
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Figure 8: Simulated and observed daily fatalities

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of
daily fatalities. The vertical bars indicate the start of the Lockdown (March 8), the start of the Phase
2 (May 4) and the end of data availability (June 20). The observed series were downloaded from
https://github.com/pcm-dpc/COVID-19.

(60% according to Barbieri et al., 2020) was allowed to work. Therefore the R0,eq for the

working population during Lockdown is produced by the same activation matrix prevailing

in the pre-Lockdown regime for 60% of the population.

Figure 9 displays instead the evolution over time of the average Rt, which is determined by

the behavioural response to fatalities and to the policies that we calibrate using the estimates

of Table 2 in Section 3 (se also Section 6.4.2). This behavioural response determines a slight

decrease of the average Rt in the pre-Lockdown period, when fatalities become positive but

social distancing is not yet universally common in the population. At the beginning of

the Lockdown we observe a sharp decrease of Rt as a reaction to the introduction of the

containment policy, followed by a further reaction induced by the behavioural response to

fatalities. When fatalities level off at the end of March and then decline, the average Rt

begins to increase but it never goes back to initial values, since fatalities do not go back to

zero even during Phase 2 and until the observed data are available.

Figure 9: Simulated average Rt

Note: The figure reports, respectively for the two regions, the average Rt, weighted to take into
account the population structure. The vertical bars indicate the start of the Lockdown (March 8) and
the start of the Phase 2 (May 4).
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7 Results of Policy Simulations

We simulate the model to predict the effects of the hypothetical policies that could be

adopted in the two regions as of t∗ = September 1, 2020. We run the simulation for 365

days, under the assumption that by August 31, 2021 a vaccine or a therapy for Covid-19 will

be available. We present our results in two sections: the first one describes the construction

of the BRM equivalent matrices for the different policies, while the second one illustrates

the results of the out-of-sample simulations.

7.1 Construction of Policies

Since each policy has its own workers activation vector, also the corresponding BRMs differ

between policies. The parametrization of these matrices is however simplified by the fact that

they are divided in blocks characterized by the same R0,eq, because they refer to subjects with

similar types of interactions from the viewpoint of the Covid-19 diffusion. The values of R0,eq

in the various blocks are determined by the combination of the activation matrix M(a, b;α)

with the basic reproduction numbers in the vector (Risk(L), Risk(H), Risk(work), T r, Iso).

The two panels of the Appendix Table A–1 report, respectively for Lombardia and Veneto,

the values of the relevant R0,eq corresponding to each policy and type of interaction. The last

column in both tables report the mean R0,eq for each policy, obtained as an average of the

policy/interaction specific R0,eq, weighted by the size of the corresponding population. We

also report, as an illustrative case, the full R0,eq matrices for the policy AGE, respectively

for Lombardia and Veneto, in the two panels of the Appendix Figure A–3. The matrices for

all the other policies are reported in the Online Appendix. In all cases the time varying Rt

matrices associated with the R0,eq matrices evolve according to the law of motion determined

by the estimates of the behavioural response to mortality discussed in Section 4 and 6.4.2.

As expected, for each policy the R0,eq parameters grow with a combination of age, ac-

tivity and riskiness of the sector (in case of activity). Most interactions (in particular those

involving active subjects) have a R0,eq greater than one but, taking into account the popu-

lation weights, the mean R0,eq corresponding to each policy (last column of Table A–1) is

smaller. Therefore, the corresponding Rt matrix will decrease below 1 already at rather low

levels of observed mortality because of the behavioural response.

We also assume that, during the simulated Phase 3, schools will be open and the in-

teraction between students in the same class, given the adoption of protection measures,

will imply a a risk of contagion. Note that workers in the education sectors (teachers and

assistants) are classified by Barbieri et al. (2020) as operating in a high-risk sector and are

treated accordingly in our simulation model, as a function of their age.
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7.2 Dystopian Trade-off

Our main results are described in Figure 10 and 11. In these figures the vertical axis measures

fatalities per million inhabitants while the horizontal axis measures GDP losses (relative to

the GDP implied by the policy ALL), and the depicted lines describe, for the two regions and

for four different scenarios, the frontier of the policies that are efficient, i.e. those yielding

combinations of fatalities and GDP losses that are located on the lowest south-west convex

envelope of the set of outcomes induced by all feasible policies.

An example of these efficient policies is provided in the Appendix, Table A–2.17 The

top part lists the efficient policies that are common to both regions, ordered from the one

that maximizes fatalities and minimizes the GDP loss (ALL) to the one associated with

the opposite effects (LOCK). The general pattern is clear: starting from policy ALL, in

order to move down along the efficient contour it is necessary to progressively inactivate (i.e.

allow only the minimum 60% of the labor force to be active) workers in the high-risk sector,

beginning with those belonging to a higher age bracket, until LOCK is reached in which case

all age brackets and sectors are inactivated. Some policies slightly deviate from this pattern,

like for example AGE SEC12 and AGE SEC13, because labor force participation rates are

not the same in all age brackets. The next two panels in the table describe policies that are

efficient only in Lombardia (2) or Veneto (3), respectively.

Figure 10: The efficient frontier in the two regions with β(m) = 0.8

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between September 1, 2020, and August
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

The left panel of Figure 10 considers an hypothetical scenario in which β(m) = 0.818

and there is no behavioural response of the population to the number of fatalities. In this

17This example refers to the left panel of Figure 10, i.e. to the case of β(m) = 0.8 with behavioural
response.

18Remember that this parameters may be interpreted in two ways. One is that individuals are 20% more
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Scenario, the Policy ALL, that sends back to work all the active population, avoids any GDP

loss but causes the maximum number of yearly fatalities in both regions, with Lombardia

facing more than four times as many death per million inhabitants as Veneto (≈ 4000 versus

≈ 1000) over the year starting from September 1, 2020.

In Lombardia, however, there exists a number of efficient mixed strategies based on

the age and sector criteria, that would reduce dramatically the total number of fatalities

with relatively minor GDP losses until the threshold of approximately a 10 percent loss is

encountered. Mixed policies that cause a loss of this size are associated to about 500 fatalities

per million inhabitant in this region. Trying to reduce fatalities beyond this level causes a

huge increase in GDP losses without saving many lives. Imposing a Lockdown for a full

year after September 1 (LOCK) would cause a probably unsustainable GDP loss of almost

25 per cent. Given the more favourable situation in Veneto, due to the lower population

density and to the remaining more effective hospital management policies, the kink observed

for Lombardia is less pronounced in this region and occurs at a GDP loss around 5%.

An interestingly different pattern emerges in the right panel of Figure 10, where we allow

individuals to respond to news about fatalities, based on the estimates in Table 2 of Section 4.

In this scenario, for Lombardia we do not observe a kink at a GDP loss of 10% because when

fatalities grow at a sufficiently high level, individuals begin to react by reducing mobility and

thus infections. This behavioural response counterbalances the effect on fatalities deriving

from activating workers with the intent to decrease GDP losses below 10%. In other words,

when the behavioural response kicks in, increasing the level of activity with workers of higher

ages in more risky sector becomes possible with a lower cost in terms of fatalities.

In the case of Veneto, the low level of fatalities does not induce a strong behavioural

response, and therefore the solid lines in the two panels are almost identical. Mixed policies

pushing the GDP loss below 5% would increase fatalities but at levels that would not be

sufficiently high to trigger the behavioural response.

The choice of which one of the specific efficient policies should be adopted depends of

course on the weight society gives to fatalities versus GDP losses in the aggregate welfare

function. However, the combination of the evidence in the two panels of Figure 10 suggests

that even in the absence of a behavioural response to fatalities, there exists a wide set of

policies differentiated by age and riskiness of sectors that would allow to reduce significantly

GDP losses without a dramatic increase in fatalities. The existence of a behavioural response

of the size we have estimated would help in reaching this goal and would become effective

when most needed, i.e. at relatively high levels of fatalities as in Lombardia. Of course,

careful than normal in maintaining social distancing. The second is that aggressiveness of the virus declines
by 20% for meteorological or other reasons.
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this more desirable scenario hinges on the expectation that the behavioural response that

we have estimated in Section 4 for the first three months of the pandemic persists in the

long run, even when the population will have get used to the virus. If at that point habit

formation will induce a weaker response to fatalities, the scenario of the left panel will be

the most likely one.

Figure 11: The efficient frontier in the two regions with β(m) = 1

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between September 1, 2020, and August
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

Figure 11 replicates the same analysis for the case in which β(m) = 1. This parameter

implies a low level of attention of the population in implementing social distancing or a high

level of aggressiveness of the virus. In this case, the scenario described by the left panel,

without a behavioral response, is considerably more dramatic. Here we see that the kink is

at a higher level of GDP loss with respect to the case in which β(m) = 0.8 (15% instead of

10%). Trying to reduce GDP losses below this level would lead in both regions to a huge

increase in fatalities on a yearly basis (about 20500 in Lombardia and about 17500 in Veneto,

per million inhabitants). At this level of the parameter β(m) the existence of a behavioural

response to fatalities at least as strong as the one we have estimated is crucial to allow for

a substantial reduction of GDP losses that is not too costly in terms of lices. This is shown

in the right Panel of Figure 11, where the kink disappears because the behavioural response

operates in both regions. If the ALL policy were to be adopted with β(m) = 1 and in

presence of a behavioural response, yearly fatalities would not go above the level of 5000 per

million inhabitants.

As for the relative position of the efficient frontiers of the two regions with respect to

fatalities for any level of GDP loss, Lombardia appears to have a relatively worse trade-off

in all scenarios. One reason for this difference, as already mentioned, is the higher density
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of the population in this region. In addition, although the management of hospital flows has

become more similar between the two regions, at least during the period for which we have

data (see Section 5.2 and Figure 4), differences remain that make the public health system

in Lombardia more fragile with respect to significant waves of infections. And this appears

to be true even if the ICU capacity has been expanded in this region during the pandemic.

Figure 12 plots the daily fatalities predicted by the model for Lombardia allowing the

prediction to differ, during the simulation year, according to the five representative policies

that we consider. The left panels cover the entire period from January 1, 2020 to August

31, 2021. The right panels zoom into the year of simulation starting on September 1, 2020.

The top panels are for the scenario in which β(m) = 0.8 and the population responds to

fatalities. In this case, given the lower β(m), Lombardia is unlikely to face a new wave of

infection as dramatic as the one experienced in March, 2020, even if policy ALL were to

be adopted and everybody went back to work. The line for the representative mixed policy

AGE SEC clearly indicates that the differentiation of containment by age and sector risk

offers the possibility to effectively limit fatalities, without any need to lock down the entire

economy.

Figure 12: Daily fatalities under the different policies in Lombardia

Note: The figure reports, for Lombardia, the daily fatalities due to Covid-19 under the 5 representative
policies that we consider, for the scenario with behavioural response and β(m) = 0.8. The left panels
cover the entire period from January 1, 2020 to August 31, 2021. The right panels zoom into the year
of simulation starting on September 1 in order to better highlight the differences between the fatalities
associated to each policy.

The bottom panels assume β(m) = 1, while still allowing for the estimated behavioural
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Figure 13: Daily fatalities under different policies in Veneto.

The figure reports, for Veneto, the daily fatalities due to Covid-19 under the 5 representative policies
that we consider, for the scenario with behavioural response and β(m) = 0.8. The left panels cover
the entire period from January 1, 2020 to August 31, 2021. The right panels zoom into the year of
simulation starting on September 1 in order to better highlight the differences between the fatalities
associated to each policy.

response of the population to fatalities. In this case Lombardia will face a much worse second

wave of infection during the winter of 2020-21, particularly if policy ALL is adopted. An in-

teresting feature of this scenario, in line with the qualitative predictions of Cochrane (2020),

is the oscillatory pattern of daily fatalities during the simulation year that we observe inde-

pendently of the adopted policy. These oscillations are the result of the behavioural response

to fatalities in the population that is strong when fatalities are high, thereby contributing to

contain the height of the wave, and weak when fatalities are low, contributing to facilitate

the conditions for a subsequent wave.

In all these scenarios, the level of fatalities would be much higher in the absence of a

behavioural response and the correspondent figures are in the Online Appendix. Figure

13 replicates the analysis of predicted daily fatalities for Veneto with qualitatively similar

findings, starting from a much lower level of fatalities for the reasons illustrated in previous

sections.

Tables 8 displays some summary statistics of the effects of the representative policies in

Lombardia and Veneto. Here we want to highlight two interesting facts. First, in both regions

herd immunity is unlikely to help in winning the battle against the virus. Even if everybody

went back to work during the simulation year (Policy ALL), thus increasing the probability

of infection, herd immunity would not grow to sufficiently high levels. Second, while the
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mean Rt over the simulation year is very similar for all the five emblematic policies and

slightly smaller than 1 in all cases, what determines the different outcomes is the variability

of Rt over time. For example, the high number of fatalities associated with policy ALL in

Lombardia is a result of the fact that the maximum level of Rt is above 1 in this case. The

Online Appendix shows figures that display the evolution of Rt in the simulation year for

the different policies in the two regions.

Table 8: Lombardia and Veneto: main outcomes with behavioural response and β(m) = 0.8
Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 9770 19209 19710 15678 27699

GDP loss 0.26 0.104 0.094 0.148 0

Final herd immunity 0.042 0.057 0.058 0.052 0.071

Average Rt 0.97 0.96 0.96 0.97 0.95
( 0.88 - 0.98 ) (0.95 - 0.97) (0.95 - 0.97) (0.93 - 0.98) (0.92 - 1.02)

Veneto

Total fatalities 389 896 920 579 3943

GDP loss 0.26 0.104 0.097 0.150 0

Final herd immunity 0.011 0.013 0.013 0.011 0.026

Average Rt 0.84 0.92 0.92 0.89 0.95
( 0.83 - 0.85 ) (0.90 - 0.92) (0.91 - 0.93) (0.88 - 0.90) (0.92 - 0.98)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.8, measured over the year between September 1, 2020 and August 31, 2021. Final herd immunity is
calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval).

8 Conclusions

Compared to existing work in the now vast field of economics of a pandemic, this paper has

several important distinctive features.

Quantitative Realism in Modeling. First of all, we have tried to make the model

directly empirically relevant, aiming to provide precise (as much as possible) estimates and

predictions of future developments. We are not interested here in providing qualitative

regularities that can organize our thinking about the phenomenon: we want to provide a

tool that measures consequences in terms of the most important outcomes (such as number

of fatalities, loss of GDP, development of herd immunity in the population), and thus offers

precise estimates of the tradeoffs between the values of these variables that follows specific,

implementable, realistic policies. We want to provide a tool for the decision makers and the

informed public opinion.
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To achieve this objective of quantitative realism, we build, relying on Favero (2020), a

model extending the classical SEIR (which is the relevant epidemiological model in the case

the Covid-19 epidemic, as opposed for instance to SIR models) taking into account two

broad orders of factors. The first is the constraints of hospital and health structures. This

constraint is a crucial specific characteristic of the current epidemic, and explains many of

the puzzling phenomena that have emerged (one instance is the difference of the spread of the

epidemic in the two regions of Lombardia and Veneto). The second is the specific dynamic of

the epidemics across different types of individuals and clinical conditions. This in turn allows

us to take into due account the differences in fundamental biological parameters across ages.

Only because we do this in a realistic way we can then calibrate the crucial parameters and

provide an accurate estimate of policies differentiating the intervention depending on the age

of the individuals.

Role of Hospitals and Health Structures. A crucial characteristic feature of the

current epidemic has been its potential to overrun hospitals and health structures, intro-

ducing a significant non linearity in the number of fatalities as function of the number of

infected. We have used as a proxy for the measure of stress on hospitals the fraction of use

of ICU’s. While we do not think that ICU have a dominant role in the ability of hospitals

to save lives, the measure has proved to be in our data analysis an effective indicator of the

performance of hospitals in care provision. This feature, together with the more obvious

effect of population density, plays a crucial role in explaining the difference between the de-

velopments in Lombardia and Veneto, and is likely the most important explanation of other

specific instances of the epidemic, such as, for example, its recent evolution in New York

City.

Identification of Efficient Policies. In line with our main aim, we have not tried to

derive estimation of policies on the basis of a welfare function or the utility of a representative

agent in a competitive economy with a public sector. Our main conclusions, when we evaluate

policies, have been formulated as two main groups of findings. First, we want to identify

the policies that are efficient, that is policies for which there is no other feasible policy that

induces a better final outcome in all relevant outcomes. We think that public opinion and

informed discussion should choose among these, and offer the analysis necessary to avoid

policy mistakes. Second, we allow the comparison between any two of these policies to be

reduced to a comparison between estimated specific values of the relevant outcomes. When

the public is considering the shift from a policy to another, we are offering here an estimate

of the costs and benefits of the two policies. We have no illusion that the numbers we offer

are the true numbers: we are however convinced that having some estimate reasonably close

to the truth is better that having only qualitative, sometimes obvious, statements. Here the
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quantitative realism is essential: what matters is the size of the effect, not just its direction.

The results presented in Section 7 illustrate one of the main tools we offer to the public

debate. The figure presents the values of possibly the two most important variables (total

number of fatalities and GDP loss over one year period) that our model associates to a

menu of policy choices determining the number and groups of workers that are allowed back

to work. In line with our efficiency criterion, we only provide the values associated with

the policies that are not dominated by other feasible ones. The results are presented for

two regions, that are emblematic of two very different evolutions of the current epidemic in

Italy, Lombardia and Veneto. As expected, the precise trade-offs depend on the estimated

underlying parameters, that are very different as anyone acquainted with the current debate

in Italy knows. In spite of this, precise conclusions common to both cases can be drawn,

which are therefore robust to the parameter specification.

Behavioral Adjustments. We have also provided an estimate, based on real data, of

the effect of behavioral adjustments of individuals to the risk of infection. The estimation

strategy is guided by a simple but effective model of how individuals balance the utility from

mobility with the risk of getting infected, and how this response adjusts to the estimate of

the number of infectious based on the current number of fatalities. The size of the effect of

this adjustment is striking. Its magnitude, particularly in the early days of the epidemics,

is comparable to the effects of the administrative measures taken in Italy in the months of

March and April, which were severe. The Pareto curve, which is our measure of the trade-off

between fatalities and loss of GDP becomes almost flat as a consequence of these individual

adjustments. The response is highly non linear: an additional increase in the risk (measured

in our model by the number of fatalities) results in a flatter and flatter response of the

mobility measures. We should also take into account that this estimate of the effect relies

on the assumption that the size of the response will be in the future similar to what we have

observed in the past; this assumption may be problematic.

Extensions. We have not explicitly considered, in this version of the paper, policies

that are different according to regions (or macro regions, such as North and South). This

extension is feasible, indeed easy within our framework, since it requires a calibration of

the key parameters, as well as the number of Infectious in the initial period. Also, we have

not modelled the impact of policies on the capital side of the production function and we

have not considered fiscal policy interventions and their consequences to workers, firms and

the sustainability of public debt. We plan to extend the simple macroeconomic structure

adopted here to address all these issues in future work.

Costs and benefits of alternative policies that are widely discussed have not been consid-

ered explicitly, but can be easily adjusted within the current framework. Here we consider
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some examples. Increasing the number of IC units and training the personnel necessary to

manage them has a financial cost, and a benefit in terms of fatalities. These unitary costs

can be estimated, and the effect of the policy estimated. Testing, of all types, has clear

costs, and benefits that can be formulated as reduction of the corresponding entries of the

basic reproduction matrix. Testing of workers can substantially reduce contagion within a

risk sector (low and high); and it can reduce the risk across risk classes (for instance affect-

ing the contagion in mass transportation). Similarly, measures to reduce the spread during

traveling affect the Tr parameter. Pharmacological remedies change the basic “biological”

parameters, such as the psev, pic and pfat. In summary, the purpose of the paper is to provide

a method that is rich enough but tractable to quantify the benefits of alternative policies.
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9 Appendix

Figure A–1: Basic Reproduction Matrices before Lockdown

Note: Each cell in the table reports the R0 for the interaction between an infectious subject of the category of the corresponding
row and exposed subjects in the category of the corresponding column.

Figure A–2: Equivalent Basic Reproduction Matrices during Lockdown

Note: Each cell in the table reports the R0, eq for the interaction between an infectious subject of the category of the corre-
sponding row and exposed subjects in the category of the corresponding column.

Figure A–3: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE

Note: Each cell in the table reports the R0, eq with β(m) = 1 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Table A–1: Relevant R0,eq parameters for the different policies with β(m) = 1

1 2 3 4 5 6 7 8 9 10 11 mean

Lombardia

p = LOCK 1.19 4.58 2.41 2.41 1.55 1.55 2.41 1.55 1.99 1.99 1.99 1.36

p = SEC 1.19 4.58 2.41 2.41 1.79 1.79 2.41 1.79 3.42 3.42 3.42 1.48

p = AGE 1.19 4.58 4.58 3.22 2.19 1.79 2.41 1.55 3.42 2.53 1.99 1.49

p = AGE SEC 1.19 4.58 * ** *** **** 2.41 1.55 3.42 2.53 1.99 1.44

p = ALL 1.19 4.58 4.58 4.58 2.19 2.19 4.58 2.19 3.42 3.42 3.42 1.57

Veneto

p = LOCK 0.92 3.95 2.01 2.01 1.27 1.27 2.01 1.27 1.65 1.65 1.65 1.07

p = SEC 0.92 3.95 2.01 2.01 1.5 1.5 2.01 1.5 2.95 2.95 2.95 1.17

p = AGE 0.92 3.95 3.95 2.74 1.89 1.5 2.01 1.27 2.95 2.14 1.65 1.18

p = AGE SEC 0.92 3.95 # ## ### #### 2.01 1.27 2.95 2.14 1.65 1.14

p = ALL 0.92 3.95 3.95 3.95 1.89 1.89 3.95 1.89 2.95 2.95 2.95 1.26

Note: For each policy indicated in a row and respectively for the two regions, the columns of this table report the R0,eq

corresponding to the following interactions: 1) any interaction involving subjects at home; 2) students with students in the
same class; 3) young active high-risk with young active high-risk; 4) young active high-risk with old active high-risk; 5) young
active high-risk with young active low-risk; 6) young active high-risk with old active low-risk; 7) old active high-risk with old
active high-risk; 8) old active high-risk with old active low-risk; 9) young active low-risk with young active low-risk; 10) young
active low-risk with old active low-risk; 11) old active low-risk with old active low-risk. The last column reports, for each policy,
the average R0 in the population, obtained as an average of the R0 for each type of interaction weighted by the size of the
population involved. The table for the case in which β(m) = 0.8 can be easily obtained multiplying each number by 0.8.
For Lombardia:
** Given the structure of the policy there are 2 different values for this class: 3.22 for 20-29 to 50-69 and 2.41 for 30-49 to
50-69.
*** Given the structure of the policy there are 2 different values for this class: 2.19 for 20-29 to 20-49 and 1.79 for 30-49 to
20-49.
**** Given the structure of the policy there are 2 different values for this class: 1.79 for 20-29 to 50-69 and 1.55 for 30-49 to
50-69. For Veneto:
# Given the structure of the policy there are 3 different values for this class: 3.95 for 20-29 to 20-29, 2.74 for 30-49 to 20-29
and vice versa, and 2.01 for 30-49 to 30-49.
## Given the structure of the policy there are 2 different values for this class: 2.74 for 20-29 to 50-69 and 2.01 for 30-49 to
50-69.
### Given the structure of the policy there are 2 different values for this class: 1.89 for 20-29 to 20-49 and 1.5 for 30-49 to
20-49.
#### Given the structure of the policy there are 2 different values for this class: 1.5 for 20-29 to 50-69 and 1.27 for 30-49 to
50-69.
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Table A–2: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response and β(m) = 0.8

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC4 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 0.6 1 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 0.6 0.6 1 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC8 0.6 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC9 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC10 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC11 1 1 1 0.6 1 0.6 0.6 0.6 0.6 0.6

p = AGE SEC12 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC13 0.6 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC14 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC15 1 0.6 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC16 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC17 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC18 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC19 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC20 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC21 1 1 1 1 1 0.6 1 1 1 1

p = AGE SEC22 1 1 1 1 1 1 0.6 1 1 0.6

p = AGE SEC23 1 1 1 1 0.6 0.6 1 1 0.6 1

p = AGE SEC24 0.6 1 1 1 0.6 0.6 1 1 0.6 0.6

p = AGE SEC25 0.6 1 1 1 0.6 1 1 0.6 0.6 1

p = AGE SEC26 1 0.6 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC27 1 1 1 0.6 1 1 0.6 1 0.6 0.6

p = AGE SEC28 1 0.6 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC29 1 1 1 0.6 0.6 1 0.6 1 0.6 0.6

p = AGE SEC30 1 0.6 1 0.6 0.6 0.6 1 0.6 0.6 0.6

Other representative policies close to the efficient contour

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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